View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace at VU

Extending SPARQL Algebra to Support
Efficient Evaluation of Top-K SPARQL Queries

Alessandro Bozzon!, Emanuele Della Valle!, and Sara Magliacane!-?
! Politecnico of Milano, P.za L. Da Vinci, 32. I-20133 Milano - Italy
2 VU University Amsterdam, The Netherlands

Abstract. With the widespread adoption of Linked Data, the efficient
processing of SPARQL queries gains importance. A crucial category of
queries that is prone to optimization is “top-k” queries, i.e. queries re-
turning the top k results ordered by a specified ranking function. Top-k
queries can be expressed in SPARQL by appending to a SELECT query
the ORDER BY and LIMIT clauses, which impose a sorting order on the
result set, and limit the number of results. However, the ORDER BY and
LIMIT clauses in SPARQL algebra are result modifiers, i.e. their evalu-
ation is performed only after the evaluation of the other query clauses.
The evaluation of ORDER BY and LIMIT clauses in SPARQL engines
typically requires the process of all the matching solutions (possibly thou-
sands), followed by a monolithically computation of the ranking function
for each solution, even if only a limited number (e.g. K = 10) of them
were requested, thus leading to poor performance.

In this paper, we present SPARQL-RANK, an extension of the SPARQL
algebra and execution model that supports ranking as a first-class SPAR-
QL construct. The new algebra and execution model allow for splitting
the ranking function and interleaving it with other operations. We also
provide a prototypal open source implementation of SPARQL-RANK
based on ARQ, and we carry out a series of preliminary experiments.

1 Introduction

SPARQL [16] is a W3C recommendation that specifies a query language as well
as a protocol for Linked Data (LD). An ever-increasing number of SPARQL end-
points allows to query the published LD, thus calling for efficient SPARQL query
processing. An important category of queries that is prone to optimization is the
ranking, or “top-k”, queries, i.e. queries returning the top k results ordered by
a specified ranking function.

Simple top-k queries can be expressed in SPARQL by appending to a SE-
LECT query the ORDER BY and LIMIT clauses, which impose an order on the
result set, and limit the number of results. Practitioners willing to issue top-k
queries using complex ranking functions have been forced to create ad-hoc ex-
tensions such as project functions whose results can be used in the ORDER BY
clause. This has lead to the inclusions of projection functions in the SPARQL 1.1

https://core.ac.uk/display/15476297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© W NOo oA W N e

[9] working draft. Listing 1.1 provides an example of SPARQL 1.1 top-k query
on a BSBM |[3] dataset?.

SPARQL engines supporting SPARQL and SPARQL 1.1 typically manage
ORDER BY and LIMIT clauses are result modifiers that alter the solution gen-
erated in evaluating the WHERE clause before returning the result to the user.
The semantics of modifiers imposes to take a solution as input, manipulate it,
and generate a new solution as output. Specifically, an order modifier puts the
solutions in the order required by the ordering clauses that are either ascending
(indicated by ASC() that is also assumed as default) or descending (indicated by
DESCY()). The limit modifier defines an upper bound on the number of returned
results; it allows to slice the result set and to retrieve just a portion of it. For
instance, the query in Listing 1.1 is executed according to the query plan in
Figure 1.a: solutions matching the WHERE clause are drawn iteratively from
the RDF store until the whole result is materialized; then, the ordering function
is evaluated monolithically, and the top 10 results are returned.

SELECT 7product ?offer ((?avgRateProduct + ?7avgRateProducer) AS ?score)

WHERE {

?offer bsbm:product ?product .
?product bsbm:avgRate ?7avgRateProduct ;
bsbm:producer ?producer .

?producer bsbm:avgRate 7avgRateProducer.

}
ORDER BY DESC(7score)
LIMIT 10

Listing 1.1: "Example of a top-k query on BSBM”

As aresult the performances of SPARQL top-k queries can be very poor when
a SPARQL engine elaborates thousands of matching solutions and computes
the ranking for each of them, even if only a limited number (e.g. ten) were
requested. Moreover, the ranking predicates can be expensive to compute and,
therefore, they should be evaluated only when needed and on the minimum
possible number of results. It is clear that it may be beneficial in these cases to
split the evaluation of the ranking projection function in ranking atoms, and
interleave the evaluation of these ranking atoms with joins and boolean filters
as shown in Figure 1.b.
Contribution. In a previous work [4], we presented a first sketch of SPARQL-
RANK algebra, and we applied it to the execution of top-k SPARQL queries on
top of virtual RDF stores through query rewriting over a rank-aware RDBMS. In
this paper, we propose a consolidated version of SPARQL-RANK algebra and
a general rank-aware execution model that can be applied to state-of-the-art
SPARQL engine built on top of both RDBMS and native triple stores.

We provide an open source implementation of SPARQL-RANK extending
ARQ?) and we carry out some preliminary experiments.

Organization of the paper. In Section 2, we provide an introduction of
SPARQL as presented in [15]. In Section 3, we show how we extended [15]

3 For simplicity, we assume the average rates to be materialized in the dataset.

4 The code is available at http://sparqlrank.search-computing.org/

slice[0,10]

[project[[?product, ?offer, ?score]]] [project[[?product, ?offer, ?score]]]
order[[‘desc’,?score]] Join/sequence
extend([?score, [rank|[‘desc’, avgRateProducer]]]
[+, avgRateProduct, ?avgRateProducer]]] T BGP] ?offer bsbm:product ?product .]]
I [rank[[‘desc’, ?avg roduct]]]
BGP| ?offer bsbm:product ?product .
?product bsbm:avgRate ?avgRateProduct . BGP[?product bsbm:avgRate ?avgRateProduct .

?product bsbm:producer ?producer . ?product bsbm:producer ?producer .

?producer bsbm:avgRate ?avgRateProducer.] ?producer bsbm:avgRate ?avgRateProducer. |

(a) (b)

Fig. 1: Examples of (a) standard and (b) SPARQL-RANK algebraic query plan
for the top-k SPARQL query in Listing 1.1.

introducing a ranking model for SPARQL queries and proposing new algebraic
operators of SPARQL-RANK. In Section 5, we report on the preliminary results
of the experiments we carried out comparing ARQ 2.8.9 with our rank-aware
version. In Section 6, we present the related work. Finally, in Section 7, we
elaborate on future works.

2 An Introduction to SPARQL Algebra

The features of SPARQL, taken one by one, are simple to describe and to un-
derstand. However, the combination of such features makes SPARQL a complex
language whose semantics can only be fully understood through an algebraic
representation. Several alternative algebraic models were proposed. Hereafter,
we discuss the formalization presented in [15], focusing on the WHERE clause.

In SPARQL, the WHERE clause contains a set of graph pattern expressions
that can be constructed using the operators OPTIONAL, UNION, FILTER and
concatenation via a point symbol “.” that means AND. Formally, a graph pattern
expression is defined as:

Definition 1. Assuming three pairwise disjoint sets I (IRIs), L (literals) and V
(variables), a graph pattern expression is defined recursively as:

1. A tuple from (IULUV)x (IUV)x (IULUV) is a graph pattern and in
particular it is a triple pattern.

2. If Py and Py are graph patterns, then (P, . Py), (P, OPTIONAL P») and
(P, UNION P,) are graph patterns.

8. If P is a graph pattern and R is a SPARQL built-in condition, then
(P FILTER R) is a graph pattern.

A SPARQL built-in condition is composed by elements of the set UL UV and
constants, logical connectives (—, A\, V), ordering symbols (<, <,>,>), the equal-
ity symbol (=), unary predicates like bound, isBlank, isIRI and other features.

An important case of graph pattern expression is the Basic Graph Pattern:

Definition 2. A Basic Graph Pattern (BGP) is a set of triple patterns that
are connected by the “.” (i.e., the AND) operator.

The semantics of SPARQL queries uses as basic building block the notion of
mapping that is defined as:

Definition 3. Let P be a graph pattern, var(P) denotes the set of variables
occurring in P. A mapping p is a partial function u:V — (IULUBN)3. The
domain of p, denoted by dom(u), is the subset of V where p is defined.

The relation between the notions of mapping, triple pattern and basic
graph pattern is given in the following definition:

Definition 4. Given a triple pattern t and a mapping p such that var(t) C
dom(u), p(t) is the triple obtained by replacing the variables in t according to
w. Given a basic graph pattern B and a mapping p such that var(B) C dom(u),
we define (B) = Usepu(t), i.e. u(B) is the set of triples obtained by replacing
the variables in the triples of B according to .

Using these definitions, [15] defines the semantics of SPARQL queries as an
algebra. The main algebra operators are Join (X), Union (U), Difference(\) and
Left Join (34). The authors define the semantics of these operators on sets of
mappings denoted with 2. The evaluation of a SPARQL query is based on its
translation into an algebraic tree composed of those algebraic operators.

The simplest case is the evaluation of a basic graph pattern defined as:

Definition 5. Let G be an RDF graph and P a Basic Graph Pattern. The
evaluation of P over G, denoted by [P[q, is defined by the set of mapping:

[Pl = {u] dom(s) = var(P) and u(P) C G}
If w €[PJc, u is said to be a solution for P in G.

The evaluation of more complex graph pattern is compositional and can be
defined recursively from basic graph pattern evaluation by mapping the graph
expressions to algebraic expressions.

Noteworthy, in SPARQL, the OPTIONAL and UNION operators can intro-
duce unbound variables; it is known that the problem of verifying, given a graph
pattern P and a variable ?x € var(P), whether ?x is bound in P is undecidable
[2], but an efficiently verifiable syntactical condition can be introduced. Here-
after, we propose such a syntactic notion of certainly bound variable, defined
as:

Definition 6. Let P, P, and P5 be a graph patterns. Then the set of certainly
bound variables in P, denoted as CB(P), is recursively defined as follows:

1. if t is a triple pattern and P = t, then CB(P) = var(t);

5 BN is the set of blank nodes

3. if P = (P, UNION P,), then CB(P) = CB(P,) N CB(P);
4. if P = (P, OPTIONAL P,), then CB(P) = CB(P));

The above definition recursively accumulates a set of variables that are cer-
tainly bound in a given graph pattern P because: they appear in graph pattern
expressions that do not contain the OPTIONAL or UNION operators (rules 1
and 2), or they appear both on the left and on the right side of a graph pattern
containing the UNION operator (rule 3), or they appear only in the left side of
graph pattern expression that contains the OPTIONAL operator (rule 4)°.

3 The SPARQL-RANK Algebra

In this section, we progressively introduce: a) the basic concept of ranking cri-
terion, scoring function and upper bound that characterised rank-aware data
management [12], b) the concept of ranked set of mappings, an extension of
the standard SPARQL definition of a set of mappings that embeds the notion
of ranking, ¢) the new SPARQL-RANK algebraic operators, and d) the new
SPARQL-RANK algebraic equivalences.

3.1 Basic Concepts

SPARQL-RANK supports top-k SPARQL queries that have an ORDER BY
clause that can be formulated as a scoring function combining several ranking
criteria. Given a graph pattern P, a ranking criterion b: R™ — R is a function
defined over a set of variables ?z; € var(P). The evaluation of a ranking criterion
on a mapping pu, that is, the substitution of all of the variables ?x; with the
corresponding values from the mapping, is indicated by b[u]. A criterion b can
be the result of the evaluation of any built-in function (having an arbitrary cost)
of query variables.

A scoring function on P is an expression of the form F defined over the
set B of ranking criteria. As typical in ranked queries, the scoring function
F is assumed to be monotonic, i.e., a F for which holds F(z1,...,z,) >
F(y1,---,Yn) when Vi : z; > y;. In order for a scoring function to be evaluable,
the variables in var(P) that contribute in the evaluation of F must be bound.
Since OPTIONAL and UNION clauses can introduce unbound variables, we as-
sume all the variables in var(P) to be certainly bound, i.e. variables that are
certainly bound for every mapping produced by P (see also Definition 6 in Sec-
tion 2). An extension of SPARQL-RANK toward the relaxation of the certainly
bound variables constraint is part of the future work and will be discussed in the
conclusions of the paper.

Listing 1.1 provides an example of the scoring function F calculated over
the ranking criteria ZavgRateProduct and ?avgRateProducer. We note that Zav-
gRateProduct and ?avgRateProducer are certain bound variables, as the query

5 We omit discussing FILTER clauses since they cannot add any variable, granted that
the variables occurring in a filter condition (P FILTER R) are a subset of var(P).

contains no OPTIONAL or UNION clauses. The result of the evaluation is stored
in the ?score variable, which is later used in the ORDER BY clause.

Overall, a key property of SPARQL-RANK is the ability to retrieve the
first k results of a top-k query before scanning the complete set of mappings
resulting from the evaluation of the WHERE clause. To enable such a property,
the mappings progressively produced by each operator should flow in an order
consistent with the final order, i.e., the order imposed by F. When the evaluation
of a SPARQL top-k query starts on the Basic Graph Patterns the resulting
mappings are unordered. As soon as some B = {b1,...,b;} (with j < |B]) of
the ranking criteria can be computed (i.e., when var(b;) C dom(u)), an order
can be imposed to a set of mappings {2 by evaluating for each u € {2 the upper
bound of Flu] as:

b; = max(b;) otherwise

fzs[u]f(by = bi[u] ifb; €B)

where max(b;) is the application-specific maximal possible value for the rank-
ing criterion b;. Fp[u] is the upper bound of the score that y can obtain, when
Flu] is completely evaluated, by assuming that all the ranking criteria still to
evaluate will return their maximal possible value. We can now formalize the
notion of ranked set of mappings.

?p|?pr|?al|?a2| by | bs ?{blubz} 7p|?al| by 7{51} ?pr|{?a2| ba 7{52}
w1|pl|pr3|4.0]4.5|0.80/0.90 1.70 p1|pl|4.0(0.80 1.80 p1|pr3|4.5(0.90) 1.90
f13|p3|prd| 2.0 3.5 0.40[0.70] 1.10 12| p2] 2.0 [0.40| 1.40 3| prd[3.50.70] 1.70
#2|p2|pr2|2.0]3.0]0.40]0.60 1.00 p3|p3]2.0(0.40(1.40 p2|pr2| 3.0 (0.60| 1.60

’ " ’ 1"
Table 1: 2, X (2, Table 2: 2, Table 3: §2,,

A ranked set of mappings (23, with respect to a scoring function F, and
a set B of ranking criteria, is the set of mappings {2 augmented with an order
relation <, defined over {2, which orders mappings by their upper bound scores,
fe, V1, p2 € 2: p <pp p2 <=]—'3[@] < Fnlus].

The monotonicity of F implies that Fp is always an upper bound of F,
i.e. Fg[p] > Flu] for any mapping u € 25, thus guaranteeing that the order
imposed by Fp is consistent with the order imposed by F.

Note that a set of mappings on which no ranking criteria is evaluated (B = ()
is consistently denoted as 2y or simply f2.

Table 1 depicts a subset of ranked set of mappings

Q{?angateProduct,?angateProducer}

(the ranking criteria are represented as by and by respectively) resulting from
the evaluation of

JT:{?angateProduct,7a'ugRateProducer}

of the query in Listing 1.1, where mappings u; € {2 are ordered according to
their upper bounds. When there are ties in the ordering, we assume an arbitrary
deterministic tie-breaker function (e.g., by using the hash code of the lexical
form of a mapping).

3.2 SPARQL-RANK Algebraic Operators

Starting from the notion of ranked set of mappings, SPARQL-RANK introduces
a new rank operator p, representing the evaluation of a single ranking criterion,
and redefines the Selection (o), Join (), Union (U), Difference(\) and Left Join
(}) operators, enabling them to process and output ranked sets of mappings.
For the sake of brevity, we present p and X, referring the reader to [4] for further
details.

The rank operator py, evaluates the ranking criterion b € B upon a ranked
set of mappings {25 and returns 2z, i.e. the same set ordered by fgu{b}.
Thus, by definition py,(£25) = 2;zup}. Tables 2 and 3 respectively exemplify the
evaluation of ?avgRate Product — to shorten, b; — an additional ranking criterion
?avgRateProduct2 — by — over the ?product bsbm:avgRate 7avgRateProduct
and ?product bsbm:avgRate 7avgRateProduct?2 triple patterns. Moreover, the
tables show the evaluation of the upper bounds ?{bl} and ?{bQ}‘

The extended X operator has a standard semantics for what it concerns
the membership property [15], while it defines an order relation on its output
mappings: given two ranked sets of mappings !2;31 and (23;2 ordered with respect
to two sets of ranking criteria By and Bs, the join between 9}31 and Q;Q, denoted
as (2331 X .Q;z, produces a ranked set of mappings ordered by Fp,up,. Thus,

formally _Q/Bl X .Q};,z = ((2/ X .Q”) B,UB,- Table 1 exemplifies the application of
the X operator over the ranked set of mappings of Tables 2 and 3.

3.3 SPARQL-RANK Algebraic Equivalences

Query optimization relies on algebraic equivalences in order to produce several
equivalent formulations of a query. The SPARQL-RANK algebra defines a set
of algebraic equivalences that take into account the order property. The rank
operator p can be pushed-down to impose an order to a set of mappings; such
order can be then exploited to limit the number of mappings flowing through the
physical execution plan, while allowing the production of the k results. In the
following we focus on the equivalence laws that apply to the p and X operators:

1. Rank splitting [2, 4,.... 5.3 = Pb, (06, (- (b, (£2))...))]: allows splitting the
criteria of a scoring function into a series of rank operations (py, , .., pp,,), thus
enabling the individual processing of the ranking criteria.

2. Rank commutative law [py, (pp, (28)) = pb, (b, (25))]: allows the com-
mutativity of the p operand with itself, thus enabling query planning strate-
gies that exploit optimal ordering of rank operators.

3. Pushing p over X [if 2" does not map all variables of the ranking criterion
b, then py(25, X Q5) = pp(2p,) X Q5 ; if both 2" and 2" map all
variables of b, then pb(ﬁjgl X .Q;Q) = pb(_Q;Bl) X pb(.QEQ)]: this law handles
swapping X with p, thus allowing to push the rank operator only on the
operands whose variables also appear in b.

The new algebraic laws lay the foundation for query optimization, as dis-
cussed in the following Section. We refer the reader to [4] for the complete set
of equivalences.

4 Execution of Top-K SPARQL queries

In common SPARQL engines, a query execution plan is a tree of physical oper-
ators as iterators. During the execution of the query, mappings are drawn from
the root operator, which draws mappings from underlying operators recursively,
till the evaluation of a Basic Graph Pattern in the RDF store. The execution
is incremental unless some blocking operator is present in the query execution
plan (e.g., the ORDER BY operator in SPARQL).

In Section 3, we remove the logical barriers that make ranking a blocking op-
erator in SPARQL. SPARQL-RANK algebra allows for writing logic plans that
split ranking and interleave the ranking operators with other operators evalu-
ation. Thus, it allows for an incremental execution of top-k SPARQL queries.
In the rest of the section, we first describe the SPARQL-RANK incremental
execution model and how to implement physical operators; then, we report on
our initial investigations on a rank-aware optimizer that uses the new algebraic
equivalences.

4.1 Incremental Execution Model and Physical Operators

The SPARQL-RANK execution model handles ranking-aware query plans as
follows:

1. physical operators incrementally output ranked sets of mappings in the order
of the upper bound of their scores;

2. the execution stops when the requested number of mapping have been drawn
from the root operator or no more mapping can be drawn.

In order to implement the proposed execution model, algorithms for the physical
operators are needed. Some algorithms are trivial, e.g., selection that rejects
solutions that do not satisfy the FILTER clauses while preserving the mapping
ordering. For the non-trivial cases, e.g., p and X, many algorithms are described
in the literature: MPro [7] and Upper [5] are two state-of-the-art algorithms
useful for implementing the p operator, whereas the implementation of X can
be based on algorithms such as HRIN (hash rank-join) and NRJN (nested-loop
rank-join) described in [13,11].

if Queue is not empty then

if Queue.topscore()> Threshold then pr | %f| b, | by | by F bubauby
return Queue.top(); u, | p1 o1 09| 08| 08 25
end if
end if
loop
if !LhasNext() then - Qb3
Threshold <« 0.0; pr | 2f) b, | b, | b F b,ub,
else u, | p1 o1]oo] o8] 0s 27
mapping < I.GetNext();
Threshold + mapping.score; U4, | p4 031071 07] 09 24
insert mapping into Queue;
end if
if Queue is empty then sz
break; 2pr | 2f| b, | b, | b F b,
end if
if Queue.topscore()> Threshold then Mo | Pl |01 09| 08] 08 29
return Queue.top(); u, | p4| 03107 07| 09 2.7
end if
end loop u, | pl|o2]05| 05|07 25 .Qb
() (b) !

Fig. 2: Example of the rank operator algorithm.

In Figure 2.a, we present the pseudo code of our implementation for the rank
operator p. In particular, we show the GetNext method that allows a downstream
operator to draw one mapping from the rank operator.

Let b be a scoring function not already evaluated (i.e., b ¢ B). When SPARQL-
RANK applies pp on a ranked set of mappings {25 flowing from an upstream
operator, the drawn mappings from (2 are buffered in a priority queue, which
maintains them ranked by 7Bu{b}. The operator p, cannot output immediately
each drawn mapping, because one of the next mappings could obtain a higher
score after evaluation. The operator can output the top ranked mapping of the
queue p, only when it draws from a upstream operator a mapping p’ such that

Fpupylul > Fplw]

This implies that F gy (1] > F '] > Fplp”] for any future mapping x4 and,
moreover, Fpp’] > ?Bu{b} [¢"]. None of the mappings p” that p, will draw
from (25 can achieve a better score than pu.

In Figure 2.b, we present an example execution of a pipeline consisting of two
rank operators pp, and pp, that draws mappings from (2;,. It is work to notice
that the proposed algorithm concretely allows for splitting the evaluation of
24, by b5 10 Py (b, (£25,)) by applying the algebraic equivalence law in Proposition
1. Thus, it practically implements the intuition given in Figure 1.b.

When an operator downstream to p,, wants to draw a mapping from py,, it
calls the GetNext method of py, that recursively calls the GetNext method of pp,
that draws mapping ranked by F,, from (2,. pp, has to draw p, and p; from
2y, , before returning pu, to ps. At this point, ps cannot output p, yet, it needs

10

to call once more the GetNext method of py,. After p,, draws p. from (2, , it
can return p, that allows pp, to return p,.

5 Toward Rank-aware Optimization of Top-K queries

Optimization is a query processing activity devoted to the definition of an
efficient execution plan for a given query. Many optimization techniques for
SPARQL queries [18] exist, but none account for the introduction of the ranking
logical property, which brings novel optimization dimensions. Although top-k
query processing in rank-aware RDBMS is a very consolidate field of research,
our investigations suggest us that existing approaches like [10] or [14] cannot be
directly ported to SPARQL engines, as data in a RDF storage can be “schema-
free”, and, in some systems, it is possible to push the evaluations of BGP down
to the storage system, a feature that is not present in RDBMS.

In order to devise query plans optimization for SPARQL-RANK queries,
some rank-aware optimizations must be advised. In this paper we focus on the
rank operator, which is responsible for the ordering of mappings. We apply it
within a naive query plan that omits the usage of joins, thus losing the cardinality
reduction brought by join selectivity; we just consider the evaluation of a single
BGP, and the subsequent application of several rank operators to order mappings
as they are incrementally extracted from the underlying storage system.

Notice that data can be retrieved from the source according to one ranking
criterion b;: in a previous work [4] we exploited a rank-aware RDBMS as a data
storage layer offering indexes over ranking criteria. In such a case, additional
ranking criterion are applied by serializing several rank operators. On the other
hand, in this work we focus on native triple stores, namely, Jena TDB.

To have an initial assessment of the performance increase brought by the
SPARQL-RANK algebra with this naive query plan, we extended the Jena
ARQ 2.8.8 query engine with a new rank operator. We also extended the Berlin
SPARQL Benchmark (BSBM), a synthetic dataset generator providing data
resembling a real-life e-commerce website: we defined 12 test queries and, to
exclude from the evaluation the time required for the run-time calculation of
scoring functions, we materialized four numeric values for Products, Producers
and Offers, each representing the result of a scoring function calculation.

Our experiments were conducted on an AMD 64bit processor with 2.66 GHz
and 2 GB main memory, a Debian distribution with kernel 2.6.26-2, and Sun
Java 1.6.0.

Table 4 reports the average execution time for the test queries, calculated for
k € (1,10,100) on a 1M triple dataset. Notably, the performance boost of our
prototype implementation with 1 variable queries (Q1, Q4, Q7, Q10) is at least
one order of magnitude, regardless of optimizations. The good performances of
the simple implementation techniques is justified by the co-occurence of the rank-
ing function evaluation and sorting operation, which greatly reduce the number
of calculation to be performed.

11

SPARQL |SPARQL-RANK
Rank ARQ Extended ARQ
Query F 1 (10 |100/ 1 |10 | 100
Q1. Product b1 142 | 143|141 35 | 36 | 71
Q2. Product b1|bs 255 | 256|244 | 126 | 364 | 381
Q3. Product b1|b2 b3 269 | 268 | 267 | 354 | 629 | 711
Q4. Product, Producer ba 173 | 170 | 170 | 45 47 | 171
Q5. Product, Producer b1|bs 261 | 273|259 | 101 | 138 | 304
Q6. Product, Producer b1|ba|bs| 295 | 293|293 | 300 | 388 | 612
Q7. Product, Offer b1 3863 [3779|3854| 467 | 461 | 948
Q8. Product, Offer b1|b2 5705 |5849(5847| 907 | 936 | 1365
Q9. Product, Offer b1|b2|bs| 6612 |6485(6817| 2933 |5062| 8933
Q10. Product, Producer, Offer |ba 4026 [4089|4055| 509 | 520 | 494
Q11. Product, Producer, Offer b1 |bs 6360 62296359 1279 1337|1576
Q12. Product, Producer, Offer |by |ba|bs| 8234 [8165|8111| 2304 [3149|6137

Table 4: Query Execution Time for Dataset=1M and score functions b; —
avgScorel , by — avgScore2, b3 — numRevProd, by — norm(price)

Table 4 also highlights queries where the performance of our prototype are
comparable to ARQ. For instance, the poor (or worse) performance offered by
Q2 and Q3 are due to the low correlation of the applied scoring functions, that,
when split, require the system to perform several reordering on sets of ranked
mappings. Finally, Q12 shows how the on-the-fly calculation of scoring predicates
(by) still leads to better performance for our prototype.

This discussion calls for investigating more advanced, cost-based, optimiza-
tion techniques that include join (or rank-join) operators, which can provide
better performance boost due to join selectivity. Moreover, it would be interest-
ing to try and estimate the correlation between the order of intermediate results
imposed by multiple pipelined scoring functions evaluations. This is the subject
of our future work. An extensive description of the settings and result of our
experiment can be found at sparqlrank.search-computing.org, together with the
latest results of this research work.

6 Related Work

Our work builds on the results of several well-established techniques for the
efficient evaluation of top-k queries in relational databases such as [12,10,13,19]
where efficient rank-aware operators are investigated, and [14] where a rank-
aware relational algebra and the RankSQL DBMS are described.

The application of such results to SPARQL is not straightforward, as SPARQL
and relational algebra have equivalent expressive power, while just a subset of the
relational optimizations can be ported to SPARQL [18]. Moreover, the schema-
free nature of RDF data demands dedicated random access data structures to

12

achieve efficient query evalutation; however, rank-aware operators typically rely
on indexes for the sorted access; this can be expensive if naively done in native
RDF stores, but cheaper in virtual RDF stores.

Our work contributes to the stream of investigations on SPARQL query op-
timization. Existing approaches focus on algebraic [15,18] or selectivity-based
optimizations [21]. Despite an increasing need from practitioners [6], few works
address SPARQL top-k query optimization.

Few works [8,20] extend the standard SPARQL algebra to allow the defini-
tion of ranking predicates, but, to the best of our knowledge, none addresses
the problem of efficient evaluation of top-k queries in SPARQL. Straccia [22] de-
scribes an ontology mediated top-k information retrieval system over relational
databases, where user queries are first rewritten into a set of conjunctive queries
that are translated in SQL queries and executed on a rank-aware RDBMS [14];
then, the obtained results are merged into the final top-k answers. AnQL [24] is
an extension of the SPARQL language and algebra able to address a wide variety
of queries (including top-k ones) over annotated RDF graphs; our approach, in-
stead, requires no annotations. Another rank-join algorithm, the Horizon based
Ranked Join, is introduced [17] and aims at optimizing twig queries on weighted
data graphs. In this case, results are ranked based on the underlying cost model,
not based on an ad-hoc scoring function as in our work. The SemRank system
[1] uses a rank-join algorithm to calculate the top-k most relevant paths from all
the paths that connect two resources specified in the query. However, the appli-
cation context of this algorithm is different from the one we presented, because
it targets paths and ranks them by relevance using IR metrics. Moreover, the
focus is not on query performance optimization.

7 Conclusion

In this paper, we presented SPARQL-RANK, a rank-aware SPARQL algebra
for the efficient evaluation of top-k queries. We introduced a new rank operator
p, and extended the semantics of the other operators presented in [15]. To enable
an incremental processing model, we added new algebraic equivalences laws that
enable splitting ranking and interleaving it with other operators. In order to
prototype an engine able to benefit from SPARQL-RANK algebra, we extended
both the algebra and the transformations of ARQ. We also run some preliminary
experiments using our prototype on an extended version of the BSBM. The
results show a significant performance gains when the limit % is in the order of
tens, and hundreds of results.

As future work we plan to study additional optimizations techniques by,
for instance, estimating the correlation between the order imposed by different
scoring functions, and applying known algorithms to estimate the optimal order
of execution of multiple rank operation obtained by splitting a complex rank-
ing function. We also have preliminary positive results on a simple cost-base
optimization techniques that uses rank-join algorithms [13,11] in combination
with star-shaped patterns identification [23]. In addition, we plan to perform

13

an exhaustive comparison with the 2.8.9 version of the Jena ARQ query engine,
which recently included an ad-hoc optimization for top-k queries, where the OR-
DER BY and LIMIT clauses are still evaluated after the completion of the other
operations, but they are merged into a single operator with a priority queue
that contains k ordered mappings. Finally, we outlook potential extensions of
SPARQL-RANK in dealing with SPARQL 1.1 federation extension and with
the evaluation of SPARQL queries under OWL2QL entailment regime.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

K. Anyanwu, A. Maduko, and A. Sheth. SemRank: ranking complex relationship
search results on the semantic web. In WWW 05, pages 117-127. ACM, 2005.
C. B. Aranda, M. Arenas, and 0. Corcho. Semantics and optimization of the sparq]l
1.1 federation extension. In ESWC (2), volume 6644 of Lecture Notes in Computer
Science, pages 1-15. Springer, 2011.

C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1-24, 2009.

A. Bozzon, E. Della Valle, and S. Magliacane. Towards and efficient SPARQL
top-k query execution in virtual RDF stores. In 5th International Workshop on
Ranking in Databases (DBRANK 2011), August 2011.

N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k Queries over Web-
Accessible Databases. In ICDE, pages 369—. IEEE Computer Society, 2002.

P. Castagna. Avoid a total sort for order by + limit queries. JENA bug tracker.
https://issues.apache.org/jira/browse/jena-89.

K. C.-C. Chang and S. won Hwang. Minimal probing: supporting expensive pred-
icates for top-k queries. In SIGMOD Conference, pages 346-357. ACM, 2002.

J. Cheng, Z. M. Ma, and L. Yan. {-SPARQL: a flexible extension of SPARQL. In
DEXA’10, DEXA’10, pages 487-494, 2010.

S. Harris and A. Seaborne. SPARQL 1.1 Working Draft. Technical report, W3C,
2011. http://www.w3.org/TR/sparqglll-query/.

S.-w. Hwang and K. Chang. Probe minimization by schedule optimization: Sup-
porting top-k queries with expensive predicates. Knowledge and Data Engineering,
IEEFE Transactions on, 19(5):646-662, 2007.

I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting Top-k Join Queries in
Relational Databases. In VLDB, pages 754-765, 2003.

I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv., 40(4), 2008.

I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elmagarmid. Rank-aware
Query Optimization. In SIGMOD Conference, pages 203-214. ACM, 2004.

C. Li, M. A. Soliman, K. C.-C. Chang, and I. F. Ilyas. RankSQL: query algebra
and optimization for relational top-k queries. In SIGMOD °’05, pages 131-142.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3), 2009.

E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF W3C
Recommendation. http://www.w3.org/ TR /rdf-sparqgl-query/, Jan. 2008.

Y. Qi, K. S. Candan, and M. L. Sapino. Sum-Max Monotonic Ranked Joins for
Evaluating Top-K Twig Queries on Weighted Data Graphs. In VLDB, pages 507—
518, 2007.

14

18.

19.

20.

21.

22.

23.

24.

M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimiza-
tion. In ICDT ’10, pages 4-33, New York, NY, USA, 2010. ACM.

K. Schnaitter and N. Polyzotis. Optimal algorithms for evaluating rank joins in
database systems. ACM Transactions on Database Systems, 35(1):1-47, 2010.

W. Siberski, J. Z. Pan, and U. Thaden. Querying the semantic web with prefer-
ences. In ISWC, pages 612—624, 2006.

M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL basic
graph pattern optimization using selectivity estimation. In WWW, pages 595-604.
ACM, 2008.

U. Straccia. SoftFacts: A top-k retrieval engine for ontology mediated access to
relational databases. In SMC, pages 4115-4122. IEEE, 2010.

M.-E. Vidal, E. Ruckhaus, T. Lampo, A. Martinez, J. Sierra, and A. Polleres.
Efficiently Joining Group Patterns in SPARQL Queries. In ESWC (1), pages 228—
242. Springer, 2010.

A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A general framework for
representing, reasoning and querying with annotated semantic web data. CoRR,
abs/1103.1255, 2011.

