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Abstract. The paper studies stochastic optimization problems in Reproducing Kernel Hilbert
Spaces (RKHS). The objective function of such problems is a mathematical expectation functional
depending on decision rules (or strategies), i.e. on functions of observed random parameters. Fea-
sible rules are restricted to belong to a RKHS. This kind of problems arises in on-line decision
making and in statistical learning theory. We solve the problem by sample average approximation
combined with Tihonov’s regularization and establish sufficient conditions for uniform conver-
gence of approximate solutions with probability one, jointly with a rule for downward adjustment
of the regularization factor with increasing sample size.
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1. Introduction

Stochastic optimization deals with decision making models and problems under proba-
bilistic uncertainty of the future, see Ruszczynski and Shapiro (2003). Its decision per-
formance criterion usually has the form of a probability functional or a mathematical
expectation over random factors and depends on decision parameters. One of the difficul-
ties in such problems is that the probabilistic distribution of random factors is not known
completely and may be given, for example, by a set of observations. A main field of ap-
plication is to find optimal decision rules (also called strategies), i.e., a priori established
actions as functions of revealed situations, on the basis of their expected performance,
see Ermoliev (1976), Yudin (1979; Ch. 5).

Mathematically similar problems arise in mathematical statistics (regression) and
in statistical learning theory, see Vapnik (1998). In statistical leaning theory they are
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treated as infinite dimensional optimization problems in the so-called Reproducing Ker-
nel Hilbert Spaces (RKHS), a setting known as kernel learning. RKHS is a very spe-
cific Hilbert space, see Aronszajn (1950), Cucker and Smale (2001), for example, strong
convergence in norm in this space implies uniform convergence of functions. RKHS is
completely defined by its reproducing kernel, i.e., a function of two vector variables such
that under one fixed variable (1) the resulting kernel function, as a function of the other
variable, is an element of the space and (2) in inner products with other functions the
kernel functions act as Dirac’s delta-function. It appears that functions in RKHS are ap-
proximated by linear combinations of kernel functions. If the kernel is continuous then all
functions in RKHS are continuous. In statistical learning theory kernel is interpreted as
a measure of similarity of two vectors (situations). Because of these properties, RKHS’
considerably differ from spaces of measurable/integrable functions and are of great inter-
est for decision theory under uncertainty.

There are two basic approaches to solving optimization problems in RKHS. The first
one combines Tihonov’s regularization (Tihonov and Arsenin, 1977) with sample average
approximation (regularized empirical risk minimization; Vapnik (1998), Scholkopf and
Smola (2002). A solution is sought as a linear combination of kernel functions associ-
ated with some subset of observations (support vectors). Due to the so-called Representer
Theorem (Kimeldorf and Wahba, 1970), see also Scholkopf and Smola (2002; Theorem
4.2, P. 90), the original optimization problem is reduced to a finite dimensional one. This
approach is also known as Support Vector Method/Machine (SVM). An important and
debatable issue in this approach is the choice of the regularization parameter reflecting
the trade-off between quality of fit to data and complexity of the decision model. The
other optimization approach studies sequential (on-line or stochastic approximation) pro-
cedures for (quadratic) unconstrained optimization problem in RKHS, see Smale and
Zhou (2005), Smale and Yao (2006), where convergence in probability in RKHS-norm is
established, that implies uniform convergence in probability.

Vapnik’s (1998) convergence analysis of the regularized empirical risk minimization
method is based on the uniform functional law of large numbers, which in turn is guaran-
teed by finiteness of VC-dimension of a corresponding functional class. Assuming finite
VC-dimension and fixed regularization parameter, Vapnik (1998) proves uniform conver-
gence of regularized empirical risk approximations to the true regularized risk, leaving
out of consideration, however, the convergence of the corresponding sequence of mini-
mizers. Alternatively, other approaches to SVM-convergence analysis that do not rely on
VC-dimension, other capacity measures and uniform law of large numbers, make use of
stability property of learning algorithms (Bousquet and Elisseeff, 2002; Mukherjee et al.,
2006; Takeuchi et al., 2006) and probabilistic concentration measure (large deviation)
inequalities (McDiarmid, 1989), but again for fixed regularization parameter.

In the statistical context, regularized empirical least squares risk minimization natural-
ly produces estimators that converge to the regression function in mean norm (and hence
in probability; Cucker and Smale, 2001; Cucker and Smale, 2002; Poggio and Smale,
2003; De Vito et al., 2005).

In the stochastic optimization context, Yudin (1974; 1979) studied quadratic stochas-
tic optimization problems over square integrable decision rules and proposed dual meth-
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ods for their solution. Raik (1972) studied stochastic optimization problems with prob-
abilistic functionals defined on continuous decision rules and applied Galerkin solution
technique. Ermoliev (1976), Ermoliev and Yastremski (1979), Ermoliev and Leonardi
(1982) studied optimality conditions for convex stochastic optimization problems with
square integrable decision rules and measurability constraints. Chancelier and SOWG
(2006) consider stochastic optimization problems over Lp-strategies subject to a specific
σ-field measurability constraint and propose a discrete approximation technique for their
solution. In this respect, the present paper considers stochastic optimization problems on
a more narrow class of strategies, namely from Hilbert space with a reproducing ker-
nel.

Remark that for finite dimensional stochastic optimization problems there is a variety
of solution techniques, in particular the sample average approximation method, which
in this case need not require regularization, see Ruszczynski and Shapiro (2003). But
for the infinite dimensional stochastic optimization problems the situation is different, as
regularization may be necessary both for the validation of convergence and for numerical
implementation.

In the present paper, we extend the Support Vector Method (SVM) approach that was
primarily designed for statistical learning to the more general problem of solving ball-
constrained stochastic optimization problems in RKHS. The original problem is replaced
by a sample average approximation plus a quadratic regularization term multiplied by a
scalar, the regularization parameter. We exploit the fact that a solution of this approx-
imation problem can be found in a kernel form, i.e., as a finite linear combination of
kernel functions associated with a sample of observations. Consequently, the implemen-
tation of SV-method reduces to a finite dimensional optimization. We study asymptotic
convergence of the SV-method under the assumption that regularization parameter λ(m)
depends on the sample size m and tends to zero, λ(m) → 0, as m → ∞. Our main
asymptotic convergence result is that if the regularization parameter goes to zero pro-
portionally to (ln m)/ 4

√
m as the sample size m → ∞, then corresponding kernel so-

lutions uniformly converge to a true solution with probability one, and the rate of mean
error decrease is of the same order, (ln m)/ 4

√
m. Here the true solution is a (unique)

normal minimizer (or a normal solution in terms of Tihonov and Arsenin (1977)) of the
original functional minimization problem. As a byproduct we obtain convergence results
for SVM-regression and SVM-classification. For a binary classification problem, conver-
gence of a misclassification risk to its absolute minimum holds true with probability one
if the regularization factor goes to zero proportionally to (ln m)/

√
m as m → ∞. The

present paper is an extended version of Norkin and Keyzer (2008).
The paper proceeds as follows. In Section 2 we introduce notations and present nec-

essary facts on Reproducing Kernel Hilbert Spaces. Section 3 formulates stochastic opti-
mization problem in RKHS and describes a computational approximation scheme. Sec-
tion 4 establishes sufficient conditions of consistency of approximations. Section 5 spe-
cializes the results for a kernel regression and binary classification problems. Section 6
concludes. Proofs are presented in Appendix.
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2. Reproducing Kernel Hilbert Spaces (RKHS)

To introduce notations we start with basic facts concerning Reproducing Kernel Hilbert
Spaces, see Aronszajn (1950); Cucker and Smale (2001); Scholkopf and Smola (2002).

DEFINITION 1. A Hilbert space H(Ω) of functions defined on a closed set Ω ⊆ Rn with
inner product 〈· , · 〉 is said to be a Reproducing Kernel Hilbert Space (RKHS) if there
exists a kernel functional k(· , · ) defined on Ω × Ω with the properties:

(i) k(·, ω) ∈ H(Ω), ∀ ω ∈ Ω;
(ii) f(ω) = 〈f, k(·, ω)〉, ∀ f ∈ H(Ω) and ∀ ω ∈ Ω (this is a so-called reproducing

property of the kernel k(· , · )).

A Reproducing Kernel Hilbert Space with kernel k is denoted as Hk(Ω) or Hk for
short. Corresponding inner (scalar) product and norm in RKHS are denoted as 〈 · , · 〉k

and ‖ · ‖k = 〈·, · 〉1/2
k , respectively; Rn is the n-dimensional real vector space.

PROPOSITION 1 (nonparametric representation of RKHS). In RKHS Hk(Ω) the set of
all finite linear combinations{

f(ω) =
∑

i

αik(ω, ωi), αi ∈ R1, ωi ∈ Ω
}

constitutes a dense subset.

We remark that the kernel reproducing property ensures that

∥∥∥ ∑
i

αik(ω, ωi)
∥∥∥2

k
=

∑
i,j

αiαjk(ωj , ωi).

PROPOSITION 2. If kernel k(ω, ω̄) is continuous in (ω, ω̄) ∈ Ω × Ω with compact Ω,

then the corresponding RKHS Hk(Ω) consists of continuous functions.

DEFINITION 2 (Mercer kernel). A function k(ω, ω̄), ω, ω̄ ∈ Ω is called Mercer kernel
if k(· , · ) is continuous and symmetric, and for any finite set of points {ωi ∈ Ω} matrix
with entries {k(ωi, ωj)} is positive semidefinite.

PROPOSITION 3 (parametric representation of RKHS). For any Mercer kernel k(· , · )
there exists Reproducing Kernel Hilbert Space Hk(Ω), defined by this kernel according
to Definition 1.

The following propositions establish relations between norms ‖f ‖k and ‖f ‖ ∞ =
supω∈Ω|f(ω)|.

PROPOSITION 4. If supω∈Ω |k(ω, ω)| � K2 < ∞, then ‖f ‖ ∞ � K‖f ‖k and hence
(strong) convergence fm → f in Hk-norm implies a uniform convergence fm ⇒ f

on Ω, m → ∞.
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PROPOSITION 5. If 0 < ε � k(ω, ω̄) � K2 for all ω, ω̄ ∈ Ω, and limn→∞ ‖f −
fn‖k= 0, fn(ω) =

∑In

i=1 αnik(ω, ωn i), αni � 0, then ‖f ‖k � (K/ε)‖f ‖∞.

Proof. Since

fn(ω) =
In∑
i=1

αnik(ω, ωn i) � ε

In∑
i=1

αni

then

In∑
i=1

αni � ‖fn‖ ∞/ε

and hence

‖fn‖k =
( In∑

i,j=1

αniαnjk(ωn i, ωnj)
)1/2

� K

In∑
i=1

αni �
(
K/ε

)
‖fn‖ ∞.

By Proposition 4 limn→∞ ‖f − fn‖k = 0 implies limn→∞ ‖f − fn‖ ∞ = 0, so

‖f ‖k = lim
n→∞

‖fn‖k � (K/ε) lim
n→∞

‖fn‖ ∞ =
(
K/ε

)
‖f ‖ ∞.

3. Stochastic Optimization in Reproducing Kernel Hilbert Spaces

Stochastic optimization problem in decision rules has the form:

R(f) := Eωc(ω, f(ω)) :=
∫
Ω

c(ω, f(ω))P (dω) → min
f(·)∈F

, (1)

where c(· , · ): Ω×R1 → R1 is a nonnegative performance function; F is some functional
class of feasible decision rules (strategies) f : Ω → R1; P (·) is a probability distribution
on the set Ω ⊆ Rn; (Ω, BΩ, P ) is a probability space. Let F ∗ ⊂ F denote a set of min-
imizers in (1). The distribution P (·) is unknown, only a set of independent observations
Sm = {ωi ∈ Ω} m

i=1 is available. In what follows, the feasible set F be a closed convex
subset of a RKHS with kernel k: Ω × Ω → R1, for example, F can be a ball in Hk.

A possible interpretation of problem (1) would be as follows. Suppose that an expert
has to prepare rules of behavior in an uncertain environment having only a probabilis-
tic knowledge on the future states of the environment, namely he/she has to suggest in
advance before the state ω of the environment is known a decision rule f(·) which is
applied when the state ω is revealed. Optimal rule f(·) is found by optimization of the
mean value R(f) = Ec(ω, f(ω)) of the performance criterion c(ω, f(ω)). Rules have to
be selected from class F .
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ASSUMPTION A (existence of solution).
(i) Either F = Hk and problem (1) has at least one solution, or
(ii) F = Bk = {f ∈ Hk: ‖f ‖k � C∗ }.

ASSUMPTION B (properties of the performance function and the kernel). Assume that
(i) the performance function c(ω, ·): R1 → R1 in (1) is nonnegative, convex and

Lipschitzian with constant L uniformly in ω ∈ Ω; c(·, y) is continuous on Ω for
any y ∈ R1;

(ii) supω∈Ω c(ω, 0) � C < +∞;
(iii) supω∈Ω |k(ω, ω)| � K2 < ∞.

Assumption B(i) covers piecewise linear and quadratic loss functions for bounded Ω.
Requirement B(ii) is fulfilled if c(ω, 0) is continuous and Ω is bounded. Assumption B(iii)
implies fulfillment of Proposition 4. Assumptions A(ii), B(i) jointly guarantee existence
of solution in (1), see Ekeland and Temam (1976; Section 2.1).

Since in Assumptions A and B functions f ∈ Hk(Ω) and c(· , · ): Ω × R1 → R1

are continuous, c(ω, f(ω)) � C + LK‖f ‖k, function c(ω, f(ω)) is measurable (even
continuous) and bounded, thus functional R(f) is well defined.

Since the distribution P (·) is not known and a decision rule problem is generally ill-
posed, we apply regularization and instead of (1) solve the associated regularized sample
average approximation problem:

1
m

m∑
i=1

c(ωi, f
(
ωi)

)
+ λ‖f ‖2

k → inf
f(·)∈F

, (2)

where {ωi}m
i=1 are independently sampled from P (·). If c(ω, ·) is convex then objective

function in (2) is strictly convex with bounded level sets, so (2) has a unique solution
fλ

m(ω) in F ⊆ Hk. As in Assumptions A and B, solutions fλ
m(·) continuously depend on

the whole sample {ωi}m
i=1, fλ

m(·) can be considered random variables with values in Hk

and defined on a countable product of the original probability space (Ω, BΩ, P ).
By the Representer Theorem (Kimeldorf and Wahba, 1970), see also Scholkopf and

Smola (2002; Theorem 4.2, p. 90), a solution of problem (2) can be written in kernel
form:

fλ
m(ω) =

m∑
j=1

αjk(ω, ωj), (3)

where coefficients αm = {αj }m
j=1 are real numbers. Solutions of form (3) are called

kernel minimizers. The Representer Theorem plays the key role in solution of prob-
lem (2), because it enables us, by substituting (3) into (2) and noting that ‖fλ

m‖2
k =∑m

i,j=1 αiαjk(ωi, ωj), to reduce the infinite dimensional optimization problem (2) to a
finite dimensional one. In case F = Hk, problem (2) becomes

1
m

m∑
i=1

c

(
ωi,

m∑
j=1

αjk(ωi, ωj)
)

+ λ

m∑
i,j=1

αiαjk(ωi, ωj) → min
{α1,...,αm }

. (4)
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Computational details for solving (4) for piece-wise linear function c(· , · ) can be
found, for example, in Scholkopf and Smola (2002); Keyzer (2005). If F = Bk

in (2), then problem (4) is supplemented by an additional ball (quadratic) constraint∑m
i,j=1 αiαjk(ωi, ωj) � (C∗ )2, which may be bounding or not. Mark that the pres-

ence of the ball constraint in (2) does not influence on the validity of the Representer
Theorem.

Our first result establishes bounds on the expected functional value at the kernel mini-
mizer fλ

m. In what follows functional random variables fλ
m are considered on a countable

product of copies of the original probability space (Ω, BΩ, P ).

Theorem 1 (bounds on the expected functional value). Under Assumptions A(i), B, for
any λ > 0 and m:

EmR
(
fλ

m

)
� R(f ∗ ) + 2

2C + L
∥∥f ∗

∥∥
∞√

m
+

LK(5LK + 2
√

λC)
λ

√
m

+ λ
∥∥f ∗

∥∥2

k
, (5)

where expectation Em is taken over i.i.d. sample {ω1, . . . , ωm}, f ∗ is a solution of (1).

The theorem guarantees convergence in mean of R(fλ
m) to the minimum value R(f ∗ )

if λ(m) → 0 and
√

mλ(m) → 0 as m → ∞.
If Assumption A(ii) holds, i.e., F = Bk, the unknown constants ‖f ∗ ‖k and ‖f ∗ ‖ ∞

in (5) can be safely replaced by C∗ and KC∗ , respectively, while the term
√

λC in in-
equality (5) should be replaced by λC∗ . In this case, the optimal regularization parameter,
minimizing the right hand side of (5), becomes equal to λ∗ (m) =

√
5KL

C∗ 4√
m

.

4. Strong Consistency (Convergence) of Kernel Minimizers

We are now ready to establish conditions of consistency of kernel solutions (3), expressed
as convergence of fλ

m to some f ∗ ∈ F ∗ , as λ = λ(m) → 0 and m → ∞, for appropriate
specification of λ = λ(m).

DEFINITION 3. Solution f ∗ ∈ F ∗ is called a normal minimizer (in terms of Tihonov and
Arsenin (1977) if it has a minimal norm, ‖f ∗ ‖k = minf ∈F ∗ ‖f ‖k.

The following two theorems give sufficient conditions of uniform convergence of kernel
minimizers f

λ(m)
m to the normal minimizer f ∗ ∈ F ∗ of (1), i.e., with probability one

lim
m→∞

sup
ω∈Ω

∣∣fλ(m)
m (ω) − f ∗ (ω)

∣∣ = 0.

Theorem 2 (sufficient conditions for strong consistency of kernel minimizers). Assume
that Assumptions A, B hold and limm→∞ λ(m) = 0.

If limm→∞ mλ2(m)
/

ln m = ∞, then limm→∞ R(fλ(m)
m ) = R(f ∗ ) with probabili-

ty one.
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If limm→∞ mλ4(m)
/

lnm = ∞, then R(fλ(m)
m ) → R(f ∗ ) and minimizers f

λ(m)
m

of (2) uniformly converge to the normal minimizer f ∗ of (1), with probability one
as m → +∞.

Remark that for ill-posed problems relation limm→∞ R(fλ(m)
m ) = R(f ∗ ) generally

does not imply convergence of estimators, f
λ(m)
m → F ∗ . Thus, to guarantee consistency

of kernel solutions regularization parameter λ = λ(m) in expressions (2), (4) should go
to zero slower than 4

√
(lnm)/m as m → +∞.

Theorem 3 (strong uniform consistency of kernel minimizers). Assume that Assump-
tions A(i), B hold. For regularization parameters λ(m) = Λ(ln m)ε/m1/4, Λ > 0,
1/4 < ε � 1, error term [R(fλ(m)

m ) − R(f ∗ )] tends to zero and corresponding solu-
tions f

λ(m)
m uniformly in ω ∈ Ω converge to the normal minimizer f ∗ , with probability

one as m → +∞. For the mean error the following estimate holds true

EmR
(
fλ(m)

m

)
− R(f ∗ ) � 4C + 2L‖f ∗ ‖ ∞√

m
+

LK(5LK + 2
√

2ΛC)
Λ(ln m)ε 4

√
m

+

+
‖f ∗ ‖2

kΛ(ln m)ε

4
√

m
. (6)

Error estimates (6) show that the expected error asymptotically goes to zero not slower
than const · (lnm)ε

/
m1/4, 1/4 < ε � 1.

To obtain a similar estimate under Assumption A(ii), one has in inequality (6) to
replace term

√
2ΛC by 2ΛC∗ , while the unknown constants ‖f ∗ ‖k and ‖f ∗ ‖ ∞ in (6)

can be safely replaced by C∗ and KC∗ , respectively.

5. Applications to Statistical Learning

Since functionals used in the statistical learning literature are particular cases of form (1),
the results of previous sections can be applied to kernel regression and classification.

5.1. Kernel Learning for a Regression Function

Particular cases of problem (1) arise in mathematical statistics. Suppose that problem (1)
has the following structure:

R(f) : = Eω1,ω2c
(
ω2, f(ω1)

)
=

∫
Ω1×R1

c
(
ω2, f(ω1)

)
p(ω1, ω2)dω1dω2 → min

f(·)∈F (Ω1)
,

where ω = (ω1 ∈ Ω1 ⊆ Rn, ω2 ∈ R1); c(· , · ): Ω2 × R1 → R1; f(·): Ω1 → R1;
p(ω1, ω2) is a density on Ω1 × R1; F (Ω1) is a set of measurable functions defined on
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a compact domain Ω1. It is well known (see Gyorfi et al., 2002) that (1) achieves its un-
constrained minimum over measurable dependences f(ω1) and the quadratic loss func-
tion

c(ω2, f(ω1)) = (ω2 − f(ω1))2 (7)

at the conditional mean of the density p(ω1, ω2) under fixed ω1:

f ∗ (ω1) =
∫
R1

ω2p(ω1, ω2)dω2

/ ∫
R1

p(ω1, ω2)dω2.

The median and other ν-quantiles f ∗
ν (ω1) of the conditional distribution function

Φω1(t) =

t∫
− ∞

p(ω1, ω2)dω2

/ +∞∫
− ∞

p(ω1, ω2)dω2

can be found by solving (1) with the integrand

c(ω2, f(ω1)) = max
{
(1 − ν)(f(ω1) − ω2), ν

(
ω2 − f(ω1)

)}
, (8)

0 < ν < 1, see for example, Koenker and Bassett (1978); Ermolaev and Yastremski
(1979; p. 95); Ermolaen and Leonardi (1982); Ruszczynski and Shapiro (2003; p. 2);
Takeuchi et al. (2006). The median is obtained for ν = 1/2. Solutions f ∗ (ω1), f ∗

ν (ω1) are
not necessarily general measurable functions, they may be continuous, smooth and so on.
Hence constrained minimization in (1) with loss functions (7), (8) for sufficiently broad
class F leads to the same solution. Of course, it is not straightforward to check whether
a conditional mean and quantiles of a given distribution belong to a particular RKHS,
or to postulate a suitable RKHS containing these characteristics of the distribution. This
actually is one of the main problems in kernel learning theory, commonly referred to as
the problem of “learning the kernel”. In practice, it is solved by selection of the kernel
from some parametric family {kθ, θ ∈ Θ} (jointly with the value of the regularization
parameter λ) so as to provide the best performance on the test data of the regression rule
fλ,θ

m (·) identified on training data. For example, the family {kθ, θ ∈ Θ} can be a convex
combination of several different kernels.

Under Assumptions A(i) and limm→∞ mλ4(m)
/

lnm = ∞ kernel minimizers for
(7) and (8) by Theorem 2 uniformly converge with probability one to the mean regression
and quantile regression functions respectively.

Rate of convergence of regression estimators is given by (5), (6). The right hand side
of (5), (6) as a function of the sample size m is called an enveloping learning curve; under
optimal regularization parameter it is a second order polynom of (1/ 4

√
m) with unknown

coefficients. The curve and hence unknowns ‖f ∗ ‖ ∞, ‖f ∗ ‖k can be statistically estimated.
In Brumen et al. (2007) the learning curve is first estimated for relatively small m, and
subsequently used for performance assessment for large m. It is seen from (5), (6) that
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norm ‖f ∗ ‖ ∞ and especially the unknown norm ‖f ∗ ‖k of the exact minimizer f ∗ are
important (unknown) characteristics of the problem under consideration. Since space Hk

is the Reproducing Kernel Hilbert Space constructed on the basis of kernel k(· , · ), by
Proposition 4 we have ‖f ∗ ‖k � ‖f ∗ ‖ ∞/K, and since the lower the norm ‖f ∗ ‖k the
tighter the bounds (5), (6), we may conclude that the kernel has to be selected in such a
way that this norm multiplied by K becomes minimal. Clearly, as f ∗ is unknown, this
cannot be done exactly but the result confirms that finding a kernel that closely fits a
particular class of functions may be important.

5.2. Consistency of Kernel Binary Classifiers

A binary classification problem can be reduced to the risk minimization problem (1) with
the absolute deviation loss function c(ω2, f(ω1)) = |f(ω1) − ω2| as follows, see Devroye
et al. (1996; p. 20). For any given function f(ω1) a binary classification rule is defined as

gf (ω1) =
{

1, f(ω1) > 1/2,

0, otherwise.

Quality of this decision rule gf can be measured by Bayesian risk, the probability
P {gf (ω1) = ω2} of misclassification, where ω2 ∈ {0, 1}. It is well known that Bayesian
risk achieves its minimal value P ∗ on the decision rule gη defined by a conditional prob-
ability function η(ω1) = P {ω2 = 1|ω1}, which is, however, unknown. Hence decision
function f(ω1) has to be searched in some class of functions H , for example, in some
Reproducing Kernel Hilbet Space Hk. If gη(ω1) ∈ Hk then the following relation holds
true

P
{
gf (ω1) = ω2

}
− P ∗ � 2

(
E

∣∣f(ω1) − ω2

∣∣ − min
f ∈Hk

E
∣∣f(ω1) − ω2

∣∣). (9)

In the statistical learning literature, decision function is found by solving regular-
ized empirical risk minimization problem (2) with absolute deviation loss function
c(ω2, f(ω1)) = |f(ω1) − ω2|. Consequently, solution f(ω1) = fλ

m(ω1) and correspond-
ing kernel binary classifier

gλ
m(ω1) := gfλ

m
(ω1) =

{
1, fλ

m(ω1) > 1/2,

0, otherwise,
(10)

satisfy relation (9).
If λ(m) is such that limm→∞ mλ2(m)

/
lnm = ∞, then under Assumptions A(i),

by (9) and Theorem 2 kernel binary classifier (10) is strongly consistent, i.e.,

lim
m→∞

P
{
gλ(m)

m (ω1) = ω2

}
= P ∗ (11)

with probability one. The rate of convergence of EmP {g
λ(m)
m (ω1) = ω2} to P ∗ in view

of (9) follows from Theorems 2, 3.
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Another approach to binary classification, based on direct Byaesian approximation
of η(ω1), is presented in Sergienko et al. (2008), where a comparison is also given with
empirical risk minimization.

6. Conclusions

We have presented and studied a computational framework for solving a certain class of
stochastic optimization problems in (infinite dimensional) Reproducing Kernel Hilbert
Spaces (RKHS), namely for finding optimal decision rules (or strategies) under prob-
abilistic uncertainty. This framework stems from statistical learning theory, where it is
known as Support Vector Method/Machine (SVM). The framework combines sample av-
erage approximation of the expectation performance criterion with Tihonov’s regulariza-
tion and reduces the problem to solution of a finite dimensional convex optimization. The
paper studies asymptotic properties of approximate solutions for sample size growing to
infinity. It establishes sufficient conditions and a rule for downward reduction of the regu-
larization term, which guarantee almost sure convergence of the sequence of minimizers
and indicate the rate of convergence in mean. In the best case this rate is inversely pro-
portional to the fourth power root of the sample size. These convergence results directly
apply to Support Vector Method/Machine in statistical learning applications.

Appendix: Proofs

Vapnik’s (1998) approach to the analysis of convergence of empirical risk minimizers fλ
m

of (2) to a true risk minimizer f ∗ of (1) consists of establishing conditions for uniform
convergence of the empirical risk functional Rm(f) to the true risk functional R(f),
f ∈ F . Specifically, define random variables

δm = sup
f ∈F

∣∣Rm(f) − R(f)
∣∣ = sup

f ∈F

∣∣∣∣ 1
m

m∑
i=1

c
(
ωi, f(ωi)

)
− Eωc

(
ω, f(ω)

)∣∣∣∣.

If δm/λ(m) → 0 in some probabilistic sense and λ(m) → 0, then solutions f
λ(m)
m

of regularized problem (2) converge in the same probabilistic sense to the normal min-
imizer f ∗ in the strong topology of the corresponding Hilbert space, see Tihonov and
Arsenin (1977) and Vapnik (1998). We remark that the uniform convergence of func-
tions Rm(·) → R(·) is in general not necessary for convergence of minimizers, as it is
sufficient epi-convergence of Rm(·) to R(·) (Rockafellar and Wets, 1998).

In our analysis we follow a different approach based on stability properties of reg-
ularized minimizers. Bousquet and Elisseeff (2002) and Mukherjee et al. (2006) high-
light the importance of stability for the consistency of learning algorithms. We obtain
the convergence results by enclosing within probabilistic bounds the deviation of risk
R (f) = Eωc(ω, f(ω)) at a single point f = f

λ(m)
m from its minimal possible value
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R(f ∗) = inff ∈F R(f), and by ensuring that these bounds become (exponentially) tighter

with rising number of observations, hence deriving limm→∞(R(fλ(m)
m ) − R(f ∗)) = 0

with probability one. Since in parallel with R(f) a norm ‖f ‖k is minimized, we ob-
tain convergence of kernel minimizers f

λ(m)
m to the normal minimizer of problem (1).

Uniform convergence of f
λ(m)
m follows from properties of RKHS with bounded kernel

(Proposition 4).
Remark that the related papers by Bosquet and Elisseeff (2002), Takeuchi et al.

(2006), Scholkopf and Smola (2002, Section 12.1) Scholkopf and Smola (2002; Sec-
tion 12.1) study convergence of R(fλ

m) + λ‖fλ
m‖2 to minf [R(f) + λ‖f ‖2] under fixed

λ, and do not discuss the issue of convergence of fλ
m to some solution f ∗ as λ → 0.

A1. Bounds

First we prove a number of lemmas.

Lemma 1 (bounds on ‖fλ
m‖k and ‖fλ

m‖ ∞ = supω∈Ω |fλ
m(ω)|). Under Assumptions A(i),

B the following inequalities hold:

∥∥fλ
m

∥∥2

k
� C/λ,

∥∥fλ
m

∥∥2

∞ � K2
∥∥fλ

m

∥∥2

k
� K2C

/
λ.

Proof. By optimality of fλ
m for (3) and by B(i), B(ii), we have

λ
∥∥fλ

m

∥∥2

k
� 1

m

m∑
i=1

c]
(
ωi, fλ

m(ωi)
)

+ λ
∥∥fλ

m

∥∥2

k

� 1
m

m∑
i=1

c(ωi, 0) � sup
ω∈Ω

c(ω, 0) � C. (12)

By the Cauchy–Schwarz inequality and B(iii), we have for any ω

∣∣fλ
m(ω)

∣∣ =
∣∣〈fλ

m(·), k(ω, ·)
〉∣∣ �

√
k(ω, ω)

∥∥fλ
m

∥∥
k

� K
∥∥fλ

m

∥∥
k
. (13)

Hence,

∥∥fλ
m

∥∥2

∞ � K2
∥∥fλ

m

∥∥2

k
� K2C

/
λ,

where we note that inequalities (12) and (13) can be found in Bousquet and Elisseeff
(2002).

Remark that under Assumptions A(ii), B(iii) ‖fλ
m‖k � C∗ and hence by Proposi-

tion 4, ‖fλ
m‖ ∞ � KC∗ holds.
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Lemma 2 (bounds on the loss function at minimizers f ∗ and fλ
m). Under Assump-

tions A(i), B the following bounds hold true:

sup
ω∈Ω

c
(
ω, f ∗(ω)

)
� C + L

∥∥f ∗∥∥
∞ =: N,

sup
ω∈Ω

c
(
ω, fλ

m(ω)
)

� C + LK
√

C/λ =: M(λ),

λM(λ) � ΛM(Λ) =: M̄(Λ), for any λ, 0 < λ � Λ. (14)

Proof. For N, by B(i) we have:

sup
ω∈Ω

c
(
ω, f ∗(ω)

)
� max

ω∈Ω
c(ω, 0) + L ‖f ∗ ‖ ∞ � C + L ‖f ∗ ‖ ∞ = N,

where ‖f ∗ ‖ ∞ = supω∈Ω |f ∗(ω)|. For M(λ), by B(i) and Lemma 1 we have:

sup
ω∈Ω

c
(
ω, fλ

m(ω)
)

� max
ω∈Ω

(
c(ω, 0) + L

∣∣fλ
m(ω)

∣∣) � C + LK
√

C/λ = M(λ).

Hence, for any λ ∈ (0, Λ],

λM(λ) � λ
(
C + LK

√
C/λ

)
= λC + LK

√
λC

�
(
ΛC + LK

√
ΛC

)
= ΛM(Λ) = M̄(Λ).

Remark that although M(λ) may be unbounded as λ → 0 but it enters into proba-
bilistic bound (18) below in the combination λM(λ), which is bounded by (14). This is a
key observation for obtaining convergence results from concentration measure inequality
(18) under λ → 0.

Under Assumptions A(ii), B supω∈Ω c(ω, fλ
m(ω)) � C + LKC∗ .

Lemma 3 (basic inequalities). For any λ > 0, m and solutions f ∗ of (1), fλ
m of (2) the

following inequalities hold:

R(fλ
m) � R (f ∗) + Δλ

m − Δ∗
m + λ ‖f ∗ ‖2

k , (15)∥∥fλ
m

∥∥2

k
� 1

λ

[
R(f ∗) − R(fλ

m) + Δλ
m − Δ∗

m + λ‖f ∗ ‖2
k

]

� 1
λ

(
Δλ

m − Δ∗
m

)
+

∥∥f ∗∥∥2

k
, (16)

where Δλ
m = [R(fλ

m) − Rm(fλ
m)] and Δ∗

m = [R(f ∗) − Rm(f ∗)], decompose the error
in prediction of risk;

R(f) = Eωc
(
ω, f(ω)

)
, Rm(f) =

1
m

m∑
i=1

c
(
ωi, f(ωi)

)
.
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Proof. By optimality of fλ
m,

Rλ
m(fλ

m) = Rm(fλ
m) + λ

∥∥fλ
m

∥∥2

k
� Rλ

m

(
f ∗)

= Rm

(
f ∗)

+ λ
∥∥f ∗∥∥2

k

and hence

R(fλ
m) + λ

∥∥fλ
m

∥∥2

k
� R

(
f ∗)

+
[
R(fλ

m) − Rm(fλ
m)

]
+

[
Rm(fλ

m) − R
(
f ∗)]

+ λ
∥∥fλ

m

∥∥2

k

� R
(
f ∗)

+
[
R(fλ

m) − Rm(fλ
m)

]
+

[
Rm

(
f ∗)

− R
(
f ∗)]

+ λ
∥∥f ∗∥∥2

k
. (17)

Inequality (15) is obtained by dropping the regularization term on the left hand side of
(17) and the second inequality (16) follows from (17), noting that R

(
f ∗)

− R(fλ
m) � 0.

Next Lemmas 4 and 5 give exponential bounds on distributions of Δλ
m and Δ∗

m.

Lemma 4 (bound on Pm{ |Δλ
m| − βλ

m > ε}). In Assumptions A, B and bound M(λ) �
c(ωi, f(ωi)), for any ε > 0 we have:

Pm

{∣∣Δλ
m

∣∣ − βλ
m > ε

}
� 2 exp

(
− ηλ

mε2
)
, (18)

where βλ
m = L2K2

mλ and ηλ
m = 2mλ2

(2L2K2+λM(λ))2
; probability measure Pm is a product of

m copies of the original data generation distribution P .

Proof. See Bousquet and Elisseeff (2002) and also Scholkopf and Smola (2002; Theo-
rem 12.5, p. 363). In the last reference there is an additional multiplier 1/2 (not present
in our formulation) in the regularization terms and concentration measure inequalities
are applied to two side deviations (as in our case). The proof is based on establishing
uniform stability of minimizer fλ

m ∈ F with respect to any single observation ωi (Bous-
quet and Elisseeff, 2002; Theorem 22) and on application of the concentration measure
exponential inequality (McDiarmid, 1989).

Lemma 5 (bound on Pm{ |Δ∗
m| � ε}). Given a uniform upper bound N on c(ω, f ∗(ω)),

and supposing that random variables c(ωi, f ∗(ωi)) are i.i.d., we have by Hoeffding’s
inequality, see Devroye et al. (1996; p. 122),

Pm

{∣∣Δ∗
m

∣∣ � ε
}

� 2 exp
{

− 2m

N2
ε2

}
. (19)

Next, we present bounds on the expectation of the absolute value of Δλ
m and Δ∗

m, to
be used in subsequent proofs. Symbol Em below denotes the expectation over probability
measure Pm, i.e., expectation over i.i.d data sample {ω1, . . . , ωm}.
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Lemma 6 (bound on Em|Δλ
m|). From Assumptions B follows:

Em

∣∣Δλ
m

∣∣ � 1
λ

√
m

(
2
(
2L2K2 + λM(λ)

)
+

L2K2

√
m

)
.

Proof. Define Fλ
m(ε) = max{0, 1 − 2 exp{−ηλ

mε2}}. Obviously, by Lemma 4 we
have Pm{ |Δλ

m| − βλ
m < ε} � Fλ

m(ε). Denote by ε̄ a solution of the equation

2 exp{ −ηλ
mε̄2}= 1 (hence ε̄ � 1

/√
ηλ

m). Then,

Em

∣∣Δλ
m

∣∣ − βλ
m �

+∞∫
0

(
1 − Fλ

m(ε)
)
dε = ε̄ + 2

+∞∫
ε̄

exp
{

− ηλ
mε2

}
dε

� ε̄ + 2

+∞∫
0

exp
{

− ηλ
mε2

}
dε � ε̄ +

√
π

1√
ηλ

m

�
(
1 +

√
π
) 1√

ηλ
m

� 2(2L2K2 + λM(λ))
λ

√
m

.

Accounting for βλ
m = L2K2

mλ completes the proof.

Lemma 7 (bound on Em|Δ∗
m|). If supω∈Ω c(ω, f ∗(ω)) � N , then Em|Δ∗

m|� 2N
√

m.

Proof. Define F ∗
m(ε) = max{0, 1 − 2 exp{−η∗

mε2}}, η∗
m = 2m

/
N2. By Lemma 5,

Pm{ |Δ∗
m| < ε} � F ∗

m(ε). Find ε̄ such that 2 exp{−η∗
mε̄2} = 1, then ε̄ � 1/

√
η∗

m.
Therefore,

Em

∣∣Δ∗
m

∣∣ �
+∞∫
0

(
1 − F ∗

m(ε)
)
dε �

(
1 +

√
π
) 1√

η∗
m

� 1 +
√

π√
2

N√
m

� 2N√
m

.

Lemmas 6 and 7 enable us to obtain a bound on the expected value of the empirical
risk R(fλ

m).

Proof of Theorem 1 (bounds on the expected functional value). As from Lemma 3 it
follows that

EmR(fλ
m) � R

(
f ∗)

+ Em

∣∣Δ∗
m

∣∣ + Em

∣∣Δλ
m

∣∣ + λ
∥∥f ∗∥∥2

k
.

Substitution of Em |Δ∗
m|, Em

∣∣Δλ
m

∣∣, from Lemmas 6, 7 gives the estimates:

EmR
(
fλ

m

)
� R(f ∗ ) + 2

C + L ‖f ∗ ‖ ∞√
m

+
1

λ
√

m

(
2
(
2L2K2 + λM(λ)

)
+

L2K2

√
m

)
+ λ

∥∥f ∗
∥∥2

k
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� R(f ∗ ) + 2
C + L ‖f ∗ ‖∞√

m

+
4L2K2 + 2(λC + LK

√
λC)

λ
√

m
+

L2K2

λm
+ λ ‖f ∗ ‖2

k

� R(f ∗ ) + 2
2C + L ‖f ∗ ‖ ∞√

m
+

LK(5LK + 2
√

λC)
λ

√
m

+ λ ‖f ∗ ‖2
k .

To obtain the estimate under Assumption A(ii) one has to replace in the last inequality
term

√
λC by λC∗ .

A2. Proof of Consistency of Kernel Learning Estimators

Proof of Theorem 2 (sufficient conditions of consistency for kernel minimizers). We start
by proving convergence (a.s.) of the risk criterion R(fλ(m)

m ) → R(f ∗). Next, although
deterministic bounds on ‖fλ

m‖k in Lemma 1 go to infinity as λ → 0, random quantities
‖fλ

m‖k under condition limm→∞ mλ2(m)
/

lnm = ∞ are bounded in probability by
(16), (21), (22) and even appear a.s. converging to ‖f ∗ ‖ if limm→∞ mλ4(m)

/
lnm =

∞. And finally, we invoke the convexity of R(·) in Hilbert space Hk and the uniqueness
of the normal minimizer f ∗ to prove consistency of the kernel minimizers.

Fix any minimizer f ∗ of (1). From Lemma 3, we have estimates (15), (16). By Lem-
mas 4 and 5 for distributions of Δλ

m, Δ∗
m we have exponential bounds (18), (19). Since

limm→∞ λ(m) = 0, then λ(m) � Λ < ∞. For λ � Λ by (14), we have λM(λ) � M̄(Λ)
and hence

Pm

{∣∣Δλ
m

∣∣ − βλ
m > ε

}
� 2 exp

(
− η̄λ

mε2
)
, (20)

where η̄λ
m = 2mλ2

(2L2K2+M̄(Λ))2
. Under condition limm→∞ mλ2(m)

/
lnm = ∞ it takes

place limm→∞ βλ
m = 0 and for any ε > 0 holds

∞∑
m=1

Pm

{∣∣ |Δλ(m)
m | − βλ(m)

m

∣∣ > ε
}

� 2
∞∑

m=1

exp
(

− η̄λ(m)
m ε2

)
< ∞,

∞∑
m=1

Pm

{∣∣Δ∗
m

∣∣ � ε
}

� 2
∞∑

m=1

exp
{

− 2m

N2
ε2

}
< ∞.

From here by a criterion of almost sure convergence it follows limm→∞ |Δλ(m)
m | =

limm→∞ |Δ∗
m| =0 with probability one, which together with assumption limm→∞ λ(m)

= 0 and relation (15) proves the first statement of the theorem, limm→∞ R(fλ(m)
m )

= R(f ∗) a.s.
Let us prove the second statement of the theorem. Let f ∗ be now the normal mini-

mizer of (1). For Δλ
m

/
λ and Δ∗

m/λ we have due to (19), (20) the following estimates of
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distributions:

Pm

{∣∣Δλ
m

/
λ
∣∣ − βλ

m

/
λ > ε

}
� 2 exp

(
− η̄λ

mλ2ε2
)
, (21)

Pm

{∣∣Δ∗
m/λ

∣∣ � ε
}

� 2 exp
{

− 2mλ2

N2
ε2

}
. (22)

Since under condition limm→∞ mλ4(m)
/

ln m = ∞ both

∞∑
m=1

exp
(

− η̄λ
mλ2(m)ε2

)
< ∞

and
∞∑

m=1

exp
{

− 2ε2mλ2(m)
/
N2

}
< ∞.

It follows from (21), (22), by the criterion of almost sure convergence, that Δλ(m)
m

/
λ(m)

and Δ∗
m/λ(m) converge to zero with probability one as m → ∞; and that they are

bounded with probability one. Then, since limm→∞ λ(m) = 0, it follows also that
limm→∞ |Δλ(m)

m | = limm→∞ |Δ∗
m| = 0 with probability one.

From this follows, by inequalities (15), (16), that with probability one, we have:

lim
m→+∞

R
(
fλ(m)

m

)
= R

(
f ∗)

,

(
lim sup

m→∞

∥∥fλ(m)
m

∥∥
k

)2

= lim sup
m→∞

∥∥fλ(m)
m

∥∥2

k

� lim sup
m→∞

(∣∣Δλ(m)
m

∣∣ /
λ(m) + |Δ∗

m|/λ(m) +
∥∥f ∗∥∥2

k

)
=

∥∥f ∗∥∥2

k
,

and thus lim supm→∞ ‖f
λ(m)
m ‖k �

∥∥f ∗∥∥
k
. Hence, because of the convexity of func-

tional R(·), sequence {f
λ(m)
m } a.s. converges to the solution set F ∗ of (1) in weak

topology of the space Hk, (Ekeland and Temam, 1976; Section 2.1). By proper-
ties of weak topology convergence in Hilbert spaces for the normal minimizer f ∗

holds lim infm→∞ ‖f
λ(m)
m ‖k � ‖f ∗ ‖k and, therefore, limm→∞ ‖f

λ(m)
m ‖k = ‖f ∗ ‖k.

Since {f
λ(m)
m } converges to f ∗ in weak topology and norms are convergent, i.e.,

limm→∞ ‖f
λ(m)
m ‖k = ‖f ∗ ‖k, it follows from properties of Hilbert spaces that sequence

{f
λ(m)
m } strongly converges (in norm) to f ∗ as m → ∞, see Kolmogorov and Fomin

(1981; Ch. IV, §3, Sec. 2). Finally in RKHS with bounded kernel (Assumption B(iii))
convergence in norm implies the uniform one, by Proposition 4.

Proof of Theorem 3 (strong uniform consistency of kernel minimizers). The first two
statements of the theorem follow from Theorem 2 and the third follows from Theorem 1
accounting for the bound λ(m) = Λ(ln m)ε/ 4

√
m � 2Λ.
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Apie stochastin ↪i optimizavim ↪a ir statistin ↪i mokym ↪a saviredukuojanči ↪u
branduoli ↪u Hilberto erdvėje

Vladimir NORKIN, Michiel KEYZER

Straipsnyje nagrinėjamos stochastinio optimizavimo problemos Saviredukuojanči ↪u Branduoli ↪u
Hilberto Erdvėje. Tikslo funkcija tokioje erdvėje paprastai yra tikėtinos reikšmės funkcionalas,
priklausantis nuo sprendimo taisykli ↪u (strategij ↪u), t.y. funkcijos nuo stebim ↪u atsitiktini ↪u parametr ↪u.
Tokio pobūdžio uždaviniai kyla interaktyvi ↪u sprendim ↪u ir statistinio mokymo teorijoje. Šitokie
uždaviniai sprendžiami pasinaudojant imties vidurkio aproksimacija ir Tichonovo reguliarizacijos
metodu. Pasinaudojus atvaizdžio teorema aproksimuojančios reguliarizuotos problemos sprendinys
randamas kaip baigtinė tiesinė branduoli ↪u funkcij ↪u kombinacija, nustatoma per baigtin↪i optimiza-
vim ↪a. Statistinėje literatūroje toks būdas vadinamas atramini ↪u vektori ↪u mašinomis. Branduoli ↪u
sprendini ↪u konvergavimas yra tiriamas palaipsniui mažinant iki nulio reguliarizavimo parametr ↪a,
kai stebėjim ↪u kiekis didėja. Darbe išvestos tikėtinos rizikos skirtumo nuo aproksimuojančio spren-
dinio neasimptotiniai ↪iverčiai. Taip pat nustatytos tolygaus branduoli ↪u sprendinio konvergavimo su
tikimybe 1 pakankamos s ↪alygos kartu su reguliarizavimo parametro keitimo taisykle, kai imties
tūris didėja. Atskiru atveju išnagrinėtas branduoli ↪u regresijos ↪iverči ↪u ir binarinio klasifikatoriaus
konvergavimas, kai imties tūris be galo auga.


