
S3G2: a Scalable Structure-correlated Social Graph
Generator

Minh-Duc Pham1 Peter Boncz1 Orri Erling2

1 CWI, The Netherlands,
duc@cwi.nl, boncz@cwi.nl,

2 OpenLink Software, U.K.
oerling@openlinksw.com

Abstract. Benchmarking graph-oriented database workloads and graph-oriented
database systems is increasingly becoming relevant in analytical Big Data tasks,
such as social network analysis. In graph data, structure is not mainly found inside
the nodes, but especially in the way nodes happen to be connected, i.e. structural
correlations. Because such structural correlations determine join fan-outs experi-
enced by graph analysis algorithms and graph query executors, they are an essen-
tial, yet typically neglected, ingredient of synthetic graph generators. To address
this, we present S3G2: a Scalable Structure-correlated Social Graph Generator.
This graph generator creates a synthetic social graph, containing non-uniform
value distributions and structural correlations, which is intended as test data for
scalable graph analysis algorithms and graph database systems. We generalize
the problem to decompose correlated graph generation in multiple passes that
each focus on one so-called correlation dimension; each of which can be mapped
to a MapReduce task. We show that S3G2 can generate social graphs that (i)
share well-known graph connectivity characteristics typically found in real so-
cial graphs (ii) contain certain plausible structural correlations that influence the
performance of graph analysis algorithms and queries, and (iii) can be quickly
generated at huge sizes on common cluster hardware.

Data in real life is correlated; e.g. people living in Germany have a different dis-
tribution in names than people in Italy (location), and people who went to the same
university in the same period have a much higher probability to be friends in a social
network. Such correlations can strongly influence the intermediate result sizes of query
plans, the effectiveness of indexing strategies, and cause absence or presence of locality
in data access patterns. Regarding intermediate result sizes of selections, consider:

SELECT personID FROM person
WHERE firstName = ’Joachim’ AND addressCountry = ’Germany’

Query optimizers commonly use the independence assumption for estimating the
result size of conjunctive predicates, by multiplying the estimates for the individual
predicates. This would underestimate this result size, since Joachim is more common
in Germany than in most other countries; similar would happen e.g. when querying for
firstName ’Cesare’ from ’Italy’. Overestimation can also easily happen, if we would
query for ’Cesare’ from ’Germany’ or ’Joachim’ from ’Italy’ (i.e. anti-correlation).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15476478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This correlation problem has been recognized in relational database systems as rele-
vant, and some work exists to detect correlated properties inside the same table (e.g., see
[13]). Still, employing techniques for the detection of correlation is hardly mainstream
in relational database management, and this is even more so when we start considering
correlations between predicates that are separated by joins. Consider for instance the
DBLP example of co-authorship of papers that counts the number of authors that have
published both in TODS and in the VLDB Journal:

SELECT COUNT(*)
FROM paper pa1 JOIN journal jn1 ON pa1.journal = jn1.ID

paper pa2 JOIN journal jn2 ON pa2.journal = jn2.ID
WHERE pa1.author = pa2.author AND

jn1.name = ’TODS’ AND jn2.name = ’VLDB Journal’

The above query is likely to have a larger result size than a query that substitutes
’TODS’ for ’Bioinformatics’, even though Bioinformatics is a much larger publica-
tion than TODS. The underlying observation is that database researchers are likely to
co-publish in TODS and The VLDB Journal, but are much less likely to do cross-
disciplinary work. For database technology, this example poses (i) a challenge to the
optimizer to adjust the estimated join hit ratio of pa1.author = pa2.author down-
wards or upwards depending on other (selection or join) predicates in the query (i-
i) provide indexing support that can accelerate this query: the anti-correlated query
(Bioinformatics and The VLDB Journal) has a very small result size and thus could
theoretically be answered very quickly. However, just employing standard join indices
will generate a large intermediate result for the Bioinformatics sub-plan containing all
Bioinformatics authors, of which only a minute fraction is actually useful for the final
answer.

Summarizing, correlated predicates are still a frontier area in database research, and
such queries are generally not well-supported yet in mature relational systems. This
holds still more strongly in the emerging class of graph database systems, where we
argue the need for correlation-awareness in query processing is even higher.

In the particular case of RDF, its graph data model is expressly chosen to work
without need for an explicit schema, such that graph datasets get stored as one big pile
of edges (in particular, subject-property-object “triples”). Here we see a dualism be-
tween structure and correlation: in the relational model, certain structure is explicit in
the schema, whereas in RDF such structure only re-surfaces as structural correlation.
That is, it will turn out a journal paper (subject) always happens to have one title

property, one issue property, one journalName, etc; and that these properties exclu-
sively occur in connection to journal issues. The extreme flexibility of RDF systems in
the data they can store, thus poses a significant challenge to SPARQL query optimizers,
as they need to understand such correlations to get the planning of even basic queries
right. Other graph database systems which use a richer data model, where nodes have
a declared structure, suffer less from this problem. Still, when considering that graph
analysis queries often involve a combination of (property) value constraints and struc-
tural constraints (pattern matching), it is likely that correlations between the structure
of the graph and the values in them will strongly affect the performance of systems and

algorithms. Yet, systems are not sufficiently aware of this, and existing graph bench-
marks do not specifically test for this; and synthetic graphs used for benchmarking do
not have such structure correlations. As such, we argue that for benchmarking graph
data analysis systems and algorithms, it would be very worthwhile if a data generator
could generate synthetic graphs which such correlated structure. To our knowledge,
there exists no solution for generating a scalable random graph with value and structure
correlations. Existing literature on random graph generation [4, 10, 6, 8] either does not
consider node properties at all or ignores correlations between them.

In this paper, we describe the Scalable Structure-correlated Social Graph Generator
(S3G2), and its underlying generic conceptual correlated graph generation framework.
This framework organizes data generation in multiple phases that each center around a
correlation dimension. In the case of our social graph use case, these dimensions are
(i) education and (ii) personal interests. The data generation workflow is constrained by
correlation dependencies, where certain already generated data influences the genera-
tion of additional data. A graph generator generates new nodes (with property values),
and edges between these nodes and existing nodes. The probability to choose a certain
value from a dictionary, or the probability to connect two nodes with an edge are thus in-
fluenced by existing data values. For instance, the birth location of a person influences
probability distribution of the firstName and university dictionaries. As another
example, the probability to create a friendship edge is influenced by (dis)agreement on
gender, birthYear and university properties of two person nodes.

A practical challenge in S3G2 is that a naive approach to correlated graph generation
would continuously access possibly any node and any edge in order to make decisions
regarding the generation of a next node or edge. For generating graphs of a size that
exceeds RAM, such a naive algorithm would grind down due to expensive random I/O.
To address this challenge, we designed a S3G2 graph generation algorithm following
the MapReduce paradigm. Each pass along one correlation dimension is a Map phase
in which data is generated, followed by a Reduce phase that sorts the data along the
correlation dimension that steers the next pass. We show that this algorithm achieves
good parallel scale-out, allowing it e.g. to generate 1.2TB of correlated graph data in
half an hour on a Hadoop cluster of 16 machines.

Contributions of our work are the following: (1) we propose a novel framework
for specifying the generation of correlated graphs, (2) we show the usefulness of this
framework in its ability to specify the generation of a social network with certain plau-
sible correlations between values and structure, and (3) we devise a scalable algorithm
that implements this generator as a series of MapReduce tasks, and verify both quality
of its result as well as its scalability. In our vision, this data generator is a key ingredient
for new benchmarks for graph query processing.

Outline. In Section 1, we present our framework for the generation of correlated
graphs, and describe how such it maps on a MapReduce implementation. In Section 2
we use our framework to generate a synthetic social network graph. In Section 3 we
evaluate our approach, confirming that the generated data has typical social network
characteristics, and showing the scalability of our generator. Finally, in Section ??, we
review related work before concluding in Section 4.

1 Scalable Structure-correlated Social Graph Generator (S3G2)

We first formally define the end product of S3G2 which is essentially a directed graph of
objects, and introduce the main ingredients of the S3G2 framework. Then, we describe
the MapReduce-based generation algorithm that follows from these ingredients.

S3G2 generates a directed labeled graph, where the nodes are objects with property
values, and their structure is determined by the class a node belongs to. Such a data
model is commonly provided by graph database systems, and is more structured than
RDF (though it can of course be represented in RDF, and our S3G2 implementation in
fact generates RDF output).

Definition 1. S3G2 produces a graph G(V , E, P , C) where V is a set of nodes, E is a
set of edges, P is a set of properties and C is a set of classes.

V = L ∪
∪
c∈C

Oc

P =
{
PL(x) |∀x ∈ C

}
∪
{
PE(x,y) |∀x, y ∈ C

}
E =

{
(n1, n2, p)|n1 ∈ Ox ∧ ((n2 ∈ L ∧ p ∈ PL(x)) ∨ (n2 ∈ Oy ∧ p ∈ PE(x,y)))

}
in which Oc is an object of class c in C; L is the set of literals; PL(x) is set of literal
properties of class x in C; PE(x,y) is the set of properties representing relationship
edges that go from instances of class x to class y.

1.1 Main S3G2 Concepts

We now discuss the conceptual framework behind S3G2, which are (i) property dic-
tionaries, (ii) simple subgraph generation, and (iii) edge generation along correlation
dimensions.

Property Dictionary. Property values for each literal property l ∈ PL(x) are generated
following a property dictionary specification PDl(D,R, F), consisting of a dictionary
D, a ranking function R and a probability function F (if the context is unclear, we can
also write Dl, Rl and Fl).

A dictionary D is simply a fixed set of values: D = {v1, .., v|D|}. The ranking func-
tion R is a bijection R : D → {1, .., |D|} which gives each value in a dictionary a u-
nique rank between 1 and |D|. The probability density function F : {1, .., |D|} →[0, 1]
steers how the generator chooses values; i.e. by having it draw random numbers 0 ≤
p ≤ 1, it chooses the largest rank r such that F ′(r) < p, where F ′ is the cumulative
version of F , that is F ′ =

∑r
i=1 F (i). It finally emits the value vpos from dictionary

P1

“Anna”

“University of Leipzig”
P2

P3

P4

<location> “Germany”

“1990”

“University

of Leipzig”

Photo1

Post1 Comment1

Photo2

<replyTo>

Fig. 1. Example S3G2 graph: Social Network with Person Information.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50

pr
ob

ab
ili

ty

randomly ranked
ranked from table

Ben
Leon

Lucas

Luka

Francesco
Alessandro

Andrea

R[male,Germany,2010]=
<Ben, Leon, Lucas, Finn,
 Fynn, Jonas, Maximilian,
 Luis, Paul, Felix, Luka>

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50

pr
ob

ab
ili

ty

rank in dictionary

randomly ranked
ranked from table

Francesco
Alessandro

Andrea

Leonardo

Ben
Leon

Lucas

R[male,Italy,2010]=
<Francesco, Alessandro, Andrea,
 Lorenzo, Matteo, Mattia, Gabriele,
 Riccardo, Davide, Leonardo>

Fig. 2. Compact Correlated Dictionary Distributions: boy names in Germany (up) vs. Italy (lo)

D from position pos = R(r). Thus, our framework can generate data corresponding to
any discrete probability distribution.

The idea to have a separate ranking and probability function comes from generating
correlated values. In particular, the ranking function R[z](c) is typically parametrized
by some parameters z; which means that depending on the parameter z, the value rank-
ing is different. For instance, in case of a dictionary of firstName we could have
R[g, c, y]; e.g. the popularity of first names, depending on gender g, country c and
the year y from the birthDate property (let’s call this birthYear). Thus, the fact that
the popularity of first names in different countries and times is different, is reflected by
the different ranks produced by function R() over the full dictionary of names. Name
frequency distributions do tend to be similar in shape, which is guaranteed by the fact
that we use the same probability distribution F () for all data of a property.

Thus, the S3G2 data generator must contain property dictionaries Dl for all literal
properties in l ∈ L(x), and it also must contain the ranking functions Rl, for all literal
properties defined in all classes x ∈ C. When designing correlation parameters for a or-
dering function Rl, one should ensure that the amount of parameter combinations such
as (g, c, y) stays limited, in order to keep the representation of such functions compact.
We want the generator to be a relatively small program and not depend needlessly on
huge data files with dictionaries and ranking functions.

Figure 2 shows how S3G2 compactly represents R[g, c, y], by keeping for each com-
bination of (g, c, y) a small table with only the top-N dictionary values (here N=10 for
presentation purposes, but it is typically larger). Rather than storing an ordering of all
values, a table like R[male,Germany, 2010] is just an array of N integers. A value j
here simply identifies value vj in dictionary D. This table thus only stores the top-N
ranked values. In order to avoid storing more information, the values ranked lower than
N get their ranks assigned randomly. Given that in a monotonically decreasing prob-

ability function like the geometric distribution used here, the probabilities below that
rank are very small anyway, this approximation only slightly decreases the plausibility
of the generated values. In Figure 2 we see on the left that for (male,Germany,2010) we
keep the 10 most popular boys names, which get mapped on the geometric distribution.
All other dictionary values (among which Italian names) get some random ranks > 10.
On the right, we see that for (male,Italy,2010) these Italian names are actually the most
popular, and the German names get arbitrary (and low) probabilities.

Simple Graph Generation. Edges are often generated in one go together with new
nodes, essentially starting with an existing node n, and creating new nodes to which
it gets connected. This process is guided by a degree distribution function N(n) that
first determines how many such new children (or descendants) to generate. In many
social networks, the amount of neighbour edges h is distributed following a power law
distribution (N(h) ∼ γ.h−λ).

In the S3G2 framework, it is possible to make the function N(ni) that determines
the degree of a node ni correlated with its properties, e.g. by having these properties in-
fluence λ or γ. For instance, people with many friends in a social network will typically
post more pictures than people with few friends (hence, the amount of friend nodes in
our use case influences the amount of posted comment and picture nodes).

Generating new nodes and connecting them on the fly among mostly themselves
and to an existing node ni leads to isolated subgraphs that are dangling off the main
graph connected to it by ni. Typically, such subgraphs are small or have the shape of
shallow trees if they are larger.

Correlation Dimensions. To generate correlated and highly connected graph data, we
need a different approach that generates edges after generating many nodes. This is
computationally harder than generating edges towards new nodes. The reason is that if
node properties influence their connectivity, a naive implementation would have to com-
pare the properties of all existing nodes with all nodes, which could lead to quadratic
computational cost and a random access pattern, so the generation algorithm would
only be fast as long as the data fits in RAM.

Data correlation actually alleviates this problem. We observe that the probability
that two nodes are connected is typically skewed with respect to some similarity be-
tween the nodes. Given node ni, for a small set of nodes that are somehow similar to it,
there is a high connectivity probability, whereas for most other nodes, this probability
is quite low. This observation can be exploited by a graph data generator by identifying
correlation dimensions.

For a certain edge label e ∈ PE(x,y) between node classes Ox and Oy , a correlation
dimension CDe(M

x,My, F) consists of two similarity metric functions Mx : n →
[0,∞], My : n → [0,∞] , and a probability distribution F :[1,W.t]→[0,1]. Here the
W.t is a window size, of W tiles with each t nodes, as explained later. Note that in
case of friends in a social network, both start and end of the edges are of the same class
persons (Ox = Oy), so a single metric function would typically be used. For simplicity
of discussion we will assume M = Mx = My in the sequel.

We can compute the similarity metric by invoking M(ni) on all nodes ni, and sort
all nodes on this score. This means that similar nodes are brought near each other, and
we observe that the larger the distance between two nodes, their similarity difference

monotonically increases. Again, we use a geometric probability distribution for F ()
that provides a probability for picking nodes to connect with that are between 1 and W.t
positions apart in this similarity ranking. To fully comply with a geometric distribution,
we should not cut short at W.t positions apart, but consider even further apart nodes.
However we observe that for a skewed distribution like geometric, the probability many
positions away will be minute, i.e. ≤ ϵ (F (W.t) = ϵ). The advantage of this window
shortcut is that after sorting the data, it allows S3G2 to generate edges using a fully
sequential access pattern that needs little RAM resources (it only buffers W.t nodes).

An example of a similarity function M() could be location. Location, i.e., a place
name, can be mapped to (longitude,latitude) coordinates, yet for M() we need a single-
dimensional metric that can be sorted on. In this case, one can keep (longitude,latitude)
at 16-bits integer resolution and mix these by bit-interleaving into one 32-bits integer.
This creates a two-dimensional space filling curve called Z-ordering, also known in ge-
ographic query processing as QuadTiles3. Such a space filling curve “roughly” provides
the property that points which are near each other in the Euclidean space have a small
z-order difference.

Note that the use of similarity functions and probability distribution functions over
ranked distance drive what kind of nodes get connected with an edge, not how many.
The decision on the degree of a node is made prior to generating the edges, using the
previously mentioned degree function N(ni), which in social networks would typically
be a power-law function. During data generation, this degree of node ni is fulfilled by
randomly picking the required number of edges according to the correlated probability
distributions as described before in the example with person who have many friends
generating more discussion posts. In case of multiple correlations, and thus multiple
passes along correlation dimensions, we determine for each pass the number of edges
to generate for a certain node. The overall degree function N(n) =

∑
NCD(n) is the

sum of the degree distribution functions over all correlation dimensions CD.

Random Dimension. The idea that we only generate edges between the W.t most simi-
lar nodes in all correlation dimensions is too restrictive: unlikely connections in a social
network that the data model would not explain or make plausible, will occur in practice.
Such random noise can be modeled by partly falling back onto uniformly random data
generation. In the S3G2 framework this can be modeled as a special case of a corre-
lation dimension, by using a purely random function as rough metric, and a uniform
probability function. Hence, data distributions can be made more noisy by making a
pass in random order over the data and generating (a few) additional random edges.

1.2 MapReduce S3G2 Algorithm

In the previous discussion we have introduced the main concepts of the S3G2 frame-
work: (i) correlated data dictionaries (ii) simple graph generation (iii) edge generation
according to correlation dimensions. We now describe how a MapReduce algorithm is
built using these ingredients.

3 See http://wiki.openstreetmap.org/wiki/QuadTiles

Tile being filled Window of W most recent tilesTile of t nodes

node for which edges are being generated

Fig. 3. Sliding window of W tiles along the graph.

In MapReduce, a Map function is run on different parts of the input data on many
cluster machines in parallel. Each Map function processes its input data item and pro-
duces for each a result with a key attached. MapReduce sends all produced results to
Reduce functions that also run on many cluster machines; the key determines to which
Reducer each item is sent. The Reduce function then processes this stream of data.

In the S3G2 algorithm, the key generated between Map and Reduce is used to sort
the data for which edges need to be generated according to the similarity metric (the
Mx,My functions) of the current correlation dimension. As mentioned, there may be
multiple correlation dimensions, hence multiple successive MapReduce phases. Both
the Map and Reduce functions can perform simple graph generation, which includes
generation of (correlated) property values using dictionaries, as described before in the
example with boys names in Germany vs. Italy. The main task of the Reduce function
is sorting on correlation dimension and subsequent edge generation between existing
nodes using a sliding window algorithm described in Algorithm 1.

The main idea of the sliding window approach to correlated edge generation is that
when generating edges, we only need to consider nodes that are sufficiently similar. By
ordering the nodes according to this similarity (the rough metric Mx,My) we can keep
a sliding window of nodes (plus their properties and edges) in RAM, and only consider
generating edges between nodes that are cached in this window. If multiple correlations
influence the presence of an edge, multiple full data sorts and sequential sliding window
passes are needed (i.e. multiple MapReduce jobs). Thus, each correlation dimension
adds one MapReduce job to the whole process, that basically re-sorts the data. One
may remark that if the simple graph generation activities that kick off graph generation
already generate data ordered along the first correlation dimension, we can save one
MapReduce job (as data is already sorted).

The sliding window approach is implemented by dividing the sorted nodes concep-
tually in tiles of t nodes. When the Reduce function accepts a data item it adds the item
to the current tile (an in-memory data structure). If this tile is full, and it has W tiles
already in memory, the oldest tile is dropped from memory. This process is visualized
in Figure 3. The window approach could also have been implemented with a per-tuple
granularity (t=1), but larger tiles make it easier to do memory management.

The Reduce function generates edges for a new incoming node using Algorithm 1,
implementing the windowing approach and generating edges along a correlation dimen-
sion, by picking for each node ni a number of N(ni) nodes to connect to, by having
a function F () picks them a certain number of positions back in the window of W.t
nodes. This function is most likely to pick nearby nodes; since successive nodes do
the same, there is a high likelihood that similar (nearby) nodes have some overlapping
neighbours (e.g. friends).

Algorithm 1 GenerateEdges(ni, S(), F ())
Input: ni: node to generate edges for
Input: N : a function that determines the degree of node ni

Input: F ′: turns a similarity [1,m] into a cumulative probability.
1: for j = 0; j < N(ni); j ++ do
2: generate a uniform random number p in [0,1]
3: δ = the largest 1<δ<W.t such that F ′(δ) < p.
4: if window contains at least δ nodes then
5: if ni−δ not yet connected to ni then
6: createEdge(ni,ni−δ)
7: end if
8: end if
9: end for

10: if addNodeToTile(curTile,ni) == t then
11: if ++curTile == W then
12: curTile=0;
13: end if
14: flushTile(curTile);
15: end if

Depending on the node class and its property (correlations), and the various corre-
lation dimensions to use, as well as simple graph generation steps, one needs multiple
MapReduce jobs to generate a correlated data graph. In principle, simple graph genera-
tion only requires local information (the current node), and can be performed as a Map
task, but also as a post-processing job in the Reduce function. Note that node generation
also includes the generation of the (correlated) properties of the new nodes.

We should mention that data correlations introduce dependencies, that impose con-
straints on the order in which generation tasks have to be performed. For instance, if the
firstName property of a person node depends on the birthYear and university

properties, then within simple node generation, the latter properties need to be gen-
erated first. Also, if the discussion posts forum that a user might have below a posted
picture involves the friends of that user, the discussion node generation should follow
the generation of all friend edges. Thus, the correlation rules one introduces, naturally
determine the amount of MapReduce jobs needed, as well as the order of actions inside
the Map and Reduce functions.

2 Case study: generating social network data

In this section, we show how we applied the S3G2 framework for creating a social
network graph generator. The purpose of this generator is to provide a dataset for a
new graph benchmark, called the Social Intelligence Benchmark (SIB).4 As we focus
here on correlated graph generation, this benchmark is out of scope for this paper. Let
us state clearly that the purpose of this generator is not to generate “realistic” social
network data. Determining the characteristics of social networks is the topic of a lot

4 See: www.w3.org/wiki/Social Network Intelligence Benchmark

person

userAccount

firstName

lastName

location

university

employer

employSince

gender

birthday

IpAddress

email

browser

userId

forumId

status

createdDate

interests

userId

interest

userTags

userId

tag

friendship

userId1

userId2

requestDate

approveDate

deniedDate

terminationDate

terminator

post

postId

title

content

createdDate

author

forumId

IpAddress

userAgent

comment

commentId

content

postId

replyTo

author

createdDate

forum

forumId

createdDate

postLikes

postId

userId

postTags

postId

tag

photoAlbum

albumId

creator

Title

createdDate

photoTags

photoId

tagAccount

photo

photoId

albumId

location

Latitude

Longitude

takenTime

IpAddress

userAgent

groupMemberShip

memberShipId

groupId

memberAccount

joinedDate
group

groupId

title

moderator

forumId

createdDate

n..1

n
.
.
1

n..1

n..1

1..n

n..1

n
.
.
1

n
.
.
1

1..1

n
.
.
1

1..n

n..1

1..n

1..n

n..1

2
.
.
1

1
.
.
n

Fig. 4. The Generated Social Network Schema (SIB).
of research, and our use case uses some of the currently insights as inspiration (only).
Our data generator introduces some plausible correlations, but we believe that real life
(social network) data is riddled with many more correlations; it is a true data mining task
to extract these. Given that we want to use the generated dataset for a graph database
benchmark workload, having only a limited set of correlations is not a problem; as in a
benchmark query workload only a limited set of query patterns will be tested.

Figure 4 shows the ER diagram of the social network. It contains persons and en-
tities of social activities (posted pictures, and comments in discussions in the user’s
forum) as the object classes of C. These object classes and their properties (e.g., user
name, post creation date, ...) form the set of nodes V . E contains all the connection
between two persons including their friendship edges and social activity edges between
persons and a social activity when they all join a social activity (e.g., persons discussing
about a topic). P contains all attributes of a user profile, the properties of user friend-
ships and social activities.

Correlated Dictionaries. A basic task is to establish a plausible dictionary (D) for ev-
ery property in our schema. For each dictionary, we subsequently decide on a frequen-
cy distribution. As mentioned, in many cases we use a geometric distribution, which
is the discrete equivalent of the exponential distribution, known to accurately model
many natural phenomena. Finally, we need to determine a ranking of these values in
the probability distribution (the R() function). For correlated properties, this function
is parameterized (R[z]()) and is different for value of z. Our compact approximation
stores for each z value a top-N (typically N=30) of dictionary values.

The following property value correlations are built in (Rx[z] denoted as z x):

– (person.location,person.gender,person.birthDay) person.firstName

– person.location person.lastName

– person.location person.university

– person.location person.employer

– person.location person.employSince

– (person.location,person.Gender,person.birthDay) person.firstName

– (person.location,person.Gender,person.birthDay) person.interests.interest

– person.location person.photoAlbum.photo.location

– person.location person.photoAlbum.photo.location

– person.employer person.email

– person.birthDate person.createdDate

– person.createdDate person.photoAlbum.createdDate

– photoAlbum.createdDate photoAlbum.photo.takenTime

– photoAlbum.photo.location photoAlbum.photo.latitude

– photoAlbum.photo.location photoAlbum.photo.longitude

– friendship.requestDate friendship.approveDate

– friendship.requestDate friendship.deniedDate

– (friendship.userId1,friendship.userId2) friendship.terminator

– person.createdDate person.forum.createdDate

– forum.createdDate forum.groupmembership.joinedDate

– forum.createdDate,forum.post.author.createdDate forum.post.createdDate

– post.createdDate post.comment.createdDate

Our main source of dictionary information is DBpedia [2], an online RDF version of
Wikipedia, extended with some ranking information derived with internet search engine
scripts. From DBpedia one can obtain a collection of place names with population in-
formation, which is used as person.location. Form the place names, DBpedia also
provides population distributions. We use this actual distribution as found in DBpedia
to guide the generation of location.

The person.university property is filled with university names as found in DB-
pedia. The sorting function Runiversity[location] ranks the universities by distance
from the person location, and we keep for each location the top-10 universities. The
geometric distribution is used as Funiversity and its parameters are tuned such that over
90% of persons choose one of the top-10. Arguably, it is not plausible that all persons
have gone to university, but absolute realism is not the point of our exercise.

From the cities, DBpedia allows to derive country information. DBpedia contains
a large collection of person names (first and lastnames) and their country of birth, plus
certain explicit information on popularity of first-names per country, which was used as
well. Other information was collected manually on the internet, such as a distribution of
browser usage, which is not correlated with anything, currently. A special rule for dates
is applied that ensures that certain dates (e.g. the date a user joined the network) precede
another date (the date that a user became friends with someone). This is simply done
by repeating the process of randomly picking a date until it satisfies this constraint.

Correlation Dimensions. In our social network graph, the graph with most complex
connectivity is the friends graph. The main correlations we have built in are (i) having
studied together (ii) having common interests (hobbies). Arguably, the current schema
allows more plausible correlations like working in the same company, or living re-
ally close, but these can easily be added following our framework. Further, the con-
cept of interest is currently highly simplified to favorite musical artists/composers.

Consequently, there are three correlation dimensions, where the first is studying to-
gether, the second is musical interests and the third is random (this will create ran-
dom connections). The degree of the persons (function N(n)) is a power-law distri-
bution that on average produces 30 friends per person node n; it is divided over the
three correlation dimensions in a 45%, 45%, 10% split: Nstudy(n) = Ninterest(n) =
0.45 ∗N(n), Nrandom(n) = 0.1 ∗N(n).

For having studied together we use the Mstudy() function described as example
in Section 1.1. It depends on gender, university and birthYear, to give highest
probability for people of same gender who studied together to be friends. The similar-
ity metric Mstudy() hashes the university to the highest 20 bits of an integer; the
following 11 bits are taken by filled with the birthYear and the lowest bit by gender.

The musical-interests correlation dimension is also a multi-valued function, because
the persons have a list of favorite artists/composers. The similarity metric Minterests

creates a vector that holds a score for each genre (S3G2 has predetermined genre vectors
for all artists, and the result vector contains the maximum value of all favorite artists
for each genre). Then, like the previous example with location, z-ordering is used to
combine the various genre scores (the genre vector) into a single integer metric.

Graph Generation. The generation of the social graph kicks off by generating person
nodes; and all its properties. This “simple graph” generation process forms part of the
first MapReduce job and is executed in its Map function. The data is generated in a
specific order: namely Mstudy . Because this order happens to be the same order as the
one needed by the first correlation dimension (studying-together), we do not need a sort
phase, and inside the Map function we can already use the window algorithm to generate
the first 45% percent of friendship edges using the Fstudy probability distribution.

Because the members of the forum groups of a user (who tag photos and comment
on discussions of the user page) and their activity levels are correlated with the user’s
friends, the objects for these social activities cannot be generated before all friends have
been generated. Therefore, the algorithm first continues with all correlation dimensions
for friendship. Thus, the Reduce phase of the first MapReduce job sorts the data on
Minterests. The Map phase of the second MapReduce job then executes the window
algorithm to generate another 45% of friendship edges using the Finterests probability
distribution. The key produced is the one for the final, random, correlation dimension,
emitting a random number (note that all randomness is deterministic, so the generated
dataset is always identical for identical input parameters). The Reduce phase of the
second MapReduce job creates this random sort order on person objects. Note that we
must sort both persons and their generated friendship edges (user IDs), which are stored
together with the person objects.

The Reduce function further performs simple graph generation for the social activ-
ities. These social activities are subgraphs with only “local” connections and shallow
tree-shape, hence can be generated on-the-fly with low resource consumption. Here, the
discussion topics are topics from DBpedia articles, and the comments are successive
sentences from the article body (this way the discussions consist of real English text,
and is kind-of on-topic). The forum group members are picked using a ranking function
that puts the friends of a user first, and adds some persons that are in the window at
lower ranks; using a geometric probability distribution.

3 Evaluation

We evaluate S3G2 both qualitatively and quantitatively (scalability). We do remark that
the qualitative evaluation, namely the realistic-ness of the generated social network is
not the main point of S3G2; which rather is the ability to have some plausible correlation
in the data that future benchmark queries can test. But, the more a S3G2 generated data
resembles a real social graph, the better.

Existing literature studying social networks has shown that popular real social net-
works have the characteristics of a small-world network [12, 15, 5]. We consider the
three most robust measures, i.e., the social degrees, the clustering coefficient, and the
average path length of the network topology. We empirically show that S3G2 gener-
ates a social graph that has these characteristics. In this experiment, we generated small
social graphs of 10K, 20K, 40K, 80K, and 160K users. Note that in data volumes are
considerable in the default (admittedly verbose) RDF output format: all data associated
with one person, which has on average 30 friends and a few hundreds pictures and posts
is 1MB. Thus 160K users is 160GB on disk.

Table 1. Graph measurements of the generated social network.

users Diameter Avg. Path Len. Avg. Clust. Coef.
10000 5 3.13 0.224
20000 6 3.45 0.225
40000 6 3.77 0.225

Clustering coefficient. Table 1 shows the graph measurements of the generated social
network while varying the number of users. According to the experimental results, the
generated social networks have high clustering coefficients of about 0.22 which ade-
quately follow the analysis on real social networks in [15] where the clustering coeffi-
cients range from 0.13 to 0.21 for Facebook, and 0.171 for Orkut. Figure 5(a) shows the
typical clustering coefficient distribution according to the social degrees that indicates
the small-world characteristic of social networks.

Average path length. Table 1 shows that the average path lengths of generated social
graphs range from 3.13 to 3.77 which are comparable to the average path lengths of
real social networks observed in [15]. These experimental results also conform to the
aforementioned observations that average path length is logarithmically proportional to
the total number of users. Since we used a simple all-pair-shortest-path algorithm which
consumes a lot of memory for analyzing large graphs, Table 1 only shows the results of
the average path length for a social graph of 40K users.

Social degree distributions. Figure 5(b) shows the distribution of the social degree
with different number of users. All our experimental results show that the social degree
follows a power-law distribution with an alpha value of roughly 2.0.

Scalability. In order to show the scalability of S3G2, we conduct experiments on a
cluster of 16 nodes which are connected by 1 Gigabit Internet. Each node is a PC with
an Intel i7-2600K, 3.40GHz CPU, 4-core CPU and 16 GB RAM 5

5 We used the SciLens cluster at CWI: www.scilens.org

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 8 16 24 32 40 48

A
vg

 c
lu

st
er

in
g

co
ef

fic
ie

nt

Social degree

10000 users 40000 users 160000 users

(a) Clustering coefficient

 0

 20

 40

 60

 80

 100

 0 8 16 24 32 40 48

P
er

ce
nt

ag
e

of
 u

se
rs

 (
C

D
F

)

Social degree

10000 users 40000 users 160000 users

(b) User distribution

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16

G
en

er
at

io
n

tim
e

(s
ec

on
ds

)

Number of machines

160GB 320GB 1.2TB

(c) Speed-Up Experiments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 200 400 600 800 1000 1200

G
en

er
at

io
n

tim
e

(s
ec

on
ds

)

Data size (GB)

1 node 4 nodes 8 nodes 16 nodes

(d) Scale-Up Experiments

 1000

 1500

 2000

 1 4 16G
en

er
at

io
n

tim
es

 (
se

co
nd

s)
Number of machines (one machine per 80 GB)

(e) Scale-Out Experiments

Fig. 5. Experimental Evaluation of S3G2

In Figure 5(d), for a specific number of nodes, we increase the data size. These
results shows that the generation times is linear according to the size of the data. Inter-
estingly, most of the computational effort is in the first Map function that generates all
person nodes and its properties and in the last Reduce that generates the social activities
(photos, forum posts). Thus, the effect of the sorting, which due to is N.log(N) would
causes super-linear scaling is not visible yet at these data sizes.

Figure 5(c) shows the speed-up of the generator when adding nodes and keeping da-
ta size fixed. It shows the MapReduce approach works well, and speed-up is especially
good at the larger data sizes.

Figure 5(e) shows the scale-out capability of S3G2 increasing together the dataset
size and amount of cluster machines. In these experiments we keep the data generat-
ed per machine at 80GB; hence with 4 machines we generate 320GB and with 16 this
is 1.2TB. The experimental result shows that performance remains constant at half an
hour when scaling out from 4 machines to 16 nodes. This suggests that S3G2 can gen-
erate extremely large graphs quickly on a Hadoop cluster with large resources. There
is a lot of work studying the characteristics of social networks [11, 7, 12, 15, 5, 1, 9] and
also on the generation of random graphs having global properties similar to a social net-
work [14, 3, 4, 10, 6, 8]. However, to the best of our knowledge, there is no generator that
creates a synthetic social graph with correlations. The existing graph generators mostly
consider the topology and the structures of the generated graph, i.e., global properties,
not the individual connections of nodes and their correlations.

One of the first studies to generate social-network-like random graph is [14]. This
graph generator with small world properties such as a high clustering coefficient and
low path lengths, by connecting a node with its k-nearest-neighbors and then rewiring
edges. To satisfy the degree distributions [3] introduced the model of preferential at-
tachment which was subsequently improved by [4]. The main idea of this model is

that, for a new vertex, the probability that an edge is created between this vertex to an
existing vertex depends on the degree of that vertex. Leskovec et al.[10] proposed a
tractable graph that matches several properties of a social graph such as small diame-
ter, heavy-tails in/out degree distribution, heavy-tails eigenvalues and eigenvectors by
recursively creating a self-similar graph based on Kronecker6 multiplication. None of
these algorithms considers the correlation of a node attributes in the social graph.

Recently, Bonato et al.[6] studied the link structure of a social network and provided
a model that can generate a graph satisfying many social graph properties by consid-
ering the location of each graph node by ranking each node. In this model, each node
is randomly assigned a unique rank value and has a region of influence according to
its rank. The probability that an edge is created between a new node and an existing
node depends on the ranking of the existing node. Similar to the approach of using in-
fluent regions [8] constructed a set of cliques (i.e., groups) over all the users. For each
new node (i.e., a new user), an edge to an existing node is created based on the size of
cliques they have in common. These models are approaching the realistic observation
that users tend to join and connect with people in a group of same properties such as
the same location. However, the simulation of realistic data correlations is quite limited
and both do not address the correlations between different attributes of the users.

Additionally, all of the existing models need a large amount of memory for storing
either the whole social graph or its adjacency matrix. Leskovec et al. [10] may need to
store all stages of their recursive graph. Although Batagelj et al. aimed at providing a
efficient space-requirement algorithm, the space-requirement is O(|V |+ |E|) where V
is the set of vertices and E is the set of edges [4].

4 Conclusion

In this paper, we have proposed S3G2, a novel framework for scalable graph generator
that can generate huge graphs having correlations between the graph structure and graph
data such as node properties. While current approaches at generating graphs require
holding it in RAM, our graph generator can generate the graph with little memory by
using a sliding window protocol, and exploit parallelism offered by the MapReduce
paradigm. It thus was able to generate 1.2GB of tightly connected, correlated social
graph data, on 16 cluster machines using only limited RAM.

In order to address the problem of generating correlated data and structure togeth-
er, which has not been handled in existing generators, we propose an approach that
separates value generation (data dictionaries) and probability distribution, by putting in
between a value ranking function that can be parametrized by correlating factors. We
also showed a compact implementation of such correlated ranking functions.

Further, we address correlated structure generation by introducing the concept of
correlation dimensions. These correlation dimensions allow to generate edges efficient-
ly by relying on multiple sorting passes; which map naturally on MapReduce jobs.

We demonstrate the utility of the S3G2 framework by applying it to the scenario of
modeling a social network graph. The experiments show that our generator can easily

6 http://en.wikipedia.org/wiki/Kronecker product

generate a graph having important characteristics of a social network and additionally
introduce a series of plausible correlations in it.

As future work, is to apply the S3G2 framework to other domains such as telecom-
munications networks, and possible direction is to write a compiler that automatically
generates a MapReduce implementation from a set of correlation specifications. As
we believe that correlations between value and structure are an important missing in-
gredient in today’s graph benchmarks, and intend to introduce the Social Intelligence
Benchmark (SIB), that uses our data generator, to fill that gap.

References

1. Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of topological characteristics of
huge online social networking services. In Proc. WWW, 2007.

2. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A nucleus
for a web of open data. Semantic Web Journal, pages 722–735, 2007.

3. A. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random networks: the
topology of the world-wide web. Physica A: Statistical Mechanics and its Applications,
281(1-4):69–77, 2000.

4. V. Batagelj and U. Brandes. Efficient generation of large random networks. Physical Review
E, 71(3):036113, 2005.

5. F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user behavior in online
social networks. In Proc. SIGCOMM, 2009.

6. A. Bonato, J. Janssen, and P. Prałat. A geometric model for on-line social networks. In Proc.
Conf. on Online Social networks, 2010.

7. I. de Sola Pool and M. Kochen. Contacts and influence. 1978.
8. I. Foudalis, K. Jain, C. Papadimitriou, and M. Sideri. Modeling social networks through user

background and behavior. Algorithms and Models for the Web Graph, pages 85–102, 2011.
9. H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media?

In Proc. WWW, 2010.
10. J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos. Realistic, mathematically

tractable graph generation and evolution, using kronecker multiplication. PKDD, pages 133–
145, 2005.

11. S. Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.
12. A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and

analysis of online social networks. In Proc. SIGCOMM, 2007.
13. M. Stillger, G. Lohman, V. Markl, and M. Kandil. Leo-db2’s learning optimizer. In Proc.

VLDB, 2001.
14. D. Watts and S. Strogatz. Collective dynamics of “small-world” networks. Nature,

393(6684):440–442, 1998.
15. C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao. User interactions in social networks

and their implications. In Proc. European Conference on Computer Systems, 2009.

