
This journal is c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 14405–14419 14405

Density functional theory for strongly-interacting electrons:
perspectives for physics and chemistry

Paola Gori-Giorgi*a and Michael Seidlb

Received 2nd July 2010, Accepted 27th August 2010

DOI: 10.1039/c0cp01061h

Improving the accuracy and thus broadening the applicability of electronic density functional

theory (DFT) is crucial to many research areas, from material science, to theoretical chemistry,

biophysics and biochemistry. In the last three years, the mathematical structure of the

strong-interaction limit of density functional theory has been uncovered, and exact information

on this limit has started to become available. The aim of this paper is to give a perspective on

how this new piece of exact information can be used to treat situations that are problematic for

standard Kohn–Sham DFT. One way to use the strong-interaction limit, more relevant for

solid-state physical devices, is to define a new framework to do practical, non-conventional,

DFT calculations in which a strong-interacting reference system is used instead of the traditional

non-interacting one of Kohn and Sham. Another way to proceed, more related to chemical

applications, is to include the exact treatment of the strong-interaction limit into approximate

exchange–correlation energy density functionals in order to describe difficult situations such

as the breaking of the chemical bond.

I. Introduction

Density functional theory (DFT),1 in its Kohn–Sham (KS)
formulation,2 has been a real breakthrough for electronic
structure calculations, allowing to treat systems much larger
than those accessible to wavefunction methods. KS DFT,
together with its extension to time-dependent (TD) pheno-
mena (TDDFT),3 made possible the theoretical study

of an incredible huge number of chemical, physical, and
biological processes.
The key idea of KS DFT is an exact mapping2 between the

physical, interacting, many-electron system and a model
system of non-interacting fermions with the same density.
Only one term, the so called exchange–correlation (xc) energy
functional (containing all the complicated many-body effects)
needs to be approximated. Although in principle this
functional is unique (or ‘‘universal’’), a large number of
approximations have been developed in the last twenty years,
both by chemists and physicists, often targeting different
systems, different properties, and different phenomena. In a
way, the emergence of such a ‘‘functional zoology’’ simply

aDepartment of Theoretical Chemistry and Amsterdam Center for
Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083,
1081HV Amsterdam, The Netherlands

b Institute of Theoretical Physics, University of Regensburg,
D-93040 Regensburg, Germany

Paola Gori-Giorgi

Paola Gori-Giorgi received
her Physics diploma in 1996
from the University of Rome
La Sapienza (Italy) and her
PhD in Physics in 2000 from
the University of Perugia
(Italy), working on the
electron liquid. She was a
senior researcher at CNRS
(France) until the beginning
of 2010, and she is now
Assistant Professor in
Chemistry at the Free
University of Amsterdam
(The Netherlands) funded by
a research award from the

Netherlands Organization for Scientific Research (NWO).
Current research interests include the development of DFT for
systems with strong spatial correlations, range-separated DFT
methods, and many-electron methods based on reduced density
matrices.

Michael Seidl

Michael Seidl received his
Physics diploma in 1989 and
his PhD in Physics in 1994
from the University of
Regensburg (Germany).
From 1994 to 1999, he was
postdoc at the University of
Jyvaeskylae (Finland) and at
Tulane University (New
Orleans). In 2001 he
completed his ‘‘Habilitation’’
in Regensburg. Since then
he has been working at the
Theoretical Physics Depart-
ment of the University of
Regensburg. His research

interests include the strong-interaction limit of DFT and its
relevance for the construction of the universal density functional.

PERSPECTIVE www.rsc.org/pccp | Physical Chemistry Chemical Physics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
va

n 
A

m
ste

rd
am

 o
n 

08
 D

ec
em

be
r 2

01
0

Pu
bl

ish
ed

 o
n 

26
 O

ct
ob

er
 2

01
0 

on
 h

ttp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/C
0C

P0
10

61
H

View Online

http://dx.doi.org/10.1039/C0CP01061H


14406 Phys. Chem. Chem. Phys., 2010, 12, 14405–14419 This journal is c the Owner Societies 2010

reflects the intrinsic difficulty of building a single general
approximation able to recognize and capture, for each given
system or process, the many-body effects relevant for its
description.

Despite the large number of available approximate
functionals and of their successful applications, there are still
important cases in which KS DFT can fail, which is why the
quest for better xc functionals continues to be a very active
research field (for recent reviews see, e.g., ref. 4–8). For
example, present-day KS DFT encounters problems in the
treatment of near-degeneracy effects (rearrangement of
electrons within partially filled levels, important for describing
bond dissociation but also equilibrium geometries, parti-
cularly for systems with d and f unsaturated shells), in the
description of van der Waals long-range interactions (relevant,
for example, for biomolecules and layered materials), and of
localization effects due to strong electronic correlations
(as those occurring in Mott insulators and in low-density
nanodevices, but also occurring in bond dissociation). These
problems can hamper more or less severely (and sometimes in
an unpredictable way) a given calculation, depending on their
relative importance with respect to other effects that are better
captured by the available approximate functionals.

This work primarily aims at describing a different approach
to some of the unsolved problems of present-day DFT,
focussing on the treatment of systems with strong spatial
correlations. The key idea is to recognize that the non-
interacting Kohn–Sham reference system is not always the
best choice. The main idea of Kohn and Sham, which can be
summarized as ‘‘Let’s solve a model system having the same
density of the physical one and approximate the remaining
missing energy with a density functional’’, can be rigorously
generalized to model systems different from the non-interacting
one of Kohn and Sham.9 This freedom can be used to choose
model systems that are able to capture some of the relevant
effects (for example near-degeneracy or strong correlations),
whose computational cost is still low, and for which it is
easier to design approximate density functionals that
recover the missing energy. For example, in recent years this
strategy has been used to address the problems of
near-degeneracy effects and van der Waals interactions by
using a model system with a weak long-range-only interaction
(and having the same density of the physical system, as in KS
theory). The preliminary results are so far very successful,10–17

as proved by the growing number of research groups that
are now working on the practical implementation of this
‘‘short-range DFT-long-range wavefunction’’ (srDFT-lrWF)
method.13–23

Strong correlations, however, remain a big challenge for
DFT, and in many cases are also beyond the reach of the
srDFT-lrWF method. By ‘‘strong electronic correlation’’ we
mean here the study of systems in which the electron–electron
interaction largely dominates over the kinetic energy, creating
strong spatial correlations. In such cases, it may happen that
we need very many (billions) of Slater determinants for a
proper description of the relevant physics, with all the natural
occupation numbers becoming very small. For these situations
both the non-interacting KS system and the weak-interacting
hamiltonian of the srDFT-lrWF method are not the best

starting point: they are not able to capture the physics of the
system under study so that trying to describe the missing
energy with an approximate density functional is often a
daunting task (or, alternatively, the srDTF-lrWF method
becomes as expensive as solving the Schröedinger equation
for the physical system).
In order to ‘‘visualize’’ this concept, Fig. 1 schematically

represents the difference between near-degeneracy effects,
characterized by the presence of few more important states
with respect to the occupied KS orbitals (that can be captured
with a weak-interacting hamiltonian, like the one used in the
srDFT-lrWF method), and strong correlations, where very
many (billions) of Slater determinants are needed for a proper
description of the relevant physics (notice that here we are not
talking about getting the energy with high accuracy, but only
about describing the right physics: once we have a model
hamiltonian which is able to do that, the idea is, as in KS
theory, to correct the energy with a density functional). In this
figure levels drawn with a solid line represent the occupied KS
states (labeled with ‘‘KS’’), and dotted levels the empty ones.
On the left, we have a typical near-degenerate system, in which
few empty states strongly couple to the ground state: including
them would be enough to describe the right physics of the
system, although for an accurate energy many more states
would be needed. On the right we have a strongly correlated
system in which billion of states are strongly coupled to the
ground state. From the point of view of the exact first-order
density matrix, the first case corresponds to having some

Fig. 1 Schematic illustration of the difference between near-

degeneracy effects, in which few more important states with respect

to the Kohn–Sham occupied levels are needed in order to capture the

right physics, and strongly-correlated systems, which need billions of

Slater determinants. The first case is usually characterized by the

presence of natural occupation numbers ni close to 1/2, while the

second case often corresponds to natural occupations that are all very

small. In this figure levels drawn with a solid line represent the

occupied KS states, and dotted levels the empty ones. On the left,

we have a typical near-degenerate system, in which few empty states

strongly couple to the ground state: including them would be enough

to describe the right physics of the system, although for an accurate

energy many more states would be needed. On the right we have a

strongly correlated system in which billion of states are strongly

coupled to the ground state.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
va

n 
A

m
ste

rd
am

 o
n 

08
 D

ec
em

be
r 2

01
0

Pu
bl

ish
ed

 o
n 

26
 O

ct
ob

er
 2

01
0 

on
 h

ttp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/C
0C

P0
10

61
H

View Online

http://dx.doi.org/10.1039/C0CP01061H


This journal is c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 14405–14419 14407

natural occupation numbers ni close to 1/2 (if we consider
natural spin orbitals with 0 r ni r 1), while the second case
corresponds to having all ni { 1. Of course this simple,
schematic, picture may be very different if we use a spin-
unrestricted formalism to define the KS system (see also
section VIA2), instead of a restricted one, as mostly used
throughout this paper.

Prototype systems displaying near-degeneracy effects are the
Be isoelectronic series (where the 2s and the 2p KS levels
become more and more degenerate as the atomic number Z
increases), and the H2 molecule along its dissociation curve,
where the sg and su KS energies get closer and closer as
the molecule is stretched. These two simple examples are
paradigmatic of many situations occurring in the study of
chemical and physical problems, from heavy elements to the
stretching of the chemical bond in general. A simple example
of strong electronic correlation are low density nanodevices
such as quantum dots. As the electronic density is lowered,
spatial correlations between the electrons become stronger and
stronger, and, as shown in ref. 24 and 25 for a simple model
consisting of two electrons in an harmonic potential, all the
natural occupation numbers become very small, indicating the
presence of an infinite number of important states. In real
systems studied in experiments, in which low-density electrons
are confined at the interfaces of semiconductor hetero-
structures, this phenomenon leads, for example, to intriguing
patterns in the addition energy spectra,26 which are suggestive
of strong spatial correlations and have never been fully
explained.

Of course, in general there are very many different physical
situations which need a huge number of Slater determinants to
be described, and many corresponding ansatz wavefunctions,
models or methods that can do that, each one being able to
capture different physical phenomena. Typical examples are
the density-matrix renormalization group (DMRG) method,
the Laughlin wavefunction, the unrestricted Hartree–Fock
plus symmetry restoration wavefunction, and dynamical mean
field theory.

The main object of this paper is to review and discuss the
perspectives of a new way to deal with the case of strong
spatial correlations in a DFT framework. For a given
N-electron system with density r(r), we construct, in a
mathematical rigorous way, a model system consisting of N
electrons having the same density r(r) and maximum possible
correlation between the N electronic positions. We call this
model system the ‘‘strictly correlated electron’’ (SCE) model,
and we use it as a complementary alternative to the KS ansatz
for DFT. We also propose simple approximate density
functionals to recover the difference between the energies of the
physical system and of the SCE model, following the same ideas
used in KS DFT. The SCE model is able to capture the infinitely
many Slater determinants needed to describe strong spatial
correlations, and, as we shall see in the next sections, it is the
natural counterpart of the KS ansatz. It also provides a rigorous
lower bound for the exact exchange–correlation functional of KS
DFT, simply because the electrons cannot be more correlated
than the SCE state in a given one electron density r(r).

The paper is organized as follows. After reviewing the basics
of DFT in section II, in order to emphasize the analogies and

the differences between the usual KS DFT and the
‘‘SCE DFT’’, we parallel, throughout sections III–VI, the
two approaches. Thus, sections III–VI contain a KS part,
which quickly reviews the main formalism pertinent to the KS
ansatz, and a SCE part, which explains how the same concepts
can be generalized using the SCE model as a reference system.
In section VII we report first applications of the SCE-DFT
method to few-electron quantum dots at low density.
Although, as previously mentioned, bond dissociation can be
viewed as a near-degeneracy effect (which can be described by
the weak interacting hamiltonian of the srDFT-lrWF method
or, e.g., by density matrix functional theory27,28 or by a
mixture of Hartree–Fock and Hartree–Fock-Bogoliubov
methods),29 it is also characterized by strong spatial
correlations between the electrons involved in the stretched
bond, whose physics can be captured by the SCE limit. In
section VIII, thus, we discuss possible ways to include the
exact information contained in the SCE limit into functionals
useful for chemical applications, with emphasis on bond
dissociation. The last section IX is devoted to conclusions
and perspectives.

II. The Hohenberg–Kohn functional and its basic
properties

We begin by defining the problem and reviewing the basic
properties of the Hohenberg–Kohn functional.
We generally consider here systems of N interacting

electrons, bound by a given external potential v(r) in
D-dimensional space (r A RD). The corresponding Hamiltonian,

Ĥa½v" ¼ T̂ þ aV̂ee þ
XN

i¼1

vðriÞ; ð2:1Þ

with the universal operators of the kinetic energy,

T̂ ¼ ' !h2

2m

XN

i¼1

@2

@r2i
; ð2:2Þ

and the Coulomb repulsion between the electrons,

V̂ee ¼
e2

2

XN

i;j¼1

1' dij
jri ' rj j

; ð2:3Þ

has four independent parameters: the particle number N, the
spatial dimension D, the RD - R function v = v(r) of the
external potential, and a tunable dimensionless interaction
strength a Z 0 (which will be set to its realistic value a = 1
at the end). Unlike a and v, the parameters N andD will not be
indicated explicitly in our notation.
Due to the Ritz principle, the ground-state energy of Ĥa[v] is

given by

Ea½v" ¼ min
C!N

hCjĤa½v"jCi; ð2:4Þ

where the condition C - N addresses all (normalized) spin-12
fermionic wave functions in D-dimensional space,

C = C(r1,. . .,rN;s1,. . .,sN), (2.5)
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with ri A RD and spin variables si. A considerably simpler
function is the particle density,

rðrÞ ¼ N
X

s1;...;sN

Z
dDr2 . . . d

DrN jCðr; r2; . . . ; rN ; s1; . . . ; sNÞj2;

ð2:6Þ

which is normalized according to
R
dDrr(r) = N. In terms of

this function as the variable, the universal Hohenberg–Kohn
(HK) functional of DFT is defined as30,31

Fa½r" ¼ min
C!r

hCjT̂ þ aV̂eejCi ( 0 ð2:7Þ

where the condition C - r now addresses only those
fermionic N-electron wave functions C that are, via
eqn (2.6), associated with the same given particle density
r = r(r). Here, ‘‘universal’’ means that Fa[r] does not depend
on the parameter v = v(r). [It does, however, depend on the
spatial dimension D and on the particle number N =R
dDrr(r).] If the functional Fa[r] was known explicitly in

terms of the density r, the ground-state energy of eqn (2.4)
could be obtained by a considerably simpler minimization
procedure,

Ea½v" ¼ min
r!N

Fa½r" þ
Z

dDrrðrÞvðrÞ
! "

ð2:8Þ

where the condition r - N now addresses all (non-negative)
density functions r(r) that are normalized to the same given
particle number N. Eqn (2.8) is called the (second part of the)
HK theorem [the first part being the statement that the
external potential v(r) in the Hamiltonian of eqn (2.1) is
unambiguously fixed by its ground-state density r(r)].

Introducing a Lagrangian multiplier m to account for the
condition r- N (and writing Fa=1[r] ) F[r]), we obtain from
eqn (2.8) the Euler equation

dF ½r"
drðrÞ þ vðrÞ ¼ m; ð2:9Þ

to be solved for the wanted density function r(r). Since F[r] is
not known explicitly in terms of the density r, the crucial
problem of DFT is to find approximate ways of treating F[r]
and its functional derivative dF[r]/dr(r).

Clearly, the complexity of the many-body problem is hidden
in the HK functional Fa[r]. An equivalent functional is

~Fb½r" ¼ min
C!r

hCjbT̂ þ V̂eejCi ¼ bF1=b½r": ð2:10Þ

Since a minimizing wave function here at the same time
minimizes eqn (2.7) for the interaction strength a = 1/b, the
parameter b may be dubbed the ‘‘interaction weakness’’.

For a given density r and interaction strength a in eqn (2.7),
let Ca[r] be a minimizing wave function. With Ta[r] =
hCa[r]|T̂|Ca[r]i and V(a)

ee [r] = hCa[r]|V̂ee|Ca[r]i we have

Fa[r] = Ta[r] + aV(a)
ee [r]. (2.11)

We make here the usual assumption that Ca[r] depends
smoothly on the parameter a. (This assumption may break
down, e.g., for a uniform electron gas at low density going
through a ferromagnetic phase transition). Then, Fa[r]
is differentiable with respect to a and, due to the

minimum property, eqn (2.7), the Hellmann-Feynman
theorem implies32–34

d

da
Fa½r" ¼ hCa½r"jV̂eejCa½r"i: ð2:12Þ

In particular, we can write eqn (2.11), in terms of the universal
functionals35

V ðaÞ
ee ½r" ) d

da
Fa½r"; Ta½r" ) Fa½r" ' a

d

da
Fa½r": ð2:13Þ

An immediate consequence of eqn (2.12) is the coupling-
constant integral32–34

F1[r] ' F0[r] =
R
1
0daV(a)

ee [r]. (2.14)

In an analogous way, the corresponding formula for the
functional F̃b[r] is obtained,

F1[r] ' F̃0[r] =
R
1
0dbT̃b[r] (2.15)

(notice that F̃1[r] = F1[r]). Here, T̃b[r] = h ~Cb[r]|T̂| ~Cb[r]i
where ~Cb[r] = Ca=1/b[r] is a minimizing wave function in
eqn (2.10), T̃b[r] = Ta=1/b[r]. Substituting b = a'1, we
obtain36,37

F1½r" ' ~F0½r" ¼
Z 1

1

da
a2

Ta½r": ð2:16Þ

We define a density r to be ground-state-(a, v)-representable if
there exists a single-particle external potential va[r](r) (whose
existence is not always granted)38 such that r is a ground-state
density of the Hamiltonian

Ĥa½r" ¼ T̂ þ aV̂ee þ
XN

i¼1

va½r"ðriÞ: ð2:17Þ

In this case,Ca[r] is a ground state of Ĥa[r]; the corresponding
ground-state energy,

Ea[r] = Fa[r] +
R
dDrva[r](r)r(r), (2.18)

however, can be degenerate.
Similarly, the Hamiltonian

~̂Hb½r" ¼ bT̂ þ V̂ee þ
XN

i¼1

~vb½r"ðriÞ; ~vb ) bva¼1=b ð2:19Þ

has the ground state ~Cb[r] = C1/b[r] and the ground-
state energy

Ẽb[r] = F̃b[r] +
R
dDrṽb[r](r)r(r). (2.20)

III. Zero and strict coulomb correlation

A. Non-interacting electrons (NIE)

The usual Kohn–Sham system corresponds to the non-inter-
acting limit a = 0 of the HK functional Fa[r],

F0½r" ¼ lim
b!1

1

b
~Fb½r" ¼ min

C!r
hCjT̂ jCi ) Ts½r": ð3:21Þ

Being a ground state of the non-interacting Hamiltonian
Ĥa=0[r], the minimizing wave function C0[r] = ~CN[r] =
CNIE[r] is, in most cases, a single Slater determinant of
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N spin-orbitals fi(r, s) which obey the Kohn–Sham (KS)
single-particle Schrödinger equations

' !h2

2me
r2 þ v0½r"ðrÞ

! "
fiðr; sÞ ¼ eifiðr; sÞ: ð3:22Þ

Consequently, Ts[r] is the kinetic energy ofN=
R
dDrr(r) non-

interacting electrons in a given ground-state density r = r(r).
By construction, the KS potential v0[r](r) is such that the
orbitals reproduce the given density,

X

i;s
jfiðr; sÞj

2 ¼ rðrÞ: ð3:23Þ

Implicitly, in terms of these orbitals (rather than explicitly in
terms of the density r itself), Ts[r] is given by

Ts½r" ¼
!h2

2me

X

i;s

Z
dDrjrfiðr; sÞj

2: ð3:24Þ

Non-interacting electrons (NIE) have zero Coulomb
correlation. For example, N = 2 such electrons in a given
density r(r) have opposite spins and occupy the same spatial

orbital cðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
2 rðrÞ

q
(the situation can become more

complicated if the corresponding KS potential has a
degenerate ground state, something that rarely happens for
N = 2). When their two positions are measured simulta-
neously, the results r1 and r2 are completely uncorrelated—
when only the partial result r1 is noticed while the result r2 is
ignored or hidden, its probability distribution is rigorously
independent of the particular value of r1. In this case, the
expectation of V̂ee is given by

V ð0Þ
ee ½r" ¼ e2

Z
dDr1

Z
dDr2

jcðr1Þcðr2Þj2

jr1 ' r2j
¼ 1

2
U½r" ðN ¼ 2Þ;

ð3:25Þ

with the explicit density functional of the Hartree energy,

U½r" ¼ e2

2

Z
dDr

Z
dDr0

rðrÞrðr0Þ
jr' r0j : ð3:26Þ

If the electrons were repulsive bosons (b), an arbitrary number
N of them could occupy the same orbital c(r). In this case,
eqn (3.25) would be generalized to V(0)

ee [r] = V(0)
bb[r] where

V
ð0Þ
bb ½r" ¼

N ' 1

N
U½r" ðbosonsÞ: ð3:27Þ

For N Z 3, however, non-interacting electrons must occupy
two or more different orbitals. Consequently, their positions
can no longer be completely uncorrelated. This effect is
sometimes called Pauli correlation, since it is not caused by
a true repulsive (Coulomb) force between the electrons,
but merely by the Pauli principle. As a result, the true value
of V(0)

ee [r] is for N Z 3 lower than the bosonic value of
eqn (3.27),

V ð0Þ
ee ½r" ¼ U½r" þ Ex½r" *

N ' 1

N
U½r": ð3:28Þ

The exchange energy Ex[r]o0 is another implicit density
functional,

Ex½r" ¼ ' e2

2

X

i;j

dmi
s;m

j
s

Z
dDr

Z
dDr0

c+
i ðrÞcjðrÞc+

j ðr0Þciðr0Þ
jr' r0j ;

ð3:29Þ

with fiðr; sÞ ¼ ciðrÞwmi
s
ðsÞ. In eqn (3.28), the equal sign,

implying Ex½r" ¼ ' 1
N U½r", holds for N r 2, while

Ex½r"o' 1
N U½r" for N Z 3.

B. Strictly correlated electrons (SCE)

In the case a > 0, the Coulomb repulsion between the
electrons is turned on in the Hamiltonian Ĥa[r] of
eqn (2.17). Now, the ground state Ca[r] has, in addition to
Pauli correlation (for N Z 3), also true Coulomb correlation
which is caused by a repulsive force which lowers the value of
V(a)
ee [r] as a grows. Here we consider the extreme limit a - N

of infinitely strong repulsion,39,40 which we call the ‘‘strictly
correlated electrons’’ (SCE) limit,

lim
a!1

1

a
Fa½r" ¼ ~F0½r" ¼ min

C!r
hCjV̂eejCi ) VSCE

ee ½r": ð3:30Þ

The functional VSCE
ee [r] is the natural counterpart of the KS

non-interacting kinetic energy Ts[r] and was first addressed
about ten years ago,39,40 but only treated in an approximated
way, using physically motivated models.40,41 Only recently
VSCE
ee [r] and the square |CN[r]|2 = | ~C0[r]|2 = |CSCE[r]|2 of

the corresponding minimizing wave function have been treated
exactly in ref. 42, where the interested reader can find more
mathematical details. In the following, we summarize the
basics of the SCE solution, describing the physics that is
captured by VSCE

ee [r].
VSCE
ee [r] corresponds to the lowest possible value of the

expectation of the electron–electron repulsion in a given
density r(r). In other words, the functional VSCE

ee [r] defines a
classical problem with a given smooth density. Thus, in contrast
to Ca[r] for finite aoN, the limiting wave function CN[r]
does no longer depend on the spin variables s1, . . ., sN, and,
since the limit is classical (even if it is an unusual classical
problem because of the constraint of the smooth density), we
can only determine |CN[r]|2, which, in terms of the spatial
variables r1, . . ., rN, is no longer a regular function, but rather
a Dirac-type distribution, describing electrons with strictly
correlated positions. In practice, this means that the N results
ri A RD (i = 1, . . ., N) of a simultaneous measurement of all
electronic positions in the distribution |CN[r]|2 are no longer
independent of each other, but strictly related via N so-called
co-motion functions fi(r),

ri = fi(r) (i = 1,. . .,N; f1(r) ) r). (3.31)

In other words, the position r1 of one electron fixes the
positions ri (i > 1) of all the others. The co-motion functions
obey the group properties42

{f1(fn(r)), . . ., fN(fn(r))} = {f1(r), . . ., fN(r)} (n = 1, . . ., N),
(3.32)

so that eqn (3.31) does not conflict with the symmetry
postulate on a wave function for identical fermions. Moreover,
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as the position of one of the electrons determines the positions
of all the others, the probability of finding one electron at
position r in the volume element dDr must be the same of
finding the ith electron at position fi(r) in the volume element
dDfi(r). This means that all the co-motion functions for a given
N-electron density r = r(r) must satisfy the differential
equation42

r(fi(r))dDfi(r) = r(r)dDr (i = 1, . . ., N), (3.33)

whose initial conditions are fixed by making the corresponding
VSCE
ee [r], given by

VSCE
ee ½r" ¼ e2

2

XN

i;j¼1

Z
dDr

rðrÞ
N

1' dij
jf iðrÞ ' f jðrÞj

; ð3:34Þ

minimum.42 Thus, similarly to the N single-particle orbitals
fi(r, s) in the NIE Kohn–Sham state, the co-motion functions
fi(r) are fixed by the given density function r = r(r).42

Eqn (3.34) should be viewed as the counterpart of eqn (3.24)
which, also implicitly, represents the density functional Ts[r])
TNIE[r] for the non-interacting kinetic energy in terms of the
orbitals fi(r, s). The latter represent the counterpart of the
co-motion functions fi(r) in eqn (3.34). The counterpart of
eqn (3.28) and (3.29) for the functional V(0)

ee [r], in contrast, is
the limit a - N of Ta[r], which, as we shall see later, must be
treated with some care since it diverges but still yields a finite
‘‘first-order’’ correction to the energy functional VSCE

ee [r].
The two functionals Ts[r] and VSCE

ee [r] define two different
and complementary model systems in which the one-electron
density is the same. A simple way to grasp the very different
physics captured by the two model systems is to look at the
probability density P(r12) of finding two electrons at a distance
r12. As an example, in Fig. 2 we report this probability P(r12)
for the H' anion calculated using a very accurate wave-
function for the physical system (see ref. 43,44 and references
therein), using the Kohn–Sham non-interacting Slater
determinant (constructed from the same accurate density),
and using the SCE construction (see also ref. 45). The three
probabilities P(r12) correspond to three systems having the
same one-electron density, that is, the same probability to find
one electron at r in the volume element d3r. As we see from

Fig. 2, the probability distribution for the electron–electron
distance is very different: in the KS system there is a higher
probability of finding the two electrons close to each other
than in the physical system, in which there is Coulomb
repulsion. In the SCE state, the two electrons never get closer
than a certain distance r0 E 4.2 a.u., and they avoid each other
as much as possible without breaking the constraint of being
in the given one-electron density.

C. Density scaling

For a given density r= r(r), we consider the usual continuous
set of scaled densities rl(r),

rl(r) = lDr(lr) (l > 0). (3.35)

The prefactor lD guarantees that
R
dDrrl(r) =

R
dDrr(r) for all

l > 0.
As the orbitals fi(r, s) solve the KS equations eqn (3.22)

and yield in eqn (3.23) the density r(r), the scaled orbitals
f(l)
i (r, s) = lD/2fi(lr, s) yield the scaled density rl(r),

XN

i¼1

X

s
jfðlÞ

i ðr; sÞj2 ¼ rlðrÞ; ð3:36Þ

and solve the modified KS equations

' !h2

2me
r2 þ v0½rl"ðrÞ

! "
fðlÞ
i ðr; sÞ ¼ eðlÞi fðlÞ

i ðr; sÞ; ð3:37Þ

where v0[rl](r) = l2v0[r](lr) and e(l)i = l2ei. Therefore,
eqn (3.24) implies46

Ts[rl] = l2Ts[r]. (3.38)

For completeness, we note that35,46

U[rl] = lU[r],Ex[rl] = lEx[r],V(0)
ee [rl] = lV(0)

ee [r]. (3.39)

Similarly, as the co-motion functions fi(r) solve the SCE
eqn (3.33) for the density r(r), the scaled co-motion functions

f
ðlÞ
i ðrÞ ¼ 1

l
f iðlrÞ ð3:40Þ

solve the corresponding equations for the scaled density rl(r).
Consequently, eqn (3.34) implies the scaling behavior

VSCE
ee [rl] = lVSCE

ee [r]. (3.41)

We notice that the HK functional has a more involved scaling
behavior,46

F[rl] = l2Fa[r] (a = l'1), (3.42)

which is an immediate consequence of eqn (2.7) with eqn (2.2)
and (2.3). Thus, for finite a (0 o a o N), we could, without
loss of generality, confine ourselves to the case a = 1.

IV. Weak and strong coulomb correlation

Dropping the subscripts a and the superscript (a) in eqn (2.11),
we now address the realistic situation with interaction strength
a = 1,

F[r] = T[r] + Vee[r]. (4.43)

Fig. 2 The probability distribution for the electron–electron distance

r12 for the H
' anion calculated with a very accurate wavefunction for

the physical system, with the ‘‘exact’’ Kohn–Sham (KS) Slater deter-

minant (built from a very accurate density), and with the strictly

correlated electron (SCE) construction. All quantities are in Hartree

atomic units.
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Here, F[r] = Fa=1[r], etc. For N Z 2, the two contributions
on the right-hand side obey the relations

T ½r" ¼ hCa¼1½r"jT̂ jCa¼1½r"i ( Ts½r" ) min
C!r

hCjT̂ jCi ( 0;

ð4:44Þ

Vee½r" ¼ hCa¼1½r"jV̂eejCa¼1½r"i ( VSCE
ee ½r"

) min
C!r

hCjV̂eejCi ( 0:
ð4:45Þ

(In the trivial case N= 1, of course, we have T[r] = Ts[r] > 0
and Vee[r] = VSCE

ee [r] = 0.) These inequalities hold, since the
realistic wave function Ca=1[r] is significally different from
each one of the two minimizing wave functions on the right-
hand side, Ca=0[r] = CNIE[r] and CN[r] = CSCE[r], respec-
tively. While the latter ones are characterized completely by N
single-particle orbitals fi(r, s) or, respectively, by N co-motion
functions fi(r), the realistic wave function Ca=1[r] is mathe-
matically much more involved. Describing electrons with finite
Coulomb repulsion, it has neither zero nor strict, but rather
some finite Coulomb correlation, a situation which is much
harder to describe mathematically.

The non-interacting kinetic energy Ts[r] in eqn (4.44) can be
considered as the zero-point kinetic energy resulting (by the
uncertainty principle) from the spatial confinement of non-
interacting electrons in the density r = r(r). For interacting
electrons (a = 1), this zero-point energy is increased by
Coulomb correlation, since one such electron, due to the
repulsion by the other ones, has less effective space available
than a non-interacting one (a = 0) within the same given
density r = r(r). Consequently, the resulting difference,

Tc[r] = T[r] ' Ts[r] > 0, (4.46)

is called kinetic energy due to correlation. [We note in passing
that, as a - N grows beyond its realistic value a = 1, this
zero-point energy grows indefinitely, see eqn (4.50) below.]

On the other hand, increasing Coulomb repulsion (a - N)
lowers the expectation of the operator V̂ee (which is a measure
for the average inverse distance |r ' r0|'1 between two
electrons in the state Ca[r]). The second inequality,
eqn (4.45), expresses the fact that this lowering is maximum
in the limit a - N of strict correlation, while it is lesser in
realistic systems with a = 1 and finite correlation. Therefore,
following ref. 36, the difference

Vd[r] = Vee[r] ' VSCE
ee [r] > 0 (4.47)

is called decorrelation energy.37

Combining the fundamental scaling law of eqn (3.42) with
the expressions in eqn (2.13), one finds the individual scaling
properties of the functionals T[r] and Vee[r],

T ½rl" ¼ l2Ta½r";

Vee½rl" ¼ lVðaÞ
ee ½r"

9
=

; ða ¼ l'1Þ; ð4:48Þ

in contrast to eqn (3.38) and (3.41). From section III, we know
the finite limits

lim
a!0

Ta½r" ¼Ts½r"; lim
a!0

VðaÞ
ee ½r" ¼V ðaÞ

ee ½r"; lim
a!1

V ðaÞ
ee ½r" ¼VSCE

ee ½r":

ð4:49Þ

In addition, we have the divergent limit47

a - N:Ta[r] - TZP[r]a1/2 + O(a0), (4.50)

where TZP[r] is the leading coefficient of the expansion
describing zero-point oscillations of strictly correlated elec-
trons about the SCE limit.47 Consequently, the high-density
limit (HDL) of eqn (4.48) reads

l ! 1 :
T ½rl" ! l2Ts½r" ¼ Ts½rl";

Vee½rl" ! lV ð0Þ
ee ½r" ¼ V

ð0Þ
ee ½rl":

8
<

: ð4:51Þ

In the low-density limit (LDL), in contrast, we have

l ! 0 :
T ½rl" ! l3=2TZP½r" ¼ TZP½rl";

Vee½rl" ! lVSCE
ee ½r" ¼ VSCE

ee ½rl":

8
<

: ð4:52Þ

Here, we have used eqn (3.38), (3.39) and (3.41), and the
relation TZP[rl] = l3/2TZP[r] from ref. 47.
Now, we see that the kinetic energy T[rl] in the HK

functional

F[rl] = T[rl] + Vee[rl] (4.53)

becomes dominant and approaches its non-interacting value
Ts[rl] in the HDL (l - N), while in the LDL (l - 0), the
potential energy Vee[rl] becomes dominant and approaches its
strictly correlated limit VSCE

ee [rl]. Therefore, we call an electron
system with given ground-state density r weakly correlated
(WCOR), when T[r] c Vee[r] or, more precisely,

F ½r" ,4 T ½r" ,4 Ts½r" - Vee½r" ð4:54Þ

and strongly correlated (SCOR), when Vee[r] c T[r] or, more
precisely,

F ½r" ,4 Vee½r" ,4 VSCE
ee ½r" - T ½r": ð4:55Þ

V. Approximating the HK functional

A. Exchange–correlation (xc) and kinetic-decorrelation (kd)
energies

When the single-particle orbitals fi(r, s) of eqn (3.24) and the
co-motion functions fi(r) of eqn (3.34) can be constructed
rigorously for any given density r = r(r), the functionals
Ts[r] and VSCE

ee [r] can be treated exactly. Consequently, there
are two natural ways of partitioning the HK functional F[r].
The usual one of Kohn and Sham,

F[r] = Ts[r] + EH
xc[r], EH

xc[r] ) Tc[r] + Vee[r], (5.56)

treats Ts[r] exactly, and looks for an approximation to
the remaining contribution EH

xc[r]. Since F[r] = F1[r] and
Ts[r] = F0[r], eqn (2.14) now reads

EH
xc[r] =

R
1
0daV(a)

ee [r]. (5.57)

The KS DFT scheme works well for weakly and moderately
correlated systems (WCOR). For SCOR systems, where F[r] is
dominated by VSCE

ee [r], better results should be obtained by
partitioning the HK functional as

F[r] = VSCE
ee [r] + Ekd[r], Ekd[r] ) T[r] + Vd[r], (5.58)
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with VSCE
ee [r] to be treated exactly and Ekd[r] to be approxi-

mated. Eqn (2.15) now reads

Ekd½r" ¼
Z 1

0
db ~Tb½r" )

Z 1

1

da
a2

Ta½r": ð5:59Þ

The natural counterpart of this so-called kinetic-decorrelation
(kd) energy36,37 Ekd[r] is the xc-Hartree energy EH

xc[r] of
eqn (5.56), (5.57). This functional is usually written as

EH
xc[r] = Exc[r] + U[r], (5.60)

with the functional of the exchange–correlation (xc) energy,

Exc½r" ¼ Vð0Þ
ee ½r" 'U½r"|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ex½r"

þVee½r" ' V ð0Þ
ee ½r" þ Tc½r"|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ec ½r"

; ð5:61Þ

where we have introduced the correlation energy Ec[r].
An equivalent representation is

Exc[r] = (T[r] ' Ts[r]) + (Vee[r] ' U[r]). (5.62)

Note also that

Ekd[r] = Ts[r] + Exc[r] ' (VSCE
ee [r] ' U[r]). (5.63)

B. Local-density approximation (LDA) for Exc[q] and Ekd[q]

A simple approximation to the functional Exc[r] or,
equivalently, EH

xc[r] = Exc[r] + U[r] is the local-density
approximation (LDA),

ELDA
xc [r] =

R
dDrr(r)e(D)

xc (rs(r)). (5.64)

As a function of r, the dimensionless local density parameter
rs(r) is given by

rsðrÞ ¼
1

rðrÞBD

% &1=D

, rðrÞ ¼ 1

BDrsðrÞD
; ð5:65Þ

where BD is the volume of a D-dimensional ball with radius
aB = !h2/mee

2. E.g.: B3 ¼ 4p
3 a

3
B, B2 = pa2B. The crucial quantity

in eqn (5.64) is e(D)
xc (rs), the xc energy per particle in the

D-dimensional uniform electron gas with (uniform) density
!r = (BDr

D
s )

'1.
The functions e(D)

xc (rs) for D = 2, 3 are not known analyti-
cally, but accurate parametrizations of numerical Quantum
Monte Carlo (QMC) data are available. In the case D= 2, the
data and parametrization of Attaccalite et al.48 are nowadays
widely used. For D = 3, popular parametrizations of the
Ceperley and Alder QMC data49 are the ones of Vosko, Wilk
and Nusair50 and of Perdew and Wang.51 Remarkably, the
function e(3)xc (rs) can be interpolated accurately between its
high- (rs { 1) and low-density (rs c 1) limits, almost without
relying on any QMC input at all.52 Finally, for D = 1
parametrized QMC data of the ground state energy of a
uniform electron gas with regularized electron–electron
interaction are also available.53

Given ELDA
xc [r], a corresponding LDA for Ekd[r] is readily

obtained from eqn (5.63),37

ELDA
kd [r] =

R
dDrr(r)e(D)

kd (rs(r)), (5.66)

with the kd energy per particle in the D-dimensional uniform
electron gas,

eðDÞ
kd ðrsÞ ¼ tðDÞ

s ðrsÞ þ eðDÞ
xc ðrsÞ '

a
ðDÞ
M

rs
: ð5:67Þ

The non-interacting kinetic energy t(D)
s (rs) per particle in the

uniform electron gas (in units of 1 Ha = e2/aB = mee
4/!h2) is

known analytically,

tð2Þs ðrsÞ ¼
1

2

ð1þ zÞ2 þ ð1' zÞ2

2r2s
¼ 1þ z2

2r2s
; ð5:68Þ

tð3Þs ðrsÞ ¼
3

10

9p
4

% &2=3ð1þ zÞ5=3 þ ð1' zÞ5=3

2r2s
; ð5:69Þ

and the coefficient a(D)
M determines the Madelung energy

(in units of 1 Ha),

a(2)M = '1.1061, a(3)M = '0.89593. (5.70)

The Madelung energy
a
ðDÞ
M
rs

exactly corresponds to the thermo-
dynamic limit (number of particles and volume going to
infinity with the particle density kept fixed) of VSCE

ee [r]/N in
a uniform electron gas (with the usual cancellation between the
Hartree term, the electron-background and the background-
background interaction energies). Thus, as in KS theory, the
LDA is uniquely defined as the approximation that makes the
method exact in the limit of uniform density.

C. Exact first-order approximation for Exc[q] and Ekd[q]

In KS DFT the exact first-order approximation for Exc[r] is
the exchange energy of eqn (3.29), which, as said, is an implicit
functional of the density through the KS orbitals.
The ‘‘first-order’’ approximation for Ekd[r] corresponds to

zero point (ZP) oscillations around the SCE minimum.47 The
proof that this is indeed the exact first-order correction is
rather lengthy and the interested reader can find all the details
in ref. 47.
Basically, in the SCE limit the total potential energy of a

classical configuration

Epotðr1; . . . ; rNÞ ¼
X

ioj

e2

jri ' rj j
þ
X

i

vSCE½r"ðriÞ; ð5:71Þ

where vSCE[r](r) is the external potential associated with
the density r at zero kinetic energy, is constant on the
D-dimensional subspace O0 = {f1(r),. . .,fN(r)} of the full
ND-dimensional configuration space42 and is expected to have
a minimum with respect to variations perpendicular to O0,
implying that its Hessian has D eigenvectors with null eigen-
value and ND ' D eigenvectors with positive eigenvalue o2

m(r)
at every point on O0.

47 In terms of these eigenvalues, the small
b and the large a expansion of T̃b[r] defined after eqn (2.15)
and Ta[r] of eqn (2.11) read

lim
b!0

~Tb½r" ¼ b'1=2TZP½r" þOðb0Þ ð5:72Þ

lim
a!1

Ta½r" ¼ a1=2TZP½r" þOða0Þ; ð5:73Þ
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with

TZP½r" ¼
1

2

Z
dDr

rðrÞ
N

XND'D

m¼1

omðrÞ
2

: ð5:74Þ

Thus, as anticipated in section IV, in the strict correlation limit
the kinetic energy grows indefinitely. However, both eqn (5.72)
and (5.73) when inserted in eqn (5.59) yield the finite result

EZP
kd ½r" ¼ 2TZP½r" ¼

Z
dDr

rðrÞ
N

XND'D

m¼1

omðrÞ
2

; ð5:75Þ

which is the SCE counterpart of the exact exchange energy of
eqn (3.29) for KS theory. The energy EZP

kd [r] has a highly non
trivial functional dependence on r, so that its functional
derivative is not easily accessible.

VI. Exact treatment of Ts[q] or V
SCE
ee [q]

A. The Kohn–Sham approach (exact Ts[q])

1. Spin-restricted formalism. With eqn (5.56) for the HK
functional F[r], the Euler equation eqn (2.9) reads

dTs½r"
drðrÞ þ F½r"ðrÞ þ vxc½r"ðrÞ þ vðrÞ ¼ m; ð6:76Þ

with the electrostatic potential

F½r"ðrÞ ) dU½r"
drðrÞ

¼ e2
Z

dDr0
rðr0Þ
jr' r0j

ð6:77Þ

of the density r(r) and the xc potential,

vxc½r"ðrÞ )
dExc½r"
drðrÞ : ð6:78Þ

When the approximation Eap
xc[r] used for Exc[r] is an explicit

density functional, the corresponding functional derivative
vapxc[r](r) = dEap

xc[r]/dr(r) can be evaluated for any given
density function r(r).

By varying the density through variations of the orbitals,
eqn (6.76) for interacting electrons is formally equivalent to
the corresponding equation for a system of non-interacting
electrons in the KS effective external potential

vKS[r](r) = F[r](r) + vxc[r](r) + v(r). (6.79)

Thus, the KS orbitals satisfy the equations

' !h2

2me
r2 þ vKS½r"ðrÞ

! "
fiðr; sÞ ¼ eKS

i fiðr; sÞ; ð6:80Þ

which have to be solved self-consistently with eqn (3.23).
Since the exchange–correlation functional must be

approximated in practice, one obtains an approximate
ground-state energy for the physical interacting system,
Eap
0 = Ts[r] + (Eap

xc[r] + U[r]) +
R
dDrr(r)v(r).

Employing in eqn (6.80) the exact quantum-mechanical
operator of the kinetic energy, the functional Ts[r] is treated
exactly here. Consequently, this approach works well in the
case of WCOR systems when Ts[r] is the dominant contri-
bution to F[r]. For SCOR systems, in contrast, we will analyze
in the next section a complementary approach based on the
exact treatment of VSCE

ee [r]. Before doing so, however, we

briefly review the widely used spin-DFT (or unrestricted
Kohn–Sham) formalism.

2. Spin-unrestricted formalism. In practical calculations
the spin-DFT version54 of KS DFT is widely used. Although
the Hoehenberg-Kohn functional only depends on the
total density r(r), in spin DFT one introduces the functional
Ts[rm, rk],

Ts½r"; r#" ¼ min
C!r";r#

hCjT̂ jCi; ð6:81Þ

which corresponds to the kinetic energy of a non-interacting
system having given spin densities rm(r) and rk(r), with

rsðrÞ¼N
X

s2;...;sN

Z
dDr2 . . . d

DrN jCðr; r2; . . . ; rN ; s; s2; . . . ; sNÞj2;

ð6:82Þ

and rm + rk = r. The functional Ts[rm, rk] can be used to
decompose the HK functional as

F[r] = Ts[rm, rk] + U[r] + Exc[rm, rk] +
R
dDrv(r)r(r),

(6.83)

where Exc[rm, rk] is defined as the correction needed to make
eqn (6.83) exact. The idea is to have a non-interacting
system with the same spin densities of the true, interacting,
one. This constraint defines two effective potentials
vKS,m[r](r) and vKS,k[r](r), and two sets of orbitals such thatP

i|fi,s(r)|
2 = rs(r).

Notice that we have (for the exact functionals evaluated at
the exact density and spin densities) Ts[rm, rk] Z Ts[r],
Exc[rm, rk] r Exc[r], and Ts[rm, rk] + Exc[rm, rk] =
Ts[r] + Exc[r]. Using the spin-unrestricted KS reference
system instead of the restricted one allows to mimic some
correlation effects, similarly to the spin-unrestricted Hartree
Fock method.

B. The SCE approach (exact VSCE
ee [q])

The non-interacting functionals Ts[r] and Ts[rm, rk] require a
self-consistent procedure for their calculation. This is because
the density (or the spin densities) is determined by the KS
orbitals by the simple equation

P
i|fi(r)|

2 = r(r), while
determining the orbitals from the density requires a highly
non-trivial procedure (for which very many different numerical
techniques have been proposed in the last years, e.g.).55–57

The construction of the complementary functional VSCE
ee [r]

for strictly correlated electrons for a given density r(r) can be
simpler, because the density determines the co-motion
functions fi(r) via the differential eqn (3.33). In other words,
in the SCE case it is easier to determine the co-motion
functions from the density than to determine the density from
the co-motion functions. In particular, VSCE

ee [r] has been
directly constructed for spherically symmetric densities,42

while algorithms to solve the SCE equations in the general
case are under study: a very promising way to proceed is to
exploit the similarity between the SCE problem and mass
transportation theory.58
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The problem of calculating VSCE
ee [r] can be reformulated as42

VSCE
ee ½r" ¼ min

c!r

Z
jcðr1; r2; . . . ; rNÞj2

X

i4j

1

jri ' rj j
; ð6:84Þ

where |c|2 is the spatial part of the many-electron wave-
function. As said, in fact, in the SCE case, the electrons are
strongly distinguished by their relative positions, so that the
spin state (or more generally, the statistics) does not play a
role.42 The functional VSCE

ee [r] is thus the same as the
spin unrestricted functional VSCE

ee [rm, rk] (of course with
rm + rk = r). This means that also the exact kinetic and
decorrelation functional Ekd[r] is the same in the spin
restricted and spin unrestricted formalism. However, when
we deal with approximations for Ekd[r] this might not be true.
In section VIIB, we will compare the results for a quantum dot
with three electrons obtained by using the local spin density
functional ELSD

kd [rm, rk] with those from the LDA functional.
Since the co-motion functions can be constructed from

the density, in the SCE approach we can obtain the many-
electron energy by directly minimizing the expression
F[r] +

R
dDrv(r)r(r) with respect to the density function r(r),

according to eqn (2.8). To this end, the HK functional
F[r] must be partitioned as in eqn (5.58) where an approxima-
tion Eap

kd[r] is required for the functional Ekd[r],

Eap½v" ¼ min
r!N

VSCE
ee ½r" þ Eap

kd½r" þ
Z

dDrvðrÞrðrÞ
! "

: ð6:85Þ

Unlike the KS equations, this approach should be particularly
suitable for SCOR systems for which the HK functional is
dominated by VSCE

ee [r]. In such cases, the density is dominated
by strong spatial correlations rather than by the quantum
mechanical shells. In practical calculations, the minimization
of eqn (6.85) can be carried out by expanding the density on a
suitable basis set or by using a grid. A simple example of such
a calculation is reported in the next section VII A.

Another equation that the minimizing density must satisfy
can be obtained by varying the energy with respect to r(r):

dE½v"
drðrÞ

¼ dVSCE
ee ½r"
drðrÞ

þ dEkd½r"
drðrÞ

þ vðrÞ ¼ m; ð6:86Þ

where m is the chemical potential. Although the functional
VSCE
ee [r] depends on the density in a rather complicated way via

the co-motion functions [see eqn (3.34)], its functional

derivative vSCE½r"ðrÞ ) ' dVSCE
ee ½r"
drðrÞ satisfies the classical equili-

brium equation42

rvSCE½r"ðrÞ ¼
XN

i¼2

r' f iðrÞ
jr' f iðrÞj3

; ð6:87Þ

which has a very simple physical meaning: the potential
vSCE[r](r) must compensate the net force acting on the electron
in r, resulting from the repulsion of the other N ' 1 electrons
at positions fi(r). The one-body potential vSCE[r](r) is the
counterpart of the KS effective potential of eqn (6.79)
and corresponds to the Lagrange multiplier for the constraint
C - r in the minimization of eqn (3.30). Thus, another
possibility to solve the SCE-DFT equations is to look for
the density r(r) that satisfies eqn (6.86), (6.87) and (3.34). This

last way to proceed, however, raises some questions about the
uniqueness of the solution, questions that will be addressed in
future work.

VII. SCE-DFT applied to few-electron quantum
dots

In this section we report preliminary applications of the
SCE-DFT method on simple quantum dots models with few
electrons.
Quantum dots are nanodevices in which the motion of

electrons is quantized in all three dimensions through the
lateral confinement of a high-mobility modulation-doped
two-dimensional electron gas in a semiconductor hetero-
structure (for a review, see, e.g.).59 Because the confinement
of electrons in these ‘‘artificial atoms’’ can be varied at
will, they have become a playground in which the basic
physics of interacting electrons can be largely explored and
theoretical models can be tested. The number of confined
electrons can vary from a few to several hundred, with
smaller numbers of electrons becoming increasingly techno-
logically important in nandevices such as the single-electron
transistor.
In quantum dots the correlation effects between electrons

need to be considered carefully because the external confine-
ment can become much weaker than in real atoms, where the
independent electron model with mean-field theories usually
gives good results. As the confinement strength is lowered, the
mutual Coulomb interaction becomes gradually dominant.
The physics of this regime can be thus much better captured
by SCE-DFT than by traditional KS-DFT. Indeed, KS DFT
has proved useful for studying quantum dots in the weakly
correlated regime (e.g.),59–63 while the medium and strongly-
correlated regime, and in particular the cross-over from the
Fermi liquid behavior to the Wigner-crystal-like state, has
only been accessible to wavefunction methods, e.g., configura-
tion interaction59,64,65 (only for very small dots), Quantum
Monte Carlo (e.g.)66–68 or unrestricted Hartree–Fock plus
symmetry restoration.69 Here we explore with SCE-DFT the
regime of weak confinement (strong correlation), where
state-of-the-art KS-DFT breaks down.
We thus consider a simple quantum-dot model consisting of

N electrons in two dimensions (2D) laterally confined by a
parabolic potential:

Ĥ ¼ ' !h2

2m+

XN

i¼1

r2
i þ

e2

e

XN

i¼1

XN

j¼iþ1

1

jri ' rj j
þm+ o

2

2

XN

i¼1

r2i ;

ð7:88Þ

where m* is the effective mass and e the dielectric constant.
For now we only analyze single dots for which we obtain

circularly symmetric densities, r(r) = r(r). In this case, the
problem of determining VSCE

ee [r] can be separated into an
angular part and a radial part.42 The distance r from the
center of the dot of one of the electrons can be freely chosen,
and it then determines the distances from the center of all the
other N ' 1 electrons via radial co-motion functions fi(r), as
well as all the relative angles yij(r) between the electrons.42

The radial co-motion functions fi(r) can be constructed as
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follows.42 Define an integer index k running for odd N from
1 to (N ' 1)/2, and for even N from 1 to (N ' 2)/2. Then

f2kðrÞ ¼
N'1

e ð2k'NeðrÞÞ r * a2k

N'1
e ðNeðrÞ ' 2kÞ r4a2k

(

f2kþ1ðrÞ ¼
N'1

e ðNeðrÞ þ 2kÞ r * aN'2k

N'1
e ð2N ' 2k'NeðrÞÞ r4aN'2k;

( ð7:89Þ

where ai = N'1
e (i),

Ne(r) =
R
0
r 2p xr(x) dx, (7.90)

and N'1
e (y) is the inverse function of Ne(r). For odd N, these

equations give all the needed N ' 1 radial co-motion
functions, while for even N we have to add the last function,

fN(r) = N'1
e (N ' Ne(r)). (7.91)

The relative angles yij(r) between the electrons can be found
by minimizing numerically the electron–electron repulsion
energy

P
i>j[fi(r)

2 + fj(r)
2 ' 2fi(r)fj(r) cos yij]'1/2. The radial

co-motion functions of eqn (7.89)–(7.91) satisfy eqn (3.33) for
2D circularly symmetric r,

2pfiðrÞrðfiðrÞÞjf 0i ðrÞjdr ¼ 2prrðrÞdr; ð7:92Þ

and, together with the minimizing angles yij(r), yield the
minimum expectation of V̂ee.

42 Physically, the solution of
eqn (7.89)–(7.91) makes the N electrons always be in N
different circular shells, each of which contains, on average
in the quantum mechanical problem (at a = 1), one electron.
In the SCE limit, the electrons become strictly correlated, and
all fluctuations are suppressed (see, e.g.)70: the space is divided
into N regions, each of which always contains exactly one
electron.

A. The case N = 2

In this case the minimizing angle is always y12(r) = p and there
is only one co-motion function given by

f2(r) = N'1
e (2'Ne(r)), (7.93)

with f2(f2(r)) = r, thus ensuring the equivalence of the two
electrons.

We switch to effective Hartee units (!h = 1, a+B ¼ e
m+ aB ¼ 1,

e = 1, m* = 1), and we define f(r) ) f2(r), so that

VSCE
ee ½r" ¼

Z 1

0
dr2pr

rðrÞ
N

1

rþ f ðrÞ ¼
Z a1

0
dr2pr

rðrÞ
rþ f ðrÞ ;

ð7:94Þ

where we have used the fact that, since the electrons are
indistinguishable, integrating from 0 to N is equivalent to
integrate N times from 0 to a1 = N'1

e (1). This is a character-
istic of the SCE limit: the space is divided in N equivalent
regions, so that to calculate the energy we only need to treat
one of them. In a way, the SCE limit seems to become more
‘‘local’’, a characteristic which may prove very useful if we deal
with approximations. However, we also have to keep in mind
that, although for an exact evaluation of VSCE

ee [r] we need
indeed only one of the N equivalent regions, in order to find
how to divide the space in those N regions we need often to

perform a classical minimization over the whole space. This
will become clearer in the next example with N = 3 electrons.
The exact ‘‘first-order’’ or zero-point energy is, in this case,

given by

EZP
kD½r" ¼

Z a1

0
drprrðrÞ½o1ðrÞ þ o2ðrÞ"; ð7:95Þ

with

o1ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ f ðrÞ2

rf ðrÞðrþ f ðrÞÞ3

s

ð7:96Þ

o2ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ f 0ðrÞ2Þ

'f 0ðrÞðrþ f ðrÞÞ3

s

ð7:97Þ

In ref. 37 we have evaluated the energy functional Eap[v] =
VSCE
ee [r] + Eap

kd [r] +
R
dDrv(r)r(r) using the exact input

densities from ref. 71, and we have compared the results with
standard KS-LDA ones (notice that for two-dimensional
electronic structure calculations LDA is still the most widely
used functional). At this postfunctional level we have found
that, as expected, for large values of the confining parameter o
(corresponding to higher densities) the KS LDA result is
superior to the SCE-DFT. However, as o becomes smaller
(which corresponds to lowering the density and thus
approaching the strongly-correlated regime), the SCE-DFT
results with its approximations for Eap

kd[r] become better and
better, highly outperforming KS-LDA. These results are
summarized in Fig. 3, where we report the absolute % error
on the total energy as a function of the confinement parameter
o for KS-LDA and for SCE-DFT with Eap

kd[r] = 0 (curve
labeled SCE), with Eap

kd[r] = ELDA
kd [r] of eqn (5.66)

(SCE-LDA), and with Eap
kd[r] = EZP

kd[r] of eqn (5.75) (SCE-ZP).
For the ground state energy of the 2D electron gas (which
defines the LDA functional) we have used the data and
parametrization of Attaccalite et al.48 We see from Fig. 3 that
for o t 0.007 the SCE-ZP result is the most accurate. The
much simpler SCE-LDA is also very reasonable in this regime,
reducing the error of KS-LDA by a factor 5–10.

Fig. 3 The absolute % error on the total energy as a function of the

confinement parameter o made by the functional Eap[v] = VSCE
ee [r] +

Eap
kd[r] +

R
dDrv(r)r (r) with Eap

kd[r] = 0 (SCE), with Eap
kd[r] = ELDA

kd [r]
of eqn (5.66) (SCE-LDA), and with Eap

kd[r] = EZP
kd [r] of eqn (5.75)

(SCE-ZP). The results obtained with standard KS-LDA are also

reported. In this figure all calculations are done at the postfunctional

level only.
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The next step is to perform self-consistent SCE-DFT
calculations, in which the density is determined by minimizing
the energy functional. Here we report very preliminary results
obtained by parametrizing the density with a set of Ng

gaussians:

rfpgðrÞ ¼ C'1
XNg

i¼1

cie
'b2i r

2

 !2

; ð7:98Þ

where {p} denotes the set of the 2Ng variational parameters
{bi, ci; i = 1,. . . Ng}. The constant C ensures that r(r) is
normalized to N = 2 electrons, and the functional form
guarantees that r(r) Z 0 everywhere. As an example, here
we consider two cases with small confining parameter, o =
0.0072846 and o= 0.00221088, for which we find that Ng = 3
gaussians are enough to accurately reproduce the exact density
(when the fitted densities are inserted in Eap[v] the error with
respect to the energy obtained with the exact densities is
B0.01%). We consider only the simple SCE-LDA functional
and perform the direct minimization

Eap½v" ¼ min
fpg

VSCE
ee ½rfpg" þ ELDA

kd ½rfpg" þ
Z

dDrvðrÞrfpgðrÞ
! "

ð7:99Þ

with respect to the parameters {p}. This way of proceeding is
probably not the best one both in terms of efficiency and
accuracy, but the aim here is only to show a proof of principle.
Better procedures are currently under study. The minimizing
densities are compared in Fig. 4 with the exact ones obtained
from the solution given in ref. 71. Although the densities
obtained are quite reasonable, it is evident that the LDA
approximation for the functional Ekd[r] has a tendency to
give densities that are too diffuse. The total energies obtained
in this way are quite accurate, with errors of 5.4% (for o =
0.0072846) and 4.4% (for o = 0.00221088), corresponding,
respectively, to absolute errors of 3 mH* and 1 mH*.

B. The case N = 3

In this case we have two co-motion functions, f2(r) and f3(r),
and two relative angles that have to be minimized numerically
for each value of the distance r A [0, a1] of one of the electrons
from the center of the dot. Notice that if, say, electron 1 is in
the circular shell 0 r r r a1, then electron 2 is in the shell

a1 r f2(r) r a2, and electron 3 is in a2 r f3(r) o N. Thus,
even if we only need to compute the minimizing angles for
r A [0, a1], we explore the whole space where r(r) a 0 through
the positions of the other N ' 1 electrons.
The quantum dot with N = 3 electrons is also a useful

example to discuss the spin state in the framework of
SCE-DFT. Accurate wavefunction methods, in fact,
(see, e.g.ref. 64 & 67) find that the ground state for the
N = 3 dot with o t 0.05 is fully spin polarized. As discussed
in section VIB, the functional VSCE

ee [r], being essentially classic,
is independent of the spin state. The exact functional
Ekd[r] should thus be the same as the exact functional
Ekd[rm, rk], when the exact density or the exact spin densities
are used. When constructing approximations, however, one
could obtain better results with Ekd[rm, rk], as in KS-DFT.
Here we consider only the SCE-LDA and SCE-LSD

functionals, and we apply them at the postfunctional level
using as input the Diffusion Monte Carlo densities from ref. 66
and 68. We study the values o = 0.01562, 0.005 and 0.001,
which already lie in the regime where KS-LDA orbitals
become difficult to obtain (notice that the KS-LDA results
of Fig. 3 were obtained at the postfunctional level, using the
exact densities as input). As said, we explore the two options
ELDA
kd [r] and ELSD

kd [rm, rk] for which we use the parametriza-
tion of the 2D electron gas energy of Attaccalite et al.48 This
functional is based on accurate Diffusion Monte Carlo (DMC)
data predicting a weakly first order transition from the
unpolarized gas to the fully polarized state at rs E 26. Even
if the existence of this transition has been recently questioned
in ref. 72, we stick here to the original Attaccalite et al.
parametrization. Since the densities involved are quite low,
corresponding often to rs > 26, the correct definition (within
the chosen parametrization) of the LDA functional consists in
taking in each point of space the ground state energy of the
electron gas with the same density, i.e.,

ELDA
kd [r] =

R
dDr r(r){ekd (rs(r), z = 0) y (25.56 ' rs(r))

+ ekd (rs(r),z = 1) y (rs(r) ' 25.56)}, (7.100)

where rs(r) = (pr(r))'1/2, z = (rm ' rk)/r, and y is the
Heaviside step function. For the values of the confinement
parameter o considered here (for which the ground state of the
dot is fully polarized), instead, the ‘‘exact’’ LSD functional

Fig. 4 Radial densities for N = 2 electrons in a two-dimensional model quantum dot for two different values of the confining parameter o. The
exact values71 are compared with the results obtained by the direct minimization of the energy functional SCE-LDA of eqn (7.99). Effective

Hartree atomic units are used. The corresponding total energies have relative errors, respectively, of 5.4% and 4.4%.
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(i.e., the one which has not only the exact local density in each
point of space, but also the exact local spin densities) is

ELSD
kd [rm, 0] =

R
dDr r(r)ekd(rs(r),z = 1). (7.101)

In Table 1 we report the % errors on the total energies
(with respect to the DMC energies) obtained with the two
functionals. We also show the results corresponding to
Eap
kd[r] = 0, labeled ‘‘SCE’’. We see that the quality of the

two local approximations is rather good, with the LSD results
slightly worse than the LDA ones for o = 0.01562 and o =
0.005. This is due to the fact that for these values of the
confining parameter o, rs(r) is often still smaller that 26, so
that a lower energy is obtained by considering the true ground
state of the electron gas. At o = 0.001, we have rs(r) always
greater than 26 so that LDA and LSD become the same. In
other words, the SCE-LDA functional predicts a transition to
the fully polarized state at a much lower o with respect to the
one predicted by accurate wavefunction methods. This
transition in the SCE-LDA method entirely depends on the
delicate physics of the 2D uniform electron gas, and it is thus
questionable in view of the latest results of ref. 72.

This simple example shows that the next step for the
construction of functionals useful for SCE-DFT is probably
by considering simple exchange models, which would allow to
distinguish between different spin states, generalizing to non-
uniform densities what has been done for the uniform electron
gas in ref. 73.

VIII. Is the SCE limit relevant for chemical
applications?

The results of the previous section suggest that the SCE
formalism can have an impact on solid-state devices involving
electron gas in low dimensional systems (quantum wires, dots,
point contacts, etc.), in the low-density, strongly-interacting
regime, where traditional KS DFT is not of much use. It is
however less evident whether the SCE limit could be also
relevant for applications in chemistry.

If we consider the simplest chemical system, the H2

molecule, we see that, as we stretch the chemical bond, the
energy and physics of the system is exactly described by the
SCE limit, as electrons in a stretched bond have strong spatial
correlations (see, e.g., Fig. 11 of ref. 74). This feature is very
interesting and promising, since the stretching of the chemical
bond is one of the typical situations in which restricted
KS-DFT encounters problems, being unable to describe the
strong correlation occurring between the electrons involved in
a single or in a multiple bond. Thus, the SCE limit contains

useful exact information that is usually missed by state-of-the-
art (restricted) KS-DFT. However, when we deal with real
chemical systems the situation is different from that of the
simple H2 molecule, since only the electrons involved in the
stretched bonds are strongly correlated. The SCE limit applied
to the whole system would give much too low energies,
producing serious overcorrelation. In other words, we cannot
expect the SCE-DFT scheme to work for chemistry,
where often both the orbital description and strong spatial
correlation are important at the same time.
What we could do, instead, is trying to include the exact

information contained in the SCE limit into approximate
exchange–correlation functionals. Attempts in this direction
have been done in the past, leading to the construction of the
interaction-strength-interpolation (ISI) functional.39,75 As
shown in eqn (5.57), the exchange–correlation energy of
KS-DFT is given by (in this section we use Hartree
atomic units)

Exc[r] =
R
1
0 daV(a)

ee [r] ' U[r]. (8.102)

Since the functional V(a)
ee [r] approaches the SCE limit as

a - N, the idea of the ISI functional is to construct the
a-dependence of Wa[r] = V(a)

ee [r] ' U[r] by interpolating
between the a - 0 (exchange energy and second-order
Görling-Levy perturbation energy76 EGL2

c [r]),

Wa-0 [r] = V(a-0)
ee [r] ' U[r] = Ex[r] + 2aEGL2

c [r] + O(a2),
(8.103)

and the a - N limits (SCE plus ZP oscillations47),

Wa!1½r" ¼ V ða!1Þ
ee ½r" 'U½r" ¼ VSCE

ee ½r" 'U½r"

þ TZP½r"ffiffiffi
a

p þOða'qÞ q ( 5

4
:

ð8:104Þ

However, this way of proceeding leads to serious size-
consistency errors. The size-consistency problem of the ISI
functional is related to the fact that the interpolation is done
on the global quantityWa[r]. Moreover, when the ISI was first
proposed an exact treatment of the SCE limit was not
available, so that the functional relied on physical approxima-
tions for the SCE and ZP energies.41,75

As a possible way out, the exact solution of the SCE limit,
now available, makes accessible not only global, but also local
quantities. This new access to local quantities could be used to
construct local interpolations along the DFT adiabatic
connection, restoring size consistency (for critical reviews on
the size-consistency issue in DFT see also).77,78 We thus
rewrite eqn (8.102) in terms of an energy density wa(r;[r]),

Exc[r] =
R
dDrr(r)

R
1
0 da wa(r;[r]), (8.105)

with
R
dDrr(r)wa(r;[r]) = Wa[r] = V(a)

ee [r] ' U[r]. (8.106)

The idea is then to use the energy densities wa(r;[r]) in the
a - 0 and a - N limits, describing locally the quantities of
eqn (8.103) and (8.104), in order to construct an interpolation
for the a-dependence of wa(r;[r]). Since the energy density
wa (r;[r]) is not uniquely defined, we must use the same gauge
for the weak and and the strong-interaction limits. A very

Table 1 Relative % errors on the total energy of a model two-
dimensional quantum dot consisting of 3 electrons confined in an
harmonic potential vext(r) =

1
2o

2r2. Columns as follows: SCE are the
results obtained by setting Ekd[r] = 0, SCE-LDA are those obtained
by using ELDA

kd [r] of eqn (7.100), and SCE-LSD are those obtained by

using ELSD
kd [rm, 0] of eqn (7.101)

o SCE SCE-LDA SCE-LSD

0.01562 '15.1 3.4 3.9
0.005 '10.6 3.6 3.7
0.001 '6.7 2.8 2.8
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reasonable and physical choice would be the gauge defined
by the exchange–correlation hole,

waðr; ½r"Þ ¼
1

2

Z
dDu

raxcðr; uÞ
u

; ð8:107Þ

where u = r2 ' r1, u = |u| and the exchange–correlation hole
raxc(r, u) is simply related to the pair density Pa

2(r1, r2) obtained
from the wavefunction Ca,

Pa
2ðr1; r2Þ

¼ NðN ' 1Þ
X

s1;...;s2

Z
dDr3 . . . d

DrN jCaðr1; s1; . . . ; rN ; sNÞj2;

ð8:108Þ

raxcðr; uÞ ¼
1

rðrÞ

Z
dû

4p
ðPa

2ðr; rþ uÞ ' rðrÞrðrþ uÞÞ: ð8:109Þ

The a- 0 limit of wa(r;[r]) is thus the exchange energy density
defined in the gauge of the exchange hole, for which one could
use the exact exchange hole or a good approximation, e.g., the
one of Becke and Roussel.79 The a - N limit of wa(r;[r]) is
exactly given by the SCE solution, which is already defined in
the gauge of the exchange–correlation hole (see also ref. 45),

wa!1ðr; ½r"Þ ¼ 1

N

XN

i;j¼1

1' dij
jf iðrÞ ' f jðrÞj

'
Z

dDu

u
rðrþ uÞ:

ð8:110Þ

Much more difficult is to have a local expression for the next
leading terms, both for a- 0 and a-N, defined in the same
gauge. The zero-point term of eqn (5.75), which determines
how the a - N limit is approached to orders a'1/2, is, in fact,
expressed in a gauge which is not the one of the exchange–
correlation (xc) hole. The Görling-Levy perturbation theory is
also difficult to define locally in terms of the xc-hole gauge.

Routes to define and calculate the local next leading terms
will be pursued in future work. For the ZP term, one could
actually directly calculate the pair-density associated to the
O(a'1/2) wavefunction,47 and produce the exact exchange–
correlation hole in this limit. For the a- 0 leading correction,
one should probably use different correlation-strength indica-
tors than the GL perturbation theory. A very promising route
could be the one described by Becke in ref. 80, which considers
the local normalization of the exact exchange hole as an
indicator of strong non-dynamical correlation.

The main message of this section is that the SCE limit
contains useful exact information for critical situations in
Chemistry such as stretched bonds. However, one has to be
able to use this exact information locally, where it is needed.
This direction of research will be pursued in future work.

IX. Concluding remarks

The strong-interaction limit of density functional theory,
exactly solved in the last three years, contains useful physical
and chemical information, typically missed by standard
Kohn–Sham DFT. In this paper we have outlined some paths
to fully exploit this piece of exact information, with the aim of
broadening the applicability of DFT for electronic structure

calculations in solid-state physical devices and in chemical
systems, addressing fundamental issues of standard KS DFT.
The mathematical structure of the strong-interaction limit

of DFT has been uncovered in ref. 42,45 and 47. However,
solving the relevant equations for a general density in an
efficient way is still an open problem, which will be addressed
in future work, exploiting the formal similarity with mass
transportation theory.58

Another line of research for future work is based on the fact
that the strictly correlated problem defined by the strong-
interaction limit of DFT provides a physical, rigorous, lower
bound for the exact exchange–correlation functional of
standard Kohn–Sham DFT, a feature which may be exploited
for the construction of approximate functionals.81

The calculation and study of energy densities in the strong-
interaction limit of DFT will also provide useful information
to be included into approximate functionals, and will be the
object of future work.
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