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Chapter 1

Introduction

Data are at the heart of all computer applications, as most programs spend a ma-
jority of their time reading, processing and writing data stored on a variety of de-
vices. For example, Web applications answer each incoming user request using
parameters contained in the request as well as the current state of application data,
usually stored in a database. Some requests trigger data updates, which must be
reflected in the responses of following user requests. Modern Internet Web ap-
plications encourage users to create their own Web content dynamically (e.g., by
writing comments or publishing blogs). This potentially introduces a high update
load. For example, in Facebook, establishing a friend relationship generates one
or more updates in the underlying data store. In 2010, Facebook claimed to have
established as many as 1,972,000 such relationships in just 20 minutes [77]. To
support efficient Web application operations, data must be organized and stored
properly to support information retrieval and data modifications.

An important challenge for Web-based businesses is to maintain good appli-
cation performance while keeping costs under control. This is true in particular
for data management, which is an essential and difficult challenge. For a Web
application, the costs are mainly twofold: the development cost of building the
application, and the operational cost of maintaining reasonable performance under
arbitrary workload.

The time to develop Web applications is preferably small. An effective way to
reduce development time is to provide high-level tools that improve the efficiency
of programmers. Such tools can range from design techniques such as UML, to
high-level platforms such as advanced database systems. When it comes to appli-
cation implementation, a data store with high-level database functionalities such as
complex queries and strong data consistency can greatly improve programming
productivity [100]. Indeed, even simple business logic often leads to complex
queries that join data from a number of separate tables. Join queries often orig-
inate in data normalization which aims to reduce data redundancy and ensure data
integrity. Such operations may require simultaneous access to arbitrary data items
across the data store. They must be carried out atomically to guarantee operation
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2 CHAPTER 1. INTRODUCTION

correctness. A data store providing strong data consistency can relieve program-
mers from complex concurrency bugs, and allow them to focus on implementing
the business logics of Web applications.

Once a Web application is developed and published online, it is critical to main-
tain short response times. Customers of eCommerce applications have been shown
to start leaving the site if download time exceeds two seconds [28]. Studies on
man-computer conversation impose even more demanding goals where one second
is the limit for a user’s flow of thought to stay uninterrupted [22, 70]. The response
time of a Web application includes the time of both executing application code and
obtaining data from the data store. To maintain reasonable performance, operators
must provide sufficient resources for application servers and the data store accord-
ing to current workload. However, one challenge is that workloads fluctuate widely
over several orders of magnitude according to predictable as well as unpredictable
patterns [40, 108]. Under such circumstances, on-demand resource provisioning
is much more cost-effective than static over-provisioning. To enable on-demand
resource provisioning, the underlying data store should be elastic such that its ca-
pacity can grow or shrink efficiently. Adding or removing machines from the data
store should require only minimum human effort such that the whole process can
be entirely automated.

A related challenge is that Web applications may become extremely popular
over short time periods. For example, the workload of Twitter.com increased by a
factor of 100 from 2009 to 2011 [107]. Similar workload explosions has also been
experienced by many now-famous websites such as Facebook, Google, Amazon,
eBay etc. The data store of such applications must therefore be highly scalable.
This means that capacity must preferably increase linearly as more resources are
provisioned, such that the increased workload can be handled by adding a propor-
tional number of machines. Otherwise, the data store will eventually become a
bottleneck.

Scaling to large number of machines introduces a new issue of fault tolerance.
In a large-scale distributed system, machine failures happen frequently. The data
store must not compromise data consistency in case of such failures. It should
recover automatically without interrupting Web applications.

In this perspective, an ideal data store for Web applications should have the
following properties.

Ability to store large amounts of data. Web application workloads can trigger a
very high load of data updates, which in turn can generate large amounts of
data. The data store should be able to store fast-increasing amounts of data,
while remaining efficient in executing queries.

Complex query support. Complex queries, such as secondary-key queries and
join queries, are necessary to implement business logic efficiently. A data
store supporting complex queries can greatly improve the productivity of
programmers.
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Strong data consistency. To ensure the correctness of business operations, appli-
cations should observe a consistent view of the data even under concurrent
data updates. We consider that program correctness should not be an optional
feature left under the sole responsibility of the programmers. A good data
store should therefore realize strong data consistency, so that programmers
can focus their attention on implementing business logics.

Elasticity and scalability. Web applications are response-time sensitive. To main-
tain reasonable performance under widely-fluctuating workloads, the data
store should be elastic so that the process of adjusting capacity requires only
minimum human efforts. In addition, it should scale linearly so that addi-
tional machines can handle any increase of the workload.

Fault tolerance. In large-scale distributed systems, machine failures are common,
and network partitions will eventually happen. The data store should be able
to recover from such failures automatically. During recovery, the correctness
of the application must not be compromised. Data loss is obviously not
acceptable.

Web application developers have access to two main families of data stores.
First, relational databases such as MySQL and Oracle have been widely used by
many types of applications, including Web applications. Relational databases sup-
port the SQL language, which allows programmers to easily express business log-
ics into data queries, such as joins, secondary-key queries, aggregations etc. Pro-
grammers can group multiple queries into a transaction to guarantee strong data
consistency. However, as we shall see further in this thesis, relational databases are
not elastic. Scaling relational databases to any number of machines is difficult and
often requires careful manual intervention [86]. A second class of systems, called
NoSQL data stores, such as Cassandra [61], Amazon Dynamo [35] and Google
Bigtable [27], provide excellent scalability and elasticity. However, they lack sup-
port for complex queries and strong data consistency [112]. We can see that the
two system families have complementary strengths and weaknesses but that none
of them completely fulfills all the requirements of an ideal data store for Web ap-
plications.

This thesis aims to answer the following question: is it possible to build a data
store that accommodates all these requirements at the same time? We use two
different approaches to achieve this goal: first, we explore to which extent Web
applications based on relational databases can be made elastic and scalable. We
establish a systematic approach to restructure a Web application and its data, and
show that the results exhibit linear scalability. However, this approach requires
significant efforts in reimplementing Web applications.

Second, we explore how one may extend the existing NoSQL data stores with
high-level database functionalities, such that their properties of scalability and elas-
ticity are not compromised. We implement the missing features in a middleware
layer, called CloudTPS which sits between the application and its data store. Our
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prototype creates a temporary copy of the application data in the memory of its
participant machines. All the added functionalities, such as transactions and com-
plex queries, operate directly on this copy of the data. All updates are checkpointed
back to the underlying data store in a lazy fashion such that users observe strong
ACID properties even in case of machine failures or network partitions. CloudTPS
follows the system model of typical NoSQL data stores, which automatically man-
ages data partitioning across any number of machines. CloudTPS also replicates
data items to a specified number of machines. When encountering machine fail-
ures or network partitions, CloudTPS can recover automatically without compro-
mising data consistency. By presenting the detail design and implementation of
CloudTPS, we believe that this thesis makes an original contribution towards the
ideal data store as stated before.

This thesis is organized as follows.
Chapter 2 presents related work and compares various techniques of scalable

data management from the perspectives of distributed system management, data
partition and replication, transaction management, and fault tolerance respectively.

Chapter 3 presents a systematic way to restructure the relational data of a Web
application, such that it achieves linear scalability. The so-called data denormal-
ization process results in separated data partitions stored in independent relational
database instances. This approach maintains the same ACID properties as the orig-
inal centralized application. We also show how to implement complex queries such
as join queries and aggregations in this architecture. The results demonstrate that
monolithic Web applications can be made fully elastic and scalable using relational
databases. However, this approach requires major modifications to the application
and also requires manual partitioning of its data.

Chapters 4 and 5 present the design and evaluation of CloudTPS, a middle-
ware between Web applications and NoSQL data store. Chapter 4 presents the
general architecture of CloudTPS and the techniques to impose ACID properties
in CloudTPS without compromising scalability. CloudTPS supports multi-item
transactions, which can atomically read or write arbitrary data items across the
data store. To ensure ACID properties, CloudTPS implements decentralized mech-
anisms to manage atomicity and concurrency control across multiple machines.
This chapter also describes the fault tolerance mechanism and membership man-
agement protocol which enable CloudTPS to tolerate machine failures and network
partitions.

Chapter 5 details the implementation of high-level queries such as join queries
and secondary-key queries. Finding matched records for a join query across par-
titioned data of CloudTPS may require table scanning or even transferring data
across the network. This would incur unacceptable long execution times. To ad-
dress the issue, we create indexes to link the matched records. CloudTPS automat-
ically synchronizes indexes with the application data and executes join queries as
transactions.

Finally, chapter 6 concludes the thesis and discusses open issues.



Chapter 2

Related Work

A large number of techniques have been proposed to support scalability and elas-
ticity in data stores. A scalable data store must maintain reasonable performance
even under high workload. In general, a data store carries out two types of queries:
read-only and read-write queries. To scale read-only queries, data replication is
an effective technique where large workloads can be addressed by adding more
replicas. However, data replication cannot scale under write-intensive workloads,
as consistency demands that each replica be updated upon each read-write query.

Many systems exist to replicate a complete relational database across multi-
ple servers within a cluster [25, 59, 82]. Database replication allows one to dis-
tribute read-only queries among the replicas. However, in these solutions, all read-
write queries must first be executed at a master database, then propagated and
re-executed at all other “slave” databases. A few database systems such as Oracle
and PostgreSQL [83] allow one to optimize the re-execution of read-write queries
at the slaves by transferring a log of the execution at the master. However, these
techniques do not improve the maximum throughput as they require a single master
server to execute all read-write queries. The throughput of the master server then
determines the total system’s throughput.

New techniques exploit knowledge of the application data access behavior.
Database query caching relies on high temporal locality, and uses prior knowl-
edge of data overlap between different query templates to efficiently implement
invalidations [8, 16, 75, 96]. A query template is a parameterized SQL query
whose parameter values are passed to the system at runtime. Partial replication
techniques use similar information to reduce the data replication degree and limit
the cost of database updates [48, 95]. However, we observe that these techniques
work best under very simple workloads composed of only a few different query
templates. When the number of templates grows, an increasing number of con-
straints reduces their efficiency: database caching mechanisms need to invalidate
more cached queries upon each update to maintain consistency, and partial repli-
cation is increasingly limited in the possible choices of functionally correct data
placements.
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To scale under write-intensive workloads, it is necessary to partition the data.
By splitting data into smaller parts and placing them across different machines,
the system can scale better as each machine processes only a fraction of all data
updates. However, data partitioning also imposes a number of challenges in imple-
menting database functionalities.

The first challenge toward building a partitioned and scalable data store is the
fact that data queries may span multiple partitions. A query may be as simple as
reading one data item, or as complex as scanning multiple tables, merging their
contents, and returning some aggregation from the result. Efficient query process-
ing requires careful data organization and well-designed data access algorithms,
which is a well-understood problem in centralized databases [94]. However, in the
context of partitioned and distributed data stores, implementing complex queries
in a scalable fashion is much more difficult.

Secondly, the data store has to provide a number of non-functional proper-
ties such as high availability and strong data consistency. Providing these proper-
ties requires extra mechanisms, which introduces overhead compared to central-
ized databases. For example, maintaining strong data consistency requires execut-
ing specific protocols to synchronize concurrent access to distributed data, while
achieving high availability requires data replication and fault tolerance mecha-
nisms.

Thirdly, some desirable properties conflict with each other and cannot be
achieved simultaneously. For example, according to the CAP dilemma, one can-
not achieve both prefect availability and consistency in the case of network parti-
tions [44]. One must therefore carefully trade off between the properties that a data
store should provide to satisfy application requirements.

This chapter surveys research aiming towards the ideal scalable and elastic data
store described in Chapter 1. These efforts cover topics ranging from distributed
transaction management to distributed query processing techniques. However, an-
alyzing and comparing these efforts is difficult as these works differ not only in
their designs but also in the properties they aim to provide. To better understand
and compare these works, we propose a framework that covers the important de-
sign issues of scalable data stores.

We consider a scalable data store deployed within a data center where machines
are connected by high-speed networks and the latency is low. Environments where
these properties are not met require different solutions that we discuss separately
in Section 2.6.3. When designing a scalable data store, the following five issues
need to be addressed:

1. How do we model application data and queries?

2. How do we partition and distribute data across machines?

3. How do we execute complex queries across partitioned and distributed data?
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4. How do we ensure data consistency across multiple data items?

5. How do we tolerate machine failures and network partitions?

Although we will discuss these aspects separately, there are many relation-
ships and dependencies between them. For example, fault tolerance mechanisms
often require maintaining multiple data replicas across machines. Such design im-
plies overhead in enforcing strong data consistency when these replicas are up-
dated. Furthermore, an efficient solution to one issue may rely on a specific design
related to another issue. For example, executing complex queries could require ac-
cessing considerable numbers of data items. Placing these data items in the same
machine can significantly improve query processing efficiency, but it demands spe-
cific support in the data partition method.

These five issues constitute a general framework to understand the design of
scalable and elastic data stores. This framework allows us to compare different data
store and expose the tradeoffs which lead to these different systems. Compared to
centralized databases, the key here resides in the cooperation of multiple nodes
rather than the implementation of local operations within a node. The issues of im-
plementing local operations, such as data buffer management, file organization and
logging, are well-understood in centralized databases. Many techniques originally
developed for centralized databases can be reused in this new context [94]. There-
fore, although single-node performance is still an important aspect in designing a
scalable data store [101], we will not discuss these issues here, and rather focus on
efforts aimed at achieving linear scalability.

A complete scalable data store should also consider other aspects such as se-
curity and privacy. These issues are, however, not considered in this thesis, as we
mainly focus on solutions to improve the scalability of data stores belonging to a
single organization.

This chapter is organized as follows: in Section 2.1 we present the general
framework of scalable data stores. In Sections 2.2 to 2.6, we discuss each of the
five issues constituting this framework separately and show how various significant
research efforts address these problems. We conclude this chapter in Section 2.7.

2.1 Framework

The goal of a scalable data store is to improve the productivity of application
programmers and also to reduce runtime operational costs. Supporting complex
queries and strong consistency can help programmers to focus on developing busi-
ness logics, while scalability and elasticity can automate the process of managing
the performance of Web applications. We present this framework as a guideline to
discuss the issues in providing these desired properties, and compare the solutions
in the perspective of these issues.
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2.1.1 Desired Properties

To build a data store, one must first understand which properties are required by the
targeted applications, and to what extent we need to provide them. As discussed
in Chapter 1, a data store should ideally have all of the following properties: per-
formance, scalability, elasticity, supporting complex queries, strong data consis-
tency, high availability, supporting large data sizes. In reality, it is very difficult
to enforce all these properties simultaneously. One has to trade off between these
properties based on the specific requirements of an application.

Scalability and elasticity are two essential properties required by Web applica-
tions. Ideally, the data store should allow one to address any increase of workload
by adding more machines. Linear scalability is preferred where the maximum
supportable throughput of a system increases proportionally at a constant rate as
resources are added to the system. However, in reality, infinite scalability is neither
possible nor necessary. For large-scale Web applications, a data store should scale
to at least thousands of machines. For example, Facebook has split its MySQL
database into 4,000 shards in order to handle the site’s massive data volume, and
is running 9,000 instances of memcached in order to keep up with the number of
transactions the database must serve [51]. If Facebook used a cloud data store in-
stead, this data store would have to scale linearly to at least this number of nodes.
In addition, when scaling the system to such sizes, administrating the partitioned
database would cause a lot of operational costs and being elastic would become
even more difficult.

Performance requirements of applications are two-fold: throughput require-
ments and response-time constraints. As a scalable data store can address the
throughput requirement by provisioning a sufficient number of machines, the
response-time constraint becomes the core issue. Applications may differ in their
response time constraints by several orders of magnitudes. For Web applications
serving online customers, the constraint for loading an entire page is in the order
of 1 second [22, 70], which includes the time for query execution, but also the time
for network transfers, load balancing, Web-server and application-server process-
ing. In contrast, for applications carrying out background tasks, response times of
tens of seconds may be acceptable [80].

Implementing complex queries that access considerable numbers of data items
in a scalable fashion is challenging, especially with low latency constraints. An
extreme case of an expensive complex query is a full join of multiple tables, each
containing tens of millions of records. Some applications trade off the semantics
of complex queries for performance. For example, Web-application programmers
may be asked to carefully design their queries such that even complex queries
access only a small number of data items [29]. In fact, supporting both complex
queries and low latency may be possible, at the cost of relaxing data consistency so
that precomputed and possibly outdated results can be stored and used to answer
queries.

High availability is critical for web applications, as website down time causes
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direct monetary lost and potential loss of customers. However, the property of high
availability often contradicts the property of strong consistency in distributed sys-
tems. In the case of network partitions, achieving perfect availability means that
one must relax strong consistency [44]. For the applications which prefer avail-
ability over consistency, it is crucial to ensure application correctness in relaxing
data consistency.

The size of data is an important factor in designing algorithms and mechanisms
to achieve all other properties. For example, with increasingly larger data sizes,
ensuring elasticity requires that the costs of adding or removing a node should
remain largely constant irrespective of the system size. Similarly, complex queries
may access more data items as data sizes grow; designing an efficient solution
satisfying low-latency constraints becomes more difficult. Therefore, one should
estimate the size of application data and design the data store accordingly.

2.1.2 Framework Elements

We identify five issues that have to be considered to achieve the desired properties
of a scalable data store: data and query model, data-partition mechanism, data-
consistency enforcement, complex-query implementation and fault tolerance.

Data and query models define data structures to store application data and
query semantics to access the stored data. In general, a data store with a sophis-
ticated data model and rich query semantics can improve programmer efficiency
for the applications containing complex business logics. However, more features
may also bring more issues in achieving scalability, which often results in more
overheads. Therefore, the data store should balance the richness of its data and
query model so that targeted applications can be developed efficiently, while keep-
ing costs low. We compare the data and query models of current NoSQL data stores
and partitioned relational databases in Section 2.2.

Data partitioning is necessary to be scalable under update-intensive work-
loads. Based on the data model, data-partitioning mechanisms define how struc-
tured data are partitioned and assigned to different nodes. Data-partitioning mecha-
nisms also define how to route queries cross nodes to locate and access the required
data items. The performance of query routing is critical for efficient query execu-
tion, and in particular complex queries. In addition, data-partitioning mechanisms
also affect elasticity as partitioned data should be reorganized when adding or re-
moving nodes. An elastic data store should relocate only a small part of the data
during this process. We discuss data-partitioning mechanisms in Section 2.3.

Implementing complex queries in a partitioned and distributed data store in-
troduces new issues compared to centralized databases. For example, complex
queries may access considerable numbers of data items across multiple machines.
In this context, enforcing strong data consistency to distributed complex queries
while preserving the scalability property is even more challenging. As for perfor-
mance issues, the data store should locate all accessed data items efficiently and
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avoid transferring large amount of data across networks in query execution. We
discuss how to implement distributed complex queries efficiently in Section 2.4.

Data consistency enforcement requires defining the data consistency model
carefully to present programmers with predictable behaviors. Data stores may use
various consistency levels, which allow programmers to trade off data consistency
and performance while still ensuring application correctness. To implement these
consistency levels, specific protocols and mechanisms must be followed to ensure
atomicity and manage concurrency control. We discuss the issues of enforcing data
consistency in Section 2.5.

Fault tolerance of the data store requires the system to functionally normally
even under machine failures and network partitions. The correctness of the appli-
cation must not be compromised during failures, which means that the promised
data consistency must be maintained and data loss is not acceptable. The system
should be able to recover from failures automatically without requiring human in-
tervention such as manual data recovery or data re-partitioning. We discuss fault
tolerance mechanisms in Section 2.6.

2.2 Data and Query Model

The data model of a data store defines the structure of stored data and presents a
logical view for defining the query model for applications to access data. Many
NoSQL data stores and horizontally partitioned relational databases have been de-
signed with different data models. We follow the category definition from [24] and
classify data stores by their data models into four categories: key-value data stores,
document data stores, tabular data stores and relational databases.

2.2.1 Data-Store Classification

Key-value data stores use a simple data model that maps keys to values. The keys
are indexed and applications can access a value by giving its associated key. Key-
value data stores commonly support the interface of GET (Key)/PUT (Key).
There are also some further distinctions. For example, Dynamo stores values as un-
interpretable binary objects [35], while Voldemort supports values to be stored as
structured objects such as JavaScript Object Notation (JSON) objects [113]. How-
ever, they both do not index values and support queries based only on keys. Scalaris
supports range queries on keys by arranging keys in an ordered fashion [91].

Document data stores also store values by keys, named Primary-Key (PK),
but values are stored as documents that can be indexed and queried. A document is
a collection of attribute-value pairs. Attribute names can be defined in a document
dynamically and different documents need not share the same set of attributes.
These data stores support accessing documents by their PKs and attributes. Exam-
ples of document data stores are Amazon SimpleDB [6] and MongoDB [1].
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Tabular data stores define their data model as tables of columns 1 and rows.
The columns of a table are grouped into column families, which form the basic
unit of system configuration (for example, access control is typically realized per
column family). A column is prefixed with its column family name. For exam-
ple, Bigtable names a column using the following syntax: “family:qualifier” [27].
The column-families must be defined in advance while applications can define
new qualifiers dynamically. Similar to Bigtable, Cassandra also groups columns
into column families [61]. Cassandra extends this data model with “super
-columns” within a regular column family. In this case, the column syntax is:
“column family:super column:column.” Tabular data stores support similar single-
table queries like document data stores and further allow applying the predicates
on specific column families. Bigtable and Cassandra have an API with support
for inserting, getting and deleting data items, which are all single-row operations.
Bigtable also supports scanning a subset of a table, iterating over multiple column
families, including mechanisms for limiting the rows, columns, and timestamps
produced by a scan. As for Cassandra, its latest version now supports secondary-
key queries on indexes it maintains [23]. However, neither Cassandra nor Bigtable
support complex queries such as joins.

Relational databases store well-defined tables where all column names and
types must be defined in advance [94]. All rows of a table should contain the
same set of columns. The properties of each column, such as uniqueness, primary-
key, nullable and creating indexes, must also be defined in advance. Relational
databases require an explicit definition of application data to maintain data integrity
for applications. In this context, modifying a data schema without stopping the ap-
plication remains a challenge. Another specificity of the relational data model is
that it defines foreign-key relationships between tables, which allows them to sup-
port complex queries such as joins. Centralized relational databases support the
SQL language fully, which provides rich query semantics such as range queries,
join queries, secondary-key queries and aggregations. However, to scale a rela-
tional database, horizontal data partition is required. An example of a relational
database which applies horizontal data partition is VoltDB [56]. This database
however supports only a subset of the SQL semantics and aims primarily at OLTP
workloads. The data integrity feature may also be relaxed to achieve online schema
update.

PNUTS defines its data model as a hybrid between a tabular data store and a
relational database [29]. PNUTS presents a simplified relational data model where
attributes should be declared in advance. However, like tabular data stores, its
schemas are flexible so new attributes can be added dynamically at any time with-
out halting query or update activity. Records are not required to have values for
all attributes. PNUTS’s query language supports selections and projections from
a single table. Updates and deletes must specify the primary key. PNUTS also
supports retrieving multiple records from multiple tables, again by primary key.

1We consider the terms “column” and “attribute” as interchangeable.
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2.2.2 Discussion

To achieve scalability and elasticity, there are two issues to be considered in de-
signing the data and query model.

The first issue is online schema modification: modifying the schema should
not halt the execution of queries and updates. Some Web applications need to be
modified frequently to cope with dynamic business requirements. For example,
the programmers of eBay add 300+ features per quarter of a year and produce
100,000+ lines of code every two weeks [93]. Such application modifications often
result in updates of the underlying data model. However, many relational databases
require all nodes to share the same consistent data model information to execute
queries correctly. Updating the schema across all nodes without halting the system
or affecting performance is therefore challenging. For such applications, a flexible
data model is preferable so that the schema rarely needs to be updated.

NoSQL data stores such as key-value data stores, document data stores and
tabular data stores provide flexible schemas that allow to update without halting
system activities. Key-value data models are simple and do not need to be modi-
fied. Document data stores, such as SimpleDB, are featured by their “schema-less”
data model where no attribute needs to be defined in advance. Tabular data stores
require to define a few column families for a table in advance, but the columns
within a column-family can be defined dynamically.

The second issue is limiting performance interference between concurrent
queries. Web applications serve large number of concurrent users simultaneously,
and each user request can trigger any number of queries to the data store. To sat-
isfy the response time constraint of each individual user, the data store should limit
the total impact of any single query, and prevent any query from overloading the
shared environment [10]. One method is to restrict the query semantics by sup-
porting only simple data operations such as read or write well-identified data items
where their primary keys are given. Another method is to place constraints on the
number of accessed data items or the query execution time.

As described in Section 2.2.1, NoSQL data stores typically choose to restrict
the query semantics that support only single-table queries but no complex queries
across multiple tables. In addition to that, many NoSQL data stores also impose
other constraints on queries. For example, PNUTS is designed primarily for work-
loads that consist mostly of queries that read and write single records or small
groups of records [29]. PNUTS expects the number of records accessed by most
queries to be no more than a few hundred.

Amazon SimpleDB [6] is a public online database service, where the issue of
limiting performance interference between concurrent queries is more important
as it is not only among concurrent users of an application but also among multi-
ple unrelated applications. To address this multitenancy issue, SimpleDB restricts
queries within one domain only. A domain in SimpleDB can be viewed as a table
or a horizontal table partition. Different domains in SimpleDB are deployed on dif-
ferent machines, so queries on different domains will not interfere with each other.
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In addition, SimpleDB also imposes various restrictions to limit the runtime impact
of a query. For example, the maximum number of comparisons per SELECT ex-
pression selection is 20; the maximum query execution time is 5 seconds; SELECT
operations can retrieve at most 2500 rows, a row can have at most 256 attributes 2.

Unlike PNUTS and SimpleDB, Google Bigtable was originally designed for
batch processing tasks such as Web page ranking. Limiting query impact was
therefore not considered as a major issue in the design. Bigtable provides APIs
to write, delete, look up values from individual rows, or iterate over a subset of
the data in a table [27]. As the targeted workloads may contain many scan-based
operations, Bigtable places no restriction on the number of accessed data items or
execution time.

As opposed to NoSQL data stores, traditional relational databases support rich
query semantics such as range queries, join queries, secondary-key queries and
aggregations. They accept ad hoc queries with no constraint on the number of
data items accessed or the length of execution time. With these features, relational
databases can satisfy the functional requirements of a wide range of applications.
However, complex queries may risk overloading the system and significantly im-
pact the rest of the workload. Such scenarios are not acceptable for hosted data ser-
vice providers which have Service-Level Agreements (SLA) on guaranteed query
response times.

Partitioned relational databases often place limits on the impact of queries.
VoltDB supports only stored procedures and does not accept ad hoc queries [56].
It aims for OLTP workloads, which consist of short-lived transactions accessing a
small number of records.

2.3 Data Partitioning

There are three main approaches to partition data: horizontal partitioning, vertical
partitioning, and hybrid partitioning [72]. Horizontal partitioning splits a table
according to the value of a specific column, and clusters rows into a number of
subtables. In contrast, vertical data partition splits a table by column names, and
each partition contains a subset of columns. A hybrid approach splits a table into
table fragments of which each contains a subset of rows and columns.

To scale a data store to thousands or more nodes, the data-partitioning mecha-
nism should be able to create a sufficiently large number of data partitions so that
each node can be assigned at least one data partition. When partitioning a table hor-
izontally, the maximum number of data partitions depends on the number of rows
in the table. For Web applications, a table can contain millions or even hundreds of
millions of records [93]. With such a large number of rows, horizontal partitioning
can create sufficiently large number of partitions to scale the data store. On the
other hand, with vertical data partitioning, the number of columns defines the scal-
ability’s upper bound. The number of columns of a table is usually smaller than the

2These numbers are valid as of December 2011.
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number of rows by several orders of magnitude. Vertical partitioning is therefore
not used for scalability but rather to optimize performance based on the data ac-
cess pattern of specific applications. Hybrid data partitioning with both horizontal
and vertical data partitioning can potentially achieve both scalability and optimized
performance. This method may be suitable for specific applications but is hard to
apply in practice as a general-purpose measure. In this section we therefore focus
on techniques for horizontal data partitioning.

There are three aspects to be considered in horizontal data partitioning: the
choice of a partition key, the data-partitioning algorithm and the way queries are
routed to the right location.

2.3.1 Partition Key Selection

The first step is to select a key for each table to partition the table horizontally. For
key-values data stores, the choice is straightforward as the system is indexed by a
single key. But for data stores of the other three categories, the primary key or any
other column could be selected as the partition key. One criterion is to optimize
performance so that the system can efficiently locate the accessed rows. Therefore,
the most commonly used attribute for identifying the accessed rows should be cho-
sen as the partition key. Otherwise, most queries would need to reach every node
of the data store to locate the accessed rows, unless the data store has maintained
indexes on the demanded attributes. For workloads composed mainly of primary-
key queries such as SELECT * FROM table WHERE pk=’value’, the pri-
mary key should be the partition key. On the other hand, if the workload contains
a majority of secondary-key queries, such as SELECT * FROM table WHERE
sk=’value’, that the secondary-key presented in queries may be the partition
key.

Relational databases are designed to support ad hoc queries, including com-
plex read queries containing predicates on one or multiple secondary keys. For
example, MySQL Cluster allows programmers to specify a column or even a user-
defined expression as the partition key, which allows performance optimizations
for complex read queries [71]. On the other hand, NoSQL data stores such as
Bigtable, Cassandra and SimpleDB typically partition data by primary key only.
An important reason is that NoSQL data stores often target write-intensive work-
loads, where most write queries are based on primary key. Another reason is the
fact that flexible data models impose no constraint on columns other than the pri-
mary key. It means that a column might be missing values in many rows or have
only a limited set of possible values (e.g., a column containing country names).
Selecting such a column as the partition key would lead to load imbalance.
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2.3.2 Data-Partitioning Algorithms

Once one has chosen a partition key, rows can be partitioned accordingly. In gen-
eral, horizontal data-partitioning algorithms define the mapping relationship be-
tween any partition-key value and the responsible nodes of current system.

In general, current algorithms for horizontal data partitioning can be cate-
gorized into three classes: range-based, hash-based and workload-specific algo-
rithms.

There are three issues to be considered in data-partitioning algorithms. The
first issue is optimizing query performance so that the system can scale linearly.
To achieve this goal, queries should access only a small number of nodes in the
partitioned data store. However, complex queries can access a considerable number
of rows. To execute these queries efficiently, the algorithm should cluster the rows
which are accessed together into the same partition so queries can be executed
within a single node. For example, range queries access data by key ranges. If
rows are assigned to nodes in a random fashion, range queries must be issued to
every node to obtain a complete result. However, if continuous key ranges are
assigned to nodes, range queries need to access only the nodes responsible for the
accessed ranges.

The second issue is load balancing: the workload should be distributed evenly
across all partitions. An imbalanced data store where most of the workload access
a small number of data partitions cannot scale linearly. For well-balanced work-
loads which address uniform numbers of queries to all data items, load balancing
can be achieved by splitting data into partitions with equal number of data items.
However, many workloads do not distribute queries uniformly across data items.
Therefore, the algorithm must ensure that hot data are split and distributed evenly
across all partitions.

The third issue is efficient data reorganization across the data store when adding
or removing machines. The goal of addressing this issue is to achieve elasticity.
The process of data reorganization should be automatic and it should cause only
minor financial and performance overheads. Considering a system with large data
volume, data reorganization should involve only a small part of the data.

Range-based algorithms order tables by their partition keys and split them into
ranges. These ranges are the units of data distribution and load balancing across
machines. Reads of short row ranges are efficient and typically access only a small
number of machines. When adding or removing a machine, only the ranges held by
this machine need to be relocated. For example, Bigtable maintains data in lexico-
graphic order by row key and partitions tables into ranges called tablets [27]. Each
tablet is assigned to one machine at a time. The system meta-data is partitioned
along the same principles. A METADATA table maintains the location of tablets.
This METADATA table itself is partitioned into tablets and treated like a regular
table.

Hash-based data structures are widely used to address random-access work-
loads. This technique can also be applied to data partitioning. Hash-based algo-
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rithms split a table not by the values of the partition key directly, but by the values
of its hashed partition key. Consistent hashing has been widely used to design par-
titioning algorithms [57]. For example, Dynamo partitions data using consistent
hashing with MD5 as the hash function [35]. It extends consistent hashing with
virtual nodes to address non-uniform data and load distribution. Instead of map-
ping each node to a single hash-key range, Dynamo assigns multiple ranges (called
virtual nodes) per node. The number of virtual nodes assigned to a node can be
adjusted according to its processing capacity. This organization also reduces the
overhead for adding or removing nodes to the system as the load on the other nodes
can be distributed.

Workload-based algorithms partition data based on access patterns. The idea
is to minimize the number of nodes accessed for executing queries. This can be
achieved by grouping the data items that are often accessed together. Data frag-
mentation techniques have been commonly used in the design of distributed rela-
tional databases [72, 73, 79, 41]. In these works, tables are partitioned either ver-
tically or horizontally into smaller fragments and then allocated to geographically
distributed nodes. These systems often assume that the partitions are deployed
across a WAN so communications between partitions must be minimized. These
algorithms therefore partition data according to a workload analysis which aims to
execute as many queries locally as possible.

New workload-based algorithms have emerged recently to partition data in
large-scale data stores. For example, Schism analyzes a query log to propose a data
placement which minimizes the number of partitions involved in transactions [31].
Schism requires no exact prior knowledge of queries, but directly analyzes the
query and transaction log. Schism synthesizes this information into a graph where
each node represents a record and edges connect records that are used within the
same transaction. Edge weights account for the number of transactions that ac-
cesses the same pair of records. Schism applies graph-partitioning algorithms to
split a graph into k non-overlapping partitions such that the overall cost of the
cut edges is minimized, while keeping the weight of partitions within a constant
factor of perfect balance. This work is promising, however, the analysis of the
transactions access log is done offline in a centralized and unscalable manner. It is
therefore suitable only for applications with sufficiently stable workloads. Similar
techniques have been applied for online analysis and dynamic re-partitioning in the
context of CloudTPS [103].

Compared to range-based and hash-based algorithms, workload-based algo-
rithms can improve performance in the case of complex query workloads where an
efficient data-partitioning scheme is difficult to design by simpler methods. With
better data locality, complex queries such as join queries can be executed efficiently
as many network communications can be avoided. However, workload-based al-
gorithms must address the issue of workload changes in dynamic environments.
Changes in the workload require to constantly re-evaluate the data-partitioning
scheme [58]. These associated costs of data reorganization can potentially com-
promise the elasticity of data stores.
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2.3.3 Query Routing

Data-partitioning algorithms need to route queries to the nodes which hold the
concerned data items.

For algorithms based on consistent hashing, there is a tradeoff between perfor-
mance and robustness. For example, Chord has been to designed for unstable P2P
environments where nodes can join and leave freely [98]. Chord improves the ro-
bustness of consistent hashing by avoiding the requirement that every node knows
about every other node. In an N-node network, each node maintains information
about O(logN) other nodes, which can route any query. A query may need to
route between multiple nodes before reaching the destination nodes, and a lookup
requires O(logN) network messages. On the other hand, joining and leaving of
nodes only affects a small part of the system.

In data centers where node failures are rare, optimizing for performance is
often preferred to robustness. Dynamo targets latency-sensitive applications that
require at least 99.9% of read and write operations to be performed within a few
hundred milliseconds [35]. Instead of using DHT routing, it maintains the complete
membership information across all nodes of the system, such that queries are routed
in 1 hop only.

For range-based algorithms, the key-range assignment information has to been
known to route queries. Bigtable employs a master node to manage the key-range
assignment information. The master node is responsible for assigning tablets to
nodes, detecting the addition and expiration of nodes, and balancing load across
nodes. Nodes cache this key-range assignment locally to route queries without
looking up locations remotely.

PNUTS [29] supports both hash-based and range-based data partitioning. Ta-
bles are ordered by the partition key, then partitioned into tablets and assigned to
different servers. A binary search tree of tablets is maintained to efficiently map
each record to a tablet. PNUTS uses standalone query routers, which maintain a
cached copy of the mapping information and can directly route queries to the right
node. The mapping itself is owned by the table controller. Routers maintain only
soft states. If a router fails, PNUTS can simply start a new one instead. Query
routers detect changes in data locations when query routing fails. They can simply
reload the new mapping from the table controller.

2.4 Complex Query Support

Centralized relational databases commonly support the SQL language, which pro-
vides rich semantics for complex queries such as secondary-key queries, range
queries, join queries and aggregations. Implementing these complex queries in a
centralized database is a well-understood topic [94]. However, supporting them in
distributed and partitioned data stores remains a challenge.

A number of research efforts have been conducted to implement specific types
of complex queries in distributed databases. However, they typically rely on a spe-
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cific data-partitioning design targeted at one particular type of complex query. For
example, the hash-join algorithm is widely used for join queries and it can be natu-
rally parallelized for a distributed environment [90]. Parallel hash-join algorithms
partition tables by the hash value of the join attribute. Records that have the same
hashed value of the join attribute are assigned to the same machine, so identifying
matching records can be executed by each machine locally. However, as the parti-
tioning key is the join attribute rather than the primary key, such data-partitioning
design is efficient only for queries that give the value of the join attribute in ad-
vance or request a full join of two tables. This partitioning scheme implies large
overheads for executing other queries such as primary-key queries and other join
queries.

Centralized databases typically rely on indexes to implement complex queries
efficiently. In a partitioned and distributed data store, one option is to maintain
scalable and distributed B-trees of indexed columns [3]. By replicating all inner
nodes and partitioning the leaf nodes of the B-tree, such a distributed data structure
allows efficient data location and retrieval. However, this technique faces chal-
lenges in the case of update-intensive workloads, as this causes frequent updates of
the inner nodes. In addition, for large data sizes, replicating all inner nodes at all
machines may be prohibitively expensive.

Another approach to implement a scalable general-purpose database is to run
any number of database engines in the cloud, and use the cloud’s file system as the
shared storage medium [17]. Each engine has access to the full data set and can
therefore support any type of SQL queries. However, cloud file systems usually
have very high latency compared to an ordinary local disk drive. A complex query
accessing many data items would require accessing the cloud file system multiple
times, resulting in very long query execution times.

As described in Section 2.3, NoSQL data stores typically partition data by
their primary key. Such data-partitioning design is therefore not efficient for com-
plex queries where the primary keys of accessed records are not given in advance.
Bigtable [27] supports secondary-key and range queries by scanning the ordered
table with user-defined filters on values of columns. However, this algorithm is
not efficient for response-time-sensitive Web applications. SimpleDB [6] supports
secondary-key and range queries automatically by indexing data. This clearly im-
proves performance compared to Bigtable. However, such queries are restricted
within a single table partition (or “domain” in SimpleDB terminology). Cassan-
dra [23] maintains indexes of user-specified columns and supports secondary-key
queries over these indexed columns. The indexes are maintained in a new column-
family with the value of the indexed column as the primary key. Cassandra par-
titions these index records in a hash-based approach so range queries cannot be
supported. To our best knowledge, no scalable data store supports complex queries
across tables, such as join queries. We will return to this topic in Chapter 5 where
we discuss join query support in CloudTPS.
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2.5 Consistency Enforcement

A data store with strong data consistency can help programmers to ensure appli-
cation correctness effectively. Centralized relational databases commonly provide
strong data consistency in the form of ACID properties: Atomicity, Consistency,
Isolation and Durability. Programmers can group queries into ACID transactions,
which are executed atomically. Implementing ACID transactions in centralized
databases is a well-understood topic [94]. However, providing strong data consis-
tency in a distributed and partitioned data store remains a challenge.

According to the CAP theorem, in a distributed and partitioned data store, one
cannot achieve two of the three properties of perfect Availability, strong Consis-
tency and network-Partition tolerance [44]. It is obviously unrealistic to assume
the absence of partitions. However, as discussed in [18], the CAP theorem is more
subtle than a simple binary choice between availability and consistency. For spe-
cific applications, one can trade off these two properties in several ways. For ex-
ample, during a partition, one may accept incoming client requests but delay their
execution until the network partition is restored. By entering such an offline mode,
one can maintain strong data consistency while only slightly reducing availability.
Other applications may tolerate temporal data inconsistency but reconcile incon-
sistent updates at the end of the partition with techniques such as version vectors
and commutative operations. This hides the temporary inconsistency for the users.

However, these techniques which trade off availability and consistency come
at a cost. They heavily rely on the semantics of specific applications. For example,
to reconcile inconsistent data updates, programmers need to define application-
specific rules in merging the inconsistent versions of data. Furthermore, the ap-
plications should also be implemented in a partition-aware way to cope with po-
tentially inconsistent data during a partition. These tasks require programmers to
understand the subtle issues of distributed systems as well as the tradeoff between
consistency and availability in the presence of network partitions, which is not triv-
ial at all. Therefore, it would require significant efforts from programmers to apply
these techniques correctly and effectively. On the other hand, these techniques
cannot provide the Durability property of the ACID properties, as queries running
in one partition would not reflect updates realized in another partition. This in-
troduces an extra burden on programmers to manage data consistency and ensure
application correctness.

This section discusses techniques for enforcing strong data consistency in parti-
tioned and distributed data stores, with no tradeoff of consistency for availability in
the presence of network partitions. These techniques do not require the knowledge
of the semantics of specific applications. As the design of the tradeoff techniques
focuses on fault tolerance rather than data consistency, we will describe them sep-
arately in Section 2.6.
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2.5.1 Distributed Transactional Systems

There have been decades of research efforts in efficiently implementing distributed
ACID transactions in distributed database systems [79]. A number of distributed
commit protocols [50, 65, 99] and concurrency control mechanisms [13, 14] have
been proposed to maintain the ACID properties of distributed transactions. How-
ever, as distributed databases use the same relational data model as RDBMSs, they
also cannot partition the data automatically and thus lack scalability. On the other
hand, we will see in Chapter 4 how we can apply these techniques as building
blocks for CloudTPS. For example, we rely on 2-Phase Commit [65] as the dis-
tributed commit protocol for ensuring Atomicity, and on timestamp-ordering [12]
for concurrency control.

H-Store is a distributed main-memory OLTP database, which executes on a
cluster of shared-nothing main-memory executor nodes [56, 102]. H-Store sup-
ports transactions accessing multiple data records with SQL semantics, imple-
mented as predefined stored procedures written in C++. It also replicates data
records to tolerate machine failures. H-Store focuses on absolute system perfor-
mance in terms of transaction throughput, and achieves very high performance on
each executor node. However, H-Store’s scalability relies on careful data partition-
ing, such that most transactions access only one executor node. H-Store does not
maintain persistent logs in non-volatile storage. H-Store thus faces risks of losing
data in the case of system wide outage.

Sinfonia is a distributed message-passing framework which supports trans-
actional access to in-memory data across a distributed system [4]. It addresses
fault tolerance by primary-copy replication and by writing transactionally con-
sistent backups to disk images. In contrast with our work, Sinfonia provides a
low-level data access interface based on memory address and supports only trans-
actions with restricted semantics. Besides, it requires applications to manage data
placement and caching themselves across the distributed system. Sinfonia targets
infrastructure applications which require fine-grained control of data structures and
placement to optimize performance. On the other hand, Web applications usually
require quick and flexible development, so Web developers prefer accessing logical
and location-transparent data structures with rich-semantic transactions.

Transactional memory (TM) systems support transactional access to in-memory
data. They traditionally target single multiprocessor machines [53], but recent re-
search works extend them to distributed systems and support distributed transac-
tions across in-memory data of multiple machines [15, 60, 66]. Distributed TM
systems however provide no durability for transactions and do not address machine
failures. The reason is that TM systems are mainly designed for parallel programs
that solve large-sized problems. In this case, only the final results are valuable and
required to be durable. On the other hand, TM systems usually execute in a man-
aged environment where machine failures are rare. They thus provide no durability
for intermediate transactions and do not address machine failures to maximize the
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system’s performance. However for interactive Web applications, the result of each
transaction is critical. TM systems are therefore not suitable for such applications.

2.5.2 Transactions in NoSQL data stores

Typical NoSQL data stores, such as Bigtable, SimpleDB and PNUTS, do not
provide full ACID consistency as this allows to execute queries more efficiently.
Therefore, these systems support only single-row transactions. Every read or write
of data under a single row key is atomic (regardless of the number of different
columns being read or written in the row). They do not support ACID transactions
across multiple row keys, although they typically provide an interface for batching
writes across row keys at the client side.

A number of recent systems support multi-item ACID transactions, each with
their own focus.

Google Megastore is a transactional storage system built on top of Bigtable [11].
Megastore supports transactional consistency within fine-grained partitions of data,
but only limited consistency guarantees across them. Megastore is designed to pro-
vide transactional consistency for Web applications. However, join queries are not
supported: join queries require one to be able to access any set of data items within
a transaction, whereas Megastore restricts transactions within partitions.

Microsoft SQL Azure Database is a scalable cloud data service which supports
the relational data model and ACID transactions containing any SQL query [69].
However, similar to Megastore, it requires manual data partitioning and does not
support distributed transactions or queries across data partitions located in different
servers.

Deuteronomy is a transactional layer that can operate on top of a wide range
of heterogeneous data sources, including cloud data stores [64]. Deuteronomy
mostly focuses on issues deriving from the multiplicity of data sources rather than
on supporting complex types of operations.

Elastras supports scalable transactions in the cloud [32]. It splits the transac-
tion manager into multiple ones, where each manager loads a specific data partition
from the cloud storage service and owns exclusive access to it. However, the sys-
tem does not address the problem of maintaining ACID properties in the presence
of machine failures. Furthermore, similar to Sinfonia [4], it allows only restricted
transactional semantics for distributed transactions across multiple data partitions.

G-Store provides transactional access to multiple records in the underlying key-
value data store [33]. G-store allows applications to select arbitrary records to form
a group. A record can belong only to a single group at any instant of time. G-store
assigns the “ownership” of this group to one member node, which coordinates
atomic access to this group of records. Such design is suitable for workloads that
access relatively fixed sets of records together. Otherwise, frequent creation and
modification of record groups may introduce extra costs.

Scalaris is a transactional DHT which splits data across any number of DHT
nodes, and supports transactional access to any set of data items addressed by pri-
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mary key [81]. It is a purely in-memory system so it does not support durability
for the stored data. In contrast, CloudTPS provides durability for transactions by
checkpointing data updates into the cloud data service. Scalaris relies on the Paxos
algorithm to implement transactions, which can address Byzantine failures, but in-
troduces high costs for each transaction. Moreover, each query requires one or
more requests to be routed through the DHT, potentially adding latency and over-
head. Cloud computing environments are also expected to be much more reliable
than typical peer-to-peer systems, which allows us to use more lightweight mech-
anisms for fault tolerance.

Google Percolator provides multi-row ACID transactions on top of Bigtable [80].
Percolator employs Bigtable as a shared memory for all instances of its client-side
library to coordinate transaction management. The data updates and transaction
coordination information, such as locks and primary node of a transaction, are di-
rectly written into Bigtable. Using Bigtable’s single-row transactions, Percolator
can perform multiple actions atomically on a single row, such as locking a data
item and marking the primary node of the transaction. Activities such as deadlock
handling may delay responses up to minutes, but this is acceptable for Percolator
as it is designed for incremental processing of massive data processing tasks which
typically have relaxed latency requirements.

2.6 Fault Tolerance

High availability is an important property for many Web applications as any service
interruption may negatively impact businesses. However, providing uninterrupted
accesses to Web applications faces many technical challenges. One of them is that
machines or any other devices that support the execution of Web applications may
fail. An ideal data store should tolerate various types of failures and always exe-
cute queries correctly (with strong consistency) while remaining always available.
However, according to the CAP theorem, such an ideal data store cannot be real-
ized in the case of network partitions [44]. Section 2.5 discussed research efforts
in achieving strong consistency even in the case of network partitions, possibly at
the expense of high availability. This section turns to techniques to tolerate various
failures, but might relax consistency in the case of a network partition.

2.6.1 Replication and Consistency

The main idea to achieve fault tolerance is to replicate application data and system
states, so that the state of a failed machine can be recovered from another machine.
With redundant information, fault tolerance mechanisms can be developed to re-
cover failed machines automatically and the system can continue working even in
the case of machine failures.

Replication is an efficient technique for fault tolerance, but it also introduces
issues of maintaining consistency between replicas. When data are updated, all
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replicas should be synchronized. The replication mechanism should ensure that
updates are stored and correctly reflected in future reads, even when some replicas
fail.

There are in general two approaches to enforce data consistency across repli-
cas: the primary-replica approach and the decentralized approach.

The primary-replica approach assigns one replica to process all read-write
transactions and then propagates updates to the slave replicas, while read-only
transactions can be balanced across all replicas. A typical example is master-slave
replication in relational databases. In this case, each replica holds a full copy of the
database. Ganymed offers a master-slave replication middleware which addresses
update propagation, transaction scheduling and automatic failure recovery [82].
However, such full database replication is not scalable.

Some scalable data stores also apply primary-based replication but at a finer
granularity, such as file chunks or records, rather than the complete database. For
example, Bigtable relies on the Google File System (GFS) [43] to achieve fault tol-
erance. GFS divides files into fixed-size chunks and applies primary-based repli-
cation at the granularity of chunks. Another example is PNUTS, which applies a
record-level mastering mechanism for asynchronous replication across wide-area
clusters.

In contrast to the primary-based approach, the decentralized approach main-
tains no primary replica and all replicas have the same role and responsibility. As
a result, to obtain the consistent value of a data item, additional mechanisms are
required to reach consensus among all replicas.

Quorum-based protocols are typically used to reach consensus between repli-
cas. These protocols maintain N replicas for each data item. The system is consis-
tent if NR +NW > N and NW > N/2, where NR is the number of replicas to be
accessed for a read operation, while NW is the number of replicas to be accessed
for a write operation. For example, Dynamo relies on this technique to perform
read and write operations consistently [35]. Dynamo extends the protocol to toler-
ate machine failures: in the case of a machine failure, another node is selected to
temporarily act as the failed replica. To provide high availability, Dynamo modifies
the protocol and allows applications to set NW < N/2, which may compromise
data consistency. For instance, applications can have the highest level of availabil-
ity by setting NW = 1 to ensure that a write is accepted as long as a single node
has successfully committed the updates.

A more general fault-tolerant approach based on quorums is the Paxos proto-
col, which solves the general problem of reaching consensus on the state of 2F+1
replicas, while tolerating up to F failures [63]. Paxos is used by various data stores
to achieve fault tolerance [11, 84, 88]. Another example is Google Chubby, which
is a fault-tolerant system providing a distributed locking mechanism and storing
small files [20, 26]. Bigtable uses the Chubby system to store its metadata and act
as the coordinator for global system mechanisms such as data partition assignment.

Primary-based approaches typically achieve better performance than Paxos as
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Paxos involves multiple network round-trips to reach consensus between replicas.
However, in synchronous master-slave replication, some failure sequences may
compromise consistency even with just one node failure at a time [84].

2.6.2 Eventually Consistent Systems

Some systems choose to maintain high availability even in the case of network
partitions, at the cost of relaxing data consistency.

Dynamo is an always-writable data store which therefore processes updates
even in the case of network partitions [35]. During network partitions, each par-
tition still receives data updates from its clients but cannot synchronize with other
disconnected partitions. In a system which guarantees strong data consistency, the
system should reject these updates to remain consistent until the network is restored
and synchronization is possible. However, Dynamo prefers high-availability and
instead chooses to relax strong data consistency and provide eventual consistency.
This means that all replicas will eventually become consistent after an indetermin-
istic amount of time [112]. Dynamo tags each update with version numbers and
vector clocks [62] to help clients to reconcile divergent versions.

To support flexible tradeoffs between high-availability and consistency, some
scalable cloud data stores such as Amazon SimpleDB and Cassandra support even-
tual consistency as an option. For example, Amazon SimpleDB supports eventual
consistency as its default consistency level but also supports single-row transac-
tions.

2.6.3 Replication Across Data Centers

The motivations for deploying a data store across multiple data centers are two-
fold: 1) tolerating possible outages of an entire data center, which might be caused
by power outage or natural disasters; 2) improving performance by placing data at
the data center which is the closest to the clients. However, operating across mul-
tiple data centers introduces new issues for synchronizing replicas as the latency
between data centers is much greater than within a data center. The common solu-
tion is to relax consistency for ensuring faster reads which obtain the value directly
from the local data center without synchronization across multiple data centers.

Dynamo maintains a preference list of nodes for replication of each data
item [35]. Dynamo is configured such that the nodes in the preference list of
each data item reside in multiple data centers. As Dynamo employs a quorum-
based protocol to synchronize replicas, programmers can trade off consistency and
performance by tuning the configurations of parameter NR and NW , as long as
NR + NW ≥ N . For example, setting NR = 1 means all reads are performed
locally. In cases such as network partitions where replicas might not be synchro-
nized, stale data could be returned. While setting NR = N means all N replicas
should be accessed and the latest value is returned.
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Similar to Dynamo, Cassandra provides various replication policies such as
“Rack Unaware”, “Rack Aware” (within a data center), “Datacenter Aware” [61].
With the latter two policies, Cassandra performs data partitioning by ensuring that
replicas of a data item reside in different racks of data centers.

PNUTS uses a primary-replica approach to replicate application data across
multiple data centers [29]. PNUTS is mainly designed for social-network applica-
tions which typically observe significant write locality on a per-record basis. For
each record, PNUTS selects the data center receiving the most workload as its mas-
ter. This master handles all updates on the record, even if the update was received
by another data center. The committed updates are then propagated asynchronously
to slave replicas in other data centers via a topic-based publish/subscribe system
that guarantees correct message delivery. PNUTS ensures that all replicas will be
synchronized even in case of single broker machine failure. To address perfor-
mance issues of cross-data-center operations, it provides the consistency level of
“Read-any” which directly obtains the value stored in the local data center.

Unlike PNUTS, Megastore applies Paxos to synchronize replicas across mul-
tiple data centers [11]. Megastore uses Bigtable [27] for scalable fault-tolerant
storage within a single data center, and provides a middleware to coordinate oper-
ations across data centers.

2.7 Conclusion

This chapter discussed the large variety of techniques used for a partitioned and dis-
tributed data store. We provided a generalized framework for such systems, which
consists of five components: data and query model, data partition mechanism, data
consistency enforcement, complex query implementation and fault tolerance.

We have seen that the desired properties of an ideal data store often contradict
each other. Achieving all of them simultaneously is not possible, so it is important
for each data store to clearly identify the desired properties and the priorities of
the targeted applications. The most important contradiction is between availability
and consistency in the case of network partitions. Some data stores relax data
consistency to achieve better availability as well as performance and scalability.
Other data stores maintain strong data consistency but trade off other properties
such as scalability, elasticity, query semantics and fault tolerance.

In subsequent chapters, we propose two different middleware systems which
aim to satisfy the following properties simultaneously: scalability, elasticity, sup-
porting complex queries, strong data consistency and fault tolerance. In the case
of network partitions, our systems choose strong data consistency over high avail-
ability.
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Chapter 3

Relational Data Denormalization
for Scalable Web Applications

This thesis discusses techniques to enable scalable data management for Web ap-
plications. To maintain reasonable performance under dynamic workloads, Web
applications demand a data store which is scalable to both read-only and read-write
queries.

Two main families of databases exist for this purpose. On the one hand, rela-
tional databases offer high-level query semantics and strong consistency, but often
lack scalability. On the other hand, NoSQL databases are highly scalable and fault
tolerant but they support only very simple queries and weak forms of consistency.
In this chapter we will see how one may build scalable Web applications while us-
ing relational databases. This requires restructuring application data into multiple
data partitions and storing them across separate relational databases. We present
a methodology for restructuring an application’s data schema and show that the
restructured Web application scales linearly with no loss of transactional proper-
ties. The next chapters follow the opposite approach and discuss how inherently-
scalable NoSQL databases can be extended to support strong consistency and com-
plex queries.

Centralized relational databases provide many useful features to improve pro-
grammer efficiency. For example, they provide a rich-semantic query model, sup-
porting many types of complex queries. In addition, they also support executing
any set of queries atomically by grouping them into an ACID transaction. To scale
relational databases across multiple machines while preserving these features, one
may apply classical techniques such as master-slave database replication. How-
ever, Web applications issue a mix of read-only and UDI (Update-Delete-Insert)
queries. Each UDI query must be issued to all database replicas so that replicas
can remain synchronized. Therefore, database replication is not scalable to update
workloads.

Besides master-slave database replication, new techniques exploit knowledge
of the application data access behavior. As discussed in Chapter 2, database query

27
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caching relies on high temporal locality, and uses prior knowledge of data over-
lap between different query templates to efficiently implement invalidations [8, 16,
75, 96]. A query template is a parameterized SQL query whose parameter val-
ues are passed to the system at runtime. Partial replication techniques use similar
information to reduce the data replication degree and limit the cost of database up-
dates [48, 95]. However, we observe that these techniques work best under very
simple workloads composed only of a handful of different query templates. When
the number of templates grows, an increasing number of constraints reduces their
efficiency: database caching mechanisms need to invalidate more cached queries
upon each update to maintain consistency, and partial replication is increasingly
limited in the possible choices of functionally correct data placements.

Vertical and horizontal data fragmentation techniques have been commonly
used in the design of distributed relational database systems [72, 73, 79, 41]. In
these works, tables are partitioned either vertically or horizontally into smaller
fragments and then allocated to distributed nodes. However, these systems often
assume that the partitions are deployed across a WAN so they strive to optimize
access time, while changes in the workload require to constantly re-evaluate the
data-fragmentation scheme [58]. Dynamic environments such as Web applications
would make such an approach impractical.

In [42], the authors propose an edge-computing infrastructure where the ap-
plication programmers can choose the best-suited data replication and distribution
strategies for the different parts of application data. By carefully reducing the con-
sistency requirements and selecting the replication strategies, this approach can
yield considerable gains in performance and availability. However, it requires that
the application programmers have significant expertise in domains such as fault-
tolerance and weak data consistency.

In this chapter, we propose to restructure the application data according to prior
knowledge of queries and transactions, so that the data store can be scaled. We
establish a systematic approach to vertically partition the application data into in-
dependent data services, each of which having exclusive access to its private data
store. This restructuring by itself does not lead to linear scalability directly. How-
ever, each of the data services has reduced workload complexity, which allows for
a more effective application of the optimization techniques such as database repli-
cation, query caching and horizontal data partitioning, thus leading to significantly
better scalability. For example, read-only data services can be scaled simply by
database replication, while update-intensive data services can be scaled more ef-
fectively by horizontal data partitioning. Importantly, the restructuring does not
imply any loss in terms of transactional or consistency properties. This aspect
makes our approach unique compared to the work of [42]. Besides, our approach
differs from the data fragmentation techniques, as we propose a one-time modifica-
tion in the application data structure. Further workload fluctuations can be handled
by scaling each service independently according to its own load.

Restructuring a monolithic Web application composed of Web pages that ad-
dress queries to a single database into a group of independent Web services query-
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ing each other requires one to rethink the data structure for improved performance
– a process sometimes named denormalization. Data denormalization is largely
applied to improve the performance of individual databases [87, 92]. It consists
of creating data redundancy by adding extra fields to existing tables so that expen-
sive join queries can be rewritten into simpler queries. This approach implicitly
assumes the existence of a single database, whose performance must be optimized.
In contrast, we apply similar denormalization techniques in order to scale the ap-
plication throughput in a multi-server system. Denormalization in our case allows
one to distribute UDI queries among different data services, and therefore to reduce
the negative effects of UDIs on the performance of replicated databases.

To demonstrate the effectiveness of our proposal, we study three Web applica-
tion benchmarks: TPC-W [67], RUBiS [9] and RUBBoS [85]. We show how these
applications can be restructured into multiple independent data services, each with
a very simple data access pattern. We then focus on the UDI-intensive data services
from TPC-W and RUBiS to show how one can host them in a scalable fashion.
For RUBBoS, this is almost trivial. Finally, we study the scalability of TPC-W,
the most challenging of the three benchmarks, and demonstrate that the maximum
sustainable throughput grows linearly with the quantity of hosting resources used.
We were thus able to scale TPC-W by an order of magnitude more than traditional
systems.

This chapter is structured as follows. Section 3.1 details our system model and
the issues that we need to face. Section 3.2 presents the process of data denor-
malization, while Section 3.3 shows how individual data services can be scaled.
Section 3.4 presents performance evaluations. Finally, Section 3.5 concludes this
chapter.

3.1 System Model

3.1.1 Goal

The idea behind our work is that the data access pattern of traditional monolithic
Web applications is often too complex to be efficiently handled by a single scal-
ability technique. Indeed, proposed techniques work best under specific simple
access patterns. Data replication performs best with workloads containing few or
no UDI queries; query caching requires high temporal locality and not too many
UDI queries; partial replication or even data partitioning demand that queries do
not span multiple partitions.

We claim that major gains in scalability can be obtained by restructuring Web
application data into a collection of independent data services, where each service
has exclusive access to its private data store. While such restructuring does not
provide any performance improvement by itself, it considerably simplifies the data-
access pattern generated by each service. This allows one to apply appropriate
scaling techniques to each service.
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Figure 3.1: System model

Figure 3.1 shows the system model of a Web application after restructuring.
Instead of being hosted in a single database, the application data are split into three
separate databases DB1, DB2 and DB3. Each database is encapsulated into a data
service which exports a service interface to the application business logic. Each
data service and its database can then be hosted independently using the technique
that suits it best according to its own data access pattern. Here, DB1 is replicated
across two database servers, DB2 is hosted by only one server, while DB3 has
been further partitioned into DB3a and DB3b. Note that splitting the application
data into independent services also improves separation of concerns: details about
the internal hosting architecture of a data service are irrelevant to the rest of the
application.

3.1.2 Data Denormalization Constraints

Denormalizing an application’s data into independent data services requires deep
changes to the structure of the data. For example, a table containing fields
〈key, attr1, attr2〉 and queried by templates “SELECT key FROM Table
where attr1 = ?” and “SELECT key FROM Table where attr2 =
?” may be split into two tables 〈key, attr1〉 and 〈key, attr2〉, which may belong
to two different data services.

However, not all tables can be split arbitrarily. In practice, data accessed by
different queries often overlap, which constrains the denormalization. We identify
two types of constraints: transactions and query-data overlap.

Although database transactions are known as an adversary to performance,
they sometimes cannot be avoided. An example is a checkout operation in an
e-commerce application where a product order and the corresponding payment
should be executed atomically. ACID requirements provide a strong motivation
for maintaining all data accessed by one transaction inside a single database, and
therefore inside a single data service. Splitting such data into multiple services
would impose executing distributed transactions across multiple services, for ex-
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ample, using protocols such as 2-phase commit. We expect that this would negate
the performance gains of the data decomposition.

Another source of constraints is created by ordinary queries executed outside
transactions. Similar to constraints created by transactions, it seems logical to clus-
ter data accessed by each query. However, in most cases the overlap of different
queries would lead to creating a single data service. Instead, we can apply two
other transformations. First, certain complex database queries can be rewritten
into multiple, simpler queries. Doing this reduces the data interdependency and
allows better data restructuring. Second, data dependencies induced by overlap-
ping queries can be reduced by also replicating certain data to multiple services.
However, this implies a trade-off between the gains of splitting the data into more
services and the costs of replicating update queries to these data over multiple ser-
vices.

3.1.3 Scaling Individual Data Services

In all our experiments, we noticed that the services resulting from data denor-
malization maintain extremely simple data structures and are queried by very few
query templates. Such a simple workload considerably simplifies the task of host-
ing services in a scalable fashion. For example, some data services receive very
few or even no UDI queries at all. Such services can therefore benefit from mas-
sive caching or replication. On the other hand, some other services are subject to
large numbers of UDI queries, often grouped together inside transactions. Such
services are clearly harder to scale. However, they at least benefit from the fact
that they receive less queries than the database of a monolithic application would.
Additionally, we show in Section 3.3.1 that such services can often be partitioned
so that UDI queries are distributed across multiple database servers.

3.2 Data Denormalization

Service-oriented data denormalization exploits the fact that UDI queries and trans-
actions often access only a part of the columns of a table. Decomposing such
tables into multiple smaller ones helps distributing UDI queries and transactions
to more data services, and thereby simplifies their workload. As discussed in Sec-
tion 3.1, two main constraints must be taken into account when denormalizing an
application’s data. First, one should split the data into the largest possible number
of services, such that no transaction or UDI query in the workload spans multiple
services. Second, one must make sure that read queries can continue to operate
over the then partitioned data.

3.2.1 Denormalization and Transactions

As discussed in previous sections, we need to cluster the data into services such that
no transaction overlaps multiple data services. To this end, we first mark which data
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columns are accessed by each transaction. Then, simple clustering techniques can
be applied to decompose the data into the largest possible number of independent
data services.

We distinguish three types of “transactions” that must be taken into account
here. First, real database transactions require ACID properties. This means that all
the data they access must be accessed atomically and must be placed into the same
service. One exception to this rule is formed by data columns that are never up-
dated, neither by the transaction in question nor by any other query in the workload.
An example is the table that matches zip codes to local names. Such read-only data
does not need to be placed in the same data service, and can be abstracted as a sep-
arate data service.

The second type of transaction is a so-called “atomic set,” where only the atom-
icity property of a normal transaction is necessary. Atomic sets appear, for exam-
ple, in TPC-W, where a query that reads the content of a shopping cart and the
one that adds another element must be executed atomically [105]. For such atomic
sets, only the columns that are updated must be local to the same data service to be
able to provide atomicity. Columns that are only read by the atomic set can reside
outside the service, as they are not concerned by the atomicity property1.

Finally, UDI queries that are not part of a transaction must be executed atom-
ically, and therefore must be considered as an atomic set composed of a single
query.

Once one has marked each transaction, UDI query and atomic set with the data
columns that should be kept in a single service, simple clustering techniques can
provide the first step of decomposition of the database columns into services. How-
ever, this step is not functional, as it accommodates only the needs of transactions
and UDI queries. To become functional, one must further update this data model
to take read queries into consideration.

3.2.2 Denormalization and Read Queries

Clearly, one can consider read queries similarly to UDI queries and transactions,
and cluster data services further such that no read query overlaps multiple services.
However, applying this method would increase the constraints to the data decom-
position and lead to coarse-grain data services, possibly with a single data service
for the whole application.

Instead, as shown in Figure 3.2, two different operations can be applied. First,
certain read queries can be rewritten into a series of multiple subqueries, where
each subquery can execute in one data service. For example, in TPC-W, the
CUSTOMER and ORDER tables are located in different data services, whereas the
following query spans both tables with a join operation: “SELECT o id FROM
customer, orders WHERE customer.c id = orders.o c id AND
c uname = ?”. However, this query can be easily rewritten into two subqueries

1In the case of actual database transactions, these data columns must reside inside the data service
to be able to provide the Isolation part of ACID properties.
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Figure 3.2: Different denormalization techniques for read queries

that access only one table: i) “SELECT c id FROM customer WHERE
c uname = ?”; and ii) “SELECT o id FROM orders WHERE o c id=?”.
The returned result of the first query is used as input for the second one and the final
result is returned by the second query.

Another transformation often applied in traditional database denormalization
techniques consists of replicating data from certain database tables to other tables.
This allows one to transform join queries into simpler queries. Note that traditional
denormalization applies this technique to optimize the efficiency of query execu-
tion within a single database whereas we apply this technique to be able to split the
data into independent data services. For example, the following query accesses two
tables in two different data services: “SELECT item.i id,item.i title
FROM item,order line WHERE item.i id = order line.ol i id
AND item.subject = ? LIMIT 50”. Replicating column i subject
from table ITEM to the other data service allows one to transform this query
and target a single data service. The only constraint is that any update to the
i subject column must be applied at both data services, preferably within a
(distributed) transaction. This scheme is therefore applicable only in cases where
the data to be replicated are rarely updated.

To conclude, complex query rewriting should be the preferred option if the
semantics of the query allows it. Otherwise, column replication may be applied if
the replicated data are never or seldom updated. In last resort, when neither query
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rewriting nor column replication is possible, merging the concerned data services
is always correct, yet at the cost of coarse-grain data services.

3.2.3 Case Studies

To illustrate the effectiveness of our data denormalization process, we applied it to
three standard Web applications: TPC-W, RUBiS and RUBBoS.

TPC-W

TPC-W is an industry standard e-commerce benchmark that models an online
bookstore similar to Amazon.com [67]. Its database contains 10 tables that are
queried by 6 transactions, 2 atomic sets, 6 UDI queries that are not part of a trans-
action, and 27 read-only queries.

First, the transactions and atomic sets of the TPC-W workload impose the
creation of four sets of transactions whose targeted data do not overlap. The
first set contains transaction Purchase, and the two atomic sets Docart and
Getcart; the second set contains the Adminconfirm transaction, the third set
contains only the Updaterelated transaction. Finally, the last set contains
Addnewcustomer, Refreshsession and Enteraddress. This means
for example that the original ITEM table from TPC-W must be split into five ta-
bles: ITEM STOCK contains the primary key i id and the column i stock; ta-
ble ITEM RELATED contains i id and i related1-5; table ITEM DYNAMIC
contains i id, i cost, i thumbnail, i image and i pub date; the last
table contains all the read-only columns of table ITEM.

The result of the first denormalization step is composed of five data services:
a Financial data service contains tables ORDERS, ORDER ENTRY, CC XACTS,
SHOPPING CART, SHOPPING- CART ENTRY and ITEM STOCK; data service
Item related takes care of items that are related to each other, with table
ITEM RELATED; data service Item dynamic takes care of the fields of table ITEM
that are likely to be updated by means of table ITEM DYNAMIC; finally, data ser-
vice “Customer” contains customer-related information with tables CUSTOMER,
ADDRESS and COUNTRY. The remaining tables from TPC-W are effectively read-
only and are clustered into a single data service. This read-only data service can
remain untouched, but for the sake of the explanation we split it further during the
second denormalization step.

The second step of denormalization takes the remaining read queries into ac-
count. We observe that most read queries can either be executed by a single data
service, or be rewritten. One read query cannot be decomposed: it fetches the list
of the best-selling 50 books that belong to a specified subject. However, the list of
book subjects i subject is read-only in TPC-W, so we replicate it to the Finan-

Amazon.com
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Data service Data Tables Requests
(included columns)

Financial ORDERS getLastestOrderInfo
ORDER ENTRY createEmptyCart
CC XACTS addItem
I STOCK(i stock) refreshCart
SHOPPING CART resetCartTime
SHOPPING CART ENTRY getCartInfo

getBesterIDs
computeRelatedItems
purchase

Customer CUSTOMER getAddress
ADDRESS setAddress
COUNTRY getCustomerID

getCustomerName
getPassword
getCustomerInfo
login
addNewCustomer
refreshSession

Item dynamic ITEM DYNAMIC(i cost getItemDynamicInfo
i pub date i subject getLatestItems
i image i thumbnail) setItemDynamicInfo

Item basic ITEM BASIC(i title i subject) getItemBasicInfo
Author searchByAuthor

searchByTitle
searchBySubject

Item related ITEM RELATED(i related1-5) getRelatedItems
setItemRelated

Item publisher ITEM PUBLISHER(i publisher) getPublishers
Item detail ITEM DETAIL(i srp i backing) getItemDetails
Item other ITEM OTHER(i isbn i page getItemOtherInfo

i dimensions i desc i avail)

Table 3.1: Data services of the denormalized TPC-W
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cial data service for this query2; i subject is also replicated to the Item dynamic
data service for a query that obtains the list of latest 50 books of a specified subject.

The remaining read-only data columns can be further decomposed according
to the query workload. For example, the “Search” Web page accesses data only
from columns i title, i subject and table AUTHOR. We can thus encap-
sulate them together as the Item basic service. We similarly created three more
read-only data services.

The final result is shown in Table 3.1. Note that, although denormalization
takes only data access patterns into account, each resulting data service has clear
semantics and can be easily named. This result is in line with observations from [46],
where examples of real-world data services are discussed.

RUBBoS

RUBBoS is a bulletin-board benchmark modeled after slashdot.org [85]. It
consists of 8 tables requested by 9 UDI queries and 30 read-only queries. RUB-
BoS does not contain any transactions. Six tables incur UDI workload, while the
other two are read-only. Furthermore, all UDI queries access only one table. It is
therefore easy at the end of the first denormalization step to encapsulate each table
incurring UDI queries into a separate data service.

All read queries can be executed in only one table except two queries which
span two tables: one can be rewritten into two simpler queries; the other one re-
quires to replicate selected items from OLD STORIES into the USERS table. The
OLD STORIES table, however, is read-only so no extra cost is incurred from such
replication. Finally, the two read-only tables are encapsulated as separate data ser-
vices.

RUBBoS can therefore be considered as a very easy case for data denormaliza-
tion.

RUBiS

RUBiS is an auction site benchmark modeled after eBay.com [9]. It contains 7 ta-
bles requested by 5 update transactions. Except for the read-only tables REGIONS
and CATEGORIES, the other five tables are all updated by INSERT queries, which
means that they cannot be easily split. This means that the granularity at which we
can operate is the table. The transactions impose the creation of two data services:
the “Users” data service contains tables USERS and COMMENTS, while the “Auc-
tion” data service contains tables BUY NOW, BIDS and ITEMS. The final result of
data denormalization is shown in Table 3.2.

RUBiS is a difficult scenario for denormalization because none of its tables can
be split following the rules described in Section 3.2.1. We note that in such worst-
case scenario, denormalization is actually equivalent to the way GlobeTP [48]

2Note that we cannot simply move this column into the Financial service, as it is also accessed
in combination with other read-only tables.

slashdot.org
eBay.com
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Data Service Tables Transactions
User USERS[U] Storecomment(U,C)

COMMENTS[C] Registeruser(U)
Auction ITEMS[I] Storebuynow(I,N)

BUY NOW[N] Registeritem(I)
BIDS[B] Storebid(I,B)

Categories CATEGORIES -
Regions REGIONS -

Table 3.2: Data services of RUBiS

would have hosted the application. We will show however in the next section that
scaling the resulting data services is relatively easy.

3.3 Scaling Individual Data Services

In all cases we examined, the workload of each individual data service can be
easily characterized. Some services incur either read-only or read-dominant work-
load. These services can be scaled up by classical database replication or caching
techniques [97]. Other services incur many more UDI queries, and deserve more
attention as standard replication techniques are unlikely to provide major perfor-
mance gains. Furthermore, update-intensive services also often incur transactions,
which makes the scaling process more difficult. Instead, partial replication or data-
partitioning techniques should be used so that update queries can be distributed
among multiple servers. We discuss two representative examples from TPC-W and
RUBiS and show how they can be scaled up using relatively simple techniques.

3.3.1 Scaling the Financial Service of TPC-W

The denormalized TPC-W contains one update-intensive service: the Financial
service. This service incurs a database update each time a client updates its shop-
ping cart or does a purchase. However, all tables from this service, except one, are
indexed by a shopping cart ID and all queries span exactly one shopping cart. This
suggests that, instead of replicating the data, one can partition them according to
their shopping cart ID.

The Financial data service receives two types of updates: updates on a shop-
ping cart, and purchase transactions. The first one accesses two tables SHOPPING-
CART and SHOPPING CART ENTRY. Table SHOPPING CART contains the de-

scription of a whole shopping cart, while SHOPPING CART ENTRY contains the
details of one entry of the shopping cart. If we are to partition these data across
multiple servers, then one should keep a shopping cart and all its entries at the same
server.

The second kind of update received by the Financial service is the
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1 Insert into ORDER with o id=id;
2 Insert into CC XACTS with cx o id=id;
3 foreach item i within the order do
4 Insert into ORDER ENTRY with ol o id=id, ol i id=i;
5 Update I STOCK set i stock=i stock-qty(i) where i id=i;
6 end
7 Update SHOPPING CART where sc id=id;
8 Delete from SHOPPING CART ENTRY where scl sc id=id;

Algorithm 1: The purchase transaction

Purchase transaction. We present this transaction in Algorithm 1. Similar to
the Updatecart query, the Purchase transaction requires that the order made
from a given shopping cart is created at the same server that already hosts the
shopping cart and its entries. This allows one to run the transaction within a single
server of the Financial service rather than facing the cost of a distributed transac-
tion across replicated servers.

One exception to this easy data partitioning scheme is the ITEM STOCK table,
in which any element can potentially be referred to by any shopping cart entry. One
simple solution would be to replicate the ITEM STOCK table across all servers that
host the Financial service. However, this would require to run the Purchase
transaction across all these servers. Instead, we create an ITEM STOCK table in
each server of the Financial service in which all item details are identical except
the available stock which is divided by the number of servers. This means that
each server is allocated a part of the stock that it can sell without synchronizing
with other servers. Only when the stock available at one server is empty, does it
need to execute a distributed transaction to re-distribute the available stock.

The Financial service receives two more read queries that access data across
multiple data clusters. These queries retrieve respectively the 3333 and 10,000
latest orders from tables ORDERS and ORDER ENTRY in order to obtain either
the list of best-selling items or the items most related to a given other item. We
implement these queries in a similar way to distributed databases. Each query is
first issued at each server. The results are then merged into a single result set, and
the relevant number of most recent orders is re-selected from the merged results.

In our implementation, we wanted to balance the load imposed by different
shopping carts across all servers of the Financial service. We therefore marked
each row of tables SHOPPING CART, SHOPPING CART ENTRY and ORDERS
with a key equal to the shopping cart ID. We then partition the tables horizon-
tally by this key and distribute the records of each table evenly across all servers.
Records are assigned to these servers using hash partitioning. Our experiments
show that this simple approach balances the load effectively in terms of data stor-
age size and computational load.

This example shows that, even for relatively complex data services, the fact
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that each service has simple semantics and receives few different queries allows
one to apply application-specific solutions. The resulting relative complexity of
the service implementation, however, remains transparent to other parts of the ap-
plication, which only need to invoke a simple service interface.

3.3.2 Scaling RUBiS

The denormalized RUBiS implementation contains two update-intensive services:
“Auction” and “User.” Similar to the previous example, most queries address a sin-
gle auction or user by their respective IDs. We were thus able to partition the data
rows between multiple servers. A few read-only queries span multiple auctions
or users, but we could easily rewrite them such that individual queries would be
issued at every server before their results can be merged.

3.4 Performance Evaluation

As we have seen, RUBBoS and RUBiS are relatively simple to host using our de-
normalization technique. RUBBoS can be decomposed into several rarely updated
data services. On the other hand, RUBiS requires coarser-grain update-intensive
services, but they can be scaled relatively easily. We present here performance
evaluations of TPC-W, which we consider as the most challenging of the three
applications.

Our evaluations assume that the application load remains roughly constant,
and focus on the scalability of denormalized applications. To support the fluctuat-
ing workloads that one should expect in real deployments, a variety of techniques
exist to dictate when and how extra servers should be added or removed from each
individual data service of our implementations [2, 30, 37, 38, 109].

We compare three implementations of TPC-W. “OTW” represents the unmodi-
fied original TPC-W implementation. We then compare its performance to “DTW”,
which represents the denormalized TPC-W where no particular measure has been
taken to scale up individual services. Finally, “STW” (scalable TPC-W) represents
the denormalized TPC-W with scalability techniques enabled. All three imple-
mentations are based on the Java implementation of TPC-W from the University
of Wisconsin [55]. For performance reasons we implemented the data services as
servlets rather than SOAP-based Web services.

We first study the performance of OTW and DTW to investigate the costs and
benefits of data denormalization with no scalability techniques being introduced.
We then study how replication and data partitioning techniques allow us to scale
individual data services of TPC-W. Finally, we deploy the three implementations
on an 85-node cluster and compare their scalability in terms of throughput.
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3.4.1 Experimental Setup

All experiments are performed on the DAS-3, an 85-node Linux-based server clus-
ter [34]. Each machine in the cluster has a dual-CPU / dual-core 2.4 GHz AMD
Opteron DP 280, 4 GB of memory and a 250 GB IDE hard drive. Nodes are con-
nected to each other with a gigabit LAN such that the network latency between the
servers is negligible. We use Tomcat v5.5.20 as application servers, PostgreSQL
v8.1.8 as database servers, and Pound 2.2 as load balancers to distribute HTTP
requests among multiple application servers.

Before each experiment, we populate the databases with 86,400 customer
records and 10,000 item records. Other tables are scaled according to the bench-
mark requirements. The client workload is generated by Emulated Browsers (EBs).
We use the number of EBs to measure the client workload. The workload model
incorporates a think time parameter to control the amount of time an EB waits be-
tween receiving a response and issuing the next request. According to the TPC-W
specification, think times are randomly distributed with exponential distribution
and average value 7 seconds.

TPC-W defines three standard workloads: the browsing, shopping and ordering
mixes, which generate 5%, 20% and 50% update interactions respectively. Unless
otherwise specified, our experiments rely on the shopping mix.

3.4.2 Costs and Benefits of Denormalization

The major difference between a monolithic Web application and its denormalized
counterpart is that the second one is able to distribute its UDI workload across
multiple machines. Even though such an operation implies a performance drop
when hosting the application on a single machine, it improves the overall system
scalability when more machines are used. In this section, we focus on the costs
and benefits of data denormalization when no special measure is taken to scale the
denormalized TPC-W.

We exercise the OTW and DTW implementations using 2500 EBs, under each
of the three standard workload mixes. Both systems are deployed over one ap-
plication server and 8 database servers. In the case of OTW, the database servers
are replicated using the standard PostgreSQL master-slave mechanism. DTW is
deployed such that each data service is hosted on a separate database server.

We measure the system performance in terms of WIRT (Web Interaction Re-
sponse Time) as well as WIPS (Web Interactions Per Second). According to the
TPC-W specification, we defined an SLA in terms of the 90th percentile of re-
sponse times for each type of Web interaction: namely, 90% of Web interactions of
each type must complete under 500 ms. The only exception is the “Admin confirm”
request type, which does not have an SLA requirement. This request is issued only
by the system administrator, and therefore does not influence the client-perceived
performance of the system.

Figure 3.3 shows the performance of the different systems under each work-
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Figure 3.3: Throughput and performance comparison between original TPC-W
and denormalized TPC-W. Note that the Ordering mix for the original TPC-W
overloaded and subsequently crashed the application.

load. Figure 3.3(a) shows the achieved system throughput, whereas Figure 3.3(b)
shows the number of query types for which the SLA was respected.

The browsing mix contains very few UDI queries. Both implementations sus-
tain roughly the same throughput. However, the denormalized TPC-W fails to
meet its SLA for two out of the 14 interaction types. This is due to the fact that the
concerned interactions heavily rely on queries that are rewritten to target multiple,
different data services. These calls are issued sequentially, which explains why the
corresponding request types incur higher latency.

At the other extreme, the ordering mix contains the highest fraction of UDI
queries. Here, DTW sustains a high throughput and respects all its SLAs, while
OTW simply crashes because of overload. This is due to the fact that DTW dis-
tributes its UDI queries across all database servers while OTW replicates them to
all servers. Finally, the shopping mix constitutes a middle case where both imple-
mentations behave equally good.

We conclude that data denormalization improves the performance of UDI quer-
ies at the cost of a performance degradation of rewritten read queries. We note,
however, that the extra cost of read queries does not depend on the number of
server machines, whereas the performance gain of UDI queries is proportional to
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the size of the system. This suggests that the denormalized implementation is more
scalable that the monolithic one, as we will show in the next sections.

3.4.3 Scalability of Individual Data Services

We now turn to study the scalability of each data service individually. We study
the maximum throughput that one can apply to each service when using a given
number of machines, such that the SLA is respected.

Since we now focus on individual services rather than the whole application,
we need to redefine the SLA for each individual data service. As one application-
level interaction generates on average five data service requests, we roughly trans-
lated the interaction-level SLA into a service-level SLA that requires 90% of ser-
vice requests to be processed within 100 ms. The Financial service is significantly
more demanding than other services, since about 10% of its requests take more than
100 ms irrespectively of the workload. We therefore relax its SLA and demand that
only 80% of queries return within 100 ms.

We measure the maximum throughput of each data service by increasing the
number of EBs until the service does not respect its SLA any more. To gener-
ate flexible reproducible workloads for each data service, we first ran the TPC-W
benchmark several times under relatively low load (1000 EBs) and collected the
logs of the invocation of data service interfaces. We obtained 72 query logs, each
representing the workload of 1000 EBs for a duration of 30 minutes. We can thus
generate any desired workload, from 1000 EBs to 72,000 EBs step by 1000 EBs,
by replaying the right number of elementary log files across one or more client
machines concurrently.

Figure 3.4 shows the throughput scalability of three representative data ser-
vices from the scalable TPC-W. The Item basic data service is read-only. It is
therefore trivial to increase its throughput by adding database replicas. Similarly,
the Item dynamic service receives relatively few UDI queries, and can be scaled by
simple master-slave replication.
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On the other hand, the Financial service incurs many database transactions and
UDI queries, which implies that simple database replication will not produce major
throughput improvements. We see, however, that the implementation discussed in
Section 3.3.1 exhibits a linear growth of its throughput as the number of database
servers increases.

To conclude, we were able to scale all data services to a level where they could
sustain a load of 50,000 EBs. Different services have different resource require-
ments to reach this level, with the Item basic, Item dynamic and Financial services
requiring 3, 3, and 13 database servers, respectively.

We believe that all the data services can easily be scaled further. We stopped
at that point as 50,000 EBs is the maximum throughput that our TPC-W imple-
mentation reaches when we use the entire DAS-3 cluster for hosting the complete
application.

3.4.4 Scalability of the Entire TPC-W

We conclude this performance evaluation by comparing the throughput scalability
of the OTW, DTW and STW implementations of TPC-W. Similar to the previous
experiment, we exercised each system configuration with increasing numbers of
EBs until the SLA was violated. In this experiment, we use the application-level
definition of the SLA as described in Section 3.4.2.

Figure 3.5(a) compares the scalability of OTW, DTW and STW when using
between 2 and 70 server machines. In all cases we started by using one applica-
tion server and one database server. We then added database server machines to
the configurations. In OTW, extra database servers were added as replicas of the
monolithic application state. In DTW, we start with one database server for all
services, and eventually reach a configuration with one database server per service.
In STW, we allocated the resources as depicted in Figure 3.5(b). Note that in all
cases, we deliberately over-allocated the number of application servers and client
machines to make sure that the performance bottleneck remains at the database
servers.

When using very few servers, OTW slightly outperforms DTW and STW. With
increasing number of servers, OTW can be scaled up until about 6000 EBs when
using 8 servers. However, when further adding servers, the throughput decreases.
In this case, the performance improvement created by extra database replicas is
counterbalanced by the extra costs that the master incurs to maintain consistency.

As no individual scaling techniques are applied to DTW, it can be scaled up
to at most 8 database servers (one database server per service). The maximum
throughput of DTW is around 3500 EBs. Note that this is only about half of the
maximum achievable throughput of OTW. This is due to the extra costs brought
by data denormalization, in particular the rewritten queries. Adding more database
servers per service using database replication would not improve the throughput,
as most of the workload is concentrated in the Financial service.

Finally, STW shows near linear scalability. It reaches a maximum throughput
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Figure 3.5: Scalability of TPC-W hosting infrastructure

of 48,000 EBs when using 70 server machines (11 database servers for the Finan-
cial service, 12 database servers for the other services, 33 application servers and
14 load balancers). Taking into account the 14 client machines necessary to gen-
erate a sufficient workload, this configuration uses the entire DAS-3 cluster. The
maximum throughput of STW at that point is approximately 8 times that of OTW,
and 10 times that of a single database server.

We note that the STW throughput curve seems to start stabilizing around 50
server machines and 40,000 EBs. This is not a sign that we reached the maximum
achievable throughput of STW. The explanation is that, as illustrated in Figure 3.4,
40,000 EBs is the point where many small services start violating their SLA with
two database servers, and need a third database server. In our implementation each
database server is used for a single service, which means that several extra database
servers must be assigned to the small data services to move from 40,000 EBs to
50,000 EBs. We expect that using more resources the curve would grow faster
again up to the point where the small data services need four servers.
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3.5 Conclusion

Most approaches for building scalable Web applications consider the application
code and data structure as constants, and propose middleware layers to improve
performance transparently to the application. We take a different stand and demon-
strate that major scalability improvements can be gained by allowing one to denor-
malize an application’s data into independent services. While such restructuring
introduces extra costs, it considerably simplifies the query access pattern that each
service receives, and allows for a much more efficient use of classical scalability
techniques. We applied this methodology to three standard benchmark applica-
tions and showed that it allows TPC-W, the most challenging of the three, to scale
by at least an order of magnitude compared to master-slave database replication.
Importantly, data denormalization does not imply any loss in terms of consistency
or transactional properties. This aspect makes our approach unique compared to,
for example, [42].

Data denormalization exploits the fact that an application’s queries and trans-
actions usually target few data columns. This, combined with classical database
denormalization techniques such as query rewriting and column replication, allows
us to cluster the data into disjoint data services. Although this property was verified
in all applications that we examined, one cannot exclude the possible existence of
applications with sufficient data overlap to prevent any service-oriented denormal-
ization. This may be the case of transaction-intensive applications, whose ACID
properties would impose very coarse-grained data clustering. It is a well-known
fact that database transactions in a distributed environment imply important per-
formance loss, so one should carefully ponder whether transactions are necessary
or not.

The fact that denormalization is steered by prior knowledge of the application’s
query templates means that any update in the application code may require to re-
structure the data to accommodate new query templates. However, the fact that all
data services resulting from denormalization have clear semantics makes us believe
that extra application features could be implemented without the need to redefine
data services and their semantics.

In our experience, designing the data denormalization of an application from
its original data structure and query templates takes only a few hours. On the other
hand, the work required for the actual implementation of the required changes
largely depends on the complexity of each data service. For complex Web appli-
cations, re-implementation may require lot of time and development skills. This
increases development times and restricts the practical usefulness of this technique.
We therefore need a more practical approach where data restructuring is not nec-
essary anymore. In the following chapters, we present such an approach using
inherently-scalable NoSQL databases. In Chapter 4, we show how to support
ACID transactions on top of NoSQL databases without compromising scalability.
In Chapter 5, we further extend this design to support join queries.
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Chapter 4

CloudTPS: Transactional
Consistency in NoSQL Data
Stores

We have seen that it is possible to build scalable Web applications using relational
databases. However, this approach requires considerable manual efforts in restruc-
turing applications. This chapter explores a different approach based on inherently-
scalable NoSQL data stores. As discussed in Chapter 2, these data stores partition
application data to provide incremental scalability, and replicate the partitioned
data to tolerate server failures. These good properties have convinced many devel-
opers to rely on NoSQL data stores for building their Web applications.

The scalability and high availability properties of NoSQL data stores, however,
come at a cost. First, they provide only weak consistency such as eventual data
consistency: any data update becomes visible after a finite but undeterministic time.
As weak as this consistency property may seem, it does allow to build a wide range
of useful applications, as demonstrated by the commercial success of NoSQL data
stores such as Amazon SimpleDB [6] and DynamoDB [5]. However, many other
applications such as payment and online auction services cannot afford any data
inconsistency. It is therefore essential to provide transactional data consistency to
support the applications that need it. Second, NoSQL data stores allow data queries
only by primary key rather than supporting secondary-key or join queries. This
chapter focuses on the first issue and shows how to implement ACID transactions
on top of NoSQL data stores while preserving scalability and fault tolerance. The
next chapter will address the issue of supporting complex queries such as join
queries and secondary-key queries.

A transaction is a set of queries that must be executed atomically on a sin-
gle consistent view of a database. The main challenge to support transactional
guarantees in a NoSQL data store is to provide the ACID properties of Atomic-
ity, Consistency, Isolation and Durability [47] without compromising scalability
properties. However, the underlying NoSQL data store may provide only eventual

47
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consistency. We address this discrepancy by creating a temporary secondary copy
of the application data in the transaction managers that handle consistency.

Obviously, any centralized transaction manager would face two scalability prob-
lems: 1) A single transaction manager must execute all incoming transactions and
would eventually become the performance and availability bottleneck; 2) A sin-
gle transaction manager must maintain a copy of all data accessed by transactions
and would eventually run out of storage space. To support scalable transactions,
we propose to split the transaction manager into any number of Local Transaction
Managers (LTMs) and to partition the application data and the load of transaction
processing across LTMs.

CloudTPS exploits three properties typical of Web applications to allow effi-
cient and scalable operations. First, we observe that in Web applications, all trans-
actions are short-lived because each transaction is encapsulated in the processing
of a particular request from a user. This rules out long-lived transactions that make
scalable transactional systems so difficult to design, even in medium-scale envi-
ronments [106]. Second, Web applications tend to issue transactions that span a
relatively small number of well-identified data items. This means that the commit
protocol for any given transaction can be confined to a relatively small number
of servers holding the accessed data items. It also implies a low (although not
negligible) number of conflicts between multiple transactions concurrently trying
to read/write the same data items. Third, many read-only queries of Web appli-
cations can produce useful results by accessing an older yet consistent version of
data. This allows to execute complex read queries directly in the NoSQL data store,
rather than in LTMs.

CloudTPS must maintain the ACID properties even in the case of server fail-
ures. For this, we replicate data items and transaction states to multiple LTMs, and
periodically checkpoint consistent data snapshots to the NoSQL data store. Consis-
tency correctness relies on the eventual consistency and high availability properties
of NoSQL data stores: we need not worry about data loss or unavailability after a
data update has been issued to the storage service.

It should be noted that the CAP theorem proves that one must trade off between
strong Consistency and high Availability in the presence of network Partitions [44].
Typical NoSQL data stores relax strong consistency for high availability. As dis-
cussed in Section 2.5, these systems remain available even in the presence of net-
work partitions, and may generate inconsistent copies of data. After the network is
restored, these systems then reconcile inconsistent data updates and effectively im-
plement some form of eventual data consistency [18]. However, these techniques
heavily depend on the semantics of specific applications and demand significant
efforts from programmers. In this chapter, we make the opposite choice and prefer
providing transactional consistency for the applications that cannot afford any data
inconsistency. We choose to always guarantee transactional consistency, possibly
at the cost of unavailability during network failures. This allows programmers to
manage data consistency without having to worry about subtle consistency issues.

To implement CloudTPS efficiently, we must address two additional issues.
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Firstly, there exists a wide variety of NoSQL data stores [6, 27, 29, 69].
CloudTPS should be portable across them, and the porting should require only
minor adaptations. On the one hand, as current NoSQL data stores use differ-
ent data models and interfaces, we build CloudTPS upon their common features:
our data model is based on key-value pairs. The implementation demands only a
simple primary-key-based get/put interface from NoSQL data stores. On the other
hand, current NoSQL data stores provide different consistency levels. For instance,
Bigtable supports transactions on single data items while SimpleDB provides either
eventual consistency or single-item transactions. To ensure the correctness and ef-
ficiency of CloudTPS, we implement various mechanisms for different underlying
consistency levels.

Secondly, loading a full copy of application data into the system may over-
flow the memory of LTMs, forcing one to use many LTMs just for their storage
capacity. This is, however, not necessary as only the currently accessed data items
contribute to maintaining ACID properties. Other unaccessed data items can be
evicted from the LTMs if we can fetch their latest stored versions from the NoSQL
data store. Web applications exhibit temporal locality where only a portion of ap-
plication data is accessed at any time [108, 111]. We can therefore design efficient
memory management mechanisms to restrict the number of in-memory data items
in LTMs while maintaining strong data consistency. Data items being accessed
by uncommitted transactions must stay in the LTMs to maintain ACID properties;
others depend on a trade-off between memory size and access latency. We use
a cost-aware replacement policy to dictate which data items should remain in the
LTMs.

We demonstrate the scalability of our transactional database service using a
prototype implementation1. Following the data models of Bigtable and SimpleDB,
transactions are allowed to access any number of data items by primary key at
the granularity of the data row. CloudTPS supports both read-write and read-only
transactions. In this chapter, we focus on transactional properties with no support
for complex queries. The list of primary keys accessed by a transaction must be
given explicitly before executing the transaction. In the next chapter, we will return
to this issue and show how CloudTPS can support complex queries which require
identifying the accessed data items on the fly.

We evaluate our prototype under a workload derived from the TPC-W
e-commerce benchmark [67]. We implemented CloudTPS on top of two differ-
ent scalable data layers: HBase, an open-source clone of Bigtable [52], running
in our local cluster; and SimpleDB, running in the Amazon cloud [7]. We show
that CloudTPS scales linearly to at least 40 LTMs in our local cluster and 80 LTMs
in the Amazon cloud. This means that any increase in workload can be accommo-
dated by provisioning more servers. CloudTPS tolerates server failures, which only
cause a few aborted transactions (authorized by the ACID properties) and a tem-
porary drop of throughput during transaction recovery and data reorganization. In

1Our prototype is available at http://www.globule.org/cloudtps.

http://www.globule.org/cloudtps


50 CHAPTER 4. CLOUDTPS: TRANSACTIONAL CONSISTENCY ...

1

CloudTPSClients Web Application

Local Transaction Managers

NoSQL Data Store

Http 

Requests

Transactions

Join Queries

Checkpoint

2

4

Load Data

5

36

Figure 4.1: CloudTPS system organization.

case of network partitions, CloudTPS may reject incoming transactions to maintain
data consistency. It recovers and becomes available again as soon as the network is
restored, while still maintaining ACID properties. We finally evaluate our memory
management mechanism and show that it can effectively control the buffer sizes of
LTMs and only cause minor performance overhead.

This chapter is organized as follows. Sections 4.1 and 4.2 describe the system
model and the system design respectively. Section 4.3 discusses implementation
details and two optimizations for memory management and read-only transactions.
Section 4.4 presents performance evaluations. Finally, Section 4.5 concludes this
chapter.

4.1 System Model

Figure 4.1 shows the organization of CloudTPS. Clients issue HTTP requests to
a Web application, which in turn issues transactions to a Transaction Processing
System (TPS). The TPS is composed of any number of LTMs, each of which is
responsible for a subset of all data items. The Web application can submit a trans-
action to any LTM that is responsible for one of the accessed data items. This LTM
then acts as the coordinator of the transaction across all LTMs in charge of the data
items accessed by the transaction. The LTMs operate on an in-memory copy of the
data items loaded from the NoSQL data store. Data updates resulting from trans-
actions are kept in memory of the LTMs. To prevent data loss due to LTM server
failures, the data updates are replicated to multiple LTM servers. LTMs also peri-
odically checkpoint the updates back to the NoSQL data store which is assumed to
be highly available and persistent.

We implement transactions using the two-phase commit protocol (2PC). In the
first phase, the coordinator requests all involved LTMs and asks them to check that
the operation can indeed been executed correctly. If all LTMs vote favorably, then
the second phase actually commits the transaction. Otherwise, the transaction is
aborted.

CloudTPS transactions are short-lived and access only well-identified data
items. CloudTPS allows only server-side transactions implemented as predefined
procedures stored at all LTMs. Each transaction contains one or more subtransac-
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Figure 4.2: The parent class of all subtransactions classes.

tions, which operate on a single data item each. The application must provide the
primary keys of all accessed data items when it issues a transaction.

Concretely, a transaction is implemented as a Java object containing a list of
subtransaction instances. All subtransactions are implemented as subclasses of the
SubTransaction abstract Java class. As shown in Figure 4.2, each subtransac-
tion contains a unique class name to identify itself, a table name and primary key to
identify the accessed data item, and input parameters organized as attribute-value
pairs. Each subtransaction implements its own data operations by overriding the
run() operation. The return value of the run() operation specifies whether this
subtransaction is able to commit. The execution of run() also generates the data
updates and the results for read data operations, which are stored in the Output
attributes.

The bytecode of all subtransactions is deployed at all LTMs beforehand. A Web
application issues a transaction by submitting the names of included subtransac-
tions and their parameters. LTMs then construct the corresponding subtransaction
instances to execute the transaction. In the first phase of 2PC, LTMs load the data
items of each subtransaction and execute the run() operation to decide on their
votes and generate proposed data updates. If an agreement to commit is reached,
LTMs apply the updates.

We assign data items to LTMs using consistent hashing [57]. To achieve a
balanced assignment, we first cluster data items into virtual nodes, and then assign
virtual nodes to LTMs. As shown in Figure 4.1, multiple virtual nodes can be
assigned to the same LTM. To tolerate LTM failures, virtual nodes and transaction
states are replicated to one or more LTMs. After an LTM server failure, the latest
updates can then be recovered and affected transactions can continue execution
while satisfying ACID properties.
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4.2 System Design

We now detail the design of the TPS to guarantee the atomicity, consistency, isola-
tion and durability properties. Each of the properties is discussed individually. We
then discuss the membership mechanisms to guarantee the ACID properties even
in case of LTM failures and network partitions.

4.2.1 Atomicity

The atomicity property requires that either all operations of a transaction complete
successfully, or none of them does. To ensure atomicity, for each transaction is-
sued, CloudTPS performs two-phase commit (2PC) across all the LTMs responsi-
ble for the data items accessed. As soon as an agreement to commit is reached, the
transaction coordinator can simultaneously return the result to the Web application
and complete the second phase [54].

To ensure atomicity in the presence of server failures, all transaction states and
data items should be replicated to one or more LTMs. LTMs replicate the data
items to the backup LTMs during the second phase of a transaction. Thus when
the second phase completes successfully, all replicas of the accessed data items are
consistent. The transaction state includes the transaction timestamp (discussed in
Section 4.2.3), the agreement to commit, and the list of data updates to be commit-
ted.

When an LTM fails, the transactions it was coordinating can be in two states.
If a transaction has reached an agreement to commit, then it must eventually be
committed; otherwise, the transaction can still be aborted. Therefore, we replicate
transaction states on two occasions: 1) When an LTM receives a new transaction,
it must replicate the transaction state to other LTMs before confirming to the appli-
cation that the transaction has been successfully submitted; 2) After all participant
LTMs reach an agreement to commit at the coordinator, the coordinator updates
the transaction state at its backups with the agreement to commit and all the data
updates. The participant LTMs piggyback their data updates with their vote mes-
sages. This creates in essence in-memory “redo logs” at the backup LTMs. The
coordinator must finish this step before carrying out the second phase of the commit
protocol. If the coordinator fails after this step, the backup LTMs can then commit
the transaction. Otherwise, it can simply abort the transaction without violating the
ACID properties.

An LTM server failure also results in the inaccessibility of the data items it
was responsible for. It is necessary to re-replicate these data items to maintain N
backups. If a second LTM server failure happens during the recovery process of a
previous LTM server failure, the system initiates the recovery of the second failure
after the first recovery process has completed. The transactions that cannot recover
from the first failure because they also accessed the second failed LTM are left
untouched until the second recovery process.
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As each transaction and data item has N +1 replicas in total, the TPS can thus
guarantee the atomicity property under the simultaneous failure of N LTM servers.

4.2.2 Consistency

The consistency property requires that a transaction, which executes on a database
that is internally consistent, will leave the database in an internally consistent state.
Consistency is typically expressed as a set of declarative integrity constraints. We
assume that the consistency rule is applied within the logic of transactions. There-
fore, the consistency property is satisfied as long as all transactions are executed
correctly.

4.2.3 Isolation

The isolation property requires that the behavior of a transaction is not disturbed
by the presence of other transactions that may be accessing the same data items
concurrently. The TPS decomposes a transaction into a number of subtransactions,
each accessing a single data item. Thus the isolation property requires that if two
transactions conflict on any number of data items, all their conflicting subtransac-
tions must be executed sequentially, even though the subtransactions are executed
in multiple LTMs.

We apply timestamp ordering for globally ordering conflicting transactions
across all LTMs. Each transaction has an globally unique timestamp among all
of its conflicting transactions. All LTMs then order transactions as follows: a
subtransaction can execute only after all conflicting subtransactions with a lower
timestamp have committed. It may happen that a transaction is delayed (e.g.,
because of network delays) and that a conflicting subtransaction with a younger
timestamp has already committed. In this case, the older transaction will abort,
obtain a new timestamp and restart the execution of all of its subtransactions.

As each subtransaction accesses only one data item by primary key, the im-
plementation is straightforward. Each LTM maintains a list of subtransactions for
each data item it handles. The list is ordered by timestamp so LTMs can execute the
subtransactions sequentially in timestamp order. The exception discussed before
happens when an LTM inserts a subtransaction into the list but finds its timestamp
smaller than the one currently being executed. It then reports the exception to the
coordinator LTM of this transaction so that the whole transaction can be restarted.
We extended the 2PC with an optional restart phase, which is triggered if any of
the subtransactions reports an ordering exception. After a transaction reaches an
agreement and enters the second phase of 2PC, it cannot be restarted any more.

We are well aware that assigning timestamps to transactions using a single
global timestamp manager can create a potential bottleneck and a single point of
failure in the system. A simpler, fully decentralized solution consists of letting
each LTM generate timestamps using its own local clock, coupled with the LTM’s
ID to enforce a total order between timestamps. Note that this solution does not
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require perfectly synchronized clocks for ensuring correctness. Transactions do not
necessarily need to be timestamped according to their real-time submission order,
but there must simply be a total order between any pair of transactions. However, if
one LTM clock significantly lags behind the others, then the transactions submitted
at this LTM will have a higher chance of being restarted than others. The DAS-3
cluster does not use NTP synchronization between its nodes, which is the reason
why we used a centralized timestamp manager in our experiments.

4.2.4 Durability

The durability property requires that the effects of committed transactions cannot
be undone and would survive server failures. In our case, it means that all the
data updates of committed transactions must be successfully written back to the
backend NoSQL data store.

The main issue here is to support LTM failures without losing data. For per-
formance reasons, the commit of a transaction does not directly update data in the
NoSQL data store but only updates the in-memory copy of data items in the LTMs.
Instead, each LTM issues periodic updates to the NoSQL data store. During the
time between a transaction commit and the next checkpoint, durability is ensured
by the replication of data items across several LTMs. After checkpoint, we can
rely on the high availability and eventual consistency properties of the NoSQL
data store for durability.

When an LTM server fails, all the data items stored in its memory that were not
checkpointed yet are lost. However, as discussed in Section 4.2.1, all data items
of the failed LTM can be recovered from the backup LTMs. The difficulty here is
that the backups do not know which data items have already been checkpointed.
One solution would be to checkpoint all recovered data items. However, this can
cause a lot of unnecessary writes. One optimization is to record the latest check-
pointed transaction timestamp of each data item and replicate these timestamps
to the backup LTMs. We further cluster transactions into groups, then replicate
timestamps only after a whole group of transactions has completed.

Another issue related to checkpointing is to avoid degrading the system perfor-
mance at the time of a checkpoint. The checkpoint process must iterate through
the latest updates of committed transactions and select the data items to be check-
pointed. A naive implementation that would lock the whole buffer during check-
pointing would also block the concurrent execution of transactions. We address
this problem by maintaining an extra buffer in memory with the list of data items
to be checkpointed. Transactions write to this buffer by sending updates to an un-
bounded non-blocking concurrent queue [68]. This data structure has the property
of allowing multiple threads to write concurrently to the queue without blocking
each other. Moreover, it orders elements in FIFO order, so old updates will not
override younger ones.
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4.2.5 Membership

To correctly execute transactions, all LTMs must share the same view of system
membership to determine the assignment of data items consistently. The system
membership changes when LTMs join, leave, fail or recover from failures. These
events may happen at any time, including during the execution of transactions.
To ensure the ACID properties, changes in system membership must not take place
during the 2PC execution of any transaction. When an LTM fails, other LTMs must
therefore first complete the recovery of all ongoing transactions before updating the
system membership.

In addition to LTM failures, the system may also encounter network failures,
which can temporarily split the LTMs into multiple disconnected partitions. In
such a case, we choose to always guarantee consistency at the possible cost of
a loss of availability. In the case of system partitioning, transactions may still
proceed provided that: (i) one of the partitions is able to elect itself as the majority
partition; and (ii) its LTMs can recover the consistent states of all data items. In all
other cases the system will reject incoming transactions until it fulfills the condition
again.

This section presents our mechanism to recover the system consistently from
network partitions.

Membership Updates

To ensure consistent membership, all membership changes are realized through a
2PC across all available LTMs. All LTMs block incoming transactions until the
new system membership has been committed consistently. In the first phase of a
membership change, each LTM waits for all of its coordinated ongoing transactions
to terminate, and then votes to commit. After reaching an agreement to commit, the
second phase updates the system membership and applies the new data assignment
through data item replication/relocation.

Each membership change creates a new membership version attached to a
monotonically increasing timestamp. Each LTM attaches the timestamp of its cur-
rent membership to all of its messages. If an LTM receives a message with a higher
timestamp than its own, this means that the other LTMs consider it as having failed.
The concerned LTM discards its entire state and rejoins.

After each membership change, the new timestamp is stored in a special mem-
bership table in the NoSQL data store. By scanning through this membership table,
any new LTM or any Web application instance can locate the currently available
LTMs. One issue is that the NoSQL data store may return a stale membership.
However, one can contact the TPS and obtain the latest membership as long as the
stale membership contains at least one LTM currently in the TPS.

Any LTM may initiate a membership update if it wants to join the system or
it detects the unavailability of other LTMs. This means that multiple membership
updates may be issued simultaneously. To guarantee the isolation of such updates,
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Figure 4.3: An example of unclean network partition.

we use a simple optimistic concurrency control mechanism so that only one mem-
bership update can take place at a time [89]. If an LTM receives a new request for a
membership update before a previous one has finished, then this LTM will vote to
abort this new request. To avoid continuous conflicts and aborts, LTMs may insert
a random time delay before re-initiating the aborted membership update.

Dealing with Network Partitions

In case of a network partition, multiple system subsets may consider that the other
unreachable LTMs have failed, recover from their “failures” and carry on with
processing the application workload independently from each other. However, this
would violate the ACID properties and must therefore be avoided.

For simplicity, we assume that no network partition occurs during the recovery
of another partition. Supporting this latter case requires additional algorithms that
we consider out of the scope of the thesis.

We use the Accessible Copies algorithm [39] to recover the system consistently
during network partitions. This algorithm ensures that only one partition may ac-
cess a given data item by allowing access to a given data item only within a partition
that contains a majority of replicas. Instead of using a majority partition for each
data item, we adapt the majority rule such that only the partition that contains more
than half of the previous membership can access all data items. Minority partitions
are forbidden access to any data item. It may happen that the majority partition
lacks more than N LTM servers from the previous membership2, and thus cannot
recover all data items; in this case it rejects all incoming transactions until it can
recover all data items.

Once a majority partition is established, it can recover all the ongoing trans-
actions and accept new incoming transactions. After recovery, all LTMs in the
majority partition have the new system membership with an increased timestamp.
The other ones, which still have the previous membership timestamp, can detect af-
ter network partition recovery that they have been excluded from the membership,
and rejoin as new members.

When an LTM discovers that other LTMs are unreachable because of LTM
crashes and/or network partitions, it identifies its new partition membership through

2Assuming that each transaction and data item has N + 1 replicas.
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a 2PC across all LTMs. In the first phase, it sends an invitation to all LTMs; any re-
sponding LTM which votes commit belongs to its partition membership. After all
LTMs either respond or time-out, the second phase updates the partition member-
ship of all LTMs in the partition of the coordinator. One optimization is to exclude
the discovered unreachable LTMs from the first 2PC of building partition mem-
bership. This optimization is effective for the scenario of LTM failures, avoiding
a possible delay of time-out in waiting for responses from these failed LTMs. In
case of network partitions, the first 2PC may fail to establish a majority partition to
recover the system. LTMs should then include these excluded LTMs back into the
following periodic 2PCs building partition membership.

The above mechanism can organize the TPS into a number of disjoint parti-
tions, provided that the network is “cleanly” partitioned: any two LTMs in the
same partition can communicate, and any two LTMs in different partitions cannot.
However, a network may also be “uncleanly” partitioned due to the lag of recon-
structing routing tables. Figure 4.3 shows an example of an unclean partition where
each LTM has a different view of reachable LTMs: view(A) = {A,C}, view(B) =
{B,C} and view(C) = {A,B,C}. In this case, LTM C may join two different par-
titions: either {A,C} or {B,C}, which both turn out to be majority partitions. To
ensure that an LTM can belong to only one partition at a time, we define that if an
LTM has already joined a partition, it will vote abort to any invitation of joining a
different partition.

Minority partitions periodically try to rejoin the system by checking if previ-
ously unavailable nodes become reachable again. Receiving an abort vote for an
invitation indicates that partitions are reconnected. In this case, the two partitions
can be merged through a 2PC across all LTMs in the two partitions. The first phase
is to push the memberships of two partitions to all the participant LTMs. A partic-
ipant LTM votes to commit if the received membership matches its current latest
partition membership. Otherwise, it votes to abort. If an agreement to commit
is reached, the second phase updates the partition membership of all participant
LTMs into the combined membership of two partitions. If any participant LTM
votes to abort or fails to respond, the 2PC is aborted.

4.3 System Implementation

This section discusses implementation details of CloudTPS, in particular how to
support various backend NoSQL data store. We also present two optional opti-
mizations: memory management to prevent memory overflow in the LTMs, and
handling of read-only transactions containing complex read queries.

4.3.1 Portability

CloudTPS relies on a NoSQL data store to ensure transaction durability. How-
ever, current NoSQL data stores support different data models, consistency guar-
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Table 4.1: Key differences between cloud data services
SimpleDB Bigtable PNUTS

Data Item Multi-value Multi-version Multi-version
attribute with timestamp with timestamp

Explicitly
Schema No schema Column families claimed

attributes
Range queries Single-table Single-table

Operation on arbitrary scan with scan with
attributes various filtering predicates
of a table conditions

Consistency Eventual Single-row Single-row
consistency transaction transaction

antees, operation semantics and interfaces. Adapting CloudTPS to all of them is a
challenge. We compare three prominent and typical NoSQL data stores: Amazon
SimpleDB, Google Bigtable and Yahoo PNUTS. Our implementation is compati-
ble with SimpleDB and Bigtable. Porting CloudTPS to other NoSQL data stores
requires only minor adaptations.

SimpleDB, Bigtable and PNUTS have a number of similarities in their data
models. They all organize application data into tables. A table is structured as a
collection of data items with unique primary keys. The data items are described
by attribute-value pairs. All attribute values are typed as strings. Data items in the
same table can have different attributes. Data items are accessed with get/put by
primary key. Operations across tables, such as join queries, are not supported.

On the other hand, as shown in Table 4.1, the three NoSQL data stores also
have some key differences:

First, SimpleDB supports multiple values per attribute of a data item, while
Bigtable and PNUTS only allow one. To be compatible with all of them, our data
model allows only one value per attribute.

Second, SimpleDB does not impose a predefined schema for its tables. PNUTS
requires explicit claims of all attributes in a table, but it is still compatible with Sim-
pleDB, as it does not require all records to have values for all claimed attributes and
new attributes can be added at any time without halting query or update activity.
On the other hand, Bigtable groups attributes into predefined column families. To
access an attribute, one must include its column family name as its prefix. We ad-
dress this difference by always prepending attribute names with the column family
name for Bigtable.

Third, all three NoSQL data stores support sophisticated data-access operations
within a table, but via different APIs. SimpleDB supports range queries inside a
table with its specific language; Bigtable and PNUTS provide similar functionality
with table scanning using various filtering conditions or predicates. This difference
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is irrelevant to the system design described before, as it accesses data items only
by primary key. However, the optimization of read-only transactions, described
in Section 4.3.3, allows Web applications to access consistent data snapshots in
NoSQL data stores directly via their APIs. Therefore, the implementation of this
optimization depends on the interface of the underlying NoSQL data stores.

Finally, SimpleDB provides eventual consistency by default so that applica-
tions may read stale data. In contrast, Bigtable and PNUTS support single-row
transactions, so they can guarantee returning the latest updates. We assume that
when CloudTPS starts and loads a data item from the NoSQL data store for the
first time, all the replicas of this data item are consistent. So CloudTPS can ob-
tain the latest updates in this case, regardless of the consistency level of underlying
NoSQL data store. However, this is not true for reloading a data item that has been
recently updated. Different data consistency models of NoSQL data stores require
additional adaptations to implement our performance optimizations, as discussed
in the following sections.

4.3.2 Memory Management

For efficiency reasons we keep all data in the main memory of the LTMs. However,
maintaining a full copy of all application data may overflow the memory space, if
the size of the data is large. One would thus have to allocate unnecessary LTM
servers just for their memory space, rather than for their contributions to perfor-
mance improvement. On the other hand, we notice that Web applications exhibit
temporal data locality so that only a small portion of application data is accessed at
any time [111, 108]. Keeping unused data in the LTMs is not necessary for main-
taining ACID properties, so LTMs can evict these data items in case of memory
shortage, and reload them from the NoSQL data store when necessary.

The key issue is that the eviction of any data items from LTMs must not violate
the ACID properties of transactions. Obviously, the data items that are currently
accessed by ongoing transactions must not be evicted until the transaction com-
pletes and the data updates have been checkpointed. After evicting a data item
from the LTMs, future transactions may require it again. To guarantee strong con-
sistency for these transactions, LTMs have to guarantee that the latest version of
the evicted data items can be obtained from the NoSQL data store in the next read.
The solution to this issue, however, depends on the consistency level guaranteed
by the underlying NoSQL data store. To ensure that the latest version of a data
item is visible, CloudTPS requires that the underlying NoSQL data store supports
at least monotonic-reads consistency [104]. If the data service provides the read-
your-writes consistency, checkpointing back the latest updates successfully is suf-
ficient to be able to evict a data item. For instance, Bigtable and PNUTS support
single-row transactions and thus provide read-your-writes consistency. If the data
service provides only eventual consistency, such as in SimpleDB, then LTMs may
still obtain stale data even after a get returned the latest version. To address this
problem, we store the timestamps of the latest versions of all data items in LTMs,
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which can then determine if the newly loaded version of data item is up-to-date. If
it is not, LTMs will abort the transactions and maintain ACID properties at the cost
of rejecting these transactions.

Storing the latest timestamps of all data items in memory may also overflow
the memory if the number of data items is extremely large. Storing them in the
NoSQL data store is not an option, since they must maintain strong consistency. A
simple solution could be to store them in the local hard drive of the LTM.

Another difficulty is that SimpleDB does not support multi-versions with time
stamp, but only multi-values for an attribute. We address this by attaching a times-
tamp at the end of the value of each attribute and so transform multi-values into
multi-versions.

To minimize the performance overhead of memory management, we must max-
imize the hit rate of transactions in LTMs and thus carefully select which data items
should be evicted. Standard cache replacement algorithms, such as LRU, assume
that all data items have identical sizes. However, in CloudTPS, data items can have
very different sizes, leading to poor performance. Instead we adopt the cost-aware
GreedyDual-Size (GDS) algorithm [21], which leverages knowledge of data item
sizes to select data items to evict. The GDS algorithm associates a value H to each
data item p: H(p) = L + cost/size, where L is the H value of the latest evicted
data item. We set the cost parameter to 1 for all data items as this optimizes hit
rate. The parameter size refers to the size of data item p. Each time an LTM needs
to replace a data item, it selects the data item with the lowest H value and updates
its L value to the H value of this evicted data item. When a data item is accessed,
the H value of this data item is recalculated with the updated parameters: the latest
L value and its possibly changed size.

4.3.3 Read-Only Transactions

CloudTPS supports read-write and read-only transactions indifferently. The only
difference is that in read-only transactions no data item is updated during the sec-
ond phase of 2PC. Read-only transactions have the same strong data consistency
property as read-write transactions, but also the same constraint: accessing well-
identified data items by primary key only. However, CloudTPS provides an ad-
ditional feature to support complex read-only transactions containing for example
range queries.

We exploit the fact that many read queries can produce useful results by access-
ing a consistent but possibly stale data snapshot. For example, in e-commerce Web
applications, a promotion service may identify the best seller items by aggregating
recent orders information. However, it may not be necessary to compute the result
based on the absolute most recent orders. We therefore introduce the concept of
Weakly-Consistent Read-only Transaction (WCRT): A WCRT contains any num-
ber of read operations offered by the NoSQL data store, such as table scans for
Bigtable. Web applications issue WCRTs directly to the NoSQL data store, by-
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passing the LTMs. All read operations of a WCRT executes on the same internally
consistent but possibly slightly outdated snapshot of the database.

To implement WCRTs, we introduce a snapshot mechanism in the checkpoint
process of LTMs, which marks each data update with a specific snapshot ID that
is monotonically increasing. This ID is used as the version number of the newly
created version when it is written to the NoSQL data store. A WCRT can thus
access a specific snapshot by only reading the latest version of any data item of
which the timestamp is not larger than the snapshot ID.

We group transactions in sets of M consecutive transactions. Each set consti-
tutes a new snapshot. Assuming that the transaction timestamp is implemented as a
simple counter, the first snapshot reflects all the updates of committed transactions
[0,M). The next snapshot reflects updates from transactions [0, 2M), and so on.
At the finest granularity, with M = 1, each read-write transaction creates a new
snapshot.

The key issue in this snapshot mechanism is to determine whether a consistent
snapshot is fully available in the NoSQL data store such that WCRTs can execute
on it. A consistent snapshot contains all the updates of the transactions which it
reflects. It is fully available only after all these updates have been checkpointed
back. The main difficulty is that a transaction may update data items across mul-
tiple LTMs, where each LTM performs checkpoints for its own data items inde-
pendently from the others. Therefore, CloudTPS must collect checkpoint progress
information from multiple LTMs. To address this issue, we use the NoSQL data
service as a shared medium for collecting checkpoint progress information. The
system creates an extra table named checkpoint, where each LTM writes its
latest completed snapshot ID into a separate data item using its membership ID as
the primary key value. So the minimal snapshot ID stored in the checkpoint
table represents the latest snapshot of which the updates are all checkpointed.

Even though all the updates of a snapshot have been checkpointed successfully,
the availability of this snapshot still depends on the consistency level provided by
the NoSQL data store. The data services must provide at least monotonic-reads
consistency, so that LTMs can verify the visibility of the updates before claiming
the snapshot is available. Bigtable and PNUTS support single-row transactions and
thus provide the read-your-writes consistency. Therefore, the snapshot is immedi-
ately available after writing all checkpoints back. Lastly, if the NoSQL data store
supports only eventual consistency, it is impossible to guarantee the visibility of
certain writes in the next read so this feature is not supported.

4.4 Evaluation

We demonstrate the scalability of CloudTPS by presenting the performance eval-
uation of a prototype implementation on top of two different families of scalable
data layers: HBase running in our local DAS-3 cluster [52] and SimpleDB running
in the Amazon cloud. We also show that CloudTPS can recover from LTM failures
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Figure 4.4: Transactions of TPC-W.

and network partitions efficiently by presenting the throughput of CloudTPS under
these failures. Lastly, we demonstrate the effectiveness of the memory manage-
ment mechanism and discuss the trade-off between system performance and buffer
sizes.

We evaluate CloudTPS under a workload derived from TPC-W [67], an indus-
try standard e-commerce benchmark that models an online bookstore similar to
Amazon.com.

4.4.1 Migration of TPC-W to the cloud

TPC-W was originally designed as a Web application using a SQL-based relational
database as backend. However, in this chapter, we focus on transactional guar-
antees for NoSQL data stores with no specific support for complex queries. We
therefore need to adapt the original relational data model of TPC-W into the data
models of Bigtable and SimpleDB, such that complex queries can be transformed
into primary-key queries. We return to this topic in the next chapter where we will
see how to host TPC-W on CloudTPS with no need for schema adaptation.

As described in Section 4.3.1, we can easily adapt the Bigtable data model
into SimpleDB data model by using the exact same attribute names, which are
prepended with the column family names. Therefore, we first adapt the relational
data model of TPC-W into the Bigtable data model.

Using similar data denormalization techniques as in Chapter 3, we designed a
Bigtable data model for TPC-W that contains the data accessed by the transactions
in Figure 4.4. The relational data model of TPC-W comprises six tables that are ac-
cessed by these transactions. To adapt this data model to Bigtable, we first combine
five tables (Orders, Order Line, Shopping Cart, Shopping Cart-
Entry, CC XACTS) into one bigtable named Shopping. Each of the original

tables is stored as a column family. The new bigtable Shopping has the same
primary key as table Shopping Cart. For table Order Line, multiple rows
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are related to one row in table Order, they are combined into one row and stored
in the new bigtable by defining different column names for the values of same
data column but different rows. Second, for the remaining table Item, only the
column i stock is accessed. We can thus have a bigtable named Item Stock
which contains only this column and has the same primary key. Finally, for the last
transaction in Figure 4.4, which retrieves the latest order information for a specific
customer, we create an extra index bigtable Latest Order which uses customer
IDs as its primary key and contains one column storing the latest order ID of the
customer.

For both HBase and SimpleDB, we populate 144,000 customer records in the
Latest Order bigtable and 10,000 item records in the Item Stock bigtable.
We then populate the Shopping bigtable according to the benchmark require-
ments. As shown in Figure 4.4, the workload continuously creates new shopping
carts. Thus, the size of the Shopping bigtable increases continuously during the
evaluation, while the other two bigtables remain constant in size. In the memory
management evaluation, we also measure the performance of 1 million records in
the Item Stock bigtable.

In the performance evaluation based on HBase, we observed a load balanc-
ing problem. TPC-W assigns new shopping cart IDs sequentially. However, each
HBase node is responsible for a set of contiguous ranges of ID values, so at any
moment of time, most newly created shopping carts would be handled by the same
HBase node. To address this problem, we horizontally partitioned the bigtables
into 50 subtables and allocated data items to subtables in round-robin fashion.

To port TPC-W to SimpleDB, we organize application data into a number of
domains (i.e., tables), but each domain can only sustain a limited update work-
load. So we also have to horizontally partition a table in round-robin fashion and
place each partition into a domain. Different from HBase, we can use at most 100
domains for the whole application. We therefore partition the three tables into a
different number of subtables according to our estimated data-access loads. We
horizontally partition the Shopping bigtable into 80 domains and the other two
bigtables into 5 domains each. This way SimpleDB can provide sufficient capacity
for both writes and reads, while CloudTPS remains the performance bottleneck for
performance evaluation.

4.4.2 Experiment Setup

We perform evaluations on top of two scalable data layers: 1) HBase v0.2.1 [52]
running in the DAS-3 cluster [34]; and 2) SimpleDB in the Amazon cloud [7].
We use Tomcat v5.5.20 as application server. The LTMs and load generators are
deployed in separate application servers.

The evaluations from this chapter were realized using CloudTPS v0.1. Note
that the next chapter uses CloudTPS v0.2, which features major performance im-
provement compared to version 0.1. The details of the differences between these
two versions will be discussed in Section 5.3.
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DAS-3 is an 85-node Linux-based server cluster. Each node has a dual-CPU
/ dual-core 2.4 GHz AMD Opteron DP 280, 4 GB of memory and a 250 GB IDE
hard drive. Nodes are interconnected through a Gigabit LAN.

Amazon EC2 offers various types of virtual machine instances. We perform
our evaluations with Small Instances in the Standard family (with 1.7 GB memory,
1 virtual core with 1 EC2 Compute Unit, and 160 GB storage) as well as Medium
Instances in the High-CPU family (with 1.7 GB of memory, 2 virtual cores with 2.5
EC2 Compute Units each, and 350 GB of storage). At the time of our experiment,
Standard Small instances cost $0.10 per instance-hour while High-CPU Medium
instances cost $0.20 per instance-hour. One EC2 Compute Unit provides the CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

TPC-W workload is generated by a configurable number of Emulated Browsers
(EBs) which issue requests from one simulated user. Our evaluations assume that
the application load remains roughly constant. The workload that an Emulated
Browser issues to the TPS mainly consists of read-write transactions that require
strong data consistency. Figure 4.4 shows the workflow of transactions issued by
an Emulated Browser, which simulates a typical customer shopping process. Each
EB waits for 500 milliseconds on average between receiving a response and issuing
the next transaction.

4.4.3 Scalability Evaluation

We study the scalability of CloudTPS in terms of maximum sustainable throughput
under a response time constraint. In DAS-3, we assign one physical machine for
each LTM, and have low contention on other resources such as network. Therefore,
for the evaluations in DAS-3, we define a demanding response time constraint that
imposes that 99% of the transactions must return within 100 ms. On the other
hand, in the public Amazon cloud, our LTMs have to share a physical machine
with other instances, and we have less control over the resources such as CPU,
memory, network, etc. Furthermore, even multiple instances of the exact same
type may exhibit different performance behavior [36]. Therefore, to prevent these
interferences from disturbing our evaluation results, we relax the response time
constraint for the evaluations in the Amazon cloud: 90% of the transactions must
return within 100 ms.

We perform the scalability evaluation by measuring the maximum sustainable
throughput of the system consisting of a given number of LTMs before the con-
straint gets violated. In DAS-3, we start with one LTM and 5 HBase servers, then
add more LTM and HBase servers. We carry out each round of the experiment for
30 minutes to measure the performance of the system under a certain number of
EBs. In all cases, we deliberately over-allocate the number of HBase servers and
client machines to make sure that CloudTPS remains the performance bottleneck.
We perform similar steps in the Amazon cloud. CloudTPS remains the perfor-
mance bottleneck, as SimpleDB can provide sufficient capacity for both writes and
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Figure 4.5: Scalability of CloudTPS under a response time constraint.

reads. We configure the system so that each transaction and data item has one
backup in total, and set the checkpoint interval to 1 second.

Figure 4.5(a) shows that CloudTPS scales nearly linearly in DAS-3. When
using 40 LTM servers it reaches a maximum throughput of 7286 transactions per
second generated by 3825 emulated browsers. In this last configuration, we use 40
LTM servers, 36 HBase servers, 3 clients to generate load, and 1 global timestamp
server. This configuration uses the entire DAS-3 cluster so we could not extend
the experiment further. The maximum throughput of the system at that point is
approximately 10 times that of a single LTM server.

Figure 4.5(b) shows the scalability evaluation in the Amazon cloud. Here as
well, CloudTPS scales nearly linearly with both types of EC2 virtual instances.
When using 80 Standard Small instances, CloudTPS reaches a maximum through-
put of 2844 transactions per second generated by 1600 emulated browsers. The
maximum throughput of the system at that point is approximately 40 times that
of a single LTM server. When using 20 High-CPU Medium instances, CloudTPS
reaches a maximum throughput of 3251 transactions per second generated by 1800
emulated browsers. This is a 10-fold improvement compared to one LTM.

Furthermore, we explore the cost-effectiveness of the two EC2 instance types
for CloudTPS. The High-CPU medium instances cost 2 times more than Standard
Small instances. As show in Figure 4.5(b), 20 High-CPU medium instances, which
together cost $4 per hour, can sustain a higher throughput than 80 Standard Small
instances, which together cost $8 per hour. For this application, using High-CPU
medium instances are more cost-effective than Standard Small ones.

The linear scalability of CloudTPS relies on the property that transactions is-
sued by Web applications access only a small number of data items, and thus span
only a small number of LTMs. We illustrate this property by measuring the num-
ber of LTMs that participate in the transactions with the configuration of 40 LTMs
servers. As shown in Figure 4.6, 91% of transactions access only two LTMs, i.e.,
one LTM and its backup. We expect this behavior to be typical of Web applica-
tions. The purchase transaction in Figure 4.4 is the only transaction that accesses
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Figure 4.6: Number of LTMs accessed by the transactions of TPC-W with a total
system size of 40 LTMs.

more than one data item. It first creates an order and clears the shopping cart inside
the data item of the Shopping bigtable, then updates the stocks of all purchased
items in the Item Stock bigtable, and lastly updates the latest order ID of the
customer in the Latest Order bigtable. As the number of items contained in a
shopping cart is uniformly distributed between 1 and 10, the number of data items
accessed by a purchase transactions also has a uniform distribution between 3 and
12. Counting in the backup LTMs, the maximum number of accessed LTMs is 24.
Figure 4.6 shows that larger number of purchase transactions access 5 to 19 LTMs.
It is because the accessed data items may be located within the same LTM, so the
number of accessed LTMs may be smaller than the number of accessed data items.

In our evaluations, we observe that CloudTPS is mostly latency-bound. For
example, LTMs that are stressed to the point of almost violating the response time
constraint never exhibit a CPU load above 50%, and their network bandwidth us-
age consistently remains very low. The main factors influencing performance are
the network round-trip times and the queueing delays inside LTMs. CloudTPS is
therefore best suited for deployments within a single data center. Some NoSQL
data stores, such as PNUTS, replicate data across data centers to ensure low la-
tency for geographically distributed user-base and tolerate failures of a complete
data center. Using CloudTPS in such scenarios would increase network latencies
between LTMs, thereby increasing response time of transactions and decreasing the
throughput. Exploiting a multi-data center environment efficiently would require
to revisit the policy which assigns data items to LTMs so that data items are placed
close to the users which access them most. We however consider such extension
as out of the scope of this thesis.

4.4.4 Tolerance to Failures and Partitions

We now study the system performance in the presence of LTM server failures and
network partitions. We perform the evaluation in both DAS-3 and the Amazon
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Figure 4.7: Effect of LTM failures and network partitions.

cloud. We configure CloudTPS with 5 LTM servers, and each transaction and data
item has one backup. We generate a workload using 500 EBs in DAS-3 and 50
EBs in the Amazon cloud, such that the system would not overload even after an
LTM server failure. After the system throughput is stabilized, we first kill one LTM
server. Afterwards, we simulate a 5-minute network partition where each partition
contains one LTM server.

After detecting the failures, all live LTMs continuously attempt to contact other
LTMs. The time delay between two attempts of contact follows a uniform distri-
bution between 200 and 1200 milliseconds.

Figure 4.7(a) illustrates the evaluation in DAS-3. We first warm up the system
by adding 25 EBs every 10 seconds. The full load is reached after 200 seconds.
After running the system normally for a while, one LTM server is shutdown to sim-
ulate a failure at time 504 seconds. After the LTM failure it takes 18.6 seconds for
the system to return to the previous level of transaction throughput. This duration
is composed of:

• 0.5 second to rebuild a new membership, including a delay of 382 ms before
the 2PC to avoid conflicts and 113 ms to build the new membership;

• 12.2 seconds to recover the blocked transactions which were accessing the
failed LTM;

• 5.9 seconds to reorganize the data placement of LTMs to match the new
system membership.

Afterward, at time 846 seconds, we simulate a network partition lasting for 5
minutes. When we restore the network partition, the system recovers and returns
to the previous level of transaction throughput in 135 milliseconds. The reason
why the system recovers so fast is because there is no LTM failure along with
the network partition, so all blocked transactions can resume execution without
recovery, and no data redistribution is necessary.
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Figure 4.8: Hit rate of LTM #1.

Figure 4.7(b) depicts the same evaluation in Amazon EC2. The LTM server
fails at time 486 seconds. After detecting the LTM failure, the system spends 13
seconds to recover and the transaction throughput returns to the previous level at
time 499 seconds. During the failure recovery, the remaining 4 LTMs first merge
into one partition in about 1 second. Then the system recovers transactions in 4 sec-
onds and reorganizes data placement in 8 seconds. Later, the system encounters a
5-minutes network partition. After the network partition is restored, the system re-
covers in 207 milliseconds and returns to the previous level of transaction through-
put at time 1152 seconds. The system throughput in the Amazon cloud fluctuates
more than in DAS-3 because we have less control of virtualized resources in the
Amazon cloud.

4.4.5 Memory Management

Lastly, we demonstrate that our memory management mechanism can effectively
prevent LTMs from memory overflow, and study the performance of CloudTPS
with different buffer sizes and data sizes. We carry out the evaluation in DAS-3
on top of HBase, which provides read-your-writes consistency. We configure the
system such that, before evicting a data item, LTMs fetch the data item from HBase
and verify that the obtained value reflects the latest in-memory updates. Therefore,
this performance evaluation represents the system implementation for the NoSQL
data stores supporting monotonic-reads consistency level.

We first deploy a system with 3 LTMs and impose a constant workload for one
hour. We configure the system so that each LTM can maintain at most 8000 data
items in its buffer. We then evaluate the system under two different scales of data
set sizes: either 10,000 or 1,000,000 records in the Item Stock table. For the
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Figure 4.9: Memory management evaluation with 10,000 items.
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Figure 4.10: Memory management evaluation with 1,000,000 items.
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data size of 10,000 items, we impose a workload of 500 EBs. For the data size of
1 million items, we impose 250 EBs.

Figure 4.9(a) shows that under both data set sizes, our mechanism effectively
maintains the buffer size of LTM #1 within the limit of 8000 data items. Us-
ing 10,000 Item Stock items, without memory management, after an hour, this
LTM would have to maintain almost 140,000 data items in memory. As for the data
size of 1,000,000 Item Stock items, Figure 4.10(a) shows that, after an hour, the
total data set increases to an even larger number of more than 200,000 data items.
In both cases, without memory management, the size of the total accessed data set
increases almost linearly, which would eventually cause a memory overflow.

We then compare the performance of the system under different data set sizes.
Figure 4.8 shows that the hit rate of LTM #1 stabilizes around 90% for 10,000
items, and about 60% for 1 million items. The other LTMs in the system behave
similarly. Figures 4.9(b) and 4.10(b) show the total transaction throughput during
the 1-hour evaluation. The drops of throughput at some points are due to the JVM
garbage collection, which temporarily block the LTMs. With 10,000 items, the
system sustains a transaction throughput of about 1000 TPS and 99.4% of transac-
tions complete within 100 ms. For 1 million items, the system sustains about 500
TPS, but only 97% of transactions satisfy the performance constraint.

The efficiency of our memory management mechanism depends on the data
locality of the Web application. Figures 4.9(c) and 4.10(c) show that only very
few data items are being accessed at a time in the two different scenarios. Note
that Figures 4.9(c) and 4.10(c) are in log scale. Comparing to the total accessed
data items shown in Figure 4.9(a), this application shows strong data locality which
implies that our mechanism can only introduce minor performance overhead3.

Finally, we study performance with different buffer sizes of LTMs in terms of
99th percentile of response times of the system. We configure the system with 20
LTMs and impose a workload of 2400 EBs, which issues about 4800 transactions
per second. We start with the minimum buffer size required by LTMs to maintain
the ACID properties, where only the absolutely necessary data items remain in
the buffer. To achieve this, we evict any evictable data items as soon as possible.
We then increase the buffer size until no data item is evicted at all. Similar to the
previous evaluation, we evaluate the system performance with 10,000 and 1 million
records in the Item Stock table.

Figure 4.11 shows the combined buffer size of all LTMs when applying the
Evict-Now algorithm. For the data size of 10,000 items, the average buffer size
is 7957 data items, which means 397 data items per LTM. For the data size of
1 million items, the average buffer size is 14,837, so 741 data items per LTM.
Figure 4.12 shows the performance of our system under different buffer sizes. The
initial value of each line in Figure 4.12 indicates the 99th percentile of response

3Note that TPC-W randomly selects books to add into a shopping cart with uniform distribution.
Several works consider that this behavior is not representative of real applications and create extra
locality artificially [8, 76, 97]. We can thus consider unmodified TPC-W as a somewhat worst-case
scenario.
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Figure 4.11: Minimum total buffer size for 20 LTMs under a load of 2400 EBs.

times of the system using Evict-Now algorithm. Therefore, we adopt 397 and 741
as the initial values for the X-axis in Figure 4.12. Note that we plot this figure in
log scale.

We first study the 99th percentile of response times with 10,000 items. When
we increase the buffer size from the minimum size of 397 to 1000 data items per
LTM, the 99th percentile response time decreases dramatically from 799 ms to
62 ms. When we continue increasing the buffer size to 100,000 data items where
no data item is evicted at all, the 99th percentile response time only improves to
46 ms. In other words, increasing the buffer size from 397 to 1000 data items, the
response time of the system decreases by an order of magnitude. Increasing the
buffer size even further by two orders of magnitude to 100,000 data items can only
achieve 25% further reduction of response time. At the point of 1000 data items per
LTM, the overall buffer size of the system reaches 20,000 data items, which is large
enough to contain almost all 10,000 item stock data items and other currently
accessed data items from other two tables. Increasing the buffer size even further
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Figure 4.12: Response time with different buffer sizes.

can only allow to store seldomly accessed data items, and thus cannot effectively
improve the hit rate of the system.

With 1 million items, the 99th percentile of response times decreases dramati-
cally from 54 seconds to 10 seconds, when the buffer size increases from the mini-
mum size of 741 to 1000 data items per LTM. However, increasing the buffer space
from 1000 to 15,000 does not bring much performance improvement, because the
total data size is so large that the hit rate remains roughly the same. If we continue
increasing the available storage from 15,000 to 100,000, the 99th percentile of re-
sponse times decreases dramatically again from 7486 ms to 90 ms. After the point
of 100,000 data items, continue increasing the buffer size further does not bring
significant performance improvement.

Comparing the two lines in Figure 4.12, we notice that a good buffer size for
10,000 items could be 1000 data items. For the line of “1M items,” we can find a
similar point of 100,000 data items. In both cases, this represents about 10% of the
total data set size.

4.5 Conclusion

Many Web applications need strong data consistency for their correct execution.
However, although NoSQL data stores provide high scalability and availability
properties, they provide only relatively weak consistency properties. This chapter
shows how one can support strict ACID transactions on NoSQL data stores without
compromising their scalability property.

This work relies on few simple ideas. First, we load data from the NoSQL data
store into the transactional layer. Second, we split the data across any number of
LTMs, and replicate them only for fault tolerance. Web applications typically ac-
cess only a few partitions in any of their transactions, which gives CloudTPS linear
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scalability. CloudTPS supports full ACID properties even in the presence of server
failures and network partitions. Recovering from a failure causes only a temporary
drop in throughput and a few aborted transactions. Recovering from a network
partition, however, may possibly cause temporary unavailability of CloudTPS, as
we explicitly choose to maintain strong consistency over high availability. Our
memory management mechanism can prevent LTM memory overflow. We expect
typical Web applications to exhibit strong data locality so this mechanism allows
maintaining only a small part of application data in the memory of LTMs. This
prevents using many LTMs just for their memory capacity. Besides, our evaluation
shows that the mechanism introduces only minor performance overhead. Data par-
titioning also implies that transactions can only access data by primary key. Read-
only transactions that require more complex data access can still be executed, but
on a possibly outdated though internally consistent snapshot of the database.

This chapter demonstrates that the weak consistency properties of NoSQL
databases are not a fatality, and that one can enforce strong transactional consis-
tency without losing their good scalability and fault-tolerance properties. CloudTPS
allows Web applications with strong data consistency demands to make use of
NoSQL data stores. Compared with the approach from Chapter 3, CloudTPS par-
titions data automatically and provides properties of incremental scalability and
fault tolerance. However, CloudTPS requires its transactions to access only well-
identified data items, which rules out complex queries such as join queries. The
next chapter shows how to extend the current design of CloudTPS to support join
queries while still maintaining transactional properties.



Chapter 5

Consistent Join Queries in
NoSQL Data Stores

NoSQL data stores provide good properties of scalability and high availability.
However, they usually relax data consistency and support only very simple types
of queries that select data records from a single table by their primary keys. In
Chapter 4, we have seen how to implement ACID transactions on top of NoSQL
data stores without compromising scalability. This chapter now addresses the re-
maining issue of supporting complex queries such as join queries. Importantly,
we implement join queries without compromising the transactional or scalability
properties.

Join queries are an essential feature for any database system, as they allow to
query related information from multiple tables in a single atomic operation. These
queries are often the result of data normalization techniques, which have been used
for decades to help guaranteeing semantic data integrity in large systems.

The relational data model, typically implemented via the SQL language, pro-
vides great flexibility in accessing data, including support for sophisticated join
queries. However, the features of flexible data querying and strong data consis-
tency prevent one from partitioning data automatically. In Chapter 3, we have seen
that scaling Web applications with relational databases requires significant manual
efforts in denormalizing data and restructuring applications.

NoSQL data stores partition data automatically, but do not support join queries.
The lack of join queries in NoSQL data stores can often be mitigated using tech-
niques such as rewriting a join query into a sequence of simple primary-key queries.
However, such translation is not a trivial task at all. First, one must design data
schemas carefully to allow such query rewrites. Second, and more importantly,
programmers need sufficient understanding of subtle concurrency issues to realize
and handle the fact that a sequence of simple queries is equivalent to the original
join query only in the case where no update of the same data items is issued at the
same time. Although skilled programmers can effectively develop good applica-
tions using this data model, we consider that program correctness should not be an
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optional feature left under the sole responsibility of the programmers. Correctness
should as much as possible be provided out of the box, similar to the foolproof
strong consistency properties of relational databases.

This chapter discusses the design and implementation of join queries that are
strongly consistent by design, relieving programmers from the burden of adapting
their programs to the peculiarities of NoSQL data stores. At the same time the
system retains the scalability properties of the NoSQL data stores. We implement
join queries in CloudTPS, of which the transactional functionalities have been pre-
sented in Chapter 4. This chapter focuses on CloudTPS’s support for consistent
join queries, while retaining the original scalability and fault-tolerance properties
of the underlying NoSQL data store.

CloudTPS supports a specific type of join queries known as foreign-key equi-
joins: the matching relationship between two records is expressed as an equality
between a foreign key and a primary key. This is by far the most common type
of joins in Web applications. For example, every join query issued by Wikipedia
to its database belongs to this category1 [115]. Support for this family of join
queries also allows us to implement secondary-key queries: CloudTPS only needs
to maintain a separate index table that maps secondary-key values back to their
corresponding primary keys. Secondary-key queries are then translated into equiv-
alent join queries. When the main table is updated, its associated index table is
updated atomically as well.

The scalability properties of CloudTPS originate from the fact that most queries
issued by Web applications (including transactions and join queries) actually access
a small number of data items compared with the overall size of the database. This
property is verified in all real-world Web applications that we studied: because
database queries are embedded in the processing of an end-user HTTP request,
programmers tend to naturally avoid complex and expensive queries which would
for example scan the entire database.

We demonstrate the performance and scalability of CloudTPS using a realistic
workload composed of primary-key queries, join queries, and transactions issued
by the TPC-W Web hosting benchmark. This benchmark was originally developed
for relational databases and therefore contains a mix of simple and complex queries
similar to queries Web applications would use if their NoSQL data store supported
them. We show that, with no change of the initial relational data schema nor the
queries addressed to it, CloudTPS achieves linear scalability while enforcing data
correctness automatically. In large-scale configurations, CloudTPS outperforms
replicated PostgreSQL up to three times.

This chapter is organized as follows. Sections 5.1 describes the CloudTPS
database model which includes the data and query model. Section 5.2 presents
the system design and Section 5.3 discusses implementation details. Section 5.4
presents performance evaluations. Section 5.5 concludes this chapter.

1Wikipedia’s query workload also contains aggregate queries, which are out of the scope of this
thesis.
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5.1 Database Model

We now detail the CloudTPS data model, the type of join queries it supports, and
the way they are expressed by programmers in our system.

5.1.1 Data Model

Different NoSQL data stores employ similar yet different data models to define
how the data are organized. However, CloudTPS aims to support join queries for
a wide range of underlying data stores. For example, Bigtable and SimpleDB
use similar data models with tables, rows and columns; however, Bigtable re-
quires defining column families as a prefix for column names, while SimpleDB
does not impose any schema; SimpleDB supports multiple values for a column,
while Bigtable supports only a single value for one column but with multiple ver-
sions. Similar to AppScale [19] (which also aims to unify access to many differ-
ent NoSQL databases), CloudTPS must define a single logical data model to be
mapped over different physical data store models. However, while AppScale de-
fines its unified data model as simple key-value pairs with queries spanning only
a single table, CloudTPS needs a more structured data model to support complex
join operations across multiple tables.

CloudTPS defines its data model as a collection of tables. Each table contains
a set of records. A record has a unique Primary Key (PK) and an arbitrary number
of attribute-value pairs. An attribute is defined as a Foreign Key (FK) if it refers to
a PK in the same or another table. Applications may use other non-PK attributes to
look up and retrieve records. These attributes are defined as Secondary Keys (SK)
and are supported in CloudTPS by creating a separate index table which maps
each SK to the list of PKs where this value of the SK is found. A secondary-
key query can thus be transformed into a join query between the index table and
the original table. CloudTPS expects applications to define the table schema in
advance, with the table names, the PK, all the SKs and FKs together with their
referenced attributes. Other non-key attributes can be left undefined in the table
schema and different records of the same table need not to share the same set of
attributes.

Figure 5.1 shows an example data model which defines four data tables and
one index table. The table book defines book id as its primary key. The FK
author id of table book refers to the PK of table author. To support second-
ary-key queries which select books by their titles, CloudTPS automatically cre-
ates an index table indexOf bookTitle. Each record of table book matches
the record of table indexOf bookTitle of which the PK value equals its SK
title. Therefore, the SK title is also a FK referring to the PK of the index
table indexOf bookTitle.
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Figure 5.1: An example data model for CloudTPS

5.1.2 Join Query Types

A join query combines records from two or more tables in a database following the
relationship constraints defined in the query. CloudTPS restricts this very gen-
eral definition to support a specific class of join queries known as foreign-key
equi-join, where the relationship between two records is expressed as an equal-
ity between a FK and a PK (in the same or another table). For example, one
such constraint can be that the author name found in the book record matches
the author name found in the matching author record. The query for this exam-
ple is “SELECT * FROM book, author WHERE book.book id = 10
AND book.author id = author.author id.”

Equi-joins are by far the most common join queries, compared to relationships
such as less than or greater than. These queries often result from database normal-
ization methodologies. For example, we observed that all join queries in Wikipedia
follow this structure.

In CloudTPS, join queries must give an explicit list of primary keys referring to
initial records found in one table. These records and the table where they are stored
are referred to as the root records and root table of this join query, respectively. This
restriction excludes in particular full table scans to join two tables completely.

This thesis considers only inner-joins which return all records that have at least
one matching record, while the final combined record contains merged records
from the concerned tables. Other types of join, such as outer-join (which may
return records with no matching record), and semi-joins (which only return records
from one table), are out of the scope of this thesis.

5.1.3 API

Web applications access CloudTPS using a Java client-side library, which offers
mainly two interfaces to submit respectively join queries and transactions.

Join queries are expressed as a collection of JoinTable and JoinEdge Java
objects. A JoinTable object identifies one table where records must be found.
It contains the table name, the projection setting (a list of attributes to be returned)
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Figure 5.2: CloudTPS’s representation of a join query

and possibly a predicate (a condition that a record must satisfy to be returned).
A JoinEdge object represents a join operation between two tables. It contains
references to the two JoinTable objects, the names and properties (i.e., PK or
FK) of join attributes. A join query must designate one JoinTable object as the
root table, which contains the list of primary keys of the root records. Multiple
JoinTable objects are joined together using JoinEdge objects of which each
matches the FK from one JoinTable to the PK of another. Self-join queries are
supported by creating two JoinTable objects with the same table name.

Figure 5.2 shows the SQL and CloudTPS representations of a join query which
retrieves information about two books and their authors. The book object is the
root table, and the primary keys of root records are 10 and 20. A JoinEdge starts
from JoinTable book to author indicating the FK author id in table
book refers to the PK of JoinTable author. The predicate of JoinTable
country selects only books with an author from the Netherlands.

CloudTPS also handles read-only and read-write transactions defined as a
Transaction Java object containing a list of SubTransaction objects. Each
subtransaction represents an atomic list of operations on one single record. All
subtransactions are implemented as subclasses of the SubTransaction abstract
Java class. As shown in Figure 4.2, each subtransaction contains a unique
className to identify itself, a table name and primary key to identify the ac-
cessed data item, and input parameters organized as attribute-value pairs.
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5.2 System Design

CloudTPS considers join queries as a specific kind of multi-row transactions. It
therefore enforces full transactional consistency to the data they access, even in the
case of machine failures or network partitions. Note that the underlying NoSQL
data stores do not need to guarantee strong consistency across multiple data items.

CloudTPS consists of a number of Local Transaction Managers (LTMs). To
ensure strong consistency, CloudTPS maintains an in-memory copy of the accessed
application data. Each LTM is responsible for a subset of all data items. We assign
data items to LTMs using consistent hashing [57] on the item’s primary key. This
means that any LTM can efficiently compute the identity of the LTM in charge
of any data item, given its primary key. Transactions and join queries operate on
this in-memory data copy, while the underlying NoSQL data store is transparent to
them.

Figure 4.1 shows the organization of CloudTPS. Clients issue HTTP requests
to a Web application, which in turn issues queries and transactions to CloudTPS.
A transaction or join query can be addressed to any LTM, which then acts as the
coordinator across all LTMs in charge of the data items accessed by this query. If an
accessed data item is not present in the LTM’s memory, the appropriate LTM will
load it from the NoSQL data store. Data updates resulting from transactions are
kept in memory of the LTMs and later checkpointed back to the NoSQL data store.
LTMs employ a replacement policy so that unused data items can be evicted from
their memory (the caching policy is discussed in details in Chapter 4). CloudTPS
expects LTMs to be connected by a low-latency network as in a data center.

5.2.1 Join Algorithm

Join Queries

Intuitively, processing a join query spanning multiple tables requires to recursively
identify matching records, starting from the root records (known by their primary
keys) and following JoinEdge relationships. Take the join query in Figure 5.2
for example, LTMs first access the root records in table book and identify the
matched records in table author, then access the identified author records and
lastly join them with the leaf table country and address. All the matched
records are returned to the coordinator who combines them into the final result for
the client.

The method to identify the matched records, however, differs according to the
role of the given records. If an already known record contains a FK which refer-
ences the PK of a new record, then the new record can be efficiently located by its
PK. We call this type of join queries forward join queries. On the other hand, if
the PK of an already known record is being referenced by the FK of a new record
to be found, then in principle it is necessary to scan the full table and search for
all records whose FK is equal to the PK of the known record. We name such join
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Forward SELECT * FROM author, book WHERE book.book id = 10
query AND book.author id = author.author id

Backward SELECT * FROM author, book WHERE author.author id = 100
query AND book.author id = author.author id

Table author Table book
author id (PK) (CloudTPS index entry)

100 Ref::book::author id::10 = 10
Ref::book::author id::30 = 30

101 Ref::book::author id::20 = 20

book id (PK) author id title
10 100 title1
20 101 title2
30 100 title3

Figure 5.3: Index data layout example, with two types of join queries

queries backward join queries. To avoid a prohibitively expensive full table scan
for each backward join query, we use a technique similar to join indices in cen-
tralized databases [78, 110]. We complement the referenced table with direct links
to the PKs of matching records. This allows to translate such queries into forward
join queries. On the other hand, we now need to maintain these indexes every
time the tables are updated. If a data update changes the reference relationships
among records, the update query must be dynamically translated into a transaction
in which the indexes are updated as well.

Figure 5.3 shows an example index data layout to support a forward and a back-
ward join query, for the same data schema as in Figure 5.1. The table book con-
tains a FK author id referring to the PK value of table author. The forward
join query can be processed directly without any indexes, as the FK author id
of its root book record identifies that the PK of its matched author is 100.
The backward join query, in contrast, starts by accessing its root record in table
author and requires additional indexes to identify the matching record. The
indexes are stored as arbitrary number of index attributes in each record of the
referenced table. Doing this does not require to change the data schema as all
NoSQL data stores support the dynamic addition of supplementary fields onto any
data item. Each index attribute represents one matched referring record with the
corresponding FK. CloudTPS creates these indexes upon the declaration of the
data schema, then maintains their consistency automatically. In Figure 5.3, the
author record of PK(100) contains two index attributes showing that this record
is referenced by two book records with PK 10 and 30. Using these indexes, the
backward join query in Figure 5.3 can then efficiently identify the two matching
book records.

Secondary-Key Queries

We use a similar solution by building explicit indexes. However, unlike joins, there
exists no table where we can add index information. Instead, we create a separate
index table for each SK. Each record of the index table has its PK equal to the
SK of one or more records, of which the PKs are stored as its index attributes.
A secondary-key query can then translate into a forward join query between the
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Table 5.1: Translating a secondary-key query into a join query
Original SELECT * FROM book WHERE book.title=“bookTitle”
Translated SELECT * FROM book WHERE indexOf bookTitle.title=
query “bookTitle” AND book.title=indexOf bookTitle.title

index table and the original table. Table 5.1 shows an example secondary-key
query which searches records by the SK title of table book. The translated
query first locates the root record in the index table by using the given SK value
bookTitle as the PK value. It then retrieves the PKs of the matched book
records.

5.2.2 Consistency Enforcement

To ensure strong consistency, CloudTPS implements join queries as multi-item
read-only transactions. Our initial implementation of CloudTPS, as shown in Chap-
ter 4, already supported multi-item transactions. However, it required the primary
keys of all accessed data items to be specified at the time a transaction is submit-
ted. This restriction excludes join queries, which need to identify matching data
items during the execution of the transaction. Besides, it also prohibits transparent
index management as programmers would be required to provide the primary keys
of the records containing the affected index attributes. To address this issue, we
propose two extended transaction commit protocols: (i) for read-only transactions
to support join queries, and (ii) for read-write transactions to support transparent
index management.

To implement join queries consistently, we use the same mechanisms as de-
scribed in Chapter 4 to implement the isolation, consistency and durability proper-
ties:

Consistency means that a transaction executing on a database that is internally
consistent, will leave the database in an internally consistent state. We assume
that consistency rules are applied within the logic of transactions, so consistency is
ensured as long as all transactions are executed correctly.

Isolation means that the behavior of a transaction is not impacted by the pres-
ence of other concurrent transactions. In CloudTPS, each transaction is assigned a
globally unique timestamp. LTMs are required to execute conflicting transactions
in the order of their timestamps. Transactions which access disjoint sets of data
items can execute concurrently.

Durability means that the effects of committed transactions will not be undone,
even in the case of server failures. CloudTPS checkpoints the updates of committed
transactions back to the NoSQL data store. During the time between a transaction
commit and the next checkpoint, durability is ensured by replicating the data items
and transaction states across several LTMs.

We now turn to Atomicity: either all operations of a transaction succeed suc-
cessfully, or none of them does.
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In CloudTPS, a transaction is composed of any number of subtransactions,
where each subtransaction accesses a single data item atomically. To enforce atom-
icity, transactions issue a two-phase commit (2PC) across all LTMs responsible for
the accessed data items. As shown in Figure 5.4(a), in the first phase, the coordi-
nator submits all the subtransactions to the involved LTMs and asks them to check
that the operation can indeed be executed correctly. If all LTMs vote favorably,
the second phase actually commits the transaction. Otherwise, the transaction is
aborted. To implement join queries, we however need to extend 2PC into two dif-
ferent protocols respectively: one for join queries as read-only transactions, and
one for transparent index management in read-write transactions.

Read-Only Transactions for Join Queries

The 2PC protocol requires that the identity of all accessed data items is known
at the beginning of the first phase. However, join queries can identify matching
records only after accessing the root records. We therefore extend the 2PC pro-
tocol. During the first phase, when the involved LTMs complete the execution
of their subtransactions, besides the normal commit and abort messages, they can
also vote conditional commit which requires more subtransactions to be added to
the transaction. The LTM submits the new subtransaction to both the responsible
LTM and the coordinator. The responsible LTM executes this new subtransaction,
while the coordinator adds it to the transaction and waits for its vote. The coordi-
nator can commit the transaction only after no subtransaction requests to add new
subtransactions.

As read-only transactions do not commit any updates, LTMs can terminate
these subtransactions immediately after all concerned LTMs return their votes. The
coordinator therefore does not need to send the commit messages to the involved
LTMs. Transactional consistency is enforced by the timestamp ordering protocol:
concurrent read-only transactions which access non-disjoint sets of data items are
executed in the same order at all LTMs.

This extension allows join queries to access root records first, then add match-
ing records to the transaction during the query execution. For example, in Fig-
ure 5.4(b) the coordinator is initially aware of only two root records held by LTM 15
and LTM 66. After executing its subtransaction, LTM 15 identifies a matching
record hosted by LTM 34. LTM 15 submits the new subtransaction to LTM 34
directly, and also returns the new subtransaction along with its conditional commit
vote to the coordinator. On the other hand, LTM 66 identifies no matching record
so it simply returns commit. Finally, LTM 34 executes the new subtransaction and
also returns commit with no more new subtransactions. The coordinator can then
commit the transaction by combining the records together and returning the result
to the client.

The implementation of this extended transaction commit protocol requires adap-
tation of both the transaction coordinator and the subtransaction engine for read–
only transactions. Figure 5.5 shows the algorithm’s pesudocode for read-only
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Figure 5.4: Two-phase commit vs. the extended transaction commit protocols
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1 public class ROTransactionCoordinator {
2 JoinQuery query;
3 List<ROSubTransaction> subtrans;
4
5 public void start(){
6 getTimestamp();
7 buildROSubTrans(query.rootTable, subtrans);
8 submit(subtrans); //access root records
9 }

10
11 public handleVote(ROVote msg){ //Collecting results
12 query.update(msg.table, msg.PK, msg.isValid, msg.data);
13 query.addRecord(msg.matchingRecords); //adding to the transaction
14 if(query.isAllRecordsAccessed()){
15 returnResultToClient(); //transaction terminated
16 }
17 }
18 }//End of class ROTransactionCoordinator
19
20 public class ROSubTransaction extends SubTransaction {
21 //Input
22 JoinQuery query;
23 JoinTable table;
24
25 //Output
26 boolean isValid;
27 Attribute[] projectedRecord; //the set of to−be−returned attributes
28 String[] matchingRecords; //the primary keys of matched Records
29 List<ROSubTransaction> derivedSubtrans;
30
31 //Operation
32 public VoteResult run(){
33 isValid=verify(table.predicate, super.dataItem); //check predicate
34 if(isValid) { //continue only if the predicate is satisfied
35 projectedRecord=project(table.projection, super.dataItem);
36 matchingRecords=identify(table.edges, super.dataItem);
37 if(matchingRecords.size>0) //exist matched records?
38 derivedSubtrans=generateSubTrans(matchingRecords);
39 submit(derivedSubtrans);
40 return CONDITIONAL COMMIT;
41 }
42 return COMMIT;
43 }
44 } //End of class ROSubTransaction

Figure 5.5: The pseudocode of the extended read-only transaction implementation
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transactions. The transaction coordinator starts by translating the input join query
into subtransactions to access the root records. After submitting these sub-
transactions, the transaction coordinator then acts as the result collector receiving
the content of the accessed records and registering the primary keys of the newly
identified matching records. When all registered records have been accessed, the
coordinator combines the retrieved records and returns them to the client.

The new subtransaction class ROSubTransaction extends the abstract Java
class SubTransaction as defined in Figure 4.2. Its input variables indicate the
record it accesses, the predicate it must satisfy and the projection setting to select
the attribute-values to be returned. It overrides the run() operation to imple-
ment the join algorithm. It first verifies if the accessed record satisfies the con-
ditions as defined as the predicate of its JoinTable. Only the records that
satisfy these conditions can be identified as valid matching records. An exam-
ple of such condition is shown in Figure 5.2 where a valid matching country
record must have its attribute name equal to “the Netherlands.” If satisfied, the
member variable isValid is set to true and the subtransaction continues to look
for matching records for this currently accessed record. The primary keys of the
identified matching records are stored in matchedRecords. For each item in
matchedRecords, the LTM generates one subtransaction and submits it to the
responsible LTM. If the JoinTable is a leaf table or the record is not valid,
the generated matchedRecords is empty so that this subtransaction terminates
without creating any more new subtransactions.

A join query may require to return only a subset of attributes, which is defined
in the projection of the JoinTable. A subtransaction stores the specified
attributes in the projectedRecord. After the operation run() has executed,
the LTM returns the output member variables back to the coordinator along with
the vote.

In case of machine failures or network partitions, LTMs can simply abort all
read-only transactions without violating the ACID properties.

Read-Write Transactions for Index Management

CloudTPS transparently creates indexes on all FKs and SKs. To ensure strong data
consistency, when a read-write transaction updates any data items, the affected
index attributes must also be updated atomically. As each index attribute stands for
a referring record matching to its belonging record, when the FK of this referring
record is inserted/updated/deleted, the corresponding index attribute must also be
adjusted. To enforce strong data consistency, these affected index attributes must
be updated within the same read-write transaction. Considering the example in
Figure 5.3, a read-write transaction could insert a book record which matches an
existing record in table author. When this read-write transaction commits, the
primary key of this new book record must already be stored as an index attribute
into the corresponding author record.

CloudTPS creates indexes automatically, so index maintenance must also be
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transparent to the programmers. Here as well, this means that transactions must be
able to identify data items to be updated during the execution of the transaction.
For example, a query which would increment a record’s secondary key needs to
first read the current value of the secondary key before it can identify the records it
needs to update in the associated index table.

To implement transparent index management, we extend the commit protocol
for read-write transactions to dynamically add subtransactions. Similar to the ex-
tension for read-only transactions, during the first phase, LTMs can generate and
add more subtransactions to access new data items. However, unlike in read-only
transactions, LTMs should not submit new subtransactions to the responsible LTMs
directly. In read-write transactions, if any subtransaction votes abort, the coordi-
nator sends abort messages to all current subtransactions immediately, in order
to minimize the blocking time of other conflicting transactions. Allowing LTMs
to submit new subtransactions directly to each other opens the door to ordering
problems where the coordinator received the information that new subtransactions
have been added after it has aborted the transaction. Therefore, in read-write trans-
actions, the involved LTMs submit new subtransactions to the coordinator only.
The coordinator waits until all current subtransactions return before issuing any
additional subtransactions. The coordinator can commit the transaction when all
subtransactions vote commit and do not add any new subtransactions. If any sub-
transaction in any phase votes abort, then the coordinator aborts all the subtransac-
tions.

We can implement transparent index management with this protocol. When-
ever a subtransaction is executed, the LTM in charge of this data item automatically
examines the updates to identify the affected index attributes. If any FKs or SKs
are modified, the LTM then generates new subtransactions to update the affected
index attributes.

Figure 5.4(c) shows an example of the extended read-write transaction. Ini-
tially, the coordinator LTM 07 submits subtransactions to update data items hosted
in LTM 15 and LTM 66. LTM 15 identifies an affected index attribute hosted by
LTM 34, while LTM 66 identifies none. LTM 15 thus generates a new subtrans-
action for updating this index attribute and returns it back to the coordinator along
with its vote of commit. After both LTM 15 and LTM 66 vote commit, the coor-
dinator starts a new phase and submits the new subtransaction to LTM 34. After
LTM 34 also votes commit, the coordinator finally commits the transaction.

Figure 5.6 shows the pseudocode of extended read-write transactions. At the
beginning, the coordinator submits the subtransactions given by the client. The
coordinator then waits for these subtransactions to vote and possibly return new
subtransactions. At line 11, after all current subtransactions vote commit, if there
are new added subtransactions in this phase, the coordinator then submits these new
subtransactions and waits for their votes. If there are no more new subtransactions,
the coordinator finally enters the final phase to commit the transaction.

The new subtransaction class RWSubTransaction extends the abstract Java
class SubTransaction as defined in Figure 4.2. It adds a new operation post-
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1 public class RWTransactionCoordinator {
2 List<SubTransaction> subtrans, derivedSubtrans;
3
4 public void start(){
5 getTimestamp();
6 submit(subtrans);
7 }
8
9 public handleVote(RWVote msg){

10 if(msg.vote == COMMIT){
11 derivedSubtrans.addAll(msg.derivedSubtrans);
12 if(allVoteCommit()) //is all subtransactions vote commit?
13 if(derivedSubtrans.size()!=0) { // is any new subtransactions generated?
14 submit(derivedSubtrans); //submit these new subtransactions
15 subtrans.addAll(derivedSubtrans); // add them to the transaction
16 derivedSubtrans.clear();
17 } else {
18 replicateTransactionState(); //for fault tolerance
19 commit(subtrans); //commit the transaction
20 returnResultToClient();
21 }
22 }
23 else if(msg.vote== ABORT)
24 { this.abort();} //abort the transaction
25 }
26 } //End of class RWTransactionCoordinator
27
28 public abstract class RWSubTransaction extends SubTransaction {
29 List<RWSubTransaction> derivedSubtrans;
30
31 public VoteResult run(){
32 return generateUpdates(); //update output member variables
33 }
34
35 VoteResult postrun(){ //identify affected index attributes
36 derivedSubtrans=generateIndexUpdates(super.dataToPut, super.dataToDelete);
37 }
38 }// End of class RWSubTransaction

Figure 5.6: The pseudocode of the extended read-write transaction implementation
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run() to automatically generate updates on affected index attributes. These up-
dates are stored as a set of SubTransaction instances into the variable
derivedSubtrans, which will be returned to the coordinator if the vote is com-
mit.

Fault Tolerance

CloudTPS must maintain strong data consistency even in the case of machine fail-
ures and network partitions. CloudTPS uses the same fault-tolerance mechanism
as in our previous chapter. We therefore briefly mention the main concepts here
again, and refer the reader to Chapter 4 for full details.

To execute transactions correctly all LTMs must agree on a consistent mem-
bership, as this is key to assigning data items to LTMs. Any membership change is
therefore realized by a transaction across all LTMs.

During a network partition, LTMs are divided into multiple disjoint groups. In
this case, we choose to guarantee ACID properties at the possible cost of a loss of
availability. A partition may proceed accepting transactions provided that: (i) this
partition is able to elect itself as the majority partition, of which the LTMs represent
more than half of the previous membership; and (ii) its LTMs can recover the
consistent states of all data items. In all other cases the system will reject incoming
transactions until the partition is resolved and it fulfills the condition again. If a
majority partition exists and manages to complete the recovery, the other LTMs
will discard their entire states and rejoin when the network partition is resolved.

Recovering from an LTM failure implies that some surviving LTM fulfills the
promises that the failed LTM made before failing. Such promises belong to two
cases. In the first case, a coordinator initiated a transaction but failed before com-
mitting or aborting it. To recover such transactions, each LTM replicates its trans-
action states to one or more backup LTMs (chosen by consistent hashing through
the system membership). If the coordinator fails, its backups have enough infor-
mation to finish coordinating the ongoing transactions.

In the second case, a participant LTM voted commit for some read-write trans-
actions but failed before it could checkpoint the update to the NoSQL data store.
Here as well, each LTM replicates the state of its data items to one or more backup
LTMs so that the backups can carry on the transactions and checkpoint all updates
to the data store. Assuming that each transaction and data item has N backups in
total, CloudTPS can guarantee the ACID properties under the simultaneous failure
of up to N LTM servers.

An LTM server failure also results in the inaccessibility of the data items it was
responsible for. Upon any change in membership it is therefore necessary to re-
replicate data items to maintain the correct number of replicas. Following an LTM
failure, CloudTPS can return to its normal mode of operation after all ongoing
transactions have recovered, a new system membership has been created, and the
relevant data items have been re-replicated.
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Figure 5.7: The internal architecture of CloudTPS

5.3 Implementation

5.3.1 CloudTPS Architecture

CloudTPS is composed of any number of identical LTMs. The internal architec-
ture of an LTM, shown in Figure 5.7, consists of four core components running
inside a Tomcat application server. This potentially allows to run CloudTPS on the
same application servers as the Web application itself for improved communication
performance.

Each LTM has a read-write and a read-only transaction manager to carry out the
logics of transaction coordinators. The Read-Write transaction manager also main-
tains coordination with other LTMs in charge of backup replicas. To locate data
items across CloudTPS, the membership manager maintains a consistent view of
system membership. The data manager manages the in-memory copy of data and
executes subtransactions in sequential order according to transaction timestamps.

The previous version-0.1 implementation of CloudTPS, as evaluated in Chap-
ter 4, uses many levels of locks to manage concurrent access to various data struc-
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tures such as tables, records and transaction states. Such design brings consid-
erable performance overheads. This chapter is based on a re-implementation of
CloudTPS, named as version 0.2, to remove the locks and improve LTM perfor-
mance.

The new implementation of LTMs is inspired by the SEDA architecture [114].
Similarly to SEDA, CloudTPS is designed to handle large number of concurrent
transactions with strong response time constraints. We implement the four core
components as single-threaded self-contained service components. Each service
component maintains a FIFO message queue for accepting messages. The service
component continuously listens to its message queue, and handles incoming mes-
sages sequentially. Each service component is single-threaded to avoid the need to
lock private data structures.

Executing a transaction consists of sending a sequence of messages between
service components in the local or remote LTMs. Service components send mes-
sages via the message router, which is not an active service component but simply
a passive set of Java classes. If the destination service component resides in the
local LTM, the message router simply forwards the message to the corresponding
message queue. Otherwise, the message router dispatches the message to one of
its worker threads to perform network messaging. Each worker is implemented as
a single-threaded service component which continuously waits for network mes-
sages to send. At the other end, the message receiver is implemented as a regular
java servlet deployed in the application server.

Besides interacting with other components, the data manager also needs to ac-
cess the underlying NoSQL data store to load and checkpoint data items. The data
manager performs these operations by invoking the Adapter manager, which dis-
patches each operation to one of its own worker service components. The data
items loading operations have higher priority than checkpointing. Loading a data
item is in the critical path of a transaction which needs this item to progress, while
checkpointing can be delayed with no impact on transaction latencies. The adapter
manager therefore maintains two separate pools of workers for loading and check-
pointing data items, respectively. Loading different data items can be done com-
pletely independently, so the adapter manager selects workers to load a data item in
round-robin fashion. However, for checkpointing updates, the updates of multiple
conflicting transactions on the same data item must be checkpointed in the order
of transaction timestamps. To guarantee sequential order, the adapter manager dis-
patches all updates of the same data item to the same worker.

The workers of the adapter manager access the underlying NoSQL data store
via adapters, which transform the logical data model of CloudTPS into the physi-
cal data model used by the NoSQL data store. The Web application does not need
any adjustment depending on the type of underlying NoSQL data store. The cur-
rent implementation supports SimpleDB and HBase [52] (an open source clone of
Bigtable). Migrating CloudTPS between these two NoSQL data stores requires
only to change the adapter configuration. One can also easily implement new
adapters for other NoSQL data stores as we discuss in the next section.
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1 public interface Adapter {
2 public void createTables(List<DataTable> schemas);
3 public void deleteTables(List<DataTable> schemas);
4 public int loadData(DataTable tableSchema, String strRowKey, HashMap<String,

String> row);
5 public void checkpointOneItem(DataTable tableSchema, String rowKey, String[][]

dataToPut, String[] dataToDelete);
6 public void commitAll();
7 public void deleteOneRow(DataTable tableSchema, String row);
8 }

Figure 5.8: The pseudocode of the Adapter interface

5.3.2 Adapters

CloudTPS aims to provide a uniform data-access overlay that allows Web appli-
cations to transparently access different NoSQL data stores. To be compatible
with a broad range of NoSQL data stores, CloudTPS requires that table names in-
clude only letters and digits. The primary key and all attributes are of type string.
All table names and attribute names are case-insensitive. CloudTPS automatically
transforms all input parameters into lower-case.

Different NoSQL data stores have different rules for the definition of attribute
names. For example, Bigtable requires the column-family name to be a prefix to the
attribute name, while SimpleDB does not. For Bigtable, we store the application
data in the Data: column family while the index attributes are in Ref:. For
SimpleDB, the application data have the same attribute names as in queries. The
index attributes are prepended with the prefix Ref: so as to differentiate them
from the application data.

Some NoSQL data stores, such as SimpleDB, require to horizontally partition
tables into multiple subtables for higher throughput. Even for NoSQL data stores
that partition tables automatically, such manual partitioning is often still neces-
sary for better load balancing. For example, HBase automatically partitions tables
according to the size of the data rather than the load they receive. CloudTPS trans-
parently splits tables horizontally into a configurable number of partitions. The
physical table name for the NoSQL data store is then appended with the partition
index.

Supporting a new data store in CloudTPS requires developing only a new Java
class that implements the Adapter interface, as defined in Figure 5.8. The meth-
ods createTables and deleteTables implement transparent table parti-
tioning. The loadData method receives the table schema and the primary key as
input. It locates the physical table and retrieves the record by its primary key. It
then transforms the loaded attribute names into logical names used in the queries
of Web applications. The transformed record are returned in the parameter row.
The checkpointOneItem method writes the updates of a committed transac-
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tion back to the underlying NoSQL data store. When a read-write transaction re-
quires deleting a record completely, the deleteOneRow method is used. These
two methods can accumulate multiple updates and write back in batch to improve
performance. LTMs periodically invoke method commitAll to write all accumu-
lated updates immediately. This is simple, straightforward code. The two adapters
currently implemented in CloudTPS are about 400 lines long each.

5.4 Evaluation

We now evaluate the performance and scalability of CloudTPS in three scenar-
ios: micro- and macro-benchmarks, and a scenario with node failures and network
partitions.

5.4.1 Experiment Setup

System Configuration

We execute CloudTPS on top of the same two different families of scalable data
layers as the evaluation in Chapter 4: SimpleDB running in the Amazon cloud,
and HBase running in our local DAS-3 cluster [52]. However, different from the
evaluation in Chapter 4, we upgrade the software by using Tomcat v6.0.26 as appli-
cation servers, HBase v0.20.4 as backend data store and CloudTPS v0.2 to handle
join queries and read-write transactions in both platforms. The LTMs of CloudTPS
and load generators are deployed on separate machines.

Throughput Measurement

Given a specific workload and number of LTMs, we measure the maximum sus-
tainable throughput of CloudTPS under a constraint of response time. For the eval-
uations in DAS-3, we define a demanding response time constraint which imposes
that 99% of transactions must return within 100 ms. DAS-3 assigns a physical
machine for each LTM, and has low contention on other resources such as the net-
work. On the other hand, in the public Amazon cloud, LTMs have to share a phys-
ical machine with other instances, and we have less control of the resources such
as CPU, memory, network, etc. Furthermore, even multiple virtual instances of
the exact same type may exhibit different performance behavior [36]. To prevent
these interferences from disturbing our evaluation results, we relax the response
time constraint for the evaluations in the Amazon cloud: 90% of transactions must
return within 100 ms.

To determine the maximum sustainable throughput of CloudTPS, we perform
several rounds of experiments with different request rates. The workload is gener-
ated by a configurable number of Emulated Browsers (EBs), each of which issues
requests from one simulated user. Each EB waits for 1000 milliseconds on aver-
age between receiving a response and issuing the next transaction. Our evaluations
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assume that the application load remains roughly constant. In each round, we con-
figure different numbers of EBs and measure the throughput and response time of
CloudTPS. We start with a small number of EBs, and increase the number of EBs
until the response time of CloudTPS violates the response time constraint. Each
round lasts 30 minutes.

Throughout the evaluation, we provision sufficient resources for clients and
underlying NoSQL data stores, to ensure that CloudTPS remains the bottleneck of
the system.

5.4.2 Microbenchmarks

We first study the performance of join queries and read-write transactions in
CloudTPS using microbenchmarks.

Workload

Two criteria influence the performance of join queries in CloudTPS: the number of
data items that they access, and the length of the critical execution path (i.e., the
height of the query’s tree-based representation). For example, a join query joining
two tables has a critical execution path of one. We first evaluate the performance of
CloudTPS under workloads consisting purely of join queries or read-write trans-
actions with specific number of accessed records and length of critical execution
path.

The microbenchmark uses only one table, where each record has a FK referring
to another record in this table. We can therefore generate a join query with arbitrary
length of its critical execution path by accessing the referenced record recursively.
Given the length of the critical execution path, we can control the number of ac-
cessed records by defining the number of root records. We generate 10,000 records
in this table.

CloudTPS applies a cache replacement strategy to prevent LTMs from memory
overflow when loading application data. In our evaluation with microbenchmarks,
we configure the system such that the hit rate is 100%.

In this set of experiments, we deploy CloudTPS with 10 LTMs.

Join Queries

Here we study the performance of CloudTPS with join queries only. We first evalu-
ate CloudTPS with join queries all having the same length of critical execution path
of one, but access different numbers of data items. As shown in Figure 5.9(a), in
both DAS-3 and EC2 platforms, when the number of accessed data items increase,
the throughput in terms of transaction per second (TPS 2) decreases dramatically.
This is to be expected, since the complexity of join queries largely depends on the

2Note that the TPS in the name of CloudTPS stands for: Transaction Processing System.
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Figure 5.9: Throughput of join queries with different number of accessed data
items
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Figure 5.10: Throughput of join queries with different length of execution path (all
queries access 12 data items)

number of data items they access. Figure 5.9(b) shows the same throughput ex-
pressed in numbers of accessed records per second. The result remains close to the
ideal case, where the lines stay perfectly horizontal. We can also see that instances
in DAS-3 perform approximately three times faster than medium High-CPU in-
stances in EC2.

We then evaluate the system with join queries that access the same number
of data items (12 items), but with different length of critical execution path. Fig-
ure 5.10 shows that as the length of the critical execution path increases, the max-
imum sustainable throughput decreases slightly. This is expected as longer exe-
cution paths increase the critical path of messages between LTMs, and therefore
imply higher transaction latencies. To maintain the strict response time constraint,
the system must reduce throughput.



96 CHAPTER 5. CONSISTENT JOIN QUERIES ...

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0  5  10  15  20  25

Th
ro

ug
hp

ut
 

 (T
ra

ns
ac

tio
n 

P
er

 S
ec

on
d)

Number of Accessed Records

No Index (TPS)
Update Index (TPS)

(a) Transaction Per Second

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  5  10  15  20  25

Th
ro

ug
hp

ut
 

 (R
ec

or
d 

P
er

 S
ec

on
d)

Number of Accessed Records

No Index (RPS)
Update Index (RPS)

(b) Record Per Second

Figure 5.11: Throughput of read-write transactions with different number of ac-
cessed data items

Read-Write Transactions

We now study the performance of CloudTPS with a workload composed of read-
write transactions (including read-write transactions that update index records).
The updated index records are included in the count of accessed records of a trans-
action. We perform this evaluation on the DAS-3 platform.

Similar to join queries, as shown in Figure 5.11(a), the throughput in terms
of TPS decreases dramatically when the number of accessed records increases.
However, Figure 5.11(b) shows that the throughput in record accesses per second
remains roughly constant. This shows that the performance bottleneck is the update
operation of individual data items rather than the cost of the transaction itself.

We also note that in Figure 5.11, the line for transactions which only update
data records and the line for transactions which also update indexes are very close
to each other. This means the extra phase of updating index records does not de-
grade the system performance significantly. One only needs to pay the price of
updating the extra index records.

5.4.3 Scalability Evaluation

TPC-W Web Application

We now evaluate the scalability of CloudTPS under a demanding workload de-
rived from the TPC-W Web application [67]. TPC-W is an industry standard e-
commerce benchmark that models an online bookstore similar to Amazon.com. It
is important to note that TPC-W was originally designed and developed for rela-
tional databases. Therefore, it contains the same mix of join queries and read-write
transactions as cloud-based applications would if their data store supported join
queries. TPC-W contains 10 database tables.

Deploying TPC-W in CloudTPS requires no adaption to the database schema
except converting all data types to string. This contrasts to the initial implemen-
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Figure 5.12: Scalability of CloudTPS under TPC-W workload

tation of CloudTPS, as described in Chapter 4, which requires denormalizing ap-
plication data to transform join queries into primary-key queries. As in this chap-
ter, CloudTPS supports join queries consistently on top of NoSQL databases, we
kept all simple and complex queries unchanged, and merely translated them to
CloudTPS’s tree-based representation as discussed in Section 5.1.3.

TPC-W contains a secondary-key query which selects a customer record by
its user name. CloudTPS therefore automatically creates an index table indexOf
customerC uname referring to the SK c uname of data table customer.

This query is then rewritten into a join query across the two tables. The index table
is the root table and the input user name is the primary key of the root record.

We derive a workload from TPC-W containing only join queries and read-write
transactions. This workload excludes all simple primary-key read queries, which
are the most common query type for Web applications. This creates a worst-case
scenario for CloudTPS’s performance and scalability.

We populate the TPC-W database with 144,000 customer records in table
Order and 10,000 item records in table Item. We then populate the other ta-
bles according to the TPC-W benchmark requirements.

TPC-W continuously creates new shopping carts and orders. Each insert trig-
gers one cache miss. On the other hand, as the size of affected data tables keeps
increasing, this eventually results in more record evictions from the LTMs, which
in turn potentially triggers more cache misses. During our scalability evaluation,
we observe a hit rate around 80%.

Scalability Results

Figure 5.12 depicts the results of the scalability experiments in DAS-3 and the
Amazon cloud. We can see that the overall system throughput grows linearly with
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Figure 5.13: Number of data items accessed by transactions (y axis is in log scale).

the number of LTMs. This means that CloudTPS can accommodate any increase
of workload with a proportional number of compute resources.

In DAS-3, with 40 LTMs, CloudTPS achieves a maximum sustainable through-
put of 15,340 transactions/second. For this experiment, we also use 30 machines
to host HBase, 1 machine as timestamp manager and 8 clients. This configura-
tion uses the complete DAS-3 Cluster, so we cannot push the experiment further.
Figure 5.13 shows the distribution of the number of data items accessed per trans-
actions under this configuration of 40 LTMs (note that the y axis is in log scale). On
average, a read-only transaction accesses 4.92 data items and a read-write transac-
tion accesses 2.96 data items. Within all input transactions, 82% transactions are
join queries, and 18% are read-write transactions. As for the length of critical ex-
ecution path, 33.3% of the read-only transactions have a length of one, while the
other 66.7% have two. For read-write transactions, 84.2% of them need to update
indexes, while the other 15.8% do not.

In EC2, with 40 LTMs, CloudTPS achieves a maximum sustainable throughput
of 5,960 TPS. CloudTPS achieves three times better throughput in DAS-3 than in
EC2 with High-CPU medium instances.

This evaluation shows that CloudTPS scales linearly under a demanding work-
load typical of a Web application designed with no restriction regarding join queries.
We expect CloudTPS to continue scaling linearly with even larger numbers of
LTMs.

Comparison with a Relational Database

We compare CloudTPS with PostgreSQL v.9.0 on DAS-3. The PostgreSQL setup
contains one master and N slaves, using the binary-replication mechanism, which
streams data changes, in the form of write-ahead logs, over the network to the
slaves almost immediately on completion on the master [83]. We issue all read-
write transactions on the master, and balance read-only queries across the slaves.
When running CloudTPS, we count both CloudTPS and HBase nodes as database
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Figure 5.14: Scalability of CloudTPS vs. PostgreSQL

nodes. Running the same experiment in EC2 is not possible as we cannot measure
the number of machines used by SimpleDB.

Figure 5.14 illustrates the differences between CloudTPS and a replicated rela-
tional database. In small systems, PostgreSQL significantly outperforms CloudTPS
because each slave can execute read-only queries locally. PostgreSQL reaches a
maximum throughput of 5493 TPS using one master and six slaves. However, at
this point the master server becomes the bottleneck as it needs to process all update
operations and send the binary operations to its slaves. The throughput eventually
decreases because of the growing number of slaves to which it must send updates.
On the other hand, CloudTPS starts with a modest throughput of 1770 TPS in its
smallest configuration of 4 machines (two machines for CloudTPS and two ma-
chines for HBase). However, its throughput grows linearly with the number of
database nodes, reaching a throughput of 15,340 TPS using 57 nodes (40 machines
for CloudTPS and 17 machines for HBase). This clearly illustrates the scalability
benefits of CloudTPS compared to a replicated relational database.

5.4.4 Tolerating Network Partitions and Machine Failures

Finally, we illustrate CloudTPS’s behavior in the presence of machine failures and
network partitions. In Chapter 4, we have shown that CloudTPS v0.1 recovers
automatically from one network partition and one machine failure. Here we will
show that CloudTPS v0.2, which adds support of consistent join queries, tolerates
multiple network partitions and machine failures. We configure CloudTPS with
10 LTMs and then alternately create three network partitions and two machine
failures. Each network partition lasts 1 minute. We run this experiment in DAS-3.

As shown in Figure 5.15, CloudTPS recovers automatically from all the three
network partitions and two machine failures. The system shows similar recovery
performance to the Chapter 4’s evaluation of fault tolerance. In case of single-



100 CHAPTER 5. CONSISTENT JOIN QUERIES ...

 0

 500

 1000

 1500

 2000

 2500

 0  200  400  600  800  1000  1200

Th
ro

ug
hp

ut
 

 (T
ra

ns
ac

tio
n 

P
er

 S
ec

on
d)

Time(Sec)

network
partition

machine
failure

Committed

Figure 5.15: CloudTPS tolerates 3 network partitions and 2 machine failures

machine failures, CloudTPS recovers within about 14 seconds before failed trans-
actions are recovered and the responsible data items of the failed LTM are re-
replicated to new backup LTMs. On the other hand, for network partitions, as
no data re-replication is necessary, CloudTPS recovers almost instantly after the
network partition terminates. In all cases the transactional ACID properties are
respected despite the failures.

5.5 Conclusion

NoSQL data stores are often praised for their good scalability and fault-tolerance
properties. However, they are also criticized for the very restrictive set of query
types they support. As a result, Web application programmers are obliged to design
their applications according to the technical limitation of their data store, rather
than according to good software engineering practice. This creates complex and
error-prone code, especially when it comes to subtle issues such as data consistency
under concurrent read/write queries.

This chapter proves that scalability, strong consistency and complex join queries
do not necessarily contradict each other. CloudTPS exploits the fact that Web ap-
plications mostly use join queries that access a small fraction of the total available
data set. By carefully designing algorithms such that only a small subset of the
LTMs is involved in the processing of any particular transactions, we can imple-
ment strongly consistent join queries without compromising the original scalability
properties of the NoSQL data store. We designed transactional protocols to address
the needs of read-only join queries as well as read-write transactions which trans-
parently update index values at runtime. The system scales linearly in our local
cluster as well as in the Amazon cloud.



Chapter 6

Conclusions and Open Issues

Data management is essential for most Web applications. The requirements these
applications put on their data store are two-fold: first, the data store should pro-
vide advanced functionalities such as strong data consistency and complex-query
support to improve programmer efficiency in application development; second, the
data store should provide properties such as scalability, elasticity and high avail-
ability to maintain reasonable performance under arbitrary workload while keeping
operational costs under control. This thesis addressed the question: is it possible
to build a data store that accommodates all these requirements simultaneously?

Web application developers have access to two main families of data stores:
relational databases and NoSQL data stores. However, none of them meet all the
aforementioned requirements. Relational databases support ACID transactions and
complex queries, but implementing scalable and elastic applications using them
requires considerable efforts from application programmers. In contrast, NoSQL
data stores provide good properties of scalability and high availability, but lack sup-
port for strong data consistency and complex queries. Based on this observation,
this thesis explored two different approaches to build a data store which provides
all these properties.

In Chapter 3, we showed how one may scale Web applications using relational
databases, while retaining their transactional properties. We presented a systematic
approach to denormalize data into a number of independent data services. As each
data service has a simplified data-access pattern, classical scaling techniques such
as database replication and horizontal data partitioning can work effectively. The
evaluation shows that the restructured application achieves linear scalability with
increasing number of database instances. However, this approach requires sig-
nificant manual efforts in restructuring the application, and in implementing data
partitioning for scaling update-intensive data services. This formed the motivation
for us to turn to NoSQL data stores which are inherently scalable and partition data
automatically.

Chapter 4 and 5 discussed how one may extend NoSQL data stores to sup-
port ACID transactions and complex queries. We presented CloudTPS, a middle-
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Master-Slave Data
SQL NoSQL Denormalization CloudTPS

Supporting Yes No Partially Partially
complex queries

Strong data Yes No Yes Yes
consistency
Scalability No Yes Yes Yes
Elasticity No Yes Yes Yes

Fault tolerance Yes Yes Yes Yes
Supporting large Yes Yes Yes Yes

data sizes
Work for the
application Low Medium High Medium
developer

Table 6.1: Supported properties of two main families of data stores and our ap-
proaches for Web applications.

ware system which stands between NoSQL data stores and their Web applications,
and which handles transactions and complex queries such as join queries. The
updates of committed transactions are later checkpointed back to the underlying
NoSQL data store to achieve durability. CloudTPS achieves linear scalability as
it partitions data automatically across any number of LTMs. Data are also repli-
cated across multiple LTMs to tolerate machine failures and network partitions. In
Chapter 4, we describe the implementation of transactional functionalities as well
as system optimizations such as memory management to support large volumes of
data. Chapter 5 extends the transaction commit protocol to allow the system to
support complex queries such as join and secondary-key queries. To our knowl-
edge, CloudTPS is currently the only NoSQL data store capable of supporting such
queries without compromising scalability or strong data consistency.

6.1 Discussion

In Chapter 2, we described the desirable properties of an ideal data store for Web
applications: performance, scalability, elasticity, supporting complex queries, strong
data consistency, high availability and supporting large data sizes. One may there-
fore wonder: did we reach this goal? Table 6.1 shows the main properties of rela-
tional databases, NoSQL data stores as well as our two approaches in the context
of Web applications.

Master-slave SQL databases can replicate an entire database to multiple slave
databases. These systems support the same SQL language with rich semantics of
complex queries and ACID transactions as centralized relational databases. Appli-
cation developers do not need to modify any query or transaction of applications
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that are based on relational databases. This approach can effectively scale Web ap-
plications with read-only or read-mostly workload: the system can address higher
workload by balancing read-only queries to more slave databases. With multiple
replicas of the complete database, this approach provides good fault tolerance prop-
erties. However, its main drawback is that it cannot scale under update-intensive
workloads as all updates must be carried out on all replicas. Besides, this approach
lacks elasticity, as adding a new node to the system requires replicating the full
database. Such replication may cause significant costs, especially in the case of
large data sets.

Relational databases also support partial replication and multi-master setups,
but their improved performance comes at the cost of additional complexity for
application developers.

NoSQL data stores replicate and partition data automatically. These data stores
are elastic and provide good scalability for update workloads. Adding or removing
a node causes only minor overheads. NoSQL data stores support large data sets
as they partition the increasing amount of data across the available nodes. The
partitioned data are also replicated to tolerate machine failures and network par-
titions. NoSQL data stores provide high availability even in the case of network
partitions, but at the possible cost of compromising strong data consistency. This
property might be acceptable for Web applications which prefer high availability
over data consistency. However, programming correct applications using a weakly
consistent data store is not an easy task. Furthermore, NoSQL data stores typically
support only simple queries which either read or write a single data item. A few
advanced systems support secondary-key queries, but only within a single table or
table partition. Complex queries across multiple tables such as join queries are
not supported. The lack of support for complex queries creates additional work to
implement the same functionality using simple queries only.

Our approach of data denormalization, as presented in Chapter 3, provides
good scalability for update-intensive Web applications, while maintaining the trans-
actional properties of Web applications. Each data service has a simple data access
pattern, which allows scaling techniques to work effectively. For example, one can
scale read-only or read-mostly data services with master-slave database replication.
Update-intensive data services are harder to build as they require implementing
data partitioning. One might consider using CloudTPS to implement them though.
Compared to using CloudTPS to scale Web applications directly, data denormaliza-
tion has the potential to achieve better performance as one can scale data services
with simplified workload more effectively compared to scaling the complete Web
application. However, this approach imposes significant amount of work on appli-
cation developers. The restructuring of an application requires one to re-implement
lots of code as well as many queries of the application.

CloudTPS demonstrates the feasibility of supporting strong data consistency
and complex queries in NoSQL data stores while preserving their good properties
of scalability and elasticity. CloudTPS uses a non-standard format for representing
queries, but building a SQL parser over it is quite easy [45]. This can greatly im-
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prove programmer efficiency compared to regular NoSQL data stores. CloudTPS
partitions data across LTMs in a similar way as NoSQL data stores to preserve
their good properties of scalability and elasticity. It also replicates the partitioned
data to tolerate machine failures and network partitions. CloudTPS supports large
data sizes not only by partitioning data across LTMs, but also by applying memory
management mechanisms such that only a small part of application data need to be
maintained in LTMs.

As we can see from Table 6.1, among the four approaches, CloudTPS consti-
tutes a step forward towards the initial goal. However, it still misses some important
properties. First, CloudTPS lacks support of aggregate queries, which may access
large number of data items. Implementing aggregate queries in CloudTPS as ACID
transactions like join queries might compromise scalability of the system. Trading
off data consistency for performance would be an effective approach to implement
scalable aggregate queries. However, CloudTPS focuses on strong data consis-
tency and does not allow relaxing data consistency. Second, the CAP theorem has
shown that one must trade off between the two properties of data consistency and
high availability in the case of network partitions. CloudTPS explicitly chooses
to maintain strong data consistency without trading off for high availability. As
discussed in Section 2.5, with this design, CloudTPS can provide strong data con-
sistency properties, so that programmers can manage data consistency efficiently.
However, it might be useful for data stores to allow programmers to make different
choices for parts of their applications, possibly using application-specific knowl-
edge about the semantics of data and queries.

Although CloudTPS does not achieve all the properties of the ideal data store,
we believe it shows one possible direction for hosting Web application data.

6.2 Open Issues

This thesis presented approaches to enable scalable data management for Web ap-
plications. This is a very wide area, which cannot be fully covered in a single
dissertation. We discuss here a number of important new research topics that this
work has highlighted.

This thesis focuses on achieving linear scalability rather than improving abso-
lute performance. However, it is still an interesting topic to investigate how to op-
timize the absolute performance of CloudTPS. Transactions and complex queries
may access multiple data items located at different nodes. Such distributed oper-
ations are significantly less efficient than local transactions that access one node
only. A workload-aware data placement may largely reduce the average number of
nodes involved in transactions and thereby greatly improve performance. A few ap-
proaches have been proposed to analyze data access pattern and generate optimized
data placements across distributed machines [31, 41]. However, these approaches
are done offline in a centralized and unscalable manner. To cope with widely fluc-
tuating and dynamic workloads, similar techniques have been applied for online
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analysis and dynamic re-partitioning in the context of CloudTPS [103]. However,
dynamic re-partitioning introduces overheads in locating data items and perform-
ing data re-organization, which may compromise the performance gain from exe-
cuting more transactions locally. We therefore need sufficiently lightweight data
localization mechanisms so that the gains of placing related data together exceed
the costs.

Web applications may contain aggregate queries, which access large amount of
data. Maintaining materialized views is an effective technique to support aggregate
queries in centralized databases. It would be interesting to investigate how one may
implement materialized views scalably in CloudTPS. To scale aggregate queries
under update-intensive workload, one must partition each materialized view so that
the load of read as well as writes on materialized views can be balanced across the
LTMs. It is essential that updating a materialized view does not cause too much
cost. There have been research efforts of supporting scalable aggregate queries in
the context of CloudTPS [74]. This work extends Gupta’s work on incremental
view maintenance [49] and implements materialized views as CloudTPS tables,
which are partitioned automatically. Although this work shows linear scalability,
it supports only a subset of all possible aggregate queries. For example, this work
cannot scale aggregation functions such as MIN and MAX as these two functions
require inspecting all records of a table upon record deletion. Extending this work
to all types of aggregation remains future research.
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Summary

Data management is essential for most Web applications. The requirements these
applications put on their data store are two-fold: first, the data store should pro-
vide advanced functionalities such as strong data consistency and complex-query
support to improve programmer efficiency in application development; second, the
data store should provide properties such as scalability, elasticity and high avail-
ability to maintain reasonable performance under arbitrary workload while keeping
operational costs under control. This thesis addresses the question: is it possible to
build a data store that accommodates all these requirements simultaneously?

Web application developers have access to two main families of data stores:
relational databases and NoSQL data stores. However, none of them meet all the
aforementioned requirements. Relational databases support ACID transactions and
complex queries, but implementing scalable and elastic applications using them
requires considerable efforts from application programmers. In contrast, NoSQL
data stores provide good properties of scalability and high availability, but lack sup-
port for strong data consistency and complex queries. Based on this observation,
this thesis explores two different approaches to build a data store which provides
all these properties.

First, we study to which extent Web applications based on relational databases
can be made elastic and scalable. Second, we explore how one may extend the
existing NoSQL data stores with high-level database functionalities, such that their
properties of scalability and elasticity are not compromised.

The Relational-Database Approach

In Chapter 3, we show how one may scale Web applications using relational
databases, while retaining their transactional properties. We present a systematic
approach to denormalize data into a number of independent data services, each of
which having exclusive access to its private data store. This restructuring by itself
does not lead to linear scalability directly. However, each of the data services has
reduced workload complexity, which allows for a more effective application of the
optimization techniques such as database replication, query caching and horizon-
tal data partitioning, thus leading to significantly better scalability. For example,
read-only data services can be scaled simply by database replication, while update-
intensive data services can be scaled more effectively by horizontal data partition-
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ing. Importantly, the restructuring does not imply any loss in terms of transactional
or consistency properties.

The evaluation shows that the restructured application achieves linear scalabil-
ity with increasing number of database instances. However, this approach requires
significant manual efforts in restructuring the application, and in implementing data
partitioning for scaling update-intensive data services. This formed the motivation
for us to turn to NoSQL data stores which are inherently scalable and partition data
automatically.

The NoSQL-Data-Store Approach

In Chapter 4 and 5, we explore how one may extend the existing NoSQL data stores
with support of ACID transactions and complex queries, such that their properties
of scalability and elasticity are not compromised.

We implement these missing features of NoSQL data stores in a middleware
layer, called CloudTPS which sits between the application and its data store. Our
prototype creates a temporary copy of the application data in the memory of its
participant machines. All the added functionalities, such as transactions and join
queries, operate directly on this copy of the data. All updates are checkpointed back
to the underlying data store in a lazy fashion such that users observe strong ACID
properties even in the case of machine failures or network partitions. CloudTPS
follows the system model of typical NoSQL data stores, which automatically man-
ages data partitioning across any number of machines. CloudTPS also replicates
data items to a specified number of machines. When encountering machine failures
or network partitions, CloudTPS can recover automatically without compromising
data consistency. In Chapter 4, we describe the implementation of transactional
functionalities as well as system optimizations such as memory management to
support large volumes of data. Chapter 5 extends the transaction commit protocol
to allow the system to support complex queries such as join and secondary-key
queries. To our knowledge, CloudTPS is currently the only NoSQL data store ca-
pable of supporting such queries without compromising scalability or strong data
consistency.



Samenvatting

Schaalbare Datamanagement voor Webapplicaties

Datamanagement is essentieel voor de meeste webapplicaties. De eisen die deze
applicaties aan hun dataopslag stellen zijn tweeledig: Ten eerste moet de dataop-
slag voorzien in geavanceerde functionaliteit zoals sterke dataconsistentie en on-
dersteuning voor complexe queries, ter verbetering van de efficiëntie van pro-
grammeurs gedurende de applicatie ontwikkeling. Ten tweede moet de dataop-
slag schaalbaar en elastisch zijn en een hoge beschikbaarheid hebben om goede
prestaties te kunnen leveren onder uiteenlopende soorten werkdruk terwijl de kosten
beheersbaar blijven. Dit proefschrift richt zich op de vraag: is het mogelijk om een
dataopslag te ontwikkeling die aan al deze eisen tegelijkertijd kan voldoen?

De ontwikkelaars van webapplicaties kunnen kiezen uit twee soorten dataop-
slag: relationele databases of NoSQL dataopslag. Echter voorziet geen van beide
in alle eerdergenoemde vereisten. Relationele databases ondersteunen ACID trans-
acties en complexe queries, maar het ontwikkelen van schaalbare en elastische ap-
plicaties die hier gebruik van maken, vereist een aanzienlijke inspanning van de
applicatie programmeurs. Daarentegen kan NoSQL dataopslag wel voorzien in
schaalbaarheid en hoge beschikbaarheid, maar de ondersteuning voor sterke data-
consistentie en complexe queries ontbreekt. Gebaseerd op deze observatie verkent
dit proefschrift twee verschillende aanpakken om een dataopslag te ontwikkelen
die wel aan alle eisen kan voldoen.

Eerst bestuderen we hoe webapplicaties die gebaseerd zijn op relationele
databases elastisch en schaalbaar gemaakt kunnen worden. Ten tweede, verken-
nen we hoe bestaande NoSQL dataopslag uitgebreid kan worden met geavanceerde
database functionaliteit zodat eigenschappen als schaalbaarheid en elasticiteit niet
verloren gaan.

De relationele database aanpak

In hoofdstuk 3 laten we zien hoe webapplicaties die gebruik maken van relationele
databases opgeschaald kunnen worden, terwijl de transactionele eigenschappen
bewaard blijven. We presenteren een systematische aanpak om data te denor-
maliseren in aan aantal onafhankelijke dataservices die elk exclusieve toegang
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hebben tot hun eigen dataopslag. Deze herstructurering leidt nog niet direct tot
lineaire schaalbaarheid. Elke dataservice heeft echter een minder complexe werk-
last, wat effectievere toepassing van optimalisatie technieken zoals database repli-
catie, query caching en horizontale data partitionering mogelijk maakt, wat leidt
tot een significant betere schaalbaarheid. Read-only dataservices kunnen bijvoor-
beeld gemakkelijk opgeschaald worden door middel van database replicatie, ter-
wijl update-intensieve dataservices gemakkelijker opgeschaald kunnen worden met
behulp van horizontale data partitionering. Belangrijk is dat door deze herstruc-
turering de transactionele en consistentie eigenschappen niet verloren gaan.

De evaluatie laat zien dat de geherstructureerde applicaties lineaire schaal-
baarheid vertonen, met een toenemend aantal database instanties. Deze aanpak
vereist echter een significante hoeveelheid handmatig werk in het herstructureren
van de applicatie en in het implementeren van de data partitionering voor het op-
schalen van update-intensieve dataservices. Dit vormde de motivatie om ons te
wenden tot NoSQL dataopslag die inherent schaalbaar is en automatisch data par-
titioneert.

De NoSQL dataopslag aanpak

In hoofdstuk 4 en 5 verkennen we hoe bestaande NoSQL dataopslag met onders-
teuning voor ACID transacties en complexe queries uitgebreid kan worden zonder
dat de schaalbaarheid of elasticiteit in het gedrag komt.

We implementeren deze ontbrekende eigenschappen van NoSQL dataopslag
in een middleware laag genaamd CloudTPS, die zich tussen de applicatie en de
dataopslag bevindt. Ons prototype creëert een tijdelijke kopie van de applicatie
data in het geheugen van de deelnemende machines. Alle toegevoegde function-
aliteit, zoals transacties en join queries, opereren direct op deze kopie van de data.
Alle updates worden met behulp van checkpoints naar de onderliggende dataop-
slag gecommuniceerd op een luie manier zodat de gebruiker sterke ACID eigen-
schappen ervaart, zelfs wanneer er een machine uitvalt of het netwerk partitioneert.
CloudTPS volgt het model van typische NoSQL dataopslag die automatisch data
partitionering over een willekeurig aantal machines afhandelt. CloudTPS repliceert
ook data elementen naar een gespecificeerd aantal machines. Wanneer machine
uitvallen of netwerk partitioneringen aan de orde zijn kan CloudTPS automatisch
herstellen zonder dat data consistentie in het gedrang komt. In hoofdstuk 4 beschri-
jven we de implementatie van transactionele functionaliteit evenals systeem opti-
malisaties, waaronder geheugen management om grote hoeveelheden data aan te
kunnen. Hoofdstuk 5 breidt het transactie commit protocol uit om de ondersteun-
ing voor complexe queries zoals join en secondary-key queries mogelijk te maken.
Voor zover ons bekend is CloudTPS op dit moment de enige NoSQL dataopslag
die in staat is deze queries te ondersteunen zonder dat de schaalbaarheid of sterke
data consistentie verloren gaat.
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