
From X100 to Vectorwise: opportunities, challenges
and things most researchers do not think about

Marcin Zukowski, Actian Netherlands
Peter Boncz, CWI

ABSTRACT
In 2008 a group of researchers behind the X100 database
kernel created Vectorwise: a spin-off which together
with the Actian corporation (previously Ingres) worked
on bringing this technology to the market. Today, Vec-
torwise is a popular product and one of the examples of
conversion of a research prototype into successful com-
mercial software. We describe here some of the inter-
esting aspects of the work performed by the Vectorwise
development team in the process, and discuss the op-
portunities and challenges resulting from the decision
of integrating a prototype-quality kernel with Ingres,
an established commercial product. We also discuss
how requirements coming from real-life scenarios some-
times clashed with design choices and simplifications of-
ten found in research projects, and how Vectorwise team
addressed some of of them.

1. THE MAKING OF VECTORWISE
The X100 engine prototyped by the database research

group of CWI pioneered the concept of vectorized query
execution [6, 1], which allows modern CPU to process
queries more than 10 times faster than conventional
query engines. The system was so fast that to keep it
I/O balanced, research focus shifted to storage, leading
to novel compression schemes (e.g. PFOR [8]), hybrid
PAX/DSM storage [6], and bandwidth sharing by con-
current queries (Cooperative Scans [7]). Additionally,
column-friendly differential update schemes (PDTs [2])
were devised.

In the following, we tell the story of how the X100
research prototype was integrated with the Ingres en-
gine and converted into a high-performance analytical
database product of Actian Corp. and what we learned
on the way of that process. Completely replacing the
engine of a car is a process that involves reconnecting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD Record.
Copyright 2011 ACM X-XXXXX-XXX-X/XX/XXXX ...$5.00.

Vectorwise kernel (was: X100)

X100 Algebra

Ingres Rewriter (slightly modified)

SQL Parser

Compressed PAX/DSM

Vectorized Execution

Vectorwise Rewriter

Cross Compiler (new)
Classic

Storage &

Ingres

Execution

Ingres Optimizer (heavily modified)

Figure 1: Architecture of Vectorwise.

many cables, tubes and levers, and changing the engine
of a DBMS is similarly complex. This task was accom-
plished by the Vectorwise team working together with
Ingres engineers. Further, significant changes where
made to boost this engine further (“add turbo”), but
also involved also more mundane things to make driv-
ing the new car more pleasurable (e.g. “adding cup-
holders”).

Combining X100 and Ingres. Forced by the re-
strictions of 16-bits machines (!) the architecture of In-
gres [4] was historically decomposed in multiple server
processes, a fact that remains in the 2011 64-bits re-
lease of Ingres 10. This multi-process setup made it
easy to add the X100 engine into it, as depicted in Fig-
ure 1. Vectorwise combines both the Ingres execution
and storage engine and X100 execution and storage, and
allow to store data in either kind of table, where “clas-
sic” Ingres storage favors OLTP style access and Vec-
torwise storage favors OLAP. To this end, the Ingres
CREATE TABLE DDL which already supports various table
types, was extended with a (default) VECTORWISE type.
Significant modification were made to the Ingres query
optimizer, mostly to improve its handling of complex
analytical queries; such modifications, e.g. functional
dependency tracking and subquery re-use, also benefit
Ingres 10. A fully new component in the Ingres archi-
tecture, finally, is the cross compiler [3] that translates
optimized relational plans into algebraic X100 plans.

Extending Vectorwise. When the X100 project was
spun-off, it contained only basic features of an industry-
grade DBMS. While query processing and storage pro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15476304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vided record-breaking performance, it lacked greatly in
terms of usability, feature completeness and, as one would
expect from a research prototype, stability and code
quality. At that time it became clear that a decision
needs to be made on how to fill various functionality
holes in the system. This was possible at various levels
• Ingres query optimizer. The Ingres query optimizer
provides solid, histogram-based query estimation, and
the long lead time in writing a new optimizer from
scratch made us choose to improve rather than re-implement
it. Adding features at this level was sometimes possi-
ble, but due to the high complexity of this component
and its relative isolation from the query execution it was
usually easier to implement things in other layers.
• X100 kernel. Implementing new featured directly in
the X100 execution kernel often offered opportunities
for optimal performance. Still, this often required a sig-
nificant amount of work and some added functionality
was much easier to express on a higher level.
• X100 rewriter. To combine benefits of using a higher-
level tool and having a tightly integrated solution, we
implemented a column-oriented rewriter module inside
the X100 system. It is a rule-based rewriting system
using the Tom pattern matching tool [5].

In the following, we will discuss some of the extensions
performed at various levels.

Mundane things. While during research we focused
on challenging and exciting things, creating a real prod-
uct often required significant work on relatively mun-
dane tasks.
• Many Functions. SQL standard contains a plethora of
functions, in particular around strings and dates. Fur-
thermore, many DBMSs implement non-standard func-
tions which users migrating from these systems need to
port their existing applications. This resulted in dozens
of new functions added to the system. A challenge was
to implement them all efficiently, both in terms of de-
velopment time as well as of their final performance.
Some functions were implemented in the rewriter phase,
by simplifying them or expressing as combinations of
other functions. For others, manual implementation was
needed.
• NULLs. To avoid making all query execution oper-
ators and functions NULL-aware, Vectorwise internally
represents NULLs as two columns: a binary null indica-
tor and a value column, with a ”safe” value for NULLs.
In the rewriter phase, operations on NULLable inputs
are rewritten into equivalent operations on two “stan-
dard” relational inputs.
• Error handling and reporting. The original X100 func-
tions often assumed a simplified view of the world, where
a user never issues a query that can fail. If it did, the
system might have crashed or incorrect results might
have been returned. For a production system, we had to
add a significant number of extra functionality detecting
issues like division by zero, incorrect function parame-
ters, or arithmetic overflows. Naive implementation for
some of these would incur a significant overhead, and
special algorithms in the kernel had to be devised.
• System monitoring. For analyzing the system we had
to extend it significantly in areas like event logging, load

and resource monitoring, query listing etc.

Challenging things. Many other extensions turned
out to be much more complex and challenging. Some
examples include:
• Multi-core. The original X100 prototype was single-
threaded, but given the multi-core trend it became ob-
vious that a new analytical database system could only
go to market with multi-core capability. The Vectorwise
rewriter was used to implement a Volcano-style query
parallelizer; yet getting the best out of modern multi-
core CPUs is not simple.
• NULL intricacies. While most operators are NULL
oblivious, one of the exceptions were join operators.
Here, intricacies of the SQL semantics of anti-joins added
significant complexity to the Vectorwise rewriter and
operator implementations.
• Transactions. Transactions in Vectorwise are based
on Positional Delta Trees (PDT [2]). Implementing full
transactional support in a system with complex index-
ing structures and background update propagation was
quite complicated.
• Query cancellation. This was one of more unexpected
feature requests. In a prototype stage it was perfectly
fine to press “control-C” or issue a “kill” command to
stop a query. In a production system it was, obviously,
not a good solution. Performing a proper query can-
cellation turned out a much more complex task than
initially expected, mostly due to aspects such as paral-
lelism, asynchronous IO and memory management.

2. SUMMARY
This presentation demonstrated some more interest-

ing challenges that we faced on our road from a research
prototype to a production-grade commercial product.
We hope it serves partially as a motivating example and
partially as a friendly warning to our fellow researchers
not to forget how different an academic project and a
real-life system need to be.

3. REFERENCES
[1] Peter Boncz, Marcin Zukowski, and Niels Nes.

MonetDB/X100: Hyper-pipelining query execution. In
CIDR, 2005.

[2] S. Héman, M. Zukowski, N.J. Nes, L. Sidirourgos, and
P. Boncz. Positional update handling in column stores.
In Proceedings of SIGMOD, pages 543–554. ACM, 2010.

[3] Doug Inkster, Marcin Zukowski, and Peter Boncz.
Integration of VectorWise with Ingres. SIGMOD
Record, 40(3), September 2011.

[4] M. Stonebraker. The INGRES Papers: Anatomy of a
Relational Database System. Addison-Wesley Longman
Publishing Co., Inc., 1986.

[5] Tom. http://tom.loria.fr.

[6] M. Zukowski. Balancing vectorized query execution
with bandwidth-optimized storage. 2009.

[7] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Cooperative scans: Dynamic bandwidth sharing in a
dbms. In Proceedings of VLDB, pages 723–734. VLDB
Endowment, 2007.

[8] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter
Boncz. Super-Scalar RAM-CPU Cache Compression. In
ICDE, 2006.

