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Optimization of image-guided radiotherapy (IGRT)  for lung cancer

Th e survival of patients with locally-advanced lung cancer is still poor, and strategies 
including escalation of the radiation dose, use of concurrent chemoradiotherapy and 
tailoring systemic therapy in accordance to the molecular characteristics of tumors 
are all being explored as means to improve outcomes. Th is thesis will focus on the 
fi rst two areas. As both these approaches can be associated with signifi cant toxicity, 
improvements in the therapeutic ratio (i.e. the ratio of the maximally tolerated dose 
to the minimally curative dose) are needed. Image-guided radiotherapy (IGRT) is 
a rapidly evolving tool that can facilitate high-dose, high-precision radiotherapy 
with acceptable side-eff ects. Historically, radiotherapy has always been ‘image-
guided’ as imaging is incorporated in every step of the process ranging from target 
defi nition, treatment planning and delivery to treatment verifi cation. In the last 
two decades, IGRT has evolved from conventional radiographic fi lm imaging to 
3D CT-based radiotherapy. Currently, 4DCT based modalities, which allow for 
temporal and spatial changes to be visualized are also available (1). Th is thesis 
describes a number of approaches that can further advance IGRT in the areas of 
target defi nition, treatment delivery and treatment verifi cation for locally advanced 
lung tumors. 

Target defi nition
Th e therapeutic ratio can be increased by the use of smaller target volumes, for 
example by omitting elective nodal irradiation (2,3). However, target defi nition 
is a crucial step as contouring is extremely susceptible to variation due to the 
lack of contrast, low image resolution, imaging artifacts and uncertainties in the 
clinician’s interpretation. Since target defi nition represents the fi rst step in the 
radiotherapy process, uncertainties related to this aspect of radiotherapy may lead 
to signifi cant systematic errors, which in turn may have great impact on outcomes 
such as local recurrence rates or excessive toxicity. Furthermore, intra- and inter-
observer variations may become even more critical in an era of increasing use 
of more conformal treatment strategies. Results of an international contouring 
study using a CD-ROM based contouring program (chapter 3) indeed showed 
that signifi cant contouring variations exist even among experienced radiation 
oncologists and that the use of standardized target defi nitions is important for 
reducing these variations. In addition, they also stress the importance of peer 
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review in multi-center clinical trials, and have resulted in the implementation of a 
web-based infrastructure for analyzing real-time data in trials such as Lung ART. 

Th e work described in this thesis is based on 4DCT scans, but the 
integration of functional imaging such as 18-Fluoro-2-Deoxy-Glucose positron 
emission tomography (18FDG-PET) may play a greater role in target defi nition in 
the future. 18FDG-PET has already proven its value in staging lung cancer, as its 
sensitivity and specifi city in defi ning mediastinal nodal metastases (67–91% and 
82-96% respectively) are superior to those of only a CT scan (50–71% and 66–
89%, respectively) (4). However, the extent to which 18FDG-PET contributes to the 
accuracy of target defi nition remains an area of active research. Several studies have 
reported that 18FDG-PET can signifi cantly reduce both intra- and inter-observer 
contouring variations (5-9). Based on its relatively high sensitivity and specifi city 
in mediastinal staging it seems logical to defi ne PET-based mediastinal fi elds. 
However, nearly 10% of patients who have a CT and PET negative mediastinum 
were found to have occult nodal metastases when evaluated using endo-bronchial 
and endo-esophageal ultrasound-guided biopsies (10). For the primary tumor, 
recent data from patients with lung cancer indicate that PET does not always 
accurately predict tumor localization based on pathology (11,12). Similar fi ndings 
have been reported in animal studies where discrepancies were found between 
PET images and the underlying microscopic tumors, suggesting that the fi nite 
resolution of PET should be taken into account when strategies such as FDG-
PET-based ‘dose-painting’ are considered (13). In addition, issues regarding the 
approach for PET-based target volume contouring (i.e. absolute standardized 
uptake value [SUV] threshold or source to background ratio techniques) (14) and 
the existence of motion-induced artifacts (15) need to be resolved. Th e limitations 
of using PET for defi ning tumor edge or for deriving motion encompassing 
strategies was also highlighted by results of our recent study on 4DCTs of a motion 
phantom and patients with peripheral lung tumors, which showed that PET-based 
target volumes did not fully correspond to those volumes treated with stereotactic 
radiotherapy (16). 

In the future, magnetic resonance imaging (MRI) may also play a role in 
target defi nition and treatment verifi cation. Th e benefi t of MRI over a PET or CT 
scan lies in its superior visualization of soft  tissues and justifi es its routine use into 
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target defi nition for several tumor sites (i.e. prostate cancer or brain tumors). Th e 
role of MRI in defi ning the extent of lung cancer has not been established yet, but 
its additional value may lie in demarcating the tumor from the heart, large blood 
vessels or in contouring tumors of the superior sulcus. In addition, MRI-guided 
IGRT is expected to become clinically available in the near future; a prototype 
linear accelerator with an incorporated MR scanner has been developed in Utrecht 
(17). Both the avoidance of ionizing radiation and superiority in visualizing soft  
tissues compared to MV and kV-imaging, will allow for improved real-time 
imaging and tumor tracking.

Treatment delivery and verifi cation
Th e use of smaller radiation fi elds can be achieved using approaches such as 
respiratory-gated radiotherapy (RGRT). However, the accuracy of tumor targeting 
with this approach has been challenged as it is commonly not triggered by the 
tumor position, but by the use of an external surrogate. Repeated verifi cation of 
the correlation between an external surrogate with the internal anatomy is ideal, 
but this may lead to an unacceptable increase in clinical workload. Th erefore, an 
extra margin is oft en added in order to account for the uncertainties related to 
RGRT. Although our results have shown this margin to be suffi  cient (chapter 5), 
one should be aware that changes in breathing patterns may result in a shift  in 
tumor position, particularly for mobile tumors (chapter 4). Our results stress the 
importance of using adequate margins, which can only be further reduced when 
advanced (4D) verifi cation approaches ensure reproducible patient positioning 
and actual tumor localization. 

Use of the cone-beam CT (CBCT) is a recent development in IGRT with the 
potential to facilitate the reduction of safety margins. A CBCT allows for volumetric 
imaging and is superior in visualizing bony anatomy and soft  tissue compared to 
planar MV and kV imaging techniques (18,19). Recent studies have shown that the 
CBCT contributes to higher geometric accuracy by improving setup using the bony 
anatomy (20,21). Use of the tumor for positional verifi cation in locally-advanced 
disease is challenging at present as a CBCT is not of diagnostic quality and its 
relatively poor contrast resolution results in diffi  culties discriminating nodes from 
other mediastinal structures (22). Implantation of fi ducials as surrogate for tumor 
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position has been used for treatment verifi cation (23), but drawbacks include the 
risk of a pneumothorax and the migration of fi ducials (24,25). Consequently, intra-
fraction motion in locally advanced tumors cannot be adequately visualized using 
CBCT scans. In addition, its relatively long acquisition time results in a blurred 
vision of the tumor comparable to a slow CT or an average intensity projection of 
a 4DCT scan. Respiration-correlated CBCT scans have been developed (26), but 
are not routinely available for clinical use.

Improved tools for 4D verifi cation are needed and an example of such a 
tool is a soft ware program permitting both the assessment of tumor motion from 
fl uoroscopic images and respiratory waveforms from the RPM-system (Intra-
fraction Motion Review [IMR]) (Varian medical systems, Palo Alto, CA). Th e tool 
is currently being validated and the fi rst results show a good correlation between 
tumor position and the respiratory waveforms (27). Th ese results suggest that IMR 
may be used in the future to calibrate the relationship between external surrogates 
and internal anatomy. 

Research using surrogates for 4D verifi cation is ongoing. Our study 
evaluating the value of internal surrogates in predicting 3D tumor position has 
shown the carina to be a better predictive surrogate compared to the diaphragm 
(chapter 6). However, even when the carina is used in a model to predict 3D tumor 
position, signifi cant residual prediction errors remain. Consequently, a predictive 
model based on the input of internal surrogates is not reliable enough for clinical 
use yet, and needs further optimization. We are currently collaborating with other 
groups in order to refi ne models for inferring both nodal and tumor volumes from 
multiple anatomical surrogates such as the carina, xyphoid, nipples and midsternal 
position (28). 

Image-guided treatment delivery is impaired by the lack of suffi  cient tissue 
contrast when using time-integrated electronic portal imaging (TI-EPI) for 
evaluating the reproducibility of the internal anatomy during RGRT. Consequently, 
it was necessary to use surrogates such as bronchial structures in some cases and 
therefore we have been unable to study peripheral tumors (chapter 5). Another area 
for improvement is the process of image registration. Rigid body algorithms were 
the only tools available to us for co-registering images during the work described 
in this thesis (chapter 4-7). Deformable registration allows for the estimation of the 
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spatial relationship between volume elements of corresponding structures across 
image data (29). Diff erences in patient position, weight loss and other changes in 
geometry during repeated imaging can be resolved using this tool. A recent study 
of our group confi rmed rapid review of target volumes on repeat CBCT scans 
and detection of changes in target volumes during treatment using a deformable 
registration tool (30). Deformable registration may play a signifi cant role in future 
IGRT and adaptive radiotherapy.

Even with the use of IGRT, aggressive treatment schedules using 
combinations of concurrent chemoradiotherapy and/or planned surgery can still 
result in signifi cant toxicity (chapter 8) (31). Patients with locally-advanced NSCLC 
are a heterogenous group with signifi cant co-morbidity, and so approaches using 
risk-stratifi cation are important to select those patients with stage III disease most 
likely to benefi t. Recently, clinical guidelines for the evaluation of fi tness for radical 
treatment have been developed (32), and it has been suggested that up to 59% of 
stage III NSCLC patients are ineligible for concurrent treatment if criteria based on 
co-morbidity and age used in phase III clinical trials were applied (33). However, 
improved IGRT techniques may allow for reduced toxicity and for more patients to 
undergo chemoradiotherapy. Implementation of concurrent chemoradiotherapy 
at the VUmc is based on radiation planning parameters predicting pulmonary 
toxicity (fi gure 1), in addition to the patients’ fi tness to undergo systemic doses 
of chemotherapy. According to this ‘treatment paradigm’, patients are eligible 
for radical treatment if the V20<42%, while respecting dose constraints to other 
organs at risk. Patients at high risk for a radiation pneumonitis (i.e. V20≥35%) 
undergo RGRT with the specifi c aim to reduce V20 (34,35). As recent data indicated 
that reducing the volume of lung tissue irradiated to low doses was important (36-

38), eff ort was also made to lower the V5. Analysis of clinical outcomes of this 
treatment paradigm in our own patients shows acceptable toxicity when advances 
in IGRT are used to deliver tailored radiotherapy (39). 

Besides the technical improvements in IGRT, future advances in the treatment 
of locally-advanced lung cancer are also likely to be driven by better understanding 
of the molecular pathways of disease, use of novel markers for functional imaging 
(i.e. tracers to allow for imaging hypoxia, cell proliferation or apoptosis) and by 
the exploitation of the molecular mechanisms underlying radiosensitivity (40). 



147

General discussion and future directions

9

Such developments will improve our knowledge of tumor metabolism, location 
and response and may therefore lead to enhanced target defi nition, more eff ective 
radiotherapy, but also facilitate the role of adaptive radiotherapy (41). However, 
we anticipate that optimal IGRT will remain the cornerstone of such treatment 
schemes.

V20 ≤ 35% V20 = 36-42% V20 > 42%

Concurrent CRT
RGRT to reduce V5

Concurrent CRT if possible 
RGRT to reduce V20 & V5

Sequential CRT
RGRT to reduce V20

Dose reduction

Locally-advanced stage NSCLC
(fit to undergo full

 dose chemotherapy)

Figure 1. VUMC treatment paradigm for locally-advanced stage lung cancer NSCLC: 
non-small-cell lung cancer; V20: volume of normal lung tissue (total lung volume 
minus planned target volume) receiving ≥20 Gy; V5: volume of normal lung tissue 
(total lung volume minus planned target volume) receiving ≥5 Gy; CRT: concurrent 
chemoradiotherapy; RGRT: respiratory-gated radiotherapy.

CONCLUSION
Th e aim of the studies described in this thesis was to improve the quality of 
radiotherapy for locally-advanced lung cancer. Th e cornerstone of optimal 
radiotherapy is a correct defi nition of the target volume, and we showed that 
decreases in inter-observer contouring variability could be achieved using clear 
contouring protocols. Our fi ndings contributed to the decision to implement real-
time quality assurance in an international phase III trial. We utilized imaging tools 
in order to study changes in intra- and inter-fractional anatomy during a course 
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of radiotherapy. Using time-integrated electronic portal imaging, we showed that 
accurate delivery of respiration-gated radiotherapy was possible. However, caution 
should be exercised as changes in breathing pattern can lead to changes in tumor 
position, and the relationship between tumor position and external surrogates may 
also vary. We found that changes in tumor geometry aft er 3 weeks of treatment 
had little impact on treatment plans, which suggested that there was no need for 
a routine repeat of treatment planning in the majority of patients. Use of CBCT 
may identify volumetric changes that merit re-planning. Th e optimization of all 
these diff erent steps in the radiotherapy planning and delivery process will allow 
for tailored treatment delivery, with the goal of reducing toxicity and facilitating 
full-dose concurrent chemo-radiotherapy for locally-advanced lung cancer.
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