
Scientific Annals of Computer Science vol. 20, 2010

“Alexandru Ioan Cuza” University of Iaşi, Romania

Symbolic Synthesis of Mealy Machines from
Arithmetic Bitstream Functions

Helle Hvid HANSEN1 and Jan RUTTEN2

Abstract

In this paper, we describe a symbolic synthesis method which given
an algebraic expression that specifies a bitstream function f , con-
structs a (minimal) Mealy machine that realises f . The synthesis
algorithm can be seen as an analogue of Brzozowski’s construction of
a finite deterministic automaton from a regular expression. It is based
on a coinductive characterisation of the operators of 2-adic arithmetic
in terms of stream differential equations.

1 Introduction

A (binary) Mealy machine is a deterministic automaton which in each step
reads an input bit, produces an output bit and moves to a next state. The
induced mapping of input streams to output streams is a causal bitstream
function, which we call the bitstream function realised by the Mealy ma-
chine. In this paper, we describe a symbolic synthesis method which given
an algebraic expression that specifies a bitstream function f , constructs a
minimal Mealy machine that realises f .

The inputs to our synthesis algorithm are called function expressions
and they define bitstream functions in the algebra of 2-adic numbers. Here
we use that the formal power series representation of a 2-adic integer can
be seen as the bitstream of its coefficients. We describe the 2-adic algebra

1Technische Universiteit Eindhoven and Centrum Wiskunde & Informatica, P.O.Box
513, 5600 MB Eindhoven, The Netherlands, email: h.h.hansen@tue.nl.

2CentrumWiskunde & Informatica and Radboud University Nijmegen, P.O.Box 94079,
1090 GB Amsterdam, The Netherlands, email: janr@cwi.nl.

97

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15476534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

below, but for now such a function expression can be thought of as a spec-
ification of a function on the rational numbers. The interesting property of
2-adic arithmetic is that it allows us to calculate with bitstream represen-
tations of rational numbers in an easy manner similar to how one computes
with integers.

The synthesis algorithm described here can be seen as an analogue of
Brzozowski’s construction in [3] of a finite deterministic automaton from a
regular expression. In particular, we show that the set of function expres-
sions carries the structure of a Mealy machine by giving an inductive defini-
tion of derivative and output of function expressions. This Mealy machine
of expressions is defined in such a way that the algebraic semantics coincides
with the behavioural semantics of Mealy machines, which will be defined in
terms of causal stream functions. Now given a function expression F speci-
fying a function f , we obtain a realisation of f by the symbolic computation
of the (sub)machine generated by F. (The generated submachine is in gen-
eral not minimal, but we can ensure minimality by reducing expressions to
normal form.) The language of 2-adic arithmetic allows the specification
of functions that cannot be realised by any finite Mealy machine. But we
shall identify a subclass of so-called rational function expressions for which
a finite realisation exists.

In the design of digital hardware, Mealy machines specify the behaviour
of sequential circuits, and there exist algorithms which construct from a
(finite) Mealy machine, a sequential circuit which exhibits the specified be-
haviour. Combining these algorithms with our synthesis algorithm we thus
obtain a complete construction from algebraic specification to sequential
circuit.

In summary, the main contributions of the present paper are: (1) The
elementary but useful observation that the set of all causal stream functions
constitutes a final Mealy machine, which forms the basis for a behavioural
semantics of Mealy machines in terms of their minimisation. (Although
minimisation of Mealy automata is well known [4], its characterisation here
by means of finality is new.) (2) The insight that given a rational func-
tion expression F, we can effectively construct by symbolic computation a
(minimal) Mealy machine that realises the bitstream function specified by F.

The basis for the present synthesis algorithm was given in [18]. These
ideas were developed into a proper algorithm in [8] (for an implementa-
tion, see [7]). Further results on complexity and size of realisations were
included in the first author’s PhD thesis [6, Ch. 3]. This paper contains a

98

short, but improved presentation of the basic results in the abovementioned
work. In particular, the presentation of the Mealy machine of expressions,
the algebraic semantics of function expressions, and the proof that algebraic
semantics coincides with behavioural semantics for function expressions are
new with respect to [6, 8, 18]. Moreover, the synthesis algorithm and com-
plexity analysis have been simplified by making use of particular properties
of rational function expressions. Finally, we mention that the theory un-
derlying the present work is essentially coalgebraic (cf. [15]), but we have
deliberately chosen for a presentation which does not require any familiarity
with coalgebra.

Structure of the paper : In Section 2 we give the basic definitions re-
garding Mealy machines. In Section 3 we describe the 2-adic algebra of
bitstreams and define the function expressions which serve as our specifica-
tion language. In Section 4 we show how function expressions can be turned
into a Mealy machine, and in Section 5 we present the synthesis algorithm
for rational function expressions and analyse its time complexity. Finally,
we discuss related and future work in Section 6.

2 Mealy Machines

We give the basic definitions on Mealy machines, streams and causal stream
functions. We introduce the notion of stream function derivative and show
how it can be used to turn the set of causal stream functions into a final
Mealy machine, thus providing a characterisation of minimal Mealy ma-
chines.

Let A and B be arbitrary sets. A Mealy machine 〈S,m〉 with inputs
in A and outputs in B consists of a set of states S and a transition function

m : S → (B × S)A

This function maps a state s0 ∈ S to a function m(s0) : A→ (B×S), which
produces for every input a ∈ A a pair 〈b, s1〉, consisting of the output b and
the next state s1. We call a Mealy machine binary if inputs and outputs
are taken from the set 2 = {0, 1}. We will write

s
a|b //t iff m(s)(a) = 〈b, t〉.

For an arbitrary set A, we denote by Aω the set of streams over A, i.e.,
Aω = {α | α : N → A}. An element α ∈ Aω will be denoted by α =

99

(α(0), α(1), α(2), . . .). The head and tail maps on streams are denoted by
hd and tl , respectively, that is, for α ∈ Aω, hd(α) = α(0) and tl(α) =
(α(1), α(2), α(3), . . .). Later, in the context of stream differential equations,
we will also refer to hd(α) and tl(α) as the initial value and stream derivative
of α, respectively, and write α′ instead of tl(α). Moreover, for α ∈ Aω and
n ∈ N, we write α�n for the finite prefix (α(0), . . . , α(n)).

We define the (input-output) behaviour of a state s0 in S = 〈S,m〉
as the stream function behS(s0) : Aω → Bω which maps an input stream
(a0, a1, a2, . . .) ∈ Aω to the output stream (b0, b1, b2, . . .) ∈ Bω given by the
unique sequence of transitions

s0
a0|b0 // s1

a1|b1 // · · ·
ak|bk // sk+1

ak+1|bk+1// · · ·

If S is clear from the context, we will often leave out the subscript and simply
write beh(s). We say that a state s in 〈S,m〉 realises a stream function f if
beh(s) = f .

Example 1 The figure below shows an example of a binary Mealy machine
which starting in state s0 counts the number of ones in the input modulo
2. Formally, s0 realises the function f defined on input stream α ∈ 2ω by
f(α)(n) =

∑n
i=0 α(i) mod 2 for all n ∈ N.

S : // s0

1|1

77

0|0
��

s1

1|0
''

0|1

++ s2

1|1

gg

0|0

ss

Note that, for all α ∈ 2ω and n ∈ N, f(α)(n) is determined by α(0), . . . , α(n).

We call a stream function f : Aω → Bω causal if the n-th element of
the output stream f(α) depends only on the first n elements of the input
stream. More formally, f is causal if for all n ≥ 0 and all α, β ∈ Aω:

α�n = β �n =⇒ f(α)(n) = f(β)(n).

It is straightforward to prove that for any Mealy machine 〈S,m〉 and any
s ∈ S, beh(s) : Aω → Bω is causal. Let Γ denote the set of all causal stream
functions, i.e.,

Γ = {f | f : Aω → Bω and f is causal }.

100

Next, we will define a function γ : Γ → (B × Γ)A such that 〈Γ, γ〉 is a
Mealy machine. For α ∈ Aω and a ∈ A, we denote by a : α the stream
(a, α(0), α(1), α(2), . . .), and given f : Aω → Bω, we write f(a :−) for the
stream function that maps α to f(a : α). Now let f ∈ Γ and a ∈ 2. We
define

f [a] := hd ◦ f(a :−) ∈ Aω → B
fa := tl ◦ f(a :−) ∈ Aω → Bω (1)

Since f is causal, it follows that also fa is causal (hence fa ∈ Γ), and that
f [a] is constant, hence f [a] can be considered an element of B. We call f [a]
the initial output of f on input a, and fa is the stream function derivative
of f on input a. We define the transition function

γ : Γ→ (B × Γ)A by γ(f)(a) = 〈f [a], fa〉 for all f ∈ Γ, a ∈ A.

This gives us an (infinite) Mealy machine Γ = 〈Γ, γ〉 with transitions

f
a|f [a] // fa

Next we characterise 〈Γ, γ〉 using the following notion. A homomorphism
of Mealy machines from 〈S,m〉 to 〈S′,m′〉 is a function h : S → S′ that
preserves transitions: if m(s)(a) = 〈b, t〉 then m′(h(s))(a) = 〈b, h(t)〉; in
other words,

s
a|b // t ⇒ h(s)

a|b // h(t)

Theorem 2 For any Mealy machine S = 〈S,m〉, the map behS : S → Γ is
the unique homomorphism from S to Γ. In other words, Γ is a final Mealy
machine.

Proof: Let 〈S,m〉 be an arbitrary Mealy machine. We denote the output
and next state functions defined by m at state s ∈ S by os and ds, re-
spectively, that is, m(s)(a) = 〈os(a), ds(a)〉. To see that beh : S → Γ is a
homomorphism, let s ∈ S, a ∈ A and α ∈ Aω be arbitrary. We have:

beh(s)[a] = hd(beh(s)(a :α)) = os(a),

and by letting s0 = ds(a) and si+1 = dsi(α(i)) for all i ≥ 0, we have

(beh(s)a)(α) = tl(beh(s)(a :α))
= tl(os(a), os0(α(0)), os1(α(1)), . . .)
= (os0(α(0)), os1(α(1)), . . .)
= beh(ds(a))(α).

101

Hence beh(s)a = beh(ds(a)). The proof that beh : S → Γ is the unique
homomorphism from S to Γ is left to the reader. 2

The universality of 〈Γ, γ〉 can be expressed in yet another way. We
need the following notions. For a state s ∈ S of a Mealy machine 〈S,m〉, let

〈〈s〉〉 ⊆ S

denote the smallest subset that contains s and is closed under transitions
(for any inputs). Clearly, 〈〈s〉〉 is also a submachine of 〈S,m〉, by taking
as its transition function the restriction of m to the set 〈〈s〉〉. We call 〈〈s〉〉
the submachine generated by s in 〈S,m〉. We call 〈〈s〉〉 a realisation of f , if
behS(s) = f , i.e., s realises f (in S). We say that a Mealy machine 〈S,m〉 is
minimal if beh : 〈S,m〉 → 〈Γ, γ〉 is injective. From the finality of Γ, we get:

Corollary 1 For all f ∈ Γ, 〈〈f〉〉 is a minimal realisation of f .

Proof: Follows from the fact that the inclusion map 〈〈f〉〉 → Γ is an injective
homomorphism of Mealy machines. 2

The final Mealy machine Γ thus consists of all the behaviours that can
be realised by some Mealy machine, and we therefore refer to beh(s) as the
behavioural semantics of a state s.

For a causal stream function f : Aω → Bω, we use the following nota-
tion for repeated stream function derivatives: for w ∈ A∗ and a ∈ A, we
define fε = f (where ε is the empty word) and fwa = (fw)a. Hence the state
set of 〈〈f〉〉 equals the set {fw | w ∈ A∗} of all stream function derivatives of
f .

Example 3 We illustrate the notions and results above with the binary
counter from Example 1. Let f = beh(s0), g = beh(s1) and h = beh(s2). It
can easily be seen that f = h and g(α)(k) = 1− f(α)(k) for all α ∈ 2ω and
k ∈ N. Moreover, we have the following initial outputs and stream function
derivatives:

f [0] = 0, f [1] = 1, g[0] = 1, g[1] = 0, f0 = f, f1 = g, g0 = g, g1 = f

and thus beh maps S = 〈〈s0〉〉 to its minimisation 〈〈f〉〉 ⊆ Γ, on the right:

s0 1|1 88

0|0

++ s1

1|0
%%

0|1

++ s2

1|1

ff

0|0

ss � beh // f

1|1
$$

0|0

,, g

1|0

dd

0|1

qq

102

In algebra, the behaviour of Mealy machines is typically described in
terms of functions of type A+ → B. Although this set is isomorphic to Γ,
we prefer to work with the latter because of the rich algebraic structure on
streams. The notion of stream function derivative already occurs in [13],
and is called state there. It is also a variation on the classical notion of
derivative (or inverse) of functions from A∗ to B∗ (cf. [4]). Also Theorem 2
and Corollary 1 are essentially reformulations of classical results.

The main contribution of the present paper consists of the observation
that 〈〈f〉〉 can often be constructed by a symbolic computation of stream
function derivatives starting from an algebraic specification of f . In Sec-
tion 5, we shall describe such a symbolic algorithm for bitstream functions
specified in 2-adic arithmetic.

3 The 2-Adic Bitstream Algebra

We will specify bitstream functions in the algebra of 2-adic integers (cf. [5]).
A 2-adic integer is usually written as a (formal) power series of the form∑∞

i=0 ai2
i where ai ∈ 2 for all i ∈ {0, 1, 2, . . .}. We identify such a power

series with the bitstream (a0, a1, a2, . . .), so for us the set of 2-adic integers
is simply the set 2ω of bitstreams.

There is a (strict) inclusion of the set of rational numbers with odd
denominator

Qodd = {p/q | p, q ∈ Z, q odd }
into the 2-adic integers by taking infinitary base 2 expansions (see e.g. [10]).
For a positive integer n, this is just the binary representation of n (least
significant bit on the left) padded with a tail of zeros; for instance,

Bin(2) = (0, 1, 0, 0, 0, . . .) = 010ω

Bin(5) = (1, 0, 1, 0, 0, . . .) = 1010ω

Binary representations of negative integers end with an infinite sequence of
ones and rational numbers (with odd denominator) have binary representa-
tions that are eventually periodical; for instance,

Bin(−1) = (1, 1, 1, 1, . . .) = 1ω

Bin(−5) = (1, 1, 0, 1, 1, 1, . . .) = 1101ω

Bin(1/5) = (1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, . . .) = 1(0110)ω.

(Rationals with even denominator require formal power series representa-
tions

∑∞
i=k ai2

i where k < 0, and are not treated here.)

103

Below we shall define the binary representation Bin(q) of any rational
q ∈ Qodd by means of a stream differential equation. Such equations specify
streams σ, in analogy with traditional differential calculus, in terms of their
initial value σ(0) and derivative σ′ (which are defined as hd(σ) and tl(σ)).
For instance, the differential equation

σ′ = σ σ(0) = 1

clearly defines the stream (1, 1, 1, . . .). We refer to [16] for an overview on
stream differential equations.

Now let odd(n/2m + 1) = n mod 2 for n,m ∈ Z. We define the
inclusion map

Bin : Qodd → 2ω

by the following system of stream differential equations (one for each q ∈
Qodd):

Bin(q)(0) = odd(q), Bin(q)′ = Bin((q − odd(q))/2) (2)

The reader is invited to compute the examples of binary expansions given
above, using this definition of Bin.

We recall that the set of rational numbers (with odd denominator) is
an integral domain: a commutative ring in which multiplication has no zero-
divisors, i.e., for all p and q, if p× q = 0 then p = 0 or q = 0. Next we shall
introduce operations of addition and multiplication (as well as minus and
inverse) on the set of 2-adic integers such that they reflect the operations
on the rationals. More formally, we shall turn the set of 2-adic integers into
an integral domain

A2adic = 〈2ω, +, −, ×, /, [0], [1]〉

such that the inclusion map Bin : Qodd → 2ω is a homomorphism of integral
domains.

In the literature, the operators on the 2-adic integers are often defined
by explicitly specifying how they work on binary representations, see Fig-
ure 1 for examples of addition and multiplication. Their definitions are
sometimes also given in terms of their representation as power series, typi-
cally in the form of some recurrence relation on their coefficients. Here we
shall give, instead, a definition by means of stream differential equations,
which we saw already examples of above, and which can be seen as a gen-
eralisation of definitions by recurrence, cf. [16]. Our choice to use stream
differential equations is not just a matter of taste: they form the basis for

104

addition: 1 1 1 . . . (carry)
1 0 1 0 0 0 · · · = 5

+ 0 1 1 1 1 1 · · · = −2

1 1 0 0 0 0 · · · = 3

multiplication: 1 1 0 0 0 · · · × 0 1 1 1 1 · · · = 3× (−2)

0 0 0 0 0 0 · · ·
1 1 0 0 0 · · ·

1 1 0 0 0 · · ·
1 1 0 0 0 · · ·

1 1 0 0 0 · · ·

+
...

0 1 0 1 1 1 · · · = −6

Figure 1: Examples of 2-adic addition and multiplication.

the definition of the Mealy machine of stream function expressions, to be
introduced in Section 4.

First we define the constants zero and one by

[0] = (0, 0, 0, . . .) [1] = (1, 0, 0, 0, . . .)

Below we shall use the following Boolean operators on 2 = {0, 1}, which
are defined, for all a, b ∈ 2, as usual: a ∧ b = min{a, b} and a ⊕ b = 1 iff
a = 0, b = 1 or a = 1, b = 0 (exclusive or).

Definition 1 We define the operators of addition, minus, multiplication
and inverse of 2-adic integers by the following system of stream differential
equations. For α, β ∈ 2ω,

derivative: initial value:

(α+ β)′ = (α′ + β′) + [α(0) ∧ β(0)] (α+ β)(0) = α(0)⊕ β(0)
(−α)′ = −(α′ + [α(0)]) (−α)(0) = α(0)
(α× β)′ = (α′ × β) + ([α(0)]× β′) (α× β)(0) = α(0) ∧ β(0)
(1/α)′ = −(α′ × (1/α)) (1/α)(0) = 1

There is a side condition for the definition of inverse: 1/α is defined only
for α with α(0) = 1.

105

We briefly explain the intuition behind the equations above. (For the
fact that the operators above are uniquely defined by their defining stream
differential equations, we refer to [16].) The equation for sum shows that
a carry term must be added in case the two initial values are both 1. The
equation for minus is obtained from the requirement that (−α)+α = [0] for
all α ∈ 2ω. By taking initial value and derivative on both sides and using the
equation for +, we find that (−α)(0)⊕α(0) = 0, hence (−α)(0) = α(0), and
that (−α)′ + α′ + [α(0)] = [0], hence (−α)′ = −(α′ + [α(0)]). The equation
for the product states that for all α, β ∈ 2ω, α × β can be calculated using
the base 2 version of shift-add-multiplication known from the multiplication
in decimal notation. Finally, the multiplicative inverse of α ∈ 2ω is defined
only if α(0) = 1, since there is no bit a ∈ 2 such that a ∧ α(0) = 1. If 1/α
is defined then it satisfies (1/α) × α = [1]. The equation for 1/α can be
derived in a similar way as for −α.

The operations on the 2-adic numbers have been devised in such a way
that Bin: Qodd → A2adic is a homomorphism of integral domains: one can
easily show that, for all p, q ∈ Qodd ,

Bin(p× q) = Bin(p)× Bin(q)

(with on the left multiplication of rationals and on the right multiplication
of bitstreams), and similarly for the other operators.

When calculating with the 2-adic operations it is convenient to have a
constant denoting the bitstream Bin(2). We define

X := Bin(2) = (0, 1, 0, 0, 0, . . .),

The constant X can be used to express some identities on bitstreams that
will be useful later: For all α ∈ 2ω,

α = [α(0)] + (X × α′)
α+ α = X × α (3)

4 Mealy Machine of Expressions

We will specify bitstream functions in the language of A2adic over a single
variable s. Formally, the set of function expressions FExpr is generated by
the following grammar:

F, G ::= s | 0 | 1 | X | −F | F + G | F× G | 1/(1 + (X× F))

106

We use the symbols −,+,×, / to denote the operations on bitstreams as
well as the corresponding syntax constructors. The typing should always
be clear from the context. We will use standard notational conventions: we
write Fn for the n-fold product of F with itself, (in particular, F0 = 1) and
F/(1 + (X× G)) or F

1+(X×G) instead of F× (1/(1 + (X× G))). The algebraic
semantics of function expressions is given by the expected interpretation in
A2adic . The reason we only allow division by terms of the form 1 + (X× F)
is to ensure that the inverse operation is always defined when evaluating
function expressions in A2adic .

Definition 2 We define the algebraic 2-adic semantics [[F]] : 2ω → 2ω of a
function expression F ∈ FExpr by the following inductive clauses. Let σ be
a bitstream,

[[s]](σ) = σ

[[0]](σ) = [0]

[[1]](σ) = [1]

[[X]](σ) = X

[[−F]](σ) = −([[F]](σ))

[[F + G]](σ) = [[F]](σ) + [[G]](σ)

[[F× G]](σ) = [[F]](σ)× [[G]](σ)

[[1/(1 + (X× F)]](σ) = 1/(1 + (X × [[F]](σ))

We say that a function expression F specifies the bitstream function
[[F]], and two function expressions F and G are equivalent (notation: F ≡ G)
if [[F]] = [[G]].

One easily shows (by structural induction on function expressions) that
for all F ∈ FExpr, [[F]] is a causal bitstream function. In other words,
[[−]] is a map from FExpr to Γ. We will now define a transition function
ξ : FExpr → (2 × FExpr)2 such that 〈FExpr, ξ〉 is a binary Mealy machine
and the algebraic semantics [[−]] : FExpr → Γ is a Mealy homomorphism.
That is, for each F ∈ FExpr and a ∈ 2, we want to define F[a] ∈ 2 and
Fa ∈ FExpr such that F[a] = [[F]][a] and [[Fa]] = [[F]]a. In order to do so, first
recall how we defined γ(f)(a) in terms of f(a :−), hd and tl (cf. equation
(1)) for f ∈ Γ and a ∈ 2. We will “mimic” γ in the syntax.

First, we need a syntactic version of the map f(a :−) for f ∈ Γ and
a ∈ 2. More precisely, given F ∈ FExpr and a ∈ 2, we want to find a
function expression which specifies [[F]](a : −). Note that for all σ ∈ 2ω,
[[0 + (X× s)]](σ) = 0:σ and [[1 + (X× s)]](σ) = 1:σ.

Definition 3 We define ι : 2 → FExpr by ι(0) = 0 and ι(1) = 1, and for
F ∈ FExpr and a ∈ 2, we let a :s := ι(a) + (X× s). We define F(a :s) to be
the function expression obtained by uniformly substituting a :s for s in F.

107

We now show that F(a :s) indeed specifies [[F]](a :−).

Lemma 1 For all F ∈ FExpr, all a ∈ 2 and all σ ∈ 2ω:

[[F(a :s)]](σ) = [[F]](a :σ).

Proof: The lemma is proved by a straightforward induction on the structure
of F. We only show a few example cases:

[[s(a :s)]](σ) = [[ι(a) + (X× s)]](σ)

= [[ι(a)]](σ) + ([[X]](σ)× [[s]](σ))

= [a] + (X × σ)

(cf. eqn. (3)) = a :σ = [[s]](a :σ)

[[(F + G)(a :s))]](σ) = [[F(a :s) + G(a :s)]](σ)

= [[F(a :s)]](σ) + [[G(a :s)]](σ)
IH
= [[F]](a :σ) + [[G]](a :σ)

= [[F + G]](a :σ)

2

The transition function ξ on function expressions is defined inductively
over the syntactic structure. In order to motivate the definition of ξ, con-
sider, for example, a product expression F × G, and suppose that [[F]] = f
and [[G]] = g. We then want [[(F × G)a]](σ) = tl(f(a : σ) × g(a : σ)) for all
σ ∈ 2ω. By the stream differential equation for product, this means that

[[(F× G)a]](σ) = (tl(f(a :σ))× g(a :σ)) + ([hd(f(a :σ))]× tl(g(a :σ)))

= (fa(σ)× g(a :σ)) + ([f [a]]× ga(σ)

= ([[F]]a(σ)× [[G]](a :σ)) + ([[[F]][a]]× [[G]]a(σ).

Comparing this equation with the definition of (F× G)a below it is easy to
see that an induction argument and Lemma 1 will show that [[(F × G)a]] =
[[F× G]]a.

108

Definition 4 Let ξ : FExpr→ (2× FExpr)2 be the map given by ξ(F)(a) =
〈F[a], Fa〉 where F[a] and Fa are defined for all F ∈ FExpr and a ∈ 2 by:

syntactic initial output

s[a] = a (−F)[a] = F[a]
0[a] = 0 (F + G)[a] = F[a]⊕ G[a]
1[a] = 1 (F× G)[a] = F[a] ∧ G[a]
X[a] = 0 (1/(1 + (X× F)))[a] = 1

syntactic stream function derivative

sa = s (−F)a = −(Fa + ι(F[a]))
0a = 0 (F + G)a = (Fa + Ga) + ι(F[a] ∧ G[a])
1a = 0 (F× G)a = (Fa × G(a :s)) + (ι(F[a])× Ga)
Xa = 1 (1/(1 + (X× F)))a = −(F(a :s))/(1 + (X× F(a :s)))

We call 〈FExpr, ξ〉 the Mealy machine of expressions, and we refer to F[a]
and Fa as the syntactic initial output, respectively the syntactic stream func-
tion derivative, of F on input a.

We now show that ξ indeed ensures that the algebraic semantics con-
cides with the behavioural semantics of function expressions.

Proposition 1 The map [[−]] : FExpr → Γ is a homomorphism of Mealy
machines from 〈FExpr, ξ〉 to 〈Γ, γ〉.

Proof: We must show that for all F ∈ FExpr and all a ∈ 2:

[[F]][a] = F[a] and [[Fa]] = [[F]]a.

The proof is by induction on the structure of F. We only show the case
for s and product; the others can be shown along the same lines (the full
proof details are found in the Appendix). In the identities below, IH refers
to the induction hypothesis. Note also that for any b ∈ 2 and σ ∈ 2ω:
[[ι(b)]](σ) = [b]. Let a ∈ 2 and σ ∈ 2ω.

[[s]][a] = ([[s]](a :σ))(0) = (a :σ)(0) = a = s[a].

[[s]]a(σ) = ([[s]](a :σ))′ = (a :σ)′ = σ = [[sa]](σ).

[[F× G]][a] = ([[F× G]](a :σ))(0) = ([[F]](a :σ)× [[G]](a :σ))(0)

= [[F]][a] ∧ [[G]][a]
IH
= F[a] ∧ G[a] = (F× G)[a].

109

[[F× G]]a(σ) = ([[F× G]](a :σ))′ = ([[F]](a :σ)× [[G]](a :σ))′

= (([[F]](a :σ))′ × [[G]](a :σ)) + ([([[F]](a :σ))(0)]× ([[G]](a :σ))′)

= ([[F]]a(σ)× [[G]](a :σ)) + ([[[F]][a]]× [[G]]a(σ))
IH
= ([[Fa]](σ)× [[G]](a :σ)) + ([F[a]]× [[Ga]](σ))

Lem.1
= [[(Fa(σ)× G(a :s)) + (ι(F[a])× Ga)]](σ)

= [[(F× G)a]](σ).

2

Since 〈Γ, γ〉 is a final Mealy machine, the map [[−]] coincides with the
unique homomorphism beh : 〈FExpr, ξ〉 → 〈Γ, γ〉. In other words, we have
shown that for all function expressions F, [[F]] = beh(F).

5 Synthesis

A consequence of Proposition 1 is that the generated submachine 〈〈F〉〉 is
a realisation of [[F]]. Conceptually, we can construct 〈〈F〉〉 by computing
the transition closure of {F} in 〈FExpr, ξ〉. However, in general, 〈〈F〉〉 is
neither finite nor minimal. In order to obtain a minimal realisation of [[F]] we
compute 〈〈F〉〉 modulo equivalence. In practice, this is achieved by reducing
function expressions to normal form, which we briefly describe now.

5.1 Normal forms

We call a function expression F integral if it does not contain the inverse
operation, and F is closed if it does not contain s. The polynomial normal
form pnf (F) of an integral expression F is an analogue of the distributed
normal form of polynomials (in the variable s). It can be computed in the
expected manner by applying identities of commutative rings: (i) distribute
× over +, (ii) reduce using identities for 0 and 1, (iii) collect terms on powers
of s, and finally (iv) reduce sums of closed expressions using the identity
Xn + Xn = Xn+1, for all n ≥ 0. This last identity holds since for all α ∈ 2ω,
α+α = X ×α, cf. equation (3). For example, pnf ((1 + X)× (1 + s) + 1) =
X2 + (1 + X) × s, and this polynomial normal form is “computed” in the

110

following series of identities:

((1 + X)× (1 + s)) + 1 ≡ ((1 + X)× 1) + ((1 + X)× s) + 1

≡ ((1× 1) + (X× 1)) + ((1× s) + (X× s)) + 1

≡ (1 + X) + (s + (X× s)) + 1

≡ (1 + 1 + X) + (1 + X)× s

≡ X2 + (1 + X)× s.

Note that in the last step we used that,

1 + 1 + X ≡ X0 + X0 + X1 ≡ X1 + X1 ≡ X2.

For any integral expression F, it should be clear that F ≡ pnf (F) and that
pnf (F) is unique: pnf (F) = pnf (G) if and only if F ≡ G. Given arbitrary
function expressions F and G, we can therefore decide whether F ≡ G by first
rewriting (using the identities of integral domains) F and G into fractions
P/Q and R/S, respectively, where P, Q, R, S are integral, and then checking
whether pnf (P× S) = pnf (R× Q). These normal forms are treated in more
detail in [6]. In fact, in our synthesis algorithm we only need to compute
normal forms of closed, integral expressions, as we will see in Section 5.3.

Example 4 We illustrate by computing (a representation of) 〈〈[[F]]〉〉 for the
function expression F = (1 + X)× s. For the transition on input 1 we find
that:

((1 + X)× s)[1] = (1[1]⊕ X[1]) ∧ s[1] = (1⊕ 0) ∧ 1 = 1.

((1 + X)× s)1 = ((1 + X)1 × s(1 :s)) + (ι((1 + X)[1])× s1)

= (((11 + X1) + ι(1[1] ∧ X[1]))× (1 + (X× s)))
+(ι(1[1]⊕ X[1])× s1)

= ((0 + 1) + (ι(1 ∧ 0)× (1 + (X× s)))) + (ι(1⊕ 0)× s)

= (((0 + 1) + 0)× (1 + (X× s)) + (1× s)

≡ 1 + ((1 + X)× s) = 1 + F

Computing further derivatives and initial output, we find the following
minimal realisation of [[F]]:

// f

1|1
$$

0|0
��

f1

0|1

cc

1|0
&&
f11

0|0

ee

1|1
��

where f = [[F]], f1 = [[1 + F]] and f11 = [[X + F]].

111

The normal forms essentially allow us to compute submachines in the
final Mealy machine. Still, for arbitrary F ∈ FExpr, the least fixed point
construction of 〈〈[[F]]〉〉 is not guaranteed to terminate as it is easy to specify
functions that have no finite realisation. For example, if we take F = s× s

and we compute the derivatives [[F]]0, [[F]]00, [[F]]000, . . . we get the sequence
[[X × F]], [[X2 × F]], [[X3 × F]], . . . which are all distinct. A similar argument
shows that if F = 1/(1 + (X× s)), then [[F]] has infinitely many distinct
stream function derivatives.

5.2 Rational functions

We now define a class of expressions that specify functions with finite re-
alisations. A rational function expression is a function expression of the
form

F =
D + (C× s)

1 + (X× E)

where D, C, E ∈ FExpr are closed, integral function expressions. In other
words, D, C and E specify constant bitstream functions whose value is of the
form Bin(x) for some integer x ∈ Z. An example of a rational function
expression is

F =
(−X) + ((1 + X)× s)

1 + (X× (X + X))

which specifies the bitstream function

f(σ) =
Bin(−2) + (Bin(1 + 2)× σ)

Bin(1 + 2× (2 + 2))
=

Bin(−2) + (Bin(3)× σ))

Bin(9)
(4)

A function f : 2ω → 2ω is called rational if there is a rational function
expression F such that [[F]] = f . Hence the function f(σ) = Bin(3) × σ
specified in Example 4 is also rational by taking D = E = 0 and C = 1 + X.
The numeric interpretation of closed, integral expressions will be convenient
below.

Lemma 2 A function f : 2ω → 2ω is rational iff there are d,m, n ∈ Z such
that n is odd, and for all σ ∈ 2ω

f(σ) =
Bin(d) + (Bin(m)× σ)

Bin(n)

Proof: This follows essentially from the fact that Bin: Qodd → A2adic is a
homomorphism of integral domains. 2

112

To simplify notation, we will leave out the Bin-part, and just write
f(σ) = (d+ (m× σ))/n whenever f(σ) = (Bin(d) + (Bin(m)× σ)))/Bin(n).
Similarly, for x ∈ Z, we write x(0) and x′ instead of Bin(x)(0) and Bin(x)′,
respectively. The following technical lemmas will be used to prove that
rational functions have finite realisations. Their proofs can be found in the
Appendix. The first of these lemmas uses the numeric interpretation of
rational functions to characterise the immediate derivatives.

Lemma 3 Let f be a rational bitstream function of the form:

f(σ) =
d+ (m× σ)

n

for integers d,m and n with n odd. For a ∈ 2, the stream function derivative
fa is given by:

(fa)(σ) =
δ(a) + (m× σ)

n
(5)

where (in the numeric interpretation)

δ(0) =

{
1
2 d if d even
1
2(d− n) if d odd

δ(1) =

{
1
2(d+m) if d+m even
1
2(d+m− n) if d+m odd

Hence Lemma 3 already tells us that the derivatives of a rational func-
tion are again rational. The next lemma uses the numeric interpretation to
give a bound on the range of δ-values that can occur in the stream function
derivatives of a rational function.

Lemma 4 Let f(σ) = d+(m×σ)
n be a rational function with n > 0 odd. For

all w ∈ 2∗, the stream function derivative fw is of the form

(fw)(σ) =
δ(w) + (m× σ)

n
(6)

where δ(w) is an integer such that

min{d,−n+ 1,−n+m+ 1} ≤ δ(w) ≤ max{d,m− 1, 0}.

The crucial properties that make it possible to perform synthesis from
rational function specifications are stated in the following proposition.

113

Proposition 2 For all rational bitstream functions f : 2ω → 2ω,

1. all stream function derivatives of f are rational,

2. 〈〈f〉〉 is finite.

Proof: Let f(σ) = d+(m×σ)
n be a rational function. Item 1 of the proposition

follows from Lemmas 2 and 3. To see that item 2 holds, first note that we can
always assume that n > 0 since f is equal to the function g(σ) = −d+(−m×σ)

−n .
The number of states in 〈〈f〉〉 equals the number of distinct δ(w)-values in
the derivatives of f . By Lemma 4 this number is finite. 2

5.3 Algorithm

We construct 〈〈[[F]]〉〉 for a rational function expression F by computing states
and transitions in the final Mealy machine. Stream function derivatives of
[[F]] are denoted by rational function expressions, and in order to efficiently
determine when two expressions denote the same derivative, we normalise
the closed integral subexpressions of F at the beginning of the computation.
More precisely, if F = (D + (C × s))/(1 + (X × E)) is a rational function
expression, then we define the reduced form of F as

red(F) = (pnf (D) + (pnf (C)× s))/(1 + (X× pnf (E))),

and we call F reduced, if F = red(F). Starting from a reduced expression,
all derivatives computed during the synthesis algorithm are represented in
a similar, reduced form. This is achieved by using the function next.

Definition 5 Given a rational function expression

F =
D + (C× s)

1 + (X× E)

we define

nextD(F, 0) = D0 +−(D[0]× E), and
nextD(F, 1) = ((D1 + C1) + ι(D[1] ∧ C[1])) +−(ι(D[1]⊕ C[1])× E),

and for a ∈ 2 we define

next(F, a) =
pnf (nextD(F, a)) + (C× s)

1 + (X× E)
.

114

It should be clear that starting from a reduced function expression
F, any two expressions computed with the next-function are equivalent if
and only if they are (syntactically) equal. The next lemma shows that the
next-function can be identified with the syntactic derivative function.

Lemma 5 For all rational function expressions F and all a ∈ 2,

next(F, a) ≡ Fa.

Proof: The lemma follows easily by writing out the details of the definition
of Fa, and applying integral domain identities. See also the proof of Lemma 3
(in the Appendix). 2

The synthesis algorithm is shown in Figure 2 (and we explain it in some
more detail below). We denote the empty list by [], the concatenation of
two lists x and y by x.y, and we let remdup be a function that removes
duplicates from a list. If S is a list of states (i.e. reduced rational function
expressions) and T is a list of transitions, then transitions(S) is the list
of transitions with source state in S, and targets(T) is the list of target
states of transitions in T . Using list comprehension, we can write this more
precisely as:

transitions(S) := [G
0|G[0]→ next(G, 0), G

1|G[1]→ next(G, 1)) | G ∈ S],

targets(T) := [G | G a|b→ H ∈ T];

1. NewStates := [red(F)]; States := []; Trans := [];

2. do until NewStates = ∅ {
3. NewTrans := transitions(NewStates);

4. Trans := Trans.NewTrans;

5. States := States.NewStates;

6. NewStates := remdup(targets(NewTrans)) \ States;
7. }
8. return Trans;

Figure 2: Synthesis algorithm

The synthesis algorithm is a standard least fixed point algorithm. We
represent a (partially constructed) Mealy machine as a list Trans of tran-
sitions. A list States is also used to keep track of which states have been

115

processed, and a list NewStates contains the states that were newly found
in the previous iteration. Initially, NewStates only contains the initial spec-
ification in reduced form. In each iteration, we compute the list NewTrans
of transitions starting from NewStates, and add these to Trans. The new
states for the next iteration are the target states of NewTrans except for
the ones that have already been processed. At the end of iteration number
k, all states and transitions up to depth k have been created. Hence when
no new states are found, Trans represents 〈〈[[F]]〉〉.

We can now finally state our synthesis result for rational function spec-
ifications.

Theorem 5 For any rational function expression F, we can effectively con-
struct a finite, minimal realisation of [[F]] using the algorithm in Figure 2.

Proof: By Corollary 1 and Proposition 2, 〈〈[[F]]〉〉 is a finite, minimal re-
alisation of [[F]]. The algorithm in Figure 2 constructs a Mealy machine
〈S,m〉 whose states are (rational) function expressions. Due to Lemma 5,
and the fact that all rational function expressions in S are reduced and have
the same “denominator” expression, two function expressions s1, s2 ∈ S are
equivalent if and only if they are (syntactically) identical. Hence 〈S,m〉 is
minimal. 2

We illustrate our synthesis algorithm with a couple of examples.

Example 6 We construct the minimal realisation of the function f speci-
fied by F = X3 × s, i.e., in numeric notation, f(σ) = 8×σ for all σ ∈ 2ω. For
the sake of readability, we will write derivative expressions in their numeric
interpretation. For example, the derivative (X2 + (X3 × s)) will be denoted
4 + 8σ. The diagram in Figure 3 shows the Mealy machine obtained from
F using our algorithm. At the beginning of the computation, the only state
is 8σ. In the first iteration, the immediate derivatives of 8σ are computed.
These are 8σ and 4 + 8σ, so 4 + 8σ is a new state. In the second iteration,
we compute the immediate derivatives of 4 + 8σ and find 2 + 8σ and 6 + 8σ,
both of which are new. In the third iteration, we find the new states 1+8σ,
5+8σ, 3+8σ and 7+8σ. In the fourth iteration, we find that all derivatives
of the states 1+8σ, 5+8σ, 3+8σ and 7+8σ have already been visited, hence
there are no new states after this round, and the algorithm terminates.

116

1 + 8σ

0|1

��

1|1

��

2 + 8σ
1|0 //

0|0 44

5 + 8σ

0|1

hh

1|1

yy

8σ

0|0

�� 1|0 // 4 + 8σ
0|0

66

1|0
((

OO

6 + 8σ
0|0 //

1|0 **

3 + 8σ

1|1

OO
0|1

aa

7 + 8σ

0|1
OO

1|1

YY

Figure 3: Mealy machine constructed from F = X3 × s.

Example 7 As yet another example, in Figure 4 we give a minimal realisa-
tion of the rational function from equation (4), i.e., f(σ) = ((−2)+(3×σ))/9.
For a compact presentation, the states are labelled only by the δ-value. For
example, the state which realises the function (1+(3×σ))/9 is labelled just
with 1.

1

1|0

		

0|1 // −4

0|0

		

1|1

��

−8

1|1

		

0|0oo

−5

1|0
&&

0|1xx

−1

0|1

ff

1|0

{{

2

0|0

HH

1|1 // −2

1|1

HH

0|1

AA

−7

0|1

HH

1|0oo
OO

Figure 4: Mealy machine realising f(σ) = ((−2) + (3× σ))/9.

117

Knowing that rational functions have finite realisations, it is natural
to ask whether the converse holds, that is, whether all causal bitstream
functions that are realised by a finite Mealy machine can be specified by a
rational function expression. This question is answered in the negative by
the following example.

Example 8 Consider the Mealy machine depicted in the following diagram:

q

0|1

�� 1|1 // s

0|0,1|1

��

We will show that there is no rational function expression F such that [[F]] =
beh(q). To this end, we first observe that the behaviour of the state s is
simply the identity function on bitstreams, hence beh(s) = [[s]]. Suppose, for
the sake of arriving at a contradiction, that F is a function expression such
that [[F]] = beh(q), and F is of the form F = (B + (C× s))/(1 + (X× E)) where
B, C, E ∈ FExpr are closed, integral function expressions. By Proposition 1,
[[F0]] = [[F]]0 = beh(q)0 = beh(s) = [[s]], hence F0 ≡ s. On the other hand,
Lemma 3 tells us that F0 ≡ (D + (C× s))/(1 + (X× E)) for some closed,
integral function expression D, and hence (D + (C× s))/(1 + (X× E)) ≡ s.
Consequently, D ≡ 0, C ≡ 1 + (X× E), which implies that C[0] = C[1] = 1.
From Definition 4 of the Mealy machine of expressions it follows that for all
a ∈ 2:

F[a] = (B + (C× s))[a] = B[a]⊕ (C[a] ∧ s[a]) = B[a]⊕ (1 ∧ a)

= B[a]⊕ a,

and hence,
F[0] = B[0] and F[1] = 1− B[1]

But since B is a closed function expression, B[0] = B[1], and hence by the
above F[0] 6= F[1]. But beh(q)[0] = beh(q)[1] = 1 which contradicts the
assumption that [[F]] = beh(q), and we conclude that no such F exists.

Given the numeric nature of rational function expressions and their
high level of abstraction, we do not find it surprising that they cannot
specify all finite state Mealy behaviours.

118

5.4 Complexity

In this section, we analyse the time complexity of our synthesis algorithm.
Given a rational function expression F, we denote the Mealy machine con-
structed by the synthesis algorithm by 〈SF,mF〉 . We also need the fol-
lowing definitions. The length len(E) of an integral function expression
E is the number of symbol occurrences in E. In particular, len(s) = 1,
len(E + G) = 1 + len(E) + len(G), and len(Xk) = 2k − 1. If E is a closed,
integral function expression, then val(E) is the integer x ∈ Z such that
[[E]] = Bin(x). For example, val(X2 + 1) = 5. For an integer x ∈ Z, we
denote by Cx the unique closed, integral function expression in polynomial
normal form such that val(Cx) = x.

We consider the computation of red(F) from F in line 1 of the algo-
rithm as a preprocessing step. Consequently, we ignore its time cost in the
overall analysis, and in the rest of this section, we assume that the initial
specification is already reduced and of the form

F =
Cd + (Cm × s)

Cn
(7)

for integers d,m, n ∈ Z with n > 0 odd. In particular, [[F]] is the function

f(σ) = d+(m×σ)
n . Moreover, we let K := |d|+ |m|+ |n|.

As a first step, we give a high-level description of the complexity in
terms of the subcomponents of the algorithm.

Proposition 3 The synthesis algorithm which constructs from initial spec-
ification F the Mealy machine 〈SF,mF〉 runs in time O(RM +EM3) where
M is the number of states in SF, R is the time cost of the function next,
and E is the time cost of checking syntactic equality of two states.

Proof: For every state G ∈ SF, we make exactly two calls to next (line
3). This yields a factor M2R. The number of iterations is bounded by
M , since at least one new state must be added in each iteration. Adding
elements to a list can be done in time proportional to the length of the
list. The length of Trans is bounded by 2M , and the length of NewStates
by M . Hence the list operations in lines 4 and 5 can be carried out in
time O(M). The list NewTrans has length at most 2M , hence computing
targets(NewTrans) can be done in time O(M) resulting also in a list of
length at most 2M . Removing duplicates from a list of length l requires at
most l2 comparisons. Hence remdup(targets(NewTrans)) can be computed

119

in time O(EM2). Finally, with a similar argument, removing elements
from remdup(targets(NewTrans)) that occur in States can also be done in
time O(EM2). Summing up, we obtain an overall complexity of O(M2R+
M(M +M + EM2 + EM2)) ∈ O(RM + EM3). 2

We now relate M , R and E to the length of the initial specification F.
The numeric interpretation of F, specifically the value K, will be used in
the complexity analysis. The next lemma relates K and len(F).

Lemma 6 For the initial specification F, log(K) ∈ O(len(F)).

Proof: We first make the following observation. A closed, integral expres-
sion which maximises value with respect to length is of the form Xn for some
n ∈ N. Since len(Xn) = 2n−1 and val(Xn) = 2n it follows that for all closed,
integral function expressions C, val(C) ≤ 2len(C). It now follows that

K = |d|+ |m|+ |n| ≤ 2len(Cd) + 2len(Cm) + 2len(Cn) ≤ 3 · 2len(F)

and hence that log(K) ∈ O(len(F)). 2

Next we show that the length of function expressions in SF can be
bounded in terms of the length of F.

Lemma 7 For all function expressions G ∈ SF, len(G) ∈ O(len(F)2).

Proof: We first show that for all closed, integral function expressions C,

len(C) ∈ O(log(|val(C)|)2). (8)

A closed, integral C ∈ FExpr which maximises len(C) with respect to |val(C)|
is of the form C = −(1 + X + X2 + . . .+ Xn) for some n ∈ N. One can easily
prove (by induction on n) that len(−(1 + X + X2 + . . .+ Xn)) = n2 + n+ 2.
Since n < log(|val(C)|), it follows that len(C) ∈ O(log(|val(C)|)2).

By the definition of the next-function, any G in SF is of the form G =
(D + (Cm × s))/Cn, hence len(G) ≤ len(D) + len(F). By (8) and Lemma 4,
len(D) ∈ O(log(K)2), and hence by Lemma 6, len(D) ∈ O(len(F)2). It
follows that len(G) ∈ O(len(F)2) +O(len(F)) = O(len(F)2). 2

In order to express R in terms of len(F), we analyse the length of
expressions produced by the function nextD. As a first step, we show that
derivatives of a closed, integral expression C are linearly bounded by len(C).

120

Lemma 8 If C is a closed, integral function expression in polynomial nor-
mal form and a ∈ 2, then len(Ca) ≤ 3 · len(C).

Proof: We first show that for all k ≥ 1:

len(Xka) = 6k − 5 (9)

The proof is by straightforward induction on k. For k = 1, len(Xa) =
len(1) = 1 = 6 · 1− 5. Now let k > 1.

Xka = (Xk−1 × X)a = (Xk−1
a × X) + (0× 1).

Hence

len(Xka) = len(Xk−1
a) + 6 =IH 6(k − 1)− 5 + 6 = 6k − 5

To prove the lemma, we first consider the case where val(C) ≥ 0. Since C is
in polynomial normal form, C is a sum of terms of the form Xk, k ∈ N. For
all k ≥ 1 and a ∈ 2, we have from (9):

len(Xka) = 6k − 5 ≤ 6k − 3 = 3 · len(Xk).

From this observation it follows easily that len(Ca) ≤ 3 · len(C).
In case val(C) < 0, then C = −E for some E, and Ca = −(Ea + ι(E[a])),

hence

len(Ca) = 3 + len(Ea) ≤ 3 + 3 · len(E) = 3 · (1 + len(E)) = 3 · len(C)

where the inequality follows from the previous case. 2

Now we can give a bound on the length of expressions that must be
reduced to polynomial normal form.

Lemma 9 For all G ∈ SF and a ∈ 2, len(nextD(G, a)) ∈ O(len(F)2).

Proof: Let G = (D + (C× s))/(1 + (X× E)). Writing out the definition of
nextD(G, a), we find that

len(nextD(G, a)) ≤ len(Da) + len(Ca) + len(E)) + 7
(Lemma 8) ≤ 3(len(D) + len(C)) + len(E) + 7

∈ O(len(G))
(Lemma 7) ∈ O(len(F)2).

2

121

We can now state the time complexity of our synthesis algorithm ex-
pressed in terms of the length of the initial specification.

Theorem 9 The synthesis algorithm which constructs from initial specifi-
cation F the Mealy machine 〈SF,mF〉 runs in time 2O(len(F)2).

Proof: We first express R in terms of len(F). Let G be in SF. The time
complexity of computing next(G, a) is dominated by the time complexity
of computing pnf (nextD(G, a)). Computing the polynomial normal form of
an integral expression E is in the worst case exponential in len(E) due to
the duplication of subexpressions when applying the distributive law. E.g.
P× (Q + R) = P× Q + P× R. All other manipulations in the computation of
pnf (E) are polynomial in the length of the expression they are applied to.
By Lemma 9, len(nextD(G, a)) ∈ O(len(F)2), hence

R ∈ 2O(len(F)2) (10)

Checking whether two expressions in SF are syntactically equal is linear in
the length of the two expressions. Hence by Lemma 7,

E ∈ O(len(F)2) (11)

Lemma 4 can be used to show that the number of derivatives of [[F]] is at
most K = |d| + |m| + |n|, and in many cases an even tighter upper bound
can be given. A detailed proof of this result can be found in Theorem 3.3.10
of [6]. Consequently, M ≤ K and by Lemma 6,

M ∈ O(2len(F)) (12)

Combining Proposition 3 with equations (10), (11) and (12) we find that
the overall complexity of the synthesis algorithm is

O(RM + EM3) = O(2O(len(F)2) · 2len(F) + len(F)2 · 2len(F)) ∈ 2O(len(F)2).

2

Remark 1 The complexity result stated in Theorem 3.5.10 of [6] differs
from Theorem 9 above due to the following. Firstly, the synthesis algorithm
in [6] is based on computing actual syntactic derivativatives rather than the
function next which only applies to rational function expressions. In par-
ticular, the algorithm described in [6] also allows the partial construction
of Mealy machines from non-rational function expressions. Secondly, the
syntax of function expressions here differs slightly from the 2-adic expres-
sions in [6] where terms of the form Xn are atomic grammar entities. The
implementation in [7] is based on the algorithm presented in [6].

122

6 Discussion and Related Work

Brzozowski [3] showed how to construct a deterministic finite automaton for
a rational expression by computing its finitely many derivatives, herewith
lifting the well-known fact that rational languages have a finite number
of (left) quotients, to the symbolic level of expressions. Since then, vari-
ous applications and generalisations have been studied. In [1], Antimirov
introduced the notion of partial derivative and used it to construct non-
deterministic finite automata. In [14, 16], we reformulated Brzozowski’s
original approach in coalgebraic terms and generalised it to formal power
series over arbitrary semirings, providing at the same time a generalisa-
tion of Antimirov’s results. A similar generalisation to formal power series
and rational expressions with multiplicities was found, independently, by
Lombardy and Sakarovitch [12].

We have shown how to construct (in exponential quadratic time) a finite
Mealy machine realisation of rational 2-adic functions by a symbolic com-
putation of derivatives. The same principles can be used to perform Mealy
synthesis of functions specified in mod-2 arithmetic (cf. [6, Ch. 3]). We ex-
pect that the method can also be extended to include bitstream functions
specified in the Boolean bitstream algebra, respectively Kleene bitstream
algebra, described in [17] alongside the 2-adic and mod-2 bitstream alge-
bras. It would be interesting to combine the operators of these bitstream
algebras into “mixed specifications”. Although a Mealy machine of “mixed
expressions” can be defined (using the stream differential equations), and
various “mixed identities” are proved in [17], it is not clear whether there
exists an equivalence on mixed expressions with finite index, which is ef-
fectively decidable. Such an equivalence is necessary to generalise symbolic
synthesis to mixed specifications.

Closely related to the work presented here is the work in [19] where coal-
gebras are synthesised from a kind of generalised recursive process specifica-
tions. The method is similar to ours in the sense that it relies on a symbolic
computation of generated subcoalgebras. This construction is parametric
in the functor T which defines the coalgebra type as well as the syntax
of the specifications, and so covers many different automaton-like system
types (including Mealy machines) in a uniform framework. Instantiating
the results of [19] to Mealy machines, we point out the following differences
with our work. The syntax of the specification language in [19] is in close
correspondence with the semantic structure and specifying rational 2-adic
functions would be inconvenient to say the least. On the other hand, the

123

close connection between syntax and semantics ensures that any behaviour
of a finite Mealy machine can be specified in their language and vice versa,
all specifications have finite realisations. As we have seen in Example 8,
rational function expressions are not expressively complete with respect to
finite Mealy machines. However, function expressions can specify infinite-
state behaviours such as f(σ) = σ × σ which are not expressible in the
language of [19]. Finally, we mention that the synthesis algorithm in [19]
does not necessarily produce a minimal Mealy machine as is the case with
our synthesis algorithm.

The idea of generating behaviour from syntax is possible at a very
general level. Such interplay between algebra (syntax) and coalgebra (be-
haviour) can often be captured by so-called bialgebras for a distributive
law (cf. [20, 2]). For example, the stream differential equations for the 2-
adic operators define a distributive law of the 2-adic signature over stream
behaviour. Other examples of distributive laws are rules in structural op-
erational semantics (cf. [2]), and also regular expressions and deterministic
automata form an example of this much more abstract setup (cf. [11]).
Such a bialgebraic picture also exists for function expressions and Mealy
machines, although in a slightly less direct way than in the examples just
mentioned. This result can be found in [9].

References

[1] V. Antimirov. Partial derivatives of regular expressions, and finite
automaton constructions. Theoretical Computer Science, 155(2):291–
319, 1996.

[2] F. Bartels. On Generalised Coinduction and Probabilistic Specification
Formats. PhD thesis, Vrije Universiteit Amsterdam, 2004.

[3] J.A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 11(4):481–494, 1964.

[4] S. Eilenberg. Automata, Languages and Machines (Vol. A). Academic
Press, 1974.

[5] F.Q. Gouvêa. p-adic Numbers: An Introduction. Springer, 1993.

[6] H.H. Hansen. Coalgebraic Modelling: applications in automata theory
and modal logic. PhD thesis, Vrije Universiteit Amsterdam, 2009.

124

[7] H.H. Hansen and D. Costa. Diffcal. Tool webpage (source code, doc-
umentation, executable) currently available at: http://homepages.

cwi.nl/~costa/projects/diffcal, 2005.

[8] H.H. Hansen, D. Costa, and J.J.M.M. Rutten. Synthesis of Mealy
machines using derivatives. In Proceedings of CMCS 2006, volume
164(1) of Electronic Notes in Theoretical Computer Science, pages 27–
45. Elsevier Science Publishers, 2006.

[9] H.H. Hansen and B. Klin. Pointwise extensions of GSOS-defined oper-
ations. To appear in Mathematical Structures in Computer Science.

[10] E.C.R. Hehner and R.N. Horspool. A new representation of the rational
numbers for fast easy arithmetic. SIAM Journal on Computing, 8:124–
134, 1979.

[11] B. Jacobs. A bialgebraic review of deterministic automata, regular
expressions and languages. In Algebra, Meaning and Computation:
Essays dedicated to Joseph A. Goguen on the Occasion of his 65th
Birthday, volume 4060 of Lecture Notes in Computer Science, pages
375–404. Springer, 2006.

[12] S. Lombardy and J. Sakarovitch. Derivatives of rational expressions
with multiplicity. Theoretical Computer Science, 332:141–177, 2005.

[13] G.N. Raney. Sequential functions. Journal of the ACM, 5(2):177–180,
April 1958.

[14] J.J.M.M. Rutten. Automata, power series, and coinduction: taking
input derivatives seriously (extended abstract). In J. Wiedermann,
P. van Emde Boas, and M. Nielsen, editors, Proceedings of the 26th
International Colloquium on Automata, Languages and Programming
(ICALP 1999), volume 1644 of Lecture Notes in Computer Science,
pages 645–654, 1999.

[15] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249:3–80, 2000.

[16] J.J.M.M. Rutten. Behavioural differential equations: a coinductive
calculus of streams, automata and power series. Theoretical Computer
Science, 308(1):1–53, 2003.

125

[17] J.J.M.M. Rutten. Algebra, bitstreams, and circuits. In Proceedings
of AAA68 Workshop on General Algebra, volume 16 of Contributions
to General Algebra, pages 231–250. Verlag Johannes Heyn, Klagenfurt,
2005.

[18] J.J.M.M. Rutten. Algebraic specification and coalgebraic synthesis of
Mealy machines. In Proceedings of FACS 2005, volume 160 of Electronic
Notes in Theoretical Computer Science, pages 305–319, 2006.

[19] A.M. Silva, M.M. Bonsangue, and J.J.M.M. Rutten. Kleene coalgebras.
Technical Report SEN-1001, Centrum Wiskunde & Informatica, 2010.

[20] D. Turi and G.D. Plotkin. Towards a mathemathical operational se-
mantics. In Proceedings of LICS 1997, pages 280–291. IEEE Computer
Society, 1997.

Appendix

Proof of Proposition 1. Let a ∈ 2 and σ ∈ 2ω.

[[0]][a] = [[0]](a :σ)(0) = 0(0) = 0 = 0[a]

[[0]]a(σ) = [[0]](a :σ)′ = [0]′ = [0] = [[0a]](σ)

[[1]][a] = [[1]](a :σ)(0) = 1(0) = 1 = 1[a]

[[1]]a(σ) = [[1]](a :σ)′ = [1]′ = [0] = [[1a]](σ)

[[X]][a] = [[X]](a :σ)(0) = X(0) = 0 = X[a]

[[X]]a(σ) = [[X]](a :σ)′ = X ′ = [1] = [[Xa]](σ)

[[s]][a] = ([[s]](a :σ))(0) = (a :σ)(0) = a = s[a]

[[s]]a(σ) = ([[s]](a :σ))′ = (a :σ)′ = σ = [[sa]](σ)

Note that for any b ∈ 2 and σ ∈ 2ω: [[ι(b)]] = [b].
Minus:

[[−F]][a] = ([[−F]](a :σ))(0) = (−[[F]](a :σ))(0) = ([[F]](a :σ))(0) = [[F]][a].
IH
= F[a] = −F[a]

[[−F]]a(σ) = ([[−F]](a :σ))′ = (−[[F]](a :σ))′

= −([[F]](a :σ)′ + [([[F]](a :σ))(0)]) = −([[F]]a + [[[F]][a]])(σ)
IH
= [[−(Fa + ι(F[a]))]](σ) = [[(−F)a]](σ).

126

Sum:

[[F + G]][a] = ([[F + G]](a :σ))(0) = ([[F]](a :σ) + [[G]](a :σ))(0)

= [[F]](a :σ)(0)⊕ [[G]](a :σ)(0) = [[F]][a]⊕ [[G]][a]
IH
= F[a]⊕ G[a] = (F + G)[a].

[[F + G]]a(σ) = ([[F + G]](a :σ))′ = ([[F]](a :σ) + [[G]](a :σ))′

= ([[F]]a(σ) + [[G]]a(σ)) + [[[F]][a] ∧ [[G]][a]]
IH
= ([[Fa]](σ) + [[Ga]](σ)) + [F[a] ∧ G[a]]

= [[(Fa + Ga) + ι(F[a] ∧ G[a])]](σ)

= [[(F + G)a]](σ).

Product:

[[F× G]][a] = ([[F× G]](a :σ))(0) = ([[F]](a :σ)× [[G]](a :σ))(0)

= [[F]][a] ∧ [[G]][a]
IH
= F[a] ∧ G[a] = (F× G)[a].

[[F× G]]a(σ) = ([[F× G]](a :σ))′ = ([[F]](a :σ)× [[G]](a :σ))′

= (([[F]](a :σ))′ × [[G]](a :σ))+

([([[F]](a :σ))(0)]× ([[G]](a :σ))′)

= ([[F]]a(σ)× [[G]](a :σ)) + ([[[F]][a]]× [[G]]a(σ))

IH
= ([[Fa]](σ)× [[G]](a :σ)) + ([F[a]]× [[Ga]](σ))

Lem.1
= [[(Fa(σ)× G(a :s)) + (ι(F[a])× Ga)]](σ)

= [[(F× G)a]](σ).

Inverse:

[[1/(1 + (X× F))]][a] = 1 = (1/(1 + (X× F)))[a].

[[1/(1 + (X× F))]]a(σ) = ([[1/(1 + (X× F))]](a :σ))′

= (1/(1 + (X × [[F]](a :σ))))′

= −([[F]](a :σ)/(1 + (X × [[F]](a :σ))))
Lem.1

= [[−(F(a :s)/(1 + (X× F(a :s))))]](σ)

= [[(1/(1 + (X× F)))a]](σ).

2

127

Proof of Lemma 3. Let f(σ) = d+m×σ
n for integers d,m and n with n

odd, and let a ∈ 2. First, using the stream differential equations of Defini-
tion 1 and the identities of commutative rings, we find by a straightforward
calculation that the initial value and stream derivative of a bitstream quo-
tient σ/τ (with τ(0) = 1) are given by:

(σ/τ)(0) = σ(0) and (σ/τ)′ = (σ′ − [σ(0)]× τ ′)/τ (13)

We now use (13) to compute fa(σ) for a ∈ 2. The steps marked with (†)
use commutativity of × and +.

fa(σ) =

(
d+ (m× (a :σ))

n

)′
(†)
=

(
d+ ((a :σ)×m)

n

)′

=
(d+ ((a :σ)×m))′ − ([d(0)⊕ (a ∧m(0))]× n′)

n

=

d′ + ((σ ×m) + ([a]×m′)) + [d(0) ∧ (a ∧m(0))]−
([d(0)⊕ (a ∧m(0))]× n′)

n

(†)
=

(d′ − ([d(0)]× n′)) + (m× σ)

n
if a = 0

((d′ +m′ + [d(0) ∧m(0)])− ([d(0)⊕m(0)]× n′)
+(m× σ)

n
if a = 1

The initial values are computed in a similar manner. Hence we obtain the
following equations for the δ(a)-value in (5):

δ(0) = d′ − [d(0)]× n′ and
δ(1) = d′ +m′ + [d(0) ∧m(0)]− [d(0)⊕m(0)]× n′.

The rest of the proof is now straightforward using (2) (p. 104). If d is even
then δ(0) = d′ = 1

2d, and if d is odd, we get:

δ(0) = d′ − n′ = 1

2
(d− 1)− 1

2
(n− 1) =

1

2
(d− n).

When d+m is even with d and m both odd, then

δ(1) = d′ +m′ + 1 =
1

2
(d− 1) +

1

2
(m− 1) + 1 =

1

2
(d+m).

128

If d+m is odd with d odd, and m even, then

δ(1) = d′ +m′ − n′ = 1

2
(d− 1) +

1

2
m− 1

2
(n− 1) =

1

2
(d+m− n).

The remaining cases are proved similarly, details are left to the reader. 2

Proof of Lemma 4. It is a consequence of Lemma 3 that the derivatives
of f have the given format (6), since f is itself of the form required in
Lemma 3, and hence so are all derivatives of f . We prove by induction
on the length of w ∈ 2∗ that the numeric value δ(w) is in the given range.
The base case (w = ε) is clear. To prove the inductive step, we use the
numeric interpretation of derivatives of rational 2-adic functions given in
Lemma 3. To ease notation, let l = min{d,−n + 1,−n + m + 1} and u =
max{d,m−1, 0}. Note that l ≤ 0 ≤ u. Assume as induction hypothesis (IH)
that l ≤ δ(w) ≤ u. Inequalities obtained from the induction hypothesis
will be denoted by ≤IH .

Induction step for δ(w0): We first consider the case where δ(w) is even,
and thus δ(w0) = 1

2δ(w). We have the following cases:

if δ(w) ≥ 0: l ≤ 0 ≤ 1
2δ(w) ≤ δ(w) ≤IH u.

if δ(w) < 0: l ≤IH δ(w) < 1
2δ(w) < 0 ≤ u.

Now if δ(w) is odd, then δ(w0) = 1
2(δ(w) − n). To prove the lower bound,

we have

l ≤ −n+ 1 ⇒ 2l ≤ l − n+ 1 ≤IH δ(w)− n+ 1,

and since δ(w) − n + 1 is odd, it follows that 2l ≤ δ(w) − n and hence l ≤
1
2(δ(w)−n). The upper bound follows easily from δ(w)−n < δ(w) ≤IH u
which implies 1

2(δ(w)− n) ≤ u, since u ≥ 0.
Induction step for δ(w1): If δ(w)+m is even, then δ(w1) = 1

2(δ(w)+m).
We first prove the lower bound. We have (since n > 0),

l ≤ −n+m+ 1 ≤ m and l ≤IH δ(w)

whence 2l ≤ δ(w) + m, and l ≤ 1
2(δ(w) + m). For the upper bound, we

have
m− 1 ≤ u and δ(w) ≤IH u

whence δ(w)+m−1 ≤ 2u, and δ(w)+m−1 must be odd, since δ(w)+m is
even. It follows that δ(w)+m ≤ 2u, which in turn implies 1

2(δ(w)+m) ≤ u.

129

If δ(w) + m is odd, then δ(w1) = 1
2(δ(w) + m − n). We know that

l ≤ −n + m + 1 and hence 2l ≤ l − n + m + 1 ≤IH δ(w) + m − n + 1.
Since δ(w) +m−n+ 1 is odd, it follows that 2l ≤ δ(w) +m−n, and hence
l ≤ 1

2(δ(w) +m− n).
The upper bound is proven in a similar fashion. We have m − 1 ≤ u

which implies δ(w) + m − n ≤IH u + m − n ≤ u + m − 1 ≤ 2u, and it
follows that 1

2(δ(w) +m− n) ≤ u. 2

130

