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Abstract

The paper proposes a model for the dynamics of stock prices that incorporates increased asset co-

movements during extreme market downturns in a continuous-time setting. The model is based on the

construction of a multivariate diffusion with a pre-specified stationary density with tail dependence. I

estimate the model with Markov Chain Monte Carlo using a sequential inference procedure that proves

to be well-suited for the problem. The model is able to reproduce stylized features of the dependence

structure and the dynamic behaviour of asset returns.
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1 Introduction

There is wide spread evidence that the distribution of financial asset returns deviates from the assumption

of normality both in terms of univariate properties of the data such as excess kurtosis or thick tails, as well

as the dependence structure: multivariate normality imposes independence between extreme realizations

of the variables, whereas returns are known to be highly correlated during large market downfalls. In a

study of several major international market indices Longin and Solnik (2001) provide strong evidence of

the correlation of tail events of asset returns, especially during bear markets.

For risk management applications, multivariate option pricing or portfolio choice decisions it is im-

portant to introduce relatively parsimonious models that can capture the above mentioned features of

the data. There has been a proliferation of studies that propose models for incorporating the asymmetric

response of conditional correlation to returns, mainly building upon the Dynamic Conditional Correla-

tion model of Engle (2002) or the Dynamic Equicorrelation model (DECO) of Engle and Kelly (2009)

with tail dependence, applied in Christoffersen et al. (2011) in a study that highlights the diminishing

diversification benefits for international investors. Das and Uppal (2004) model high correlation for large

drops in asset returns by introducing a systemic jump across all assets. Ang and Chen (2002) compare

several discrete time models in terms of their ability to reproduce the asymmetric dependence pattern

present in stock return data. None of the models, however, succeeds in either picking up the extremal

dependence pattern of the data or explaining the degree of correlation asymmetry.

In this paper we introduce a model that accommodates extreme tail dependencies and nests a variety

of dependence structures. We propose a construction of a multivariate diffusion that relates the drift,

the diffusion matrix and the stationary density of the process. That is in the spirit of Dupire (1994),

who constructs a unnivariate diffusion process compatible to observed option prices and thus to the

risk-neutral conditional distribution. We, however, model the stationary distribution, which relates to

the stochastic long-run equilibrium of the process (Philips (1991)).Our model can be extended further

to allow for state-dependant extreme co-movements between stock prices, and thus capture clustering of

tail events, conditional on exogenous factors, e.g. related to the business cycle.

We model the dependence structure using copula functions, which allows us to separate features of

the marginal behaviour of individual assets from their dependence. However, our model is not limitted to

copula functions alone. The study of the dynamic multivariate spatial dependence structure of stochastic

processes has found several model applications in a discrete time setting (Patton (2004), Fermanian and

Wegkamp (2004), Christoffersen et al. (2011)). Kunz (2002) proposes a framework for modeling extremes

in multivariate diffusions via copula functions, but limits his attention to a specification with a constant

diffusion term, or the reducible diffusions in the spirit of Ait-Sahalia (2008). Instead, we propose a more

general model for which the above mentioned construction is a special case.

The stochastic process for asset prices that we propose implies a dependence structure that allows
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for increased dependence between extreme realizations, but is also flexible enough to include the case of

asymptotic independence (as implied by the Gaussian distribution). With this we answer the concern,

raised by Poon et al. (2004) in the sense that using a model that precludes independence in the tails

may lead to serious overestimation of the joint risks. Based on the copula decomposition between the

dependence structure and the marginal distributions, we build a multivariate diffusion with a prespecified

stationary density. Its construction relies on restricting the drift for a given specification of the diffu-

sion term and the stationary density via an application of the Fokker-Planck equation (see Hansen and

Scheinkman (1995), Chen et al. (2002) for a similar constrruction). Thus we obtain a flexible process for

asset prices that is able to accomodate a wide array of dependence structures.

While accommodating different types of dependence patterns, our model also keeps track of univariate

properties of asset returns, such as a leptokurtic univariate distributions with semi-heavy tails, or volatility

clustering. To this end we select the marginal distributions from the Generalized Hyperbolic (GH) family

of distributions. Their ability to replicate the tail behaviour of asset returns has been established in the

context of univariate diffusions (Eberlein and Keller (1995), Rydberg (1999), Bibby and Sorensen (2003)).

As well, it has been demonstrated (see Jaschke (1997)) that one can obtain a process for returns with

Generalized Hyperbolic stationary distribution with stochastic volatility as a weak limit of a GARCH

model in the sense of Nelson (1990).

While the stationary distribution of the proposed process is known in closed form, the transition den-

sity is not. This raises a serious estimation challenge, as an exact likelihood approach cannot be applied.

As well, approximations of the likelihood function in the spirit of Ait-Sahalia (1999) and Ait-Sahalia

(2008) prove to be too computationaly intensive when explicit solutions for the density approximation

coeffi cients cannot be obtained. Instead, we propose a Markov Chain Monte Carlo (MCMC) method

to estimate model parameters, following a sequential inference procedure of Golightly and Wilkinson

(2006a), Roberts and Strammer (2001) and Durham and Gallant (2002). It proves to be well suited for

the specification we have.

We also address the question of model selection, using the traditional Bayesian approach based on

the marginal likelihood functions of alternative models. Results suggests that models that disregard

asymmetric dependence between extreme realizations are rejected in favour of those that take these

particular features of the dependence structure into account.

The remainder of the paper is organized as follows. Section 2 discusses the issue of modeling de-

pendence through the use of copula functions. Section 3 introduces the process for asset prices, its

construction and the particular assumptions on the univariate marginals as well as the dependence struc-

ture. Section 4 reviews the estimation methodology of the proposed multivariate diffusion based on copula

functions using an MCMC estimation algorithm. Section 5 discusses the estimation results, focusing on

the degree of tail dependence that could be achieved under the proposed model specification, and Section
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6 concludes.

2 Copula functions and dependence modeling

The pitfalls of using the linear correlation coeffi cient as a dependence measure have been largely discussed

in literature Linear correlation fully describes the dependence patterns only in the elliptical class of

distributions that are inevitably characterized by symmetry. It is also an inadequate tool for discerning

dependence when it comes to extreme events, as it is essentially a measure of the central tendency,

involving first and second moments. Among the deficiencies of linear correlation comes the fact that

second moments have to be finite in order for it to be defined. As well, it is not invariant under non-

linear strictly increasing transformations of the variables (a transformation that is known to leave the

dependence structure unchanged). In contrast, all concordance measures of dependence are invariant

to increasing transformations of the marginals, while the tail dependence coeffi cient characterizes the

extreme dependence using only the dependence function specification.

Thus, copula theory provides a natural environment for the search of dependence measures that are

better suited for capturing extreme co-movement asymmetries. The main concept behind copulas is the

separation of the distribution structure from the univariate marginals, as they are functions that link

marginals to their multivariate distribution, following Sklar’s theorem. Their parsimonious nature makes

them suitable for high-dimensional models, as the ones encountered in portfolio selection problems, while

their functional specification could be flexible enough to allow for asymptotic extreme (in)dependence:

dependence structures range from those generated by elliptical copulas that maintain the validity of

the mean-variance framework , to copulas that are able to express extreme value dependence (like the

Gumbel copula, consistent with multivariate extreme value theory). Various dependence measures useful

for financial applications (comonotonicity, concordance, quadrant (orthant) and tail dependence) can be

expressed in terms of copulas.

Copula functions are a useful tool to construct multivariate distributions. They are used to disentangle

the information contained in the marginal distributions from that pertaining to the dependence structure.

As they are defined as multivariate distribution functions, they contain all the relevant information with

respect to the dependence structure.

2.1 Copulas and the dependence structure

A standard treatment of copulas can be found in the monographs of Joe (1997), and Nelsen (1999),

Embrechts et al. (2002), Frees and Valdez (1998). Cherubini et al. (2004) offer a comprehensive review

of the application of copula functions in finance. The main concept behind them is the separation of

the distribution structure from the univariate marginals. A copula can be viewed as a multivariate
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distribution function on the unit cube, with uniformly distributed marginals. Alternatively, it can be

defined as a function C : [0, 1]n → [0, 1] with the following properties:

(P1) for every u in [0, 1]n, C (u) = 0 if at least one coordinate of u is 0; C (u) = uk if all coordinates of

u except uk equal 1;

(P2) C is n-increasing if for each a, b ∈ [0, 1]n such that a ≤ b, the volume of the hypercube with corners
a and b is positive, that is VC ([a, b]) =

∑
sgn (c)C (c) ≥ 0 where c are the vertices of [a, b], and

sgn (c) = 1 if ck = ak for even k, sgn (c) = −1 if ck = ak for odd k. For the bi-variate case this

translates into VC ([u1, u2]× [v1, v2]) ≡ C (u1, v1) + C (u2, v2) − C (u1, v2) − C (u2, v1) ≥ 0 for all

u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2.

An important result concerning copulas is Sklar’srepresentation theorem (Sklar, 1959):

For a multivariate joint distribution function F with marginals F1, ..., Fn, there exists an n-copula C,

such that for all x in Rn we have that:

F (x 1, ..., xn) = C (F1 (x1) , ..., Fn (xn)) (2.1)

The copula is uniquely determined if all marginal distributions F1, ..., Fn are continuous, otherwise C

is unique on RanF1 × ... × RanFn. The converse statement also holds, i.e. for a given copula C with

marginals F1, ..., Fn, the function F defined above is an n-dimensional multivariate distribution function.

Sklar provides the following corollary: for a multivariate joint distribution function F with continuous

marginals F1, ..., Fn and copula C, satisfying the above theorem, and for any u ∈ [0, 1]n, the following

holds:

C (u1, ..., un) = F
(
F−1

1 (u1) , ..., F−1
n (un)

)
(2.2)

In the subsequent sections we will use the copula density decomposition formula that follows from

(2.2):

f (x1, ..., xn) = c (F1 (x1) , ..., Fn (xn))

n∏
i=1

fi (xi)

where c (·) is the copula density and fi (·) are the univariate PDFs.
A key property of copulas, that makes them particularly well suited for dependence structure modeling,

is their invariance under strictly increasing transformations of the marginals. However, this property is

true for the linear correlation as a dependence measure only for affi ne strictly increasing transformations.

In particular, if we consider the functions α (X) and β (Y ) of two random variables X and Y , then the

following transformations change the copula functions in a deterministic way (see Nelsen (1999)):

(i) if α, β are strictly increasing, then Cα(X),β(Y ) (u, v) = CX,Y (u, v);
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(ii) if α is strictly increasing and β is strictly decreasing, then Cα(X),β(Y ) (u, v) = u− CX,Y (u, 1− v);

(iii) if α, β are both strictly decreasing, then Cα(X),β(Y ) (u, v) = u+ v − 1 + CX,Y (1− u, 1− v).

If C is an n-dimensional copula, then it has a known upper and lower bound (the Frechet-Hoeffding

bounds):

Ln (u) ≤ C (u) ≤ Un (u) (2.3)

where Ln (u) = max

(
n∑
i=1

ui − n+ 1, 0

)
Un (u) = min (u1, ..., un)

For n = 2 the upper and the lower bound are copulas, but for n ≥ 3, Ln is the lower bound in the

sense that for any u ∈ [0, 1]n there exists such a copula C, that C (u) = Ln (u) (Nelsen (1999)).

Following Mari (2002), the continuity of a copula can be established for each u, v ∈ [0, 1]n, if it satisfies

the stronger Lipschitz condition:

|C (u2, v2)− C (u1, v1)| ≤ |u2 − u1|+ |u1 − v1| (2.4)

Further on, as C(u) is increasing and continuous in u, it is differentiable almost everywhere, and the

following holds:

0 ≤ ∂

∂ui
C (u) ≤ 1, i = 1, ..., n

For each copula we can define a survival function: C (u, v) = 1 − u − v + C (u, v) for the bi-variate

case, and more generally:

C (u1, ..., un) = Pr (U1 > u1, ..., U1 > u1)

Below we discuss briefly several dependence concepts in a copula framework. Following the Frechet-

Hoeffding inequality, it was shown that the upper and the lower bound are both copulas in the bi-variate

case, and can be thought of as the joint distribution functions of two couples of univariate vectors:

(U, 1 − U) for the lower bound and (U,U) for the upper bound. Thus, the lower bound describes the

state of perfect negative dependence (two vectors having this copula are said to be countermonotonic),

whereas the upper bound corresponds to the state of perfect positive dependence (and the two vectors

having this copula are comonotonic).

Following Embrechts et al. (2002), a proper dependence measure δ should have the following proper-

ties:

(i) δ should be defined for evry pair X,Y ;
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(ii) δ (X,Y ) = δ (Y,X);

(iii) −1 ≤ δ (X,Y ) ≤ 1;

(iv) δ (X,Y ) = 1 iffX and Y are comonotonic, and δ (X,Y ) = −1 iffX and Y are counter-monotonic;

(v) δ (ϕ (X) , Y ) = δ (X,Y ) for a strictly increasing function ϕ, and δ (ϕ (X) , Y ) = −δ (X,Y ) for a

strictly decreasing function ϕ.

(vi) δ (X,Y ) = 0 iffX,Y are independent.

As there is no dependence measure that satisfies properties (v) and (vi), then we should modify the

following properties if we require (vi):

(iii-a) 0 ≤ δ (X,Y ) ≤ 1;

(iv-a) δ (X,Y ) = 1 iffX and Y are co/counter-monotonic;

(v-a) δ (ϕ (X) , Y ) = δ (X,Y ) for a strictly monotone function ϕ.

Concordance measures can also be defined in terms of the copula. Following Embrechts et al. (2002),

if (X,Y ) and
(
X̃, Ỹ

)
are two couples of independent vectors with common marginals, then the differ-

ence between the probability of concordance and discordance (Q) can be expressed in terms of their

corresponding copulas:

If Q ≡ Pr
[(
X − X̃

)(
Y − Ỹ

)
> 0
]
− Pr

[(
X − X̃

)(
Y − Ỹ

)
< 0
]

Then Q = Q
(
C, C̃

)
= 4

∫ ∫
[0,1]2

C̃ (u, v) dC (u, v)− 1

Kendall’s tau τ (X,Y ) and Spearman’s rho ρS (X,Y ) are two measures of concordance that also have

copula representation:

τ (X,Y ) ≡ Q (C,C) = 4

∫ ∫
[0,1]2

C (u, v) dC (u, v)− 1 (2.5)

ρS (X,Y ) ≡ 3Q (C,Π) = 12

∫ ∫
[0,1]2

uvdC (u, v)− 3 (2.6)

where Πn (u) = u1u2...un is the independence copula.

When both Kendall’s tau and Spearman’s rho are equal to 1(−1), then the copula of the two vectors

is the upper (lower) Frechet bound.

As we are interested in modeling dependence asymmetries in the tails of the distribution, then the

tail coeffi cient, as a measure of dependence in the lower and the upper tail is of particular interest. The
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coeffi cient of upper tail dependence is defined as the probability of an extreme event in Y , conditional on

an extreme event in X:

τU = lim
u→1

Pr
(
Y > F−1

Y (u) | X > F−1
X (u)

)
(2.7)

= lim
u→1

Pr
(
Y > F−1

Y (u) , X > F−1
X (u)

)
Pr
(
X > F−1

X (u)
)

provided that the limit exists. If τU ∈ (0, 1] then the two vectors of random variables are said to be

asymptotically dependent in the right tail. Asymptotic independence is reached for the case of τU = 0.

Joe (1997) shows that the concept of tail dependence can be related to that of the copula by the following

alternative definition of the coeffi cient for upper tail dependence of a bivariate copula, for which the

following limit exists:

τL = lim
u→1

1− 2u+ C (u, u)

1− u (2.8)

The coeffi cient of lower tail dependence can be derived in a similar fashion:

τL = lim
u→0

Pr
(
Y ≤ F−1

Y (u) | X ≤ F−1
X (u)

)
(2.9)

= lim
u→0

Pr
(
Y ≤ F−1

Y (u) , X ≤ F−1
X (u)

)
Pr
(
X ≤ F−1

X (u)
)

= lim
u→0

C (u, u)

u

and the notions of asymptotic dependence and independence are analogous to those in the right tail.

Having in mind the relationship between a copula and its survivor copula, it can be shown that the

coeffi cient of upper tail dependence of a copula is in fact the coeffi cient of lower tail dependence of the

survivor copula. We will rely on this property in the subsequent modeling of the extreme-value diffusion

process.

Despite these asymptotic measures of dependence, we are interested as well in the behaviour of random

variables as they approach the extremes. This ‘near’tail dependence measure is called qantile dependence

and it is defined in the following way for quantiles q:

τ (q) =
Pr [U ≤ q | V ≤ q] if q ≤ 0.5

Pr [U > q | V > q] if q > 0.5
(2.10)

2.2 Degree of tail dependence asymmetry in the data

In order to get an impression of the degree of tail dependence asymmetry present in the data, consider

daily CRSP US stock capitalization decile indeces for the period 1990-2005. These indices represent
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Figure 1. Quantile dependence plots

Plots of quantile dependence for all three couples of de-trended log-prices of the three CRSP indices formed on the
basis of size deciles for the period 1986-2005 (small-cap (deciles 1-3), mid-cap (deciles 4-7), and large-cap (deciles
8-10)).
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yearly rebalanced portfolios based on market capitalization. The stock universe includes stocks listed on

NYSE, AMEX, and NASDAQ. All ten capitalization decile indices were grouped in three sub-categories:

small-cap (deciles 1-3), mid-cap (deciles 4-7), and large-cap (deciles 8-10).

The degree of ‘near’ tail dependence for all three couples of data is displayed using quantile plots

on Fig. 1. The dependence does not decay to zero as we go further in the left tail as it would be the

case under bi-variate normality. As well, for the Large-Mid cap couple quantile dependence is high for

both tails, while for the other couples of data it tends towards zero for the right tail, pointing towards

asymmetric (‘near’) tail dependence.

In order to test the significance in the differences in correlation patterns between the left and the

right tail, we use the model-free test of dependence symmetry, developed by Hong et al. (2003). The

test statistic under a null hypothesis of symmetry exploits the estimates of the exceedence correlations(
ρ−q , ρ

+
q

)
at different quantile levels q and their variance covariance matrix Ω:

J = n
(
ρ+ − ρ−

)
Ω−1

(
ρ+ − ρ−

) d→ χ2
m

where n is the sample size and m is the number of quantile levels considered. Table 1 summarizes
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Table 1. Test of symmetry in the exceedence correlations

The Hong et al. (2003) test of exceedence correlations symmetry in the lower and upper quartiles for the de-trended
log-prices of the three CRSP indices formed on the basis of size deciles for the period 1986-2005 (small-cap (deciles
1-3), mid-cap (deciles 4-7), and large-cap (deciles 8-10)). The test statistic is given by:

J = n
(
ρ+ − ρ−

)
Ω−1

(
ρ+ − ρ−

) d→ χ2
m

where ρ+ and ρ− are the exceedence correlations calculated at the corresponding quantile levels, n is the sample
size and m is the number of quantile levels considered. Results for three for three quantile levels (0.85, 0.90, 0.95)
are given below:

Large vs. Mid cap Large vs. Small cap Small vs. Mid cap
Test statistic (J) 1.9351 17.6046 13.3933
p-values (0.5860) (5.3065e-004) (0.0039)

the results of the test, rejecting symmetry for all but the Mid-Large cap couple, for which the quantile

dependence plots indicated as well high dependence in both tails.

In the sections that follow we will build a diffusion process that accounts for those dependence features

of the data with the help of copula functions. It also accomodates desirable univariate properties of asset

returns such as volatility clustering, heavy tails, and slowly decaying autocorrelation function of squared

returns, without reverting to a stochastic volatility specification or the introduction of jumps.

3 The multivariate copula diffusion model

In the discrete time literature there exist numerous models that are able to replicate both stylized facts of

univariate asset returns series, such as thick-tailed asymmetric marginals, volatility clustering, slowly de-

caying autocorrelation function of squared returns, and asymmetric dependence structure in the extremes

of the multivariate distribution. Copula functions have become increasingly popular in multivariate dis-

crete time models, as in Patton (2004), Jondeau and Rockinger (2002) among others. Astonishingly,

much less effort has been spent in this respect in continuous time modeling, except for scalar diffusions.

Examples include stochastic volatility models (Heston (1993)) or diffusions with jumps in returns and

volatility (Eraker et al. (2003)), hyperbolic diffusions (Bibby and Sorensen (1997)), generalized hyper-

bolic diffusions (Rydberg (1999)), time-changed Lévy processes (Carr and Wu (2004)). However, the

multivariate spatial dependence structure modeling of diffusions has attracted much less attention. Here

we propose a construction of a multivariate diffusion with pre-specified stationary density with arbitrary

marginals, coupled by a suffi ciently parsimonious copula dependence function that avoids the curse of

dimensionality problem, normally encountered in modeling multivariate datasets. The aim is to provide

a suffi ciently flexible treatment of the univariate return series that is able to accommodate the stylized

features of the data, as well as to allow for possible asymmetries in the tail dependence of the multivariate

10



distribution via the copula function.

3.1 Constructing a diffusion with a pre-specified stationary distribution

We assume that uncertainty is driven by a d-dimensional standard Brownian motion and that the price

of the risky asset can be expressed as 1:

Sit = exp (φi (t) +Xit) , i = 1, ..., d (3.1)

for some deterministic function of time φi (t), which we assume to be linear in t, φi (t) = kit with a linear

trend parameter ki, and where

dXt = µ (Xt) dt+ Λ (Xt) dWt (3.2)

Thus, applying Itô’s lemma we obtain for the price process for i = 1, ..., d:

dSit = Sitµ
S
i (lnSit − kit) dt+ Sit

d∑
j=1

Λij (lnSit − kit) dWjt (3.3)

where µSi (Xt) = µi (Xt) + ki +
1

2

d∑
j=1

σij (Xt)
2

where σijare entries of the matrix Λ in the diffusion term of the process for the de-trended log-price

X. As pointed out in Bibby and Sorensen (1997), there is empirical evidence that the increments of the

process for the log-price are nearly uncorrelated but not independent, which motivates the specification

in 3.1. It is chosen as the most straightforward generalization of the Black Scholes model . The exact

parametrization of the drift and the diffusion term will be discussed in the subsequent section, where we

present a method to construct a diffusion with a pre-specified stationary distribution.

An application of the Fokker-Planck equation allows us to construct a multivariate stationary diffusion

by exploiting the relationship that exists between the invariant density, the drift and the diffusion term

for the process in (3.2):

µj =
1

2q

d∑
i=1

∂ (vijq)

∂xi
(3.4)

Σ = ΛΛᵀ with entries vij

where Λ is a lower triangular matrix, q is a strictly positive continuously differentiable multivariate

density function, and Σ is a continuously differentiable positive definite matrix. Using this construction,

q appears to be the stationary density of the Markov process, and the drift vector µ is determined by

1Following the parametrization of Bibby and Sorensen (1997) and Rydberg (1999)
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the choice of q and the volatility matrix Σ. Thus, in order to model the stationary diffusion (3.2), we

need to specify its invariant density and its diffusion term. For the diffusion term, we propose a constant

conditional correlation specification, given by:

vij = ρijσ
X
i σ

X
j (3.5)

σXi = σi

[
f̃ i (xi)

]− 1
2
κi

where κi ∈ [0, 1] , i = 1, ..., d.and the function f̃ i (xi) ∼ f i (xi), i.e. it is proportional to the ith univari-

ate marginal distribution. This is a multivariate generalization of the diffusion term used in Bibby and

Sorensen (2003) for the case of univariate diffusion.We show in a subsequent section that this parameter-

ization of the local volatility matches well its non-parametric estimate.

3.1.1 Choice of the marginal distributions

We choose to model the marginal behaviour with distributions in the family of the Generalized Hyperbolic

family. This is a much exploited distribution specification for the univariate return series. Introduced

by Barndorff-Nielsen (1977) for studying the particle-size distribution of wind-blown sand, it has conse-

quently found application in numerous fields, including finance. Distributions in that family have been

successfully fitted to financial time series, while stochastic processes, built on the basis of generalized

hyperbolic laws, have been proposed to model the dynamics of stock returns. Eberlein and Keller (1995)

introduce the hyperbolic Levy motion in modeling the dynamic behaviour of asset returns. Their model is

further extended in Prause (1999) to the generalized hyperbolic case. Bibby and Sorensen (1997) fit a hy-

perbolic diffusion model to individual stock price data, while Rydberg (1999) proposes a one-dimensional

Normal Inverse Gaussian diffusion that accommodates thick tails in log returns. Bauer (2000) investigates

the usefulness of hyperbolic distributions for risk management in the context of VaR modeling. As the

family of Generalized Hyperbolic distributions covers a vast spectrum of tail behavoir (from Gaussian to

power tails), it is particularly suited in the present context of investigating extreme asset co-covements.

The family of GH distributions is constructed as normal mean-variance mixtures with the Generalized

Inverse Gaussian (GIG) as the mixing distribution. Thus, the density function for the GH distribution

is expressed as:

fGH (x;α, β, δ, µ) =

∫ ∞
0

N (x;µ+ βs, s)GIG
(
s;λ, δ2, α2 − β2

)
ds (3.6)
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where N (·) is the normal density with mean µ+ βs and variance s, and the GIG density has the form:

GIG (x;λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ

(√
ψχ
)xλ−1e−

1
2(χx−1+ψx) (3.7)

x > 0, λ ∈ R, ψ, χ ∈ R+

where Kλ is the modified Bessel function of the third kind with index λ, whose integral representation

is given by Kλ (x) = 1
2

∫∞
0 yλ−1e−

x
2 (y+y−1)dy for x > 0. The fact that the GH class of distributions is

obtained via this convolution operation is exploited when simulating random GH variables.

Solving this integral form gives the following probability density function of the univariate GH distri-

bution:

fGH (x;α, β, δ, µ) = c (λ, α, β, δ)
(
δ2 + (x− µ)2

)λ−1/2
2 × (3.8)

Kλ− 1
2

(
α

√
δ2 + (x− µ)2

)
eβ(x−µ)

where c (λ, α, β, δ) =

(
α2 − β2

)λ
2

√
2παλ−

1
2 δλKλ

(
δ
√
α2 − β2

)
x ∈ R

c (λ, α, β, δ) is the normalizing constant, and the parameters have the following interpretations in terms

of the distribution: α determines the shape, β the skewness, µ is a location parameter and δ is a scaling

parameter. The parameter domain is:

δ ≥ 0, α > |β| for λ > 0

δ > 0, α > |β| for λ = 0

δ > 0, α ≥ |β| for λ < 0

µ ∈ R

GH distributions have semi-heavy tails, given by limx→±∞ fGH (x;λ, α, β, δ, µ) ∼ |x|λ−1 exp {(∓α+ β)x}
(Prause (1999), Barndorff-Nielsen and Blaesid (1981)). Thus the class can easily accommodate any tail

behaviour ranging from power to exponential decline, and can account for tail asymmetries. A useful

reparametrization to display the so-called “shape triangle” of the hyperbolic distribution, is given by

ξ =
(

1 + δ
√
α2 − β2

)− 1
2
and χ = β

αξ, where ξ and χ vary in 0 ≤ |χ| < ξ < 1. These parameters are

invariant under location and scale transformations and can be interpreted as measures of the asymmetry

and kurtosis of the distribution.

The GH family of distributions has the normal distribution as a limiting case for δ →∞, δ/α→ σ2,
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and the Student’s t distribution as a limit for λ < 0, α = β = µ = 0 (Barndorf-Nielsen (1978), Prause

(1999)). The tail behaviour for those limiting cases is as follows. For the normal distribution we have

very thin exponential tails limx→±∞ fGa (x) ∼ c exp
(
−x2

2

)
, while for the Student’s t distribution with υ

degrees of freedom we have power tails limx→±∞ ft (x) ∼ c |x|−υ−1.

Various special cases can be obtained for different parametrizations of the GH distribution. For λ = 1

the hyperbolic distribution is obtained:

fH (x;α, β, δ, µ) = c (α, β, δ) e−α
√
δ2+(x−µ)2+β(x−µ) (3.9)

where c (α, β, δ) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

)
x ∈ R

where δ > 0, α > |β|, µ ∈ R. This parametrization has been widely exploited in literature because of
the ease of implementation, as the Bessel function appears only in the normalizing constant. However,

it limits the possible tail behaviour cases one could obtain, as the tails are allowed exponential decay:

limx→±∞ fH (x;α, β, δ, µ) ∼ e(∓α+β)x,but nevertheless it has proved to be successful in modeling the

dynamic behaviour of financial time series.

Another subclass of the GH family is that of the Normal Inverse Gaussian (NIG) distribution, obtained

for λ = −1/2, whose density is given by:

fNIG (x;α, β, δ, µ) = c (α, δ)
(
δ2 + (x− µ)2

) 1
2 × (3.10)

K1

(
α

√
δ2 + (x− µ)2

)
eδ
√
α2−β2+β(x−µ)

where c (α, δ) =
αδ

π
x ∈ R

where δ > 0, α ≥ |β| ≥ 0, µ ∈ R. This specification has been successfully used as the stationary measure
of a univariate diffusion in Rydberg (1999) for modeling US stock price data. It has a somewhat richer

specification for the tail decay as compared to the hyperbolic distribution: limx→±∞ fNIG (x;α, β, δ, µ) ∼
|x|−3/2 e(∓α+β)x. Also, it is one of the two members of the GH class that are closed under convolution

(the other one being the Variance Gamma distribution), so that for the sum of two independent random

variables Xi ∼ NIG (x;α, β, δi, µi) , i = 1, 2 we have that X1 +X2 ∼ NIG (x;α, β, δ1 + δ2, µ1 + µ2). This

property is exploited in Rydberg (1999) when modeling log prices as NIG diffusions in that log returns

are expected to be also approximately NIG distributed as the time horizon goes to infinity, provided that

there is almost no autocorrelation in the increments of log prices.
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The moment generating function for the Generalized Hyperbolic distribution is given by:

M (u) = euµ
(

α2 − β2

α2 − (β + u)2

)λ
2
Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) (3.11)

|β + u| < α

The characteristic function takes the form:

ϕ (u) = eiµu
(

α2 − β2

α2 − (β + u)2

)λ
2
Kλ

(
δ
√
α2 − (β + iu)2

)
Kλ

(
δ
√
α2 − β2

) (3.12)

The mean and variance in this class of distributions are given by:

E [X] = µ+
δβKλ+1 (δγ)

γKλ (δγ)
(3.13)

V ar (X) =
δKλ+1 (δγ)

γKλ (δγ)
+
δ2β2

γ2

(
Kλ+1 (δγ)

Kλ (δγ)
−
K2
λ+1 (δγ)

K2
λ (δγ)

)

where γ2 = α2 − (β + x)2. These expressions have a particularly simple form for the NIG distribution,

following the property of the Bessel function that:

Kn+ 1
2

(x) =

√
π

2x
e−e

(
1 +

n∑
i=1

(n+ i)!

(n− i)!i! (2x)−i
)
, n = 0, 1, 2, ...

So that for NIG we obtain:

E [X] = µ+
δβ

γ

V ar (X) =
δα2

γ3

Skew (X) = 3δα2βγ−5

Kurt (X) = 3δα2
(
α2 + 4β2

)
γ−7

(Bibby and Sorensen (2003)).

In our empirical application we choose the general form of the GH distribution, or its special case —

the NIG distribution, because of the general tail behavior allowed under these specifications.
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Univariate diffusion specifications with Generalized Hyperbolic stationary distribution. In

order to investigate what stylized facts of asset returns are reproducible with a GH distribution, we also

consider a univariate GH diffusion for each of the Xi state variables. The typical construction of a scalar

diffusion exploits the relationship between the stationary density and the densities of the speed and the

scale measure. We consider a univariate diffusion process for Xi, given by:

dXit = µi (Xit) dt+ σi (Xit) dWit

Its scale density is defined as si (x) = exp
(
−
∫
x

2µi(u)
vi(u) du

)
for l < x < u, where vi (x) = [σi (x)]2, and

the speed density is expressed as mi (x) = 1
vi(x)si(x) . Under mild conditions, ensuring existence of a

solution and stationarity, the relationship between the invariant density fi (x) and the drift and diffusion

coeffi cients can be shown to verify:

2µi (x)− v′i (x) = vi (x)
f ′i (x)

fi (x)
(3.14)

This allows us to construct a stationary univariate diffusion, having fi (x) as its invariant density. As

this construction leaves either the drift or the diffusion coeffi cient free to be specified, once the form of

the stationary density has been chosen, Bibby and Sorensen (2003) suggest the following specification of

the drift:

µi (x) =
1

2
vi (x)

d

dx
ln
(
vi (x) f̃i (x)

)
(3.15)

where f̃i (x), an integrable function on the interval (l, u), is proportional to the desired stationary density.

Notice that the relationship determining the drift of the stationary diffusion depends only on the ratio
f ′i(x)
fi(x) , thus it is suffi cient to specify the invariant density up to a constant of proportionality. Thus we

consider the function f̃i (x) ∼ fi (x) that is proportional to the density of the univariate GH distribution

(3.8). The volatility term is then given by σi (x) = f̃i (x)−
1
2
κi , and we obtain the general form of a

stationary univariate diffusion process for a state variable Xi:

dXit =
1

2
σ2
i (1− κi)

[
f̃i (Xit)

]−κi−1 ∂f̃i (Xit)

∂Xit
dt+ σi

[
f̃i (Xit)

]− 1
2
κi
dWit (3.16)

This specification has been exploited in a number of studies2, and it nests special cases of a zero drift

diffusin (in the case of κ = 1) or constant diffusion term (in the case of κ = 0).

The above mentioned models in the family of the GH diffusions have one important advantage over

the NIG Levy processes, proposed in Barndorff-Nielsen (1995), that have grown considerably popular in

modeling log returns. The latter suffer from the deficiency of being incapable of replicating the persistence

2Bibby and Sorensen (2003), Bibby and Sorensen (1997), Küchler et al. (1999), Rydberg (1999), to cite a few.
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in correlation in absolute and squared log returns because of the independent Levy increments. We will

demonstrate in a latter section that the NIG (or GH) diffusion can accommodate that.

In order to check the fit of the proposed model, we proceed to a formal validation procedure for the

scalar diffusions, proposed in Pedersen (1995) and applied in Rydberg (1999), which is based on the

univariate residuals:

uti = F
(
ti−1, Xti−1 | ti, Xti ;ψ

)
(3.17)

where F (·) is a transition function F (x, t | y, s;ψ) for a given parameter vector ψ that can be estimated

via simulation using the dynamic probability transform for a discretized sample of the process {X∆t}ni=1

over the period t = 1, ..., n with a discretization step ∆:

ût =

∫ Xt∆

−∞
F
(
t∆, x | (t− 1) ∆, X(t−1)∆

)
dx (3.18)

Under the hypothesis of correct model specification, the series {ût}nt=1 is i.i.d.U (0, 1).

3.1.2 Choice of the copula and the multivariate stationary diffusion

In this section we specify the spatial dependence structure of the multivariate copula diffusion. Following

Sklar’s theorem, we define the invariant density as:

q (x1, ..., xn) ≡ c
(
F 1 (x1) , ..., Fn (xn)

) n∏
i=1

f̃i (xi) (3.19)

where f̃i (·)is proportional to the univariate GH distribution (3.8), and F i (·) is its corresponding CDF.
In order to account for different degrees of upper and lower tail dependence, we consider several

parametric families of copulas that have either no tail dependence (Gaussian copula), symmetric tail

dependence (Student’s t copula), or that allow for different degrees of dependence in the left and in the

right tail (Archimedean copulas). Below we discuss the form and properties of the copula functions that

we consider for the stationary distribution of the multivariate diffusion for the state variables.

Elliptic copulas. We consider two elliptical copulas, the Gaussian and the t copula, that are charac-

terized by symmetry in the dependence structure. We choose as a benchmark a diffusion that relies on

the Gaussian copula. In this case, dependence is governed by the correlation matrix RGa. Its CDF is

defined as:

CGa (u1, u2, ..., ud | RGa) (3.20)

=

∫ Φ−1(u1)

−∞
...

∫ Φ−1(ud)

−∞

1

2π |RGa|1/2
exp

{
−1

2
xᵀR−1/2

Ga x

}
dx1...dxd
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where Φ−1 (u) denotes the inverse of the univariate standard normal CDF. The Gaussian copula generates

a multivariate normal distribution iff the marginal distributions are also normal. It has no upper or lower

tail dependence for imperfectly correlated random variables: τUGa = τLGa = 0.

The Student’s t copula allows for equal upper and lower tail dependence coeffi cients. Its CDF is given

by:

Ct (u1, u2, ..., ud | RT , ν) (3.21)

=

∫ t−1
ν (u1)

−∞
...

∫ t−1
ν (ud)

−∞

Γ
(
ν+d

2

)
|RT |1/2

Γ
(
ν
2

)
(νπ)d/2

(
1 +

1

ν
xᵀR−1

T x

)− ν+d
2

dx1...dxd

where ν is the degrees of freedom parameter,RT is the correlation matrix, and t−1
ν (u) is the inverse of the

univariate CDF of the Student’s t distribution with ν degrees of freedom. The tail dependence coeffi cient

is given by τUT = τLT = 2tν+1

(
−
√
v + 1

√
1− ρ/

√
1 + ρ

)
, where ρ is an off-diagonal element of RT . Thus,

the tail dependence coeffi cient decreases for higher values of the degrees of freedom parameter and in the

limit it goes to zero as ν → ∞ (in this case the Student’s t copula converges to the Gaussian copula).

One interesting property of the t copula is the fact that it can still show tail dependence even if the

correlation is zero.

Archimedean copulas. Copulas in this family are constructed using a continuous, decreasing and

convex generator function ϕ (u) : [0, 1] → [0,∞) that has a defined pseudo-inverse ϕ[−1] (ϕ (u)) = u for

all u in [0, 1]:

ϕ[−1] (u) =

{
ϕ−1 (u) for 0 ≤ u ≤ ϕ (0)

0 for ϕ (0) ≤ u ≤ ∞

}
The pseudo-inverse is given by the usual inverse for the cases when we have a strict generator function

ϕ. Then the Archimedean copulas are defined in terms of the generator function as follows:

C (u1, u2, ..., un;α) = ϕ−1 (ϕ (u1;α) + ϕ (u2;α) + ...+ ϕ (un;α)) (3.22)

for a given dependence parameter α. The density of Archimedean copulas for the bi-variate case is given

by (see Nelsen (1999)):

c (u1, u2) =
−ϕ′ (C (u1, u2))ϕ′ (u1)ϕ′ (u2)

(ϕ′ (C (u1, u2)))3

Archimedean copulas have the useful property that most dependence measures, including the coef-

ficients of upper and lower tail dependence, can be expressed in terms of the generator function. Joe

(1997) provides the following result with respect to tail dependence: for a strict generator ϕ (u), if ϕ′ (0)

is finite and different from zero, then the copula has no tail dependence. The copula has upper tail

dependence for 1/ϕ′ (0) = −∞, given by τU = 2 − 2 limz→0+

ϕ′(z)
ϕ′(2z)and lower tail dependence, given
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by τL = 2 limz→+∞
ϕ′(z)
ϕ′(2z) . Kendall’s tau also has a representation in terms of the generator function:

τ = 4
∫

[0,1]
ϕ(z)
ϕ′(z)dz + 1.

We consider the Gumbel copula in the Archimedean class, introduced by Gumbel (1960). It is a

parsimonious one-parameter copula, whose generator is given by ϕ (x) = (− log (x))
1
α , α ∈ (0, 1], so that

its CDF can be expressed as:

CGα (u1, u2, ..., un) = exp

(
−
(

n∑
i=1

(− log ui)
1
α

)α)
, α ∈ (0, 1] (3.23)

Its Kendall’s tau is given by ρτ = 1−α, and the coeffi cient of upper tail dependence is given by τUG = 2−2α

, while the coeffi cient of lower tail dependence is zero. Independence is achieved for α = 1, in this case

both tail dependence coeffi cients are zero.

In order to incorporate lower tail dependence, we use the survival Gumbel copula. For the bivariate

case3 it is defined as follows:

C
G
α (u, v) = u+ v − 1 + exp

(
−
[
(− log (1− u))

1
α + (− log (1− v))

1
α

]α)
(3.24)

α ∈ (0, 1] (3.25)

Its Kendall’s tau is given by ρτ = 1−α, and the coeffi cient of lower tail dependence is given by τLSG = 2−2α

while the coeffi cient of upper tail dependence is zero.

The symmetrised Joe-Clayton (SJC) copula. A bi-variate copula function that has both upper

and lower tail dependence is the ‘BB7’copula of Joe (1997), also known as the Joe-Clayton copula. It is

given by:

CJC
(
u1, u2 | τL, τU

)
= 1−

{
1−

[
(1− (1− u1)κ)−γ + (1− (1− u2)κ)−γ − 1

]− 1
γ

} 1
κ

where κ =
1

log2 (2− τU )
, γ = − 1

log2 (2− τL)
, and τU ∈ (0, 1) , τL ∈ (0, 1)

The two parameters of the Joe-Clayton copula are the coeffi cients of upper (τU ) and lower (τL) tail

dependence. As the above parameterization suffers from the drawback that even if both parameters are

equal, there is still some residual asymmetry due to the functional form, we consider its ‘symmetrised’

3See Theorem 4.7 in Cherubini et al. (2004) for dimensions bigger than 2.
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version, proposed by Patton (2004), given by:

CSJC
(
u1, u2 | τL, τU

)
=

1

2

[
CJC

(
u1, u2 | τL, τU

)
+ CJC

(
1− u1, 1− u2 | τL, τU

)
+ u1 + u2 − 1

]
Nested Archimedean copulas. Applying directly the Archimedean generator function in order to

obtain dependence functions for dimensions larger than 2 imposes the potentially implausible restriction

of a common dependence parameter across all dimensions. We thus revert instead to a nested version of

the dependence function in the family of Archimedean copulas (Whelan (2004), Embrechts et al. (2002)).

For our tri-variate application we obtain:

C (u1, u2, u3) = ϕ−1
2

(
ϕ2

(
ϕ−1

1 (ϕ1 (u1) + ϕ1 (u2))
)

+ ϕ2 (u3)
)

(3.26)

where we repeatedly nest bi-variate functions, and each generating function ϕi (ui) has its own dependence

parameter αi, with α1 ≤ α2, i.e. dependence is higher in the more deeply nested copula4.

The parsimonious structure of the Gumbel copula makes it a suitable candidate for a nested copula,

so we consider it in our application. We combine it in a mixture copula with its survival counterpart in

order to allow for potentially asymmetric extreme behavior.

The mixture copulas. Combining both Gumbel and survival Gumbel copulas in a mixture copula,

where each function is assigned a certain weight, is a way to construct a copula that has both lower

and upper tail dependence with different tail dependence coeffi cients. Following the Poon et al. (2004)

critique, and in order to allow for asymptotic tail independence, we include the Gaussian copula in this

mixture model, to obtain:

CGam (u;RGa, α, α, ω, ω) = ωCG (u;α) + ωC
G

(u;α) + (1− ω − ω)CGa (u;RGa) (3.27)

or the Student’s t copula:

Ctm (u;RT , υ, α, α, ω, ω) = ωCG (u;α) + ωC
G

(u;α) + (1− ω − ω)CT (u;RT , υ) (3.28)

where we are mixing the two extreme value copulas: the nested Gumbel copula CG (u;α), where α is the

vector of dependence parameters αi that determine upper tail dependence, the nested survival Gumbel

copula C
G

(u;α), where is α the vector of dependence parameters αi that determine lower tail dependence,

with two elliptic copulas: the Gaussian copula CGa (u;RGa) with correlation matrix RGa in (3.27), or the
4Usually the Gumbel copula parameter is defined as γ = 1

α
, γ ∈ (1,∞), and higher dependence will translate in higher

levels of γ. But for estimation purposes, we chose the alternative parametrization, using α ∈ (0, 1], so that higher dependence
requires a lower level of α.
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Student’s t copula with a correlation matrix RT and a degrees of freedom parameter υ in (3.28). The

key difference between the two mixture copulas consists in the fact that the one based on the Gaussian

copula allows for tail independence by setting the extreme value copula weights to zero, while for the

Student’s t case there is still some degree of tail dependence, even if the correlation parameter of the

Student’s t copula is zero. Thus, we achieve varying degrees of tail dependence or asymmetry. Further,

u = (u1, u2, ..., un)ᵀ is the vector of marginal CDFs of the random variables, and {ω, ω} ∈ [0, 1] , ω+ω ≤ 1

are the corresponding weights for the Gumbel and the survival Gumbel copulas.

4 MCMC estimation of the multivariate copula diffusion

The above construction of a stationary diffusion with a prespecified stationary density (3.1)-(3.5) poses

a serious estimation problem. Even though the invariant density is explicitly known, the problem is

with the unknown conditional density of the state variables. Thus, exact likelihood estimation cannot

be applied in this case. Ait-Sahalia (1999), Ait-Sahalia (2003) proposes closed-form expansions of the

likelihood function both for univariate and multivariate discretely sampled diffusions, based on Hermite

polynomials and Taylor expansion of some fixed order. While this method seems well suited for the

problem at hand, it could become too computationaly intensive in the cases where no explicit solutions for

the coeffi cients of the density approximation can be found. B.M.Bibby and Sorensen (1995) and Rydberg

(1999) propose another estimation technique that relies on approximating the conditional density by a

normal density and applying a martingale estimation technique. However, even though the martingale

estimator is consistent and asymptotically normally distributed, it rests ineffi cient. To solve this problem,

Tse et al. (2004) propose an alternative way of dealing with the problem of unknown transition density -

the MCMC estimation for a hyperbolic diffusion. Relying on a discretization of the underlying diffusion,

they apply a random-walk Metropolis Hastings algorithm in order to estimate parameters. However they

assume that the discrete time intervals given by observation times are accurate enough to approximate the

transition density. If the available data is not fine enough, this approach would introduce discretization

bias. A suitable alternative, much exploited in recent research, is data augmentation, i.e. introducing

latent data points between each pair of observations. This technique has been used in Pedersen (1995)

for simulated maximum likelihood estimation of diffusions, or in Jones (2003), Elerian et al. (2001),

Roberts and Strammer (2001), or Eraker (2001) for MCMC analysis. The simulated maximum likelihood

method relies on a discretization scheme such as the Euler sheme to approximate the one-period-ahead

transition density. The MCMC approaches on the other hand propose simulated paths of latent data

that bridge two consecutive observations, constraining both ends of the simulated path to be equal to

the actual data. Thus, conditioning on both the beginning and the end of each observation sub-period

reduces the variance of the simulated latent data and augments the effi ciency of the algorithm. However,

augmentation schemes are susceptible to causing slow rates of convergence of the resulting Markov chain
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due to the dependence between the latent data points and the volatility of the diffusion as the degree

of augmentation increases (known as the Roberts and Strammer critique). There have been several

remedies to this issue proposed in recent literature, as the particular transformation of the diffusion

process to one with constant volatility proposed by Roberts and Strammer (2001), the simulation filter

for multivariate diffusions of Golightly and Wilkinson (2006a) that builds upon the sequential parameter

estimation procedure of Johannes et al. (2004) for discrete-time stochastic volatility models, or the Gibbs

sampler of Golightly and Wilkinson (2006b) that iterates between updates of parameter and states and

relies upon conditioning on the Brownian increments instead of the underlying latent data in order to

overcome the dependence with volatility parameters.

The estimation scheme we propose to apply in the present setup relies on an MCMC estimation

algorithm with data augmentation for both the univariate and the multivariate diffusion specifications.

It follows the sequential inference procedure of Golightly and Wilkinson (2006a) and is closely related

to the work of Roberts and Strammer (2001) and Durham and Gallant (2002). As the augmentation

of the parameter and state space with latent data points is the corner stone in each MCMC algorithm

for diffusion estimation, we will first discuss the particular scheme that was chosen and the motivation

behind it.

4.1 Data augmentation

Let data be observed at times t0 < t1 < ... < tn−1 < tn with a time increment ∆τ = ti+1 − ti. Due
to the one-to-one mapping between each price Si and its corresponding state variable Xi, the latter are

observable. We divide each subinterval between observations in m equidistant points, so that we obtain

an augmented data matrix for the state variables X:

Xaug = [ Xt0,0 Xt0,1 ... Xt0,m Xt1,0 ... Xtn−1,0 ... Xtn−1,m Xtn,1 ],

where Xti,j is a d-dimensional vector of latent data points at time ti + j∆τ and Xti,0 is the vector of

observations at time ti. Note that the augmented data matrix could also consist of unobservable state

variables, whose treatment would be similar to that of the latent data. Thus, the estimation procedure is

applicable to a case when the X variables are latent and cannot be obtained directly from the observations

of the prices S.

Working with the Euler discretization of the process, the joint posterior of data and model parameters

θ is given by:

π (X; θ) ∝ π (θ)

tn−1∏
t=t0


m∏
j=1

π (Xt,j+1 | Xt,j ; θ)

 (4.1)

where π (θ) is the prior density for the parameter vector, and π (Xt,j+1 | Xt,j ; θ) = φ (Xi + µ (Xi) ∆t,Λ (Xi) Λ (Xi)
ᵀ ∆t)
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comes from the Gaussian transition density implied by the Euler discretization, where φ (µ̃, σ̃) denotes

the Gaussian density with mean µ̃ and covariance matrix σ̃.

Inference procedures that rely on a Gibbs sampler use the conditional posterior for parameters given

data and the conditional posterior of missing data given parameters and observations, rather than the

joint posterior (4.1), and iteratively propose parameters and missing data from each one of them, so that

the obtained simulated sequence of parameters and missing data (after an initial burn-in stage) forms a

Markov chain whose stationary distribution is the posterior in question. An alternative approach is the

joint update of parameters and states, which overcomes the problem of increasing correlation between the

volatility parameters and latent data as the degree of augmentation becomes large. But as it is virtually

infeasible to update all latent data in one single block, this sampling scheme can be applied in a sequential

manner, updating parameters and unobserved state variables as each observation becomes available.

A straightforward procedure for sampling the latent data points has been proposed by Eraker (2001).

It can easily deal with high-dimensional problems, including unobserved state variables. It consists of de-

signing an Accept-Reject Metropolis Hastings algorithm for updating one column of data at a time, where

the conditional posterior of one column of missing data is defined as π
(
Xi | X\i; θ

)
∝ p (Xi | Xi−1, Xi+1; θ)

following the Markov property of the diffusion. At each iteration h the algorithm proposes a latent data

point X∗i from some proposal density (Eraker uses a normal proposal q
(
· | Xh

i−1, X
h−1
i+1 ; θh

)
), which is

then accepted or not following the acceptance procedure of the Accept-Reject Metropolis Hastings algo-

rithm of Tierny (1994). The sampling scheme, proposed by Elerian et al. (2001), is essentially the same,

but instead of updating one column vector at a time, they propose updating blocks of missing data with

random size. However, increasing the number of imputed data points m, while reducing the discretization

bias of the Euler approximation, seems to adversely affect the mixing properties of the algorithm, (see

Roberts and Strammer (2001)), because of the increasing correlation of the diffusion parameters and the

simulated path as m increases. In fact, when the number of latent data points tends to infinity, one

could very precisely estimate the diffusion term by the quadratic variation, so that when updating the

diffusion parameter, its posterior distribution given the simulated latent path tends towards a point mass

at its previous iteration value, rendering it impossible to update the parameter. Roberts and Strammer

(2001) propose a reparametrization of the missing data that circumvents the problem of reducible data

augmentation. The basic idea behind their scheme is a construction of the latent path that does not

depend on the diffusion term. They apply the sampling algorithm on a univariate diffusion with constant

diffusion term, as well as on a reducible diffusion in the sense of Ait-Sahalia (2003) that has a determinis-

tic time-varying diffusion term, and that could be transformed to a constant volatility diffusion following

the Doss transformation. Their methodology could easily be extended to the estimation of a reducible

multivariate diffusion, such as the constant volatility specification considered in Kunz (2002), that is a

special case of the model we propose, but for a general multivariate diffusion as in (3.5) it is almost
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impossible to solve for the volatility transformation. Therefore, a more promising approach that would

be applicable for the multivariate specification we are proposing is the joint update of parameters and

states following the sequential MCMC method of Golightly and Wilkinson (2006a), as it does not rely on

a volatility transformation for the diffusion and at the same time overcomes the Roberts and Strammer

critique to data augmentation. As a direct draw from the joint posterior of the model’s parameters and

the latent state variables is virtually impossible due to the dimension of the state space, a solution to

proceed is to revert to Bayesian sequential filtering, devising an MCMC scheme that updates parameters

as each new observation becomes available. This idea has been exploited in Stroud et al. (2004), Johannes

et al. (2004), Liu and West (2001) among others. In what follows, we will briefly discuss the algorithm

that has been applied in Golightly and Wilkinson (2006a) for the estimation of a general multivariate

diffusion that was proved to have better convergence properties than the standard Gibbs sampler that

iteratively updates parameters and states.

4.2 The sequential parameter and state estimation scheme

Let us consider that we are at time tj+m = tM and that we observe Xtj+m = XtM , and also suppose that

we have a sample of size MC from the marginal parameter posterior distribution π
(
θ | Xtj

)
,where Xtj

denotes all the observed data up to time tj . As we are interested in sampling the set of parameters from

their marginal posterior π
(
θ | XtM

)
, we could do so by formulating the joint posterior for parameters

and latent data π
(
θ,XtM | XtM

)
and then integrating out the latter, where XtM denotes all the latent

data points up to time tM . Notice that the marginal parameter posterior at time tM can be rearranged

as follows:

π
(
θ | XtM

)
=

∫
Xaug
tM

π (θ)
M−1∏
i=0

π
(
Xaug
ti+1
| Xaug

ti
; θ
)

(4.2)

= π
(
θ | Xtj

) ∫
Xaug
tM
\
{
Xaug
tj

}M−1∏
i=j

π
(
Xaug
ti+1
| Xaug

ti
; θ
)

So that our target density at time tM would be

π
(
θ | XtM

)
= π

(
θ | Xtj

)M−1∏
i=j

π
(
Xaug
ti+1
| Xaug

ti
; θ
)

with the augmented data for the interval (tj , tM ) integrated out.

In order to sample from this target density, we need to devise a Metropolis-Hastings algorithm that

will propose parameter and latent data points and will accept or reject those proposals given a certain

probability.
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4.2.1 The parameter proposal

We follow Golightly and Wilkinson (2006a) and Liu and West (2001) and form the proposal for the

parameter set θ using a kernel density estimate of the marginal parameter posterior π
(
θ | Xtj

)
with the

kernel shrinkage correction of Liu and West (2001) that takes care of the over-dispersion of the kernel

density function compared to the posterior sample. Thus, we draw the proposal sample of parameters

from the following density:

θ∗ ∼ φ
(
αθu + (1− α) θ, h2V

)
(4.3)

α2 = 1− h2

h2 = 1− ((3δ − 1) /2δ)2

for a discount factor δ, where φ denotes the Gaussian density, and u is an integer that has been drawn

uniformly from {1, 2, ...,MC}. This parameter proposal scheme simplifies considerably the expression for
the acceptance probability, as at each observation time tj we sample from the previous posterior density

π
(
θ | Xtj

)
, so that it will enter both the target posterior density and the proposal, and thus be cancelled

out in the calculation of the acceptance probability.

4.2.2 The latent data points proposal

The idea behind the proposal density q from which the proposal latent data points will be sampled is

that it should satisfy sup (q) ⊆ sup (p) where p denotes the target density π in its unnormalized form. A

good proposal would be one that makes the ratio p/q as close to a constant as possible. This is especially

important for independence samplers, as the one used in this setting, as pointed out in Tierny (1994), in

order to avoid that the algorithm spends too much time in a certain region of parameter space that it

explores.

A proposal for latent data that has been discussed in Durham and Gallant (2002), and implemented

in Roberts and Strammer (2001), and Golightly and Wilkinson (2006a) among others, is the Modified

Diffusion Bridge proposal, based on an Euler scheme for the transition density. The idea behind it is

quite simple: a Brownian bridge is in fact a Brownian motion that is conditioned upon terminating at

a specific value within the interval of interest, that is, it bridges the values at each end of the interval.

Using such a Brownian bridge is a way to reduce variance in Monte Carlo integration and Durham and

Gallant (2002) show that it compares nicely to other transition density approximations like the Milstein
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scheme. Thus, the proposal for the latent data points takes the form:

q
(
Xti+1 | Xti , XtM ; θ

)
= φ

(
Xti+1 , Xti + µ̃i, σ̃i

)
(4.4)

where µ̃i =
1

M − i
(
XtM −Xti

)
σ̃i = ∆t

1

M − i (M − i− 1) Λ (Xti)

where φ denotes the Gaussian density and Λ (Xti) is the volatility term of the process for X. Thus for

each iteration s = 1, ...,MC we sample a latent data path X∗tj , ..., X
∗
tM−1

, so we have the joint proposal

sample (
X∗tj , ..., X

∗
tM−1

; θ
)
∼ π

(
θ | Xtj

)M−2∏
i=j

q
(
X∗ti+1

| X∗ti , X
∗
ti , XtM ; θ

)
(4.5)

A Metropolis-Hastings algorithm moves as follows: provided that we have obtained the proposed

sample at iteration s and that we have a parameter and latent state sample obtained from the previous

iteration s− 1, we decide whether to keep the parameters and latent data from the previous iteration or

alternatively replace them with the ones from the proposal. To this end we form the ratio

A =
p (X∗s , θ

∗
s) q̃ (Xs−1, θs−1)

p (Xs−1, θs−1) q̃ (X∗s , θ
∗
s)

where (X∗s , θ
∗
s) =

(
X∗tj , ..., X

∗
tM−1

; θ∗
)
s
is the proposed sample at iteration s, (Xs−1, θs−1) =

(
Xtj , ..., XtM−1 ; θ

)
s−1

is the previously accepted sample at iteration s− 1, p denotes the target posterior density in its unnor-

malized form, and q̃ is the proposal density (4.5). Replacing all terms in the expression, we obtain for

the ratio A:

A =

M−1∏
i=j

π
(
X∗ti+1

| X∗ti ; θ
∗
)M−2∏

i=j

q
(
Xti+1 | Xti , Xti , XtM ; θ

)
M−1∏
i=j

π
(
Xti+1 | Xti ; θ

)M−2∏
i=j

q
(
X∗ti+1

| X∗ti , X
∗
ti
, XtM ; θ∗

) (4.6)

The standard Metropolis Hastings algorithm then accepts the new draw with probability α = min (1, A),

or else the draw is rejected and the last accepted draw is retained.

4.2.3 The algorithm

The algorithm for carrying out the Metropolis-Hastings scheme for sampling from the conditional posterior

of parameters and latent data can be summarized as follows:

Initialization. Set j = 0. Initialize the augmented data points for each of the s = 1, ...,MC iterations

by linearly interpolating between observations for the first interval. Initialize the parameter set for all s
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by sampling from a prior density π (θ).

1. For each s = 1, ...,MC :

• Propose the parameters θ∗ using (4.3)

• Propose the latent data Y ∗ for the interval (tj , tj+m) using (4.4) for each i = j + 1, ...,M − 1

• Accept the parameter and latent data proposal with probability α = min (1, A) with A given by

(4.6), and set (Xs, θs) = (X∗s , θ
∗
s), or else set (Xs, θs) = (Xs−1, θs−1).

2. Set j = j +m and go to (1).

The resulting draws of latent data and parameters form a Markov chain, whose stationary distribution

after an initial burn-in period is given by (4.1). The number of imputed data points that are needed could

be determined by running the sampler for low values of m and consequently increasing the discretization

points until there is no significant change in the posterior parameter samples.

4.2.4 Convergence

In order to assess the accuracy of the parameter estimates obtained as ergodic averages of the form

θ̂MC = 1
MC

MC∑
i=1

(
θi
)
we estimate their variance σ2

θ using the batch-mean approach (see Roberts (1996) and

Tse et al. (2004)). To this end, we run the MCMC scheme for MC = m × n iterations with m batches

of n draws each. We compute the mean of each batch k = 1, ...,m with θ̂k = 1
n

∑kn
i=(k−1)n+1

(
θi
)
. Then

we obtain an estimate of σ2
θ using:

σ̂2
θ =

n

m− 1

m∑
k=1

(
θ̂k − θ̂MC

)2
(4.7)

and the Monte Carlo standard errors are obtained as
√

σ̂2
θ

MC .

As well, as a diagnostic tool that allows us to see how well the Markov chain mixes, we compute

the simulation ineffi ciency factor (SIF) (see Kim et al. (1998)), estimated as the variance of the ergodic

averages σ2
θ, divided by the variance of the sample mean from a hypothetical sampler that draws inde-

pendent random variables from the parameter posterior. In order to compute the latter variance, we use

the output of the MCMC runs, as in Tse et al. (2004), and obtain σ2
θ = 1

MC−1

MC∑
i=1

(
θi − θ̂MC

)2
so that

the SIF is estimated as:

SIF =
σ̂2
θ

σ2
θ

(4.8)
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4.2.5 Model comparison through Bayes factors

In order to compare the estimated multivariate diffusion models of asset returns, we follow the traditional

Bayesian approach that makes use of the marginal likelihood of each (potentially nonnested) model. The

marginal likelihood is obtained by integrating the likelihood function of each modelMi with respect to

the prior density:

p (X | Mi) =

∫
p (X | θi,Mi) p (θi | Mi) dθi

where θi are the parameters, corresponding to modelMi. Then the Bayes factors for comparing model

Mi againstMj are simply the ratio of the marginal likelihoods:

Bij =
p (X | Mi)

p (X | Mj)
(4.9)

We use the Laplace-Metropolis estimator of the marginal likelihood, proposed by Lewis and Raftery

(1997) that relies on the posterior simulation output from the individual estimation of each model and

approximates the integral using the Laplace method. Let us denote by θ∗i the posterior parameter mean

(or any other high density point of the parameter posterior). Then the logarithm of the marginal likelihood

is estimated as:

log (p (X | Mi)) ≈
d

2
log (2π) +

1

2
log (|H∗|) + log (p (θ∗i )) + log (p (X | θ∗i ,Mi))

where d is the dimension of the diffusion, p (θ∗i ) is the parameter prior under modelMi, H∗ is the inverse

Hessian of log (p (θ∗i ) p (X | θ∗i ,Mi)), |H∗| is its determinant, and p (X | θ∗i ,Mi) is the likelihood function,

evaluated at θ∗.

Lewis and Raftery (1997) propose to estimate H∗ by the sample covariance matrix of parameters

from the MCMC output, so the only quantity that is left to be estimated is the likelihood function. The

most straightforward estimator would be the one proposed by Pedersen (1995) that consists in averaging

over the transition density implied by the Euler discretization. But as estimation was done by exploiting

the information in both ends of each observation interval, a more effi cient approach would be one that

is similar to the Metropolis-Hastings update used for latent data. Elerian et al. (2001) discuss a class of

importance sampling estimators of the likelihood function of the form:

p
(
XtM | Xtj ; θ

)
=

∫
p
(
XtM , XtM | Xtj ; θ

)
q
(
XtM | Xtj , XtM ; θ

)q (XtM | Xtj , XtM ; θ
)
dXtM

for an interval between two successive observations XtM and Xtj . Thus, the modified Brownian bridge

proposal density that we used for the Metropolis-Hastings update could be used in this setup as the
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importance density q, which leads us to the following estimator of the likelihood function:

p̂
(
XtM | Xtj ; θ

)
=

1

M

M∑
k=1

p
(
XtM , X

k
tj | Xtj ; θ

)
q
(
Xk
tj
| Xtj , XtM ; θ

)
where Xk

tj , k = 1, ...,M is a set of latent vectors between each pair of observations.

5 Estimation results

Although a joint estimation of each of the multivariate models is feasible, we propose to use a two-step

procedure, as this allows us to choose the appropriate marginal distribution for each data series. Such

a two-step approach is commonly used in discrete-time copula models (Patton (2004)), as it allows to

avoid model misspecification. A two step approach is possible in our continuous time setup as well, as a

system of independent univariate diffusions is obtained under the product copula, assuming an identity

correlation matrix for the diffusion term.

5.1 Univariate diffusion

The copula construction leaves us the freedom to choose the most appropriate marginal distribution for

each univariate series. A Bayes factors comparison selects a NIG distribution for small and large caps,

and GH for Mid caps. Table 1 summarizes the estimation results for the parameters specific to each

univariate series.

It is interesting to note that the parameter κ for all three series of data is different from 0 or 1,

which would correspond to either a constant volatility diffusion for the state variables (κ = 0) or a zero

drift diffusion (κ = 1). Further analysis of the MCMC output is offered on Fig. 1, Panels A through

C, where we present the sample paths of each estimated parameter for the three data series, as well as

autocorrelation plots for a lag up to 100, and kernel density estimate of the posterior parameter output.

We do not have any significant autocorrelation for any of the parameters, which is a consistent result

with Golightly and Wilkinson (2006a), who show a significant reduction in sample autocorrelations of

the Simulation Filter as compared to the Gibbs sampler.

In order to examine whether the proposed diffusion replicates certain dynamic properties of the data,

we simulate a very long series (of length 100 000) from the univariate NIG diffusion model for log prices

Xit (3.16) and parameters corresponding to the Large cap series in Table 1, and examine the implied

properties of their increments5. A stylized fact of asset returns is the persistence in autocorrelation in

squared returns in contrast to the lack of autocorrelation in the original return series (except for possibly

5Similar results are obtained for the rest of the univariate data series considered.
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Table 1. Parameter estimates for the univariate series

The table summarizes the posterior parameter estimates from the MCMC output. Monte Carlo standard errors
are reported in paranthesis (multiplied by a factor of 1000) (obtained using the batch-mean approach). SIF refers
to the simulation ineffi ciency factor for each parameter (its integrated autocorrelation time).

Smallcap Midcap Largecap
α 3.0502 18.7839 10.6904
(MC s.e.) (0.1616) (0.5220) (0.2193)
(SIF) (0.0938) (0.6694) (0.6912)
β -0.5911 0.4476 -1.5737
(MC s.e.) (0.6329) (2.9453) (1.5404)
(SIF) (0.1104) (1.5392) (1.7637)
δ2 0.0301 0.0721 0.0410
(MC s.e.) (0.0024) (0.0011) (0.0031)
(SIF) (0.1219) (1.0535) (1.8122)
µ 6.7059 6.3101 6.5360
(MC s.e.) (0.0249) (0.0129) (0.0102)
(SIF) (0.1038) (0.5407) (0.4991)
σ2 0.0406 0.0400 0.0082
(MC s.e.) (0.0022) (0.0030) (0.0006)
(SIF) (0.1142) (1.4686) (1.2930)
κ 0.6490 0.4670 0.5102
(MC s.e.) (0.0373) (0.0235) (0.0850)
(SIF) (0.0955) (1.4322) (1.7551)
λ 0.5 -1.4295 0.5
(MC s.e.) - (0.0519) -
(SIF) - (1.1704) -
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the first lag). If we examine the autocorrelation patterns in the data and the long simulated series, we

find that this property is actually captured by the model, as displayed on Fig. 2.

This finding is not surprising, if we consider the fact that the Euler discretization of a univariate

diffusion of the generalized hyperbolic family can be considered as a special case of a nonlinear ARCH

model Tse et al. (2004), and thus it can be expected to exhibit volatility clustering and long memory

properties. The same behaviour is preserved in the multivariate specification as well.

Another important aspect of our analysis is the fit of each of the univariate diffusions to the empirical

distribution of the data, as they provide the inputs for the probability integral transform in the copula

construction. Fig. 3 illustrates the close replication of the stationary distribution by the considered

marginal processes.

We further test the volatility specification of the model in (3.5) against a non-parametric estimator

of the squared diffusion coeffi cient Vn (x), based on quadratic variation, as proposed in Florens-Zmirou

(1993):

Vn (x) =

∑n
j=1 1∣∣∣Xi,tj−x∣∣∣<h

(
Xi,tj −Xi,tj−1

)2∑n
j=1 1∣∣∣Xi,tj−x∣∣∣<h (tj − tj−1)

with a bandwidth parameter h. Fig. 4 displays the fit of the volatility specification for each of the

univariate models. The U-shaped parametric volatility form (3.5) matches closely the non-parametric

estimator. A constant volatility specification (achieved by setting κi to zero) would thus underestimate

volatility in the cases when returns are in either tail of the distribution and fail to reproduce the empirical

stylized fact that returns are highly volatile in extreme market downturns.

A check of the fit of the univariate models is done via the dynamic probability integral transform

that uses the transitional probabilities of the discretized version of the diffusion between two consecutive

observations with the Euler discretization scheme. For the model to be well specified, the series of uniform

residuals should be i.i.d.U(0, 1). The residuals could then be analyzed using quantile plots, as illustrated

on Fig. 5. A formal test could be conducted using the the statistic stat = −2
∑n

i=1 logUi ∼ χ2
2n, following

Bibby and Sorensen (1997). For 3997 observations, the test statistic for the Small caps is 7.8677e+003,

for the Mid cap it is 7.8797e+003, and for the Large cap it is 8.1278e+003, none of which gives reasons

to reject the correct model specification.

5.2 Evidence of asymmetric tail dependence captured by a copula diffusion

Having obtained estimates of the univariate marginal distributions for each data series, we now turn to

estimating the model parameters that pertain to the dependence structure. The bi-variate quantile plots

for all three couples of data on Fig. 1 have shown a substantial degree of quantile ‘near’tail dependence

that does not fade away as we approach the tails of the distribution, especially the left one. As well, the
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Figure 2. Autocorrelation plots for simulated and actual return series

Autocorrelation functions for the observed return series (Large cap). The top panel shows autocorrelation in
returns, the bottom —autocorrelation in squared returns.
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Autocorrelation functions for one of the simulated return series from the univariate diffusion with parameters for
Large cap with length 100 000 using the Euler discretisation. The top panel shows autocorrelation in

returns(Large cap), the bottom —autocorrelation in squared returns.
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Figure 5. A formal check of the univariate diffusion models

Quantile plots and autocorrelation plots of the uniform residuals for each of the univariate diffusion models.
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non-parametric test of exceedence correlations symmetry with exceedence levels chosen close to the tails,

whose results are shown in Table 1, rejects symmetry for all couples of data, except the Large cap - Mid

cap couple, for which exceedence correlations are high for both tails. In what follows, we verify whether

a multivariate copula diffusion model could reproduce these properties of the data.

A good candidate for the purpose of modeling an asymmetric tail behaviour is the bi-variate Sym-

metrised Joe-Clayton copula, discussed in previous sections. It has two parameters, each one directly

linked to the upper or lower tail dependence coeffi cient. So before we estimate a bi-variate diffusion model

based on this copula function, let us first look at the levels of tail dependence that could be achieved

through it. In order to do so, we need to obtain the levels of its parameters, implied by the data, so

we first estimate the copula parameters from the unconditional distribution of each couple of the CRSP

size indices. We apply the Canonical Maximum Likelihood estimation method which consists in first

transforming the data into uniform variables using the empirical distribution, that is without imposing

any parametric restrictions on the univariate marginals, and then estimating the copula parameters θ

with MLE:

θ̂ = arg max
θ

T∑
t=1

ln c
(
F̂i (xi) , F̂j (xj) ; θ

)
, i, j = 1, 2

where F̂i (xi) is the empirical CDF of xi, and c (·) is the chosen parametric copula function. We estimate
the copula parameters for two choices of copulas - the tail independent Gaussian and the asymmetric tail

dependent SJC copula. Then for each dependence function we trace quantile plots (Fig. 6), where the

levels of quantile dependence are obtained using (2.10), which are then contrasted against the quantile

plots for the data itself.

The coeffi cients of upper and lower tail dependence for the Large cap - Mid cap couple are both high,

which corresponds to the symmetric tail behaviour in terms of exceedence correlations that we reported

in Table 1. However, the upper tail coeffi cients for the other two couples of data are low, especially for the

Large cap - Small cap couple, where τU = 0, while the lower tail dependence coeffi cients are significantly

higher, confirming the evidence of asymmetric tail behaviour. The quantile dependence plots for the SJC

copula are closer to the data, while those corresponding to a Gaussian copula deviate from it, especially

in the left tail, where Gaussian dependence fades away for decreasing quantile levels.

Using the Simulation MCMC filter, we further estimate the bi-variate diffusion whose stationary

distribution has a dependence structure governed by the asymmetric tail SJC copula. We keep the

univariate marginal distribution parameteres fixed at their estimated values from the previous section.

Results are reported in Table 2.

Note that the estimates of the upper and lower tail dependence parameters for the diffusion models

are fairly close to the values obtained for the unconditional distribution, estimated using the Canonical
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Table 2. Parameter estimates for a bivariate Symmetrised Joe-Clayton copula diffusion

The table summarizes the posterior parameter estimates from the MCMC output. Monte Carlo standard errors
are reported in paranthesis (multiplied by a factor of 1000) (obtained using the batch-mean approach). SIF refers
to the simulation ineffi ciency factor for each parameter (its integrated autocorrelation time).

Large cap - Mid cap Large cap - Small cap Small cap - Mid cap
τU 0.4171 0.0484 0.1835
(MC s.e.) (0.1568) (0.1209) (0.1934)
(SIF) (0.2890) (1.0160) (0.5710)

τL 0.6724 0.2700 0.6602
(MC s.e.) (0.1585) (0.2359) (0.0608)
(SIF) (1.0040) (1.0279) (1.1880)

ρ 0.5968 0.6514 0.6682
(MC s.e.) (0.0107) (0.0049) (0.0050)
(SIF) (1.4428) (0.9354) (2.0860)

Maximum Likelihood with uniform variates from the empirical distribution. Tail asymmetry is found for

all couples of data except for the Large cap - Mid cap couple, for which both tails show high dependence.

The obtained parameter estimates are then used to simulate long series from each of the three SJC

copula diffusions. Further, we calculate the levels of quantile dependence for each bi-variate series using

(2.10). From each bundle of simulated series and their corresponding levels of quantile dependence, we

then determine the obtainable degrees of dependence for each quantile level in bands between the 5th

and the 95th percentile. Thus, for each quantile level we show the degrees of quantile dependence that

can be reached in 90% of the cases with a SJC copula diffusion. Results are presented on Fig. 7.

For the case of the Large cap - Mid cap couple, quantile dependence implied by the data generally

falls within the bounds reachable under the estimated parameters for the SJC copula, with the exception

of the extreme left tail, which would require an even higher left tail dependence parameter in order to

acommodate the dependence found in the data. For the other two couples, the parameters for the SJC

diffusion can reasonably well replicate the quantile dependence for the left tail.

5.3 A generalization to higher dimensions

Even though the SJC copula is intuitively appealing as its parameters are directly linked to the coeffi cients

of upper and lower tail dependence, it cannot be generalized in a straightforward manner to a higher

dimension. That is why we turn to copula functions in the Archimedean family that allow an extension

to higher dimensions without imposing symmetry. A first specification we consider is that of a nonnested

Gumbel copula (3.23) and its survival counterpart (3.24). In this case the same parameter α governs the

dependence structure for all n random variables.

Next, we consider a nested specification in order to allow for different dependence parameters among
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couples with the highest dependence being achievable for the most deeply nested couple. The three-variate

nested Archimedean copula, expressed in turms of the copula generator and its inverse is given by (3.26).

Thus, we pick up the size decile couple that has the highest dependence and model it as the most deeply

nested couple. The generating function for this couple is ϕ1 with a dependence parameter α1. Thus we ob-

tain the first copula, C (u1, u2;α1) = ϕ−1
1 (ϕ1 (u1) + ϕ1 (u2)). We then couple it with the third remaining

data series using a second generating function ϕ2 with a dependence parameter α2 that implies lower de-

pendence than α1 and obtain the nested copula C (u1, u2, u3;α1, α2) = ϕ−1
2 (ϕ2 (C (u1, u2;α1)) + ϕ2 (u3)).

This subsequent nesting of generating functions requires that they are quite parsimonious in nature in

order to keep the resulting copula function tractable. The Gumbel copula that we use is a good candi-

date for that. In our application we use either of the size decile couples as the most deeply nested one,

although the most fitted couple for that is the Large cap - Mid cap one, as it implies high dependence in

both tails.

In all cases we consider the mixture copula function as defined in (3.27) which combines the two

extreme value Gumbel copulas with the tail independent Gaussian one.If the estimate of the weight for

the Gaussian copula goes close to 1, then our series is asymptotically independent. Otherwise there is

some degree of dependence in either of the tails, depending on the weighting of the Gumbel copula or its

survival counterpart. As well, in order to allow for richer parameterization of the dependence structure,

we consider a mixture copula of the two extreme value ones with the Student’s t as in (3.28). In this case

we always have asymptotic dependence, unless the degrees of freedom parameter of the t-copula goes to

infinity.

Estimation results for the multivariate diffusion with a Gaussian dependence structure is given in the

first column of Table 3. Then we add the three alternative cases of a diffusion with tail dependence as

implied by the nested mixture copula ((3.27) with nested Gumbel and Survival Gumbel), and finally we

consider the most parsimonious specification where there is only one parameter that determines upper

tail dependence, and one for lower tail dependence ((3.27) with non-nested Gumbel and Survival Gumbel

copulas).

The relatively high and symmetric lower and upper tail dependence coeffi cients for the Mid-Large

cap couple that we found earlier are confirmed in the estimation results for the nested Gaussian-Gumbel-

Survival Gumbel diffusion for the case where it is most deeply nested in the copula specification (Table

2, second column). The two parameters that determine upper and lower tail dependence for this couple,

αG1 and αG1 respectively, are almost equal, pointing to tail symmetry. As well, for this particular couple

we have τUG = 0.7712 and τLG = 0.7150, indicating close symmetry in both tails. Further, for the two

alternative cases for which Large-Small or Mid-Small are the most deeply nested couples, the lower

tail dependence parameter αG1 is lower than the upper tail dependence parameter αG1 , indicating higher

dependence in the left tail, again confirming the previously found evidence.
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Table 3. Parameter estimates for the dependences structure (tri-variate diffusion,
Gaussian underlying)

Estimation results for the trivariate diffusions using the Gaussian copula, the nested Gaussian-Gumbel-Survival
Gumbel (Ga-G-SG) mixture copula (the most deeply nested couple is given in paranthesis), the nonnested Gaussian-
Gumbel-Survival Gumbel (Ga-G-SG) mixture copula. Monte Carlo standard errors (multiplied by a factor of 1000),
and Simulation Ineffi ciency Factors (SIF) are given in paranthesis. The first three parameters (R12, R13, R23)
correspond to the off-diagonal entries of the correlation matrix RGa for the Gaussian copula. The parameters αG1
and αG2 are the dependence parameters for the nested Gumbel copula, and the parameters αG1 and αG2 are the
dependence parameters for the nested Survival Gumbel copula. For the nonnested case, the relevant parameters
are αG1 for the Gumbel copula and αG1 for the Survival Gumbel copula. ωG and ωG are the corresponding weights
for the Gumbel and the survival Gumbel copula for the mixture model. The parameters ρ12, ρ13 , and ρ23 are the
off-diagonal entries of the correlation matrix in the diffusion specification. Results are obtained for 50000 Monte
Carlo replications with a thinning factor of 5 with 10 latent data points simulated between each pair of observations.

Gaussian Ga-G-SG Ga-G-SG Ga-G-SG Ga-G-SG
(Large-Mid cap) (Large-Small cap) (Small-Mid cap) (nonnested)

R12

MC s.e.
SIF

0.5671
0.3701
0.8621

0.5347
0.3326
1.0437

0.4636
0.7224
2.3408

0.6634
0.6114
0.6891

0.5758
0.3537
0.9540

R13

MC s.e.
SIF

0.2723
0.7875
0.7359

0.5179
0.4191
0.7188

0.7443
0.6868
2.7202

0.3907
0.4915
0.8441

0.2571
0.5131
0.7251

R23

MC s.e.
SIF

0.5207
0.4399
0.9162

0.4152
0.3302
1.6992

0.6110
0.6260
0.8855

0.3085
0.5521
1.2236

0.4698
1.3536
1.5260

αG1
MC s.e.
SIF

-
-
-

0.2972
0.3546
0.5754

0.3358
0.8711
1.5005

0.3318
0.3463
1.5945

0.4494
0.3541
1.2328

αG2
MC s.e.
SIF

-
-
-

0.6335
0.1928
0.9156

0.6238
0.4072
2.6644

0.7235
0.7235
1.0750

-
-
-

αG1
MC s.e.
SIF

-
-
-

0.3618
0.1998
0.2375

0.1993
0.3006
1.8385

0.2613
0.5387
1.3787

0.4354
1.0229
1.6558

αG2
MC s.e.
SIF

-
-
-

0.6544
0.4667
0.8040

0.6415
0.3408
1.0323

0.6107
0.7371
1.1141

-
-
-
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Table 3 cont.

Gaussian Ga-G-SG Ga-G-SG Ga-G-SG Ga-G-SG
(Large-Mid cap) (Large-Small cap) (Small-Mid cap) (nonnested)

ωG

MC s.e.
SIF

-
-
-

0.3321
1.0111
2.0983

0.2107
0.5641
1.3229

0.2431
0.3543
0.8943

0.3832
0.7265
1.0348

ωG

MC s.e.
SIF

-
-
-

0.2853
0.3789
1.4739

0.2752
0.2519
0.7950

0.2531
0.6596
1.2326

0.2324
0.3619
2.1457

ρ12

MC s.e.
SIF

0.7894
0.0195
1.2371

0.7917
0.0086
0.2271

0.7795
0.0080
0.7370

0.6935
0.0095
0.6121

0.8287
0.0104
1.2730

ρ13

MC s.e.
SIF

0.5078
0.0189
0.8625

0.5089
0.0229
0.9588

0.5185
0.0291
1.5205

0.4685
0.0236
0.5720

0.5499
0.0105
0.6771

ρ23

MC s.e.
SIF

0.7162
0.0209
0.8581

0.7158
0.0067
0.7418

0.6760
0.0102
1.1571

0.5676
0.0159
0.9287

0.7366
0.0137
1.1969

When we consider the multivariate diffusion with extreme dependence modeled with the non-nested

version of the Gumbel and Survival Gumbel copulas, we find almost symmetric tail dependence (the

values for the parameters αG1 and α
G
1 imply tail dependence coeffi cients of τ

U
G = 0.6345 and τLG = 0.6477).

As in this case there is only one parameter governing dependence in either the left or the right tail accross

all data series, extreme dependence for some couples may be over/underestimated.

Table 4 reports the results when we replace the Gaussian copula with a Student’s t one (see (3.28)).

As with the case of the Gaussian copula in the mixture model, here again the parameters, driving

upper and lower tail dependence for the most deeply nested couple (the Large-Mid cap one) are very

close, and imply tail coeffi cients of τUG = 0.7870 and τLG = 0.7917.

5.4 Model selection through Bayes factors

The multivariate diffusion models considered above imply different dependence structures through their

stationary distributions. Bayes factors provide us with a guideline of how to select a model among

the provided alternatives. So far we have seen that the mixture model with either a Gaussian or a t-

copula, combined with the nested version of the extreme value Archimedean copulas provide the richest

specification in terms of tail dependence modeling. In what follows we verify whether either of those

models is selected vs. a more parsimonious alternative on the basis of the Bayes factor criterion.

We compute the log of Bayes factors, following (4.9) as log (p (Y | Mb)) − log (p (Y | Mj)). As a

benchmark model (Mb) we take either the Gaussian or the Student’s t - extreme value nested mixture

copula diffusion (with the Large-Mid cap couple being the most deeply nested one).The alternatives
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Table 4. Parameter estimates for the dependences structure (tri-variate diffusion, Stu-
dent’s t underlying)

Estimation results for the trivariate diffusions using the Student’s t copula, the Student’s t —nonnested Survival
Gumbel mixture copula, and the Student’s t —nested Gumbel - Survival Gumbel mixture copula (the most deeply
nested couple is given in paranthesis). Monte Carlo standard errors (multiplied by a factor of 1000), and Simulation
Ineffi ciency Factors (SIF) are given in paranthesis. The first three parameters (R12, R13, R23) correspond to the
off-diagonal entries of the correlation matrix RT for the Student’s t copula. The parameters αG1 and αG2 are
the dependence parameters for the nested Gumbel copula, and the parameters αG1 and αG2 are the dependence
parameters for the nested Survival Gumbel copula. For the nonnested case, the relevant parameters are αG1 for the
Gumbel copula and αG1 for the Survival Gumbel copula. ωG and ωG are the corresponding weights for the Gumbel
and the survival Gumbel copula for the mixture model. γ is the degrees of freedom parameter for the Student’s
t copula. The parameters ρ12, ρ13 , and ρ23 are the off-diagonal entries of the correlation matrix in the diffusion
specification. Results are obtained for 50000 Monte Carlo replications with a thinning factor of 5 with 10 latent
data points simulated between each pair of observations.

t t-G-SG t-SG
(Large - Mid cap) (nonnested)

R12

MC s.e.
SIF

0.4408
0.5433
1.3619

0.2574
1.4015
0.7629

0.5266
0.6040
1.3392

R13

MC s.e.
SIF

0.5273
0.6911
0.9564

0.2362
0.9873
1.0469

0.4154
0.6353
0.8209

R23

MC s.e.
SIF

0.3334
0.5146
1.1373

0.3161
0.5147
1.1320

0.4461
0.9027
0.9049

αG1
MC s.e.
SIF

-
-
-

0.2786
0.2191
0.5660

-
-
-

αG2
MC s.e.
SIF

-
-
-

0.6570
0.5395
1.0512

-
-
-

αG1
MC s.e.
SIF

-
-
-

0.2730
0.2961
0.6114

0.3434
0.5440
0.7326

αG2
MC s.e.
SIF

-
-
-

0.6660
0.5939
1.3265

-
-
-
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t t-G-SG t-SG
(Large - Mid cap) (nonnested)

ωG

MC s.e.
SIF

-
-
-

0.5118
0.4382
0.7870

-
-
-

ωG

MC s.e.
SIF

-
-
-

0.1529
0.2248
1.4495

0.2829
0.9130
1.9105

γ
MC s.e.
SIF

5.4774
4.8170
0.8904

3.9575
2.4907
0.7732

4.8266
5.8874
0.9437

ρ12

MC s.e.
SIF

0.8184
0.0074
0.3969

0.7837
0.0223
1.1166

0.8166
0.0171
1.2428

ρ13

MC s.e.
SIF

0.5113
0.0286
1.5033

0.4922
0.0296
0.9770

0.5522
0.0085
0.6370

ρ23

MC s.e.
SIF

0.7165
0.0085
0.3875

0.7045
0.0129
0.8620

0.7372
0.0092
0.6073

considered (Mj) are the tail independent Gaussian diffusion, the symmetric tail dependent t-copula

diffusion, or any of the non-nested specifications considered. Results are provided in Table 5.

The Bayes factor selection criterion suggests that the extreme value nested mixture copulas should

be selected. As well, the more parsimonious dependence structure, implied by the nonnested copulas is

highly detrimental to the models, at least for the purposes of selection through Bayes factors.

Further, when we compare the two nested mixture models, Bayes factors point in favour of the

Student’s t mixture copula, with a value for the log of the Bayes factor of 9.06 when the latter is taken

as the benchmark Mb. But still this is far from the significantly higher values of the factors when the

other alternative models are considered. This is not surprising, as the two nested mixture models are

close in the way they treat the dependence structure, while the model with the Student’s t underlying

copula provides a more versatile way to account for dependence between extreme realizations.

6 Discussion and concluding remarks

In this paper we introduce a multivariate diffusion model for stock prices based on copula functions that is

able to reproduce a number of stylized facts for both the univariate return series and the dependence struc-

ture. It extends the univariate stationary diffusion modeling based on the Generalized Hyperbolic family

of distributions that has proved successful in replicating dynamic return characteristics as a slowly decay-
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Table 5. Bayes factors

Log Bayes factors for tri-variate difffusions with dependence modeled using alternative copula functions. Benchmark
models (Mb) are those involving the mixed copula diffusions with an Elliptic copula and the nested version of the
extreme value Gumbel - Survival Gumbel copulas (Large-Mid cap being the most deeply nested couple). Two
choices for the Ellitic copula are considered: the Gaussian one (Gauss-G-SG), and the Student’s t one (t-G-SG).
The four alternative diffusions (Mj , j = 1, ..., 4) are a Gaussian, a Student’s t (t), and two nonnested versions of
the mixture copula diffusion: the Gaussian-Gumbel-Survival Gumbel (Gauss-G-SG (nonnested)) and the Student’s
t - Survival Gumbel (t-SG (nonnested)).

Gaussian t Gauss-G-SG t-SG
(nonnested) (nonnested)

Gauss-G-SG (Large - Mid cap)
Bayes factors 206.52 208.67 464.89 386.32
t-G-SG (Large - Mid cap)
Bayes factors 215.58 217.73 473.95 395.02

ing autocorrelation function of squared returns (or volatility clustering effect, as alternatively modeled

under stochastic volatility or an ARCH process), or static properties like thick tails and excess kurtosis.

Seeking to reproduce increased dependence when there are extreme market downturns, we extend the

copula-GARCH approach to a continuous-time diffusion framework where the stationary distribution of

the process if modeled using a copula function that can account for tail dependence.

There are a number of ways in which the model can be extended. There is overwhelming empirical

evidence that the correlation of asset returns changes dynamically through time. Popular discrete time

approaches include the GARCH-DCC model of Engle (2002), while in continuous time a promising

alternative is the Wischart process of Bru (1991). Our present model specification imposes constant

conditional correlation for asset returns. It can be extended to a more general model where correlation

is modeled as either a function of the state variables of the model itself, or rendered stochastic by being

represented as a function of exogenous factors. There is empirical evidence that the dynamics of asset

return correlations are linked to the phase of the business cycle and tend to increase in periods of recession

(e.g. Ledoit et al. (2003) and Erb et al. (1994)). As well, Longin and Solnik (1995) find that correlations

for international stock market indices increase during hectic periods of high volatility.

Another possible extention concerns the dependence structure of the assets, modeled through a copula

function. The present specification assumes that the parameters governing dependence are fixed. A

number of studies have addressed time variation in dependence through a dynamic copula approach.

In the case of modeling asymmetric dependence between exchange rates, Patton (2004) find significant

implications of the time variation in the copula dependence parameters, while Goorbergh et al. (2003) find

substantial pricing differences for multivariate options when a dynamic copula model is used contrary to

one with a fixed dependence structure, especially for market conditions marked with increased volatility.
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In our setup, time variation in the dependence parameter could be achieved by modeling it as a function of

exogenous factors that are stochastically time varying themselves and that have a potential of explaining

increased dependence in extreme down markets.
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