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Abstract. We apply a four-dimensional variational (4D-
VAR) data assimilation system to optimize carbon monoxide
(CO) emissions for 2003 and 2004 and to reduce the uncer-
tainty of emission estimates from individual sources using
the chemistry transport model TM5. The system is designed
to assimilate large (satellite) datasets, but in the current study
only a limited amount of surface network observations from
the National Oceanic and Atmospheric Administration Earth
System Research Laboratory (NOAA/ESRL) Global Moni-
toring Division (GMD) is used to test the 4D-VAR system.
By design, the system is capable to adjust the emissions in
such a way that the posterior simulation reproduces back-
ground CO mixing ratios and large-scale pollution events at
background stations. Uncertainty reduction up to 60 % in
yearly emissions is observed over well-constrained regions
and the inferred emissions compare well with recent studies
for 2004. However, with the limited amount of data from
the surface network, the system becomes data sparse result-
ing in a large solution space. Sensitivity studies have shown
that model uncertainties (e.g., vertical distribution of biomass
burning emissions and the OH field) and the prior invento-
ries used, influence the inferred emission estimates. Also,
since the observations only constrain total CO emissions, the
4D-VAR system has difficulties in separating anthropogenic
and biogenic sources in particular. The inferred emissions
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are validated with NOAA aircraft data over North America
and the agreement is significantly improved from the prior
to posterior simulation. Validation with the Measurements
Of Pollution In The Troposphere (MOPITT) instrument ver-
sion 4 (V4) shows a slight improved agreement over the well-
constrained Northern Hemisphere and in the tropics (except
for the African continent). However, the model simulation
with posterior emissions underestimates MOPITT CO total
columns on the remote Southern Hemisphere (SH) by about
10 %. This is caused by a reduction in SH CO sources mainly
due to surface stations on the high southern latitudes.

1 Introduction

Understanding the budget of carbon monoxide (CO) is im-
portant, because by reaction with the radical OH, CO influ-
ences the oxidizing capacity of the atmosphere significantly
(Logan et al., 1981). Enhanced CO concentrations reduce
OH concentrations and this has a feedback on the concen-
tration of methane, the second most important anthropogenic
greenhouse gas. CO is also a precursor of tropospheric ozone
under high NOx(NO+NO2) conditions (Seinfeld and Pan-
dis, 2006). CO is emitted into the atmosphere by incomplete
combustion of fossil fuels, biofuels and during biomass burn-
ing events. In addition, CO is produced throughout the at-
mosphere by oxidation of methane and non-methane volatile
organic compounds (NMVOCs). The main sink of CO is
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the reaction with the OH radical. Deposition of CO on the
Earth’s surface is a minor sink, accounting for 5–10 % of the
total sink strength (Sanhueza et al., 1998; Pétron et al., 2002).

The magnitude of CO emissions from different source cat-
egories is not well quantified. In particular, emissions from
biomass burning (most importantly forest and savanna fires)
carry large uncertainties partly due to the variability of fires
in both space and time. In addition, bottom-up inventories
like the widely used Global Fire Emission Database (GFED)
(van der Werf et al., 2004, 2006, 2010) come with substan-
tial uncertainties due to insufficient knowledge about burned
area, fuel load, and emission factors (van der Werf et al.,
2006). Uncertainties in biomass burning emission estimates
are largest in deforestation regions (e.g. South America and
Indonesia) and regions where organic soils burn (e.g. Indone-
sia and the Boreal region).

One way to better constrain emissions of CO is inverse
modeling (Enting, 2002). In short, atmospheric measure-
ments, a chemistry transport model (CTM) and a priori in-
formation about the emissions are used to optimize the emis-
sion in such a way that the mismatch between simulated
and observed CO concentrations is minimized. The a pri-
ori emission estimates are taken from bottom-up inventories.
Throughout the literature there are basically two inversion
methods used for CO inversions: synthesis Bayesian inver-
sions (e.g.,Bergamaschi et al., 2000; Kasibhatla et al., 2002;
Pétron et al., 2002; Palmer et al., 2003, 2006; Arellano et al.,
2004, 2006; Heald et al., 2004; Jones et al., 2009) and adjoint
inversions (e.g.,Müller and Stavrakou, 2005; Yumimoto and
Uno, 2006; Stavrakou and M̈uller, 2006; Chevallier et al.,
2009; Kopacz et al., 2009; Fortems-Cheiney et al., 2009;
Tangborn et al., 2009; Kopacz et al., 2010). The synthesis
inversion optimizes CO emissions over large geographical
regions with a preset CO emission distribution in each re-
gion, whereas the adjoint inversion technique is able to derive
optimized CO emissions on the grid-scale of the underlying
CTM, through an iterative approach used to minimize the
mismatch between model and observations. Adjoint inver-
sions reduce the risk of aggregation errors and are in partic-
ular suited for assimilation of large observational (satellite)
datasets (Meirink et al., 2008b; Bergamaschi et al., 2009).

In the current study we apply a 4D-VAR system for
CO based on the earlier work for methane (Meirink et al.,
2008a,b; Bergamaschi et al., 2009). Although this system is
designed to assimilate large observational datasets, it will be
tested in this first study by only assimilating surface obser-
vations from a limited number of NOAA stations to optimize
monthly mean CO emissions for a period of two years. This
approach is followed to obtain a benchmark characterization
of the system for future assimilation of satellite data. Firstly,
we focus on the capability of the system to estimate annual
continental emissions by inspecting the reduction of the prior
errors assigned to the sources. The optimized emissions will
be validated by comparing model results to independent air-
craft data from NOAA and satellite data from the Measure-

ments Of Pollution in The Troposphere (MOPITT) instru-
ment (Deeter et al., 2003, 2007, 2010). Secondly, we will
investigate the influence of prior settings and model errors
on the inversion results by performing sensitivity studies.

This paper is organized as follows: the 4D-VAR system is
described in Sect.2. Section3 presents the optimized (poste-
rior) emissions and their uncertainty reduction for 2003 and
2004 as well as a validation with independent aircraft and
satellite data. The results are discussed in Sect.4 and the
performance of the 4D-VAR system is further investigated
by performing sensitivity studies (Sect.5). Finally we give
conclusions in Sect.6.

2 Description of the four dimensional variational data
assimilation system

The 4D-VAR modeling system for CO is based on the TM5-
4DVAR system originally developed for methane (Meirink
et al., 2008b; Bergamaschi et al., 2009). Given a set of atmo-
spheric observationsy and a chemistry transport modelH

it is possible to optimize a set of fluxesx (the state vector)
using the Bayesian technique (Rodgers, 2000). The a poste-
riori vectorx is found by minimizing the mismatch between
the model forward simulationH(x) and the observations(y)

weighted by an observation error covariance matrixR, while
staying close to a set of a priori fluxesxb, weighted by the a
priori error covariance matrixB. Mathematically this prob-
lem can be written as the following minimization problem:

x̂ = ArgminJ

J (x) =
1

2
(x −xb)

>B−1(x −xb)

+
1

2

n∑
i=1

(Hi(x)−yi)
>R−1

i (Hi(x)−yi), (1)

where the indexi refers to the time step andT is the trans-
pose operator. Observationsyi are assimilated in the 4D-
VAR system at timei. The classic Bayesian approach deter-
mines the a posteriori solution̂x (Rodgers, 2000):

x̂ = xb +K(Hx −y), (2)

with K = BH>
(
HBH>

+R
)−1

andH is the Jacobian matrix
corresponding to the CTMH (Arellano et al., 2004). The a
posteriori error covariance matrixA can be written as

A =

(
H>R−1H +B−1

)−1
. (3)

When the number of state vector variables is large, it is
not possible to compute the inverse matrices in the above
equations directly. Hence an iterative minimization algo-
rithm is required. The conjugate gradient method (Hestenes
and Stiefel, 1952) can be used to minimize the cost func-
tion (Eq. 1) if the CTM is linear. In general, the CTMH
is nonlinear with respect to the state vectorx since the CO
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emissions perturb OH concentrations and hence the CO sink
term. However, for tropospheric CO,Pétron et al.(2002)
have shown that to a reasonable approximation, the system
can be linearized by using fixed OH fields. In this case the
cost functionJ is quadratic and we use the same minimiza-
tion algorithm as in the European Centre for Medium-Range
Weather Forecasts (ECMWF) 4D-VAR (Fisher and Courtier,
1995): the cost functionJ is minimized and the leading
eigenvaluesλi and eigenvectorsνi of the Hessian of the cost
function are derived. The a posteriori error covariance matrix
(Eq.3) describing the uncertainty in the optimized state vec-
tor x̂, equals the inverse Hessian of the cost function. Hence,
the a posteriori error covariance matrix is approximated by a
finite combination of the leading eigenvalues and eigenvec-
tors of the Hessian of the cost function added to the a priori
error covariance matrixB (Fisher and Courtier, 1995):

A ≈ B+

N∑
i=1

(
1

λi

−1

)
(Lνi)(Lνi)

>, (4)

whereL is the preconditioner explained below. The approx-
imation converges to the true posterior error covariance ma-
trix as the eigenvalues converge to 1 if the number of itera-
tions is large enough. The rate of convergence of the mini-
mization is in general quite slow, but a preconditioner can be
used to speed up the convergence rate.Fisher and Courtier
(1995) have shown that the matrixL such thatLL >

= B is a
suitable preconditioner when used in this 4D-VAR approach.
However, due to the large number of state vector elements,
the preconditioner is too large to be stored. The approach
of Meirink et al. (2008b) is therefore adopted to reduce the
required storage. In our study, we consider the minimum of
the cost function reached when the norm of the gradient of
the cost function is reduced by 99 %. Typically, less than 30
iterations are needed to achieve this reduction. Although the
eigenvalues have not yet converged to 1 by this time, the er-
rors on the scale of a continent seem reasonably converged
after a limited number of iterations as shown in Fig.3.

The chemical transport modelH , the prior statexb with
uncertaintyB and the observationsy with their uncertainty
R will be described in more detail in the following sections.

2.1 The chemical transport model TM5

The CTM (also called the forward model) used in this study
to relate CO emissions to atmospheric CO mixing ratios is
the two-way nested chemical transport model TM5 (Krol
et al., 2005). TM5 is an offline model driven by 3-hourly
meteorological fields (6-hourly for 3-D input fields) from
the ECMWF. Here we do not use the full-chemistry TM5
model, but the so-called TM5 CO-only model (svn-version
3197). This model, running on a coarse 6◦

× 4◦ horizon-
tal grid with 25 vertical layers in this study, deviates from
the full-chemistry version by employing simplified CO-OH
chemistry. In order to keep the model linear, a monthly
OH climatology is used (Spivakovsky et al., 2000), which

is scaled by a factor 0.92 based on methyl chloroform sim-
ulations performed for 2000–2006 (Huijnen et al., 2010).
The annual mean OH concentration for 2004 amounts to
1.1×106 molecules cm−3. The corresponding tropospheric
lifetime of methyl chloroform is 4.8 yr.

2.2 Specification of a priori state

The state vector (x in Eq. 1) consists of the variables to be
optimized by the inversion. Here we distinguish between
monthly surface CO emissions, monthly varying parameters
that scale the chemical production of CO from oxidation of
methane and NMVOCs, and the initial 3-D CO mixing ra-
tio field. The emissions are divided in three categories: an-
thropogenic (combustion of fossil fuels and biofuels), nat-
ural sources (direct CO emissions from vegetation and the
oceans) and biomass burning (open vegetation fires, both nat-
ural and human induced).

The a priori anthropogenic emissions are taken from
the Emission Database for Global Atmospheric Research
(EDGARv3.2) inventory (Olivier et al., 2000, 2003) com-
piled for the year 1995. The distribution of natural
CO emissions (Houweling et al., 1998) is scaled to emit
115 Tg CO yr−1 which is well within the range of the esti-
mate bySchade and Crutzen(1999) (50–170 Tg CO yr−1).
Biomass burning emissions are taken from GFED2 (van der
Werf et al., 2006). Biomass burning CO is distributed over
the vertical model grid as follows: 20 % is released in the
layers 0–100 m, 100–500 m and 500–1000 m. The remain-
ing 40 % is released between 1000–2000 m in accordance to
Labonne et al.(2007). The sensitivity of the optimized emis-
sions with respect to the chosen injection height is discussed
further in Sect.5.

The chemical production of CO from oxidation of methane
and NMVOCs requires monthly 3-D CO production fields.
Constant methane mixing ratios of 1800 parts per billion
(ppb) are used throughout the atmosphere. Methane is ox-
idized by the OH climatology using a temperature dependent
reaction rate constant (Seinfeld and Pandis, 2006)

k = 2.45×10−12exp(−1775/T ). (5)

The CH4 to CO conversion yield is taken as unity. We ac-
knowledge the possibility of introducing a bias by neglecting
the significant N-S gradient in tropospheric CH4 and the ver-
tical gradient in stratospheric CH4. The observed 10 % N-
S gradient in tropospheric methane would result in a 10 %
gradient in CO produced from methane oxidation. Since in
our approach, about 880 Tg CO is produced annually from
CH4 oxidation (Table2), this leads to an overestimate of
45 Tg CO yr−1 on the SH and a similar underestimate on the
NH. Although such a bias is small compared to the global CO
emissions and chemical production, we will improve the CH4
oxidation scheme in the next version of the 4D-VAR system.

A full-chemistry model run using TM4 (Myriokefalitakis
et al., 2008) yields monthly 3-D CO fields produced by

www.atmos-chem-phys.net/11/4705/2011/ Atmos. Chem. Phys., 11, 4705–4723, 2011



4708 P. B. Hooghiemstra et al.: Optimizing CO emissions in a 4D-VAR framework

oxidation of biogenic and anthropogenic hydrocarbons in-
cluding CH4-CO. The total prior CO source from methane
and NMVOCs is scaled to 1600 Tg CO yr−1 within the range
of values used in the literature (1279–1644 Tg CO yr−1) (e.g.,
Bergamaschi et al., 2000; Müller and Stavrakou, 2005; Dun-
can et al., 2007; Kopacz et al., 2010). We construct the
monthly NMVOC-CO source by subtracting the monthly
CH4-CO described above from the total fields. The 3-D
CH4-CO and NMVOC-CO fields themselves will not be op-
timized: instead a monthly scaling factor with unit a priori
value is optimized. Hence, for these sources we apply a tra-
ditional synthesis inversion in the sense that the prior spatial
emission patterns are constant and only the global total mag-
nitude of CH4-CO and NMVOC-CO is optimized.

A forward model simulation with these a priori emissions
has been performed for the years 2002–2005 and daily mean
CO mixing ratios have been archived. The a priori initial
CO mixing ratio field is taken from this archive and further
optimized by including the initial 3-D field in the state vec-
tor. This approach has been adopted from previous methane
4D-VAR studies (e.g.,Meirink et al., 2008b). Also, when op-
timizing the initial CO mixing ratio field in this way, a long
spin up time is not necessary saving up to 50 % of comput-
ertime. The approach outlined here yields similar emission
estimates compared to an inversion starting from a posterior
field from a previous simulation that is not further optimized.

2.3 Specification of a priori uncertainties

2.3.1 Emissions

The prior emission grid-scale errors are set in such a way
that in combination with prior correlations (see below), the
prior emission errors aggregated to continental regions are
in a realistic range. The prior anthropogenic emission in-
ventory used in this study (EDGAR v3.2) is compiled for
the year 1995. Inverting for the years 2003/2004, we ex-
pect large emission increments due to rapid economic de-
velopment, particularly in Asia. Hence we assign large er-
rors to this region. In contrast, for the Western developed
world (North America, Europe and Australia) we expect that
the 2003/2004 anthropogenic emissions are close or some-
what smaller compared to 1995. Therefore, we apply grid-
scale errors of 250 % of the corresponding grid-scale emis-
sion for the developing world (Asia, Africa and South Amer-
ica) and 50 % for the Western developed world. With these
settings, realistic continental-scale errors are computed for
the developing world (65–75 %) and the Western developed
world (20–48 %) in the range previously used byStavrakou
and Müller (2006).

The grid-scale prior emission errors for biomass burning
and the natural source are set to 250 % of the corresponding
grid-scale emission, since both inventories bear large uncer-
tainties. For both source categories this leads to prior conti-
nental emission errors in the range of 40–100 % (Table2).

Emission uncertainties are correlated in time and space re-
sulting in a reduction of the effective number of variables
to be optimized. For the three emission categories we use a
Gaussian spatial correlation length of 1000 km as inMeirink
et al. (2008b). An e-folding temporal correlation length of
9.5 months (0.9 month-to-month correlation) is chosen for
anthropogenic emissions. This month-to-month correlation
is justified because the prior inventory suggests no seasonal
cycle. Due to the variable nature of fires in time, the tem-
poral correlation length for biomass burning emissions is set
to 0.62 months (0.2 month-to-month correlation). For nat-
ural emissions the temporal correlation length is set to 9.5
months.

2.3.2 Initial concentration field and additional
parameters

The grid-scale prior initial concentration error is 5 % of the
corresponding prior initial concentration. The initial concen-
tration field is correlated in space by a Gaussian correlation
length of 1000 km as inMeirink et al.(2008b). The a priori
errors on the monthly scaling factors for CO production from
methane and NMVOCs are set to 2 % and 8 %, respectively.
The scaling factors are correlated in time with a correlation
length of 3 months (0.7 month-to-month correlation). This
tight error setting is chosen because the NMVOC-CO source
is only 1 state vector element per month whereas the other
emission categories have a state vector element for each grid
box.

2.4 Atmospheric observations

In this first TM5 CO inversion study, only surface observa-
tions from NOAA/ESRL GMD are assimilated in the 4D-
VAR system. The NOAA surface network provides CO ob-
servations from a globally distributed network of stations
(Novelli et al., 1998, 2003). A subset of 31 stations, mainly
remote stations and stations at larger distances from conti-
nental source regions are used in the inversions. Stations
close to source regions as well as other stations for which we
expect large model errors due to the coarse model resolution
are left out. The selected stations are shown in Fig.1. The
observation error consists of the measurement error and the
model error. The measurement error is set to 1.5 ppb (Nov-
elli et al., 1998). We estimate the model error using the same
approach as described inBergamaschi et al.(2010). First, the
impact of local emissions on the simulated CO mixing ratio
is accounted for by a simple emission model for observa-
tions in the boundary layer. Second, to account for sub-grid
variability that can not be resolved, the vertical component
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Fig. 1. Positioning of 31 NOAA surface sites (black circles). Purple squares represent stations for which prior and posterior simulations will
be shown (Sect.3.1).

of the model error is calculated from the modeled CO mix-
ing ratios in adjacent grid cells. Third, the temporal standard
deviation of the modeled CO mixing ratios within a 3 h win-
dow is added to the representation error. With this advanced
representation of the model error, we do not account for pos-
sible other model uncertainties in vertical transport or the OH
field. This will be discussed further in Sects. 4 and 5.

The model error is usually much larger than the measure-
ment error for stations close to or downwind of emission re-
gions (e.g., Fig. 7). In remote areas in the SH, however, the
measurement error is the dominant term in the observational
error. No correlations between the observations are set result-
ing in a diagonal observational error covariance matrixR.

2.5 Inversion specifics

Although we apply an advanced model error and thus in-
crease the observation error, it is still not expected that the
model is capable of simulating all measured pollution events
and in particular the transition from polluted to very clean
conditions. To account for this and to prevent possible biases
due to a few single outliers, the inversion is done in two cy-
cles: after the first inversion we reject all data points that are
outside a 3σ error range of the model simulation (Bergam-
aschi et al., 2010) (see also Fig.7). Then the second inversion
cycle is performed. In the CH4 inversion ofBergamaschi
et al.(2010), typically 3 % of the data were rejected, but the
a posteriori emissions for both inversion cycles did not differ
very much in general. However, in the current study, focus-
ing on the shorter-lived CO, approximately 15–20 % of the
data from the first inversion are rejected. Inferred continen-
tal emissions in the second cycle are within 15 % of the emis-
sions in the first cycle for most sources/regions and show a

similar pattern of adjustments. The effect of rejecting data
on inferred CO emissions will be discussed in more detail in
Sect.4.

The years 2003 and 2004 are inverted separately because
the inversions are computationally demanding. The inver-
sions use a one month spin up, in which the emissions are op-
timized already, but not analyzed, and 2 months spin down to
supply enough observations to optimize the emissions in the
last months of the year. Given a lifetime of about 2 months
for CO, it has been investigated that to optimize emissions
of monthm, it is sufficient to use observations for monthsm,

m+1 andm+2 (not shown). Observations at later times will
not significantly influence the emissions in monthm, because
the emission signal is sufficiently diluted and chemically re-
moved by that time. It should be borne in mind, however,
that emissions in monthm are influenced by emission esti-
mates in surrounding months (m−3,...,m+3) via the prior
temporal correlation length.

The length of the state vector is 189 030, that is (15 months
× 3 source categories + 25 vertical layers of the initial con-
centration field)× (60 × 45 grid boxes) + 15 months× 2
scaling factors. In contrast, the total number of observa-
tions is only about 1400 per year. By introducing a non-
diagonal prior error covariance matrix, the number of “true”
unknowns is greatly reduced to approximately 25 000, but
the problem still remains underdetermined (data sparse and
hence strongly dependent on a priori knowledge of the emis-
sions). Nevertheless, a grid-scale inversion is performed here
to reduce the risk of aggregation errors, which often occur in
a big region approach (Stavrakou and M̈uller, 2006; Meirink
et al., 2008b) and to prepare for future ingestion of large
amounts of satellite data.

www.atmos-chem-phys.net/11/4705/2011/ Atmos. Chem. Phys., 11, 4705–4723, 2011



4710 P. B. Hooghiemstra et al.: Optimizing CO emissions in a 4D-VAR framework

Jan 03 Jul 03 Jan 04 Jul 04 Jan 05

40

60

80

100

120

140

C
O

 [
p
p
b
]

c
ASC: Ascension Island, (-7.92

�
N, -14.42
�
E, 54 masl)

Jan 03 Jul 03 Jan 04 Jul 04 Jan 05

35

45

55

65

75

C
O

 [
p
p
b
]

d

SPO: South Pole,  (-89.98
�
N, -24.80
�
E, 2810 masl)

Jan 03 Jul 03 Jan 04 Jul 04 Jan 05
50

100

150

200

250

C
O

 [
p
p
b
]

a
CBA: Cold Bay, Alaska,  (55.20

�
N, -162.72
�
E, 25 masl)

Jan 03 Jul 03 Jan 04 Jul 04 Jan 05

50

100

150

200

250

C
O

 [
p
p
b
]

b

MID: Sand Island, Midway,  (28.21
�
N, -177.38
�
E, 7 masl)

A priori

A posteriori

NOAA-Flasks

rejected NOAA-Flasks

Fig. 2. Comparison of modeled and observed CO mixing ratios at(a) Cold Bay, Alaska,(b) Sand Island, Midway,(c) Ascension Island and
(d) South Pole station from the NOAA surface network. Red dots correspond to NOAA observations, red open markers represent rejected
data from inversion cycle 1 to cycle 2. Model simulations using prior (posterior) settings are shown in yellow (blue).

3 Inversion results

3.1 Comparison of modeled and observed CO mixing
ratios

In this section we will discuss the capability of the current
4D-VAR system to adjust the state vector in such a way that
background CO mixing ratios as well as observed large scale
pollution events are adequately captured. Figure2 shows the
prior and posterior simulation of CO mixing ratios and sur-
face observations for a subset of four stations used in the in-
version (purple squares in Fig.1). All panels show that the
model simulation with a priori settings (yellow) is capable to
simulate the seasonal cycle and some pollution peaks even
though the simulations are performed on a coarse 6◦

× 4◦

grid. However, differences with the observations (red) up
to 50 ppb are observed. In contrast, the posterior simulation
(blue) fits the observations at all four stations rather well.
This better fit is obviously caused by combined changes in
the surface emissions and in the global source of CO from
methane and NMVOCs. A quantitative analysis for all as-
similated stations is shown in Table1 for 2004. Here we
present the bias per station for the prior and posterior simu-
lation of the two inversion cycles. A value for the goodness

of fit parameterχ2/n is also given in this table. Aχ2/n

value close to 1 indicates that the system is behaving well.

For station Cold Bay, Alaska (Fig.2a), representing
the high latitude NH, the prior simulation underestimates
observed CO mixing ratios up to 50 ppb, in the period
September 2003 to February 2004 and from September 2004
to January 2005. For the year 2003, the inversion de-
creases biomass burning emissions from Russia in spring,
but emissions are increased in summer. The posterior annual
biomass burning emission estimate for Russia in 2003 is 97±

28 Tg CO (compared to the prior estimate of 75±77 Tg CO),
well within the range reported byKasischke et al.(2005)
(55–139 Tg CO yr−1). This shows that Russian fires account
for 60 % of the total CO emissions from biomass burning
in Asia in 2003 (158 Tg CO, Table2). In contrast, in 2004
the inversion increases the Alaskan and Canadian biomass
burning emissions in summer, from a prior emission esti-
mate of 16±19 Tg CO from June to August to 36±9 Tg CO
as posterior emission estimate. Similar values were also re-
ported byPfister et al.(2005) and Turquety et al.(2007),
and these numbers are in closer correspondence to 30 Tg CO
as estimated in the recently released updated GFED (ver-
sion 3.1,van der Werf et al., 2010). Pfister et al.(2005) in-
ferred CO emissions using satellite observations and reported
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Table 1. Statistics of the fit for the stations used in the inversion. Bias is defined as the mean difference between observed(yo) and modeled

(ym) CO mixing ratio: 1
n

n∑
i=1

(
yo
i
−ym

i

)
, wheren is the number of observations per station andσi the observation error for observationyo

i
.

Theχ2/n defines the goodness of fit defined as1
n

n∑
i=1

(
yo
i −ym

i
σi

)2
. A χ2/n value close to 1 indicates that the system is behaving well.

Inversion cycle 1 Inversion cycle 2

lat lon alt Bias [ppb] χ2/n Bias [ppb] χ2/n

ID station name [
◦
] [

◦
] [m.a.s.l.] prior posterior prior posterior prior posterior prior posterior

ALT Alert, Nunavut, Canada 82.45 −62.52 210.0 0.94 −1.97 6.94 3.01 2.78 0.40 7.29 1.16
ASC Ascension Island, UK −7.92 −14.42 54.0 3.20 0.17 5.97 3.03 3.77 −0.34 4.89 1.22
ASK Assekrem, Algeria 23.18 5.42 2728.0 −3.94 1.21 4.22 1.64 −5.26 −1.14 3.86 0.91
AZR Terceira Island, Azores, Portugal 38.77 −27.38 40.0 −8.10 −0.86 7.84 4.69 −6.67 −1.01 6.62 1.22
BMW Tudor Hill, Bermuda, UK 32.27 −64.88 30.0 1.66 −1.06 3.78 1.48 1.98 −2.03 3.11 0.99
BRW Barrow, Alaska, USA 71.32 −156.60 11.0 −0.52 16.65 6.78 3.05 −1.09 −0.24 6.77 0.91
CBA Cold Bay, Alaska, USA 55.20 −162.72 25.0 −9.65 0.06 9.04 2.70 −4.33 −0.01 6.96 1.15
CGO Cape Grim, Tasmania, Australia −40.68 144.68 94.0 9.18 1.97 1.24 0.37 9.18 2.20 1.24 0.34
CHR Christmas Island, Republic of Kiribati 1.70−157.17 3.0 8.79 0.54 4.02 1.58 9.45 0.34 3.86 1.13
CRZ Crozet Island, France −46.45 51.85 120.0 5.84 −0.28 3.87 1.14 5.52 −0.20 3.69 0.91
EIC Easter Island, Chile −27.15 −109.45 50.0 −9.03 −9.07 5.64 5.26 0.73 −3.07 0.46 1.92
GMI Mariana Islands, Guam 13.43 144.78 6.0 −8.19 −4.07 4.30 3.23 −1.74 −0.49 2.80 1.32
HBA Halley station, Antarctica, UK −75.58 −26.50 33.0 6.93 0.04 4.33 0.65 6.93 0.09 4.33 0.57
ICE Heimay, Vestmannaeyjar, Iceland 63.25 −20.15 100.0 −0.88 0.97 5.02 1.80 −1.71 −0.22 4.84 1.08
IZO Izana, Canary Islands, Spain 28.30 −16.48 2360.0 −2.66 −1.45 4.74 2.17 −2.92 −2.66 3.84 1.28
MHD Mace Head, Ireland 53.33 −9.90 25.0 3.98 2.98 1.60 0.87 4.64 4.02 1.55 0.73
MID Sand Island, Midway, USA 28.21 −177.38 7.7 −14.07 −0.63 10.26 3.88 −13.81 −0.26 9.74 1.49
MLO Mauna Loa, Hawaii, USA 19.53 −155.58 3397.0 −3.51 −1.87 3.53 2.47 −0.45 −0.78 2.18 1.28
NWR Niwot Ridge, Colorado, USA 40.05 −105.58 3526.0 −4.05 2.13 3.13 2.50 −0.88 2.72 2.58 1.22
PAL Pallas, Finland 67.97 24.12 560.0 −1.88 −3.22 4.08 1.63 −0.19 1.51 3.80 0.81
PSA Palmer Station, Antarctica, USA −64.92 −64.00 10.0 6.62 −0.20 3.74 0.63 6.52 0.04 3.74 0.61
RPB Ragged Point, Barbados 13.17 −59.43 45.0 7.13 0.55 3.85 2.08 7.36 −0.12 3.50 1.13
SEY Mahe Island, Seychelles −4.67 55.17 7.0 3.84 0.85 3.41 1.75 5.60 0.75 3.08 0.99
SHM Shemya Island, Alaska, USA 52.72 174.10 40.0−7.16 −0.29 9.16 3.24 −2.21 0.77 7.96 1.05
SMO Cape Matatula, Tutuila, American Samoa −14.24 −170.57 42.0 4.67 0.28 2.48 1.23 5.06 −0.02 2.36 1.04
SPO South Pole, Antarctica, USA −89.98 −24.80 2810.0 6.82 0.50 4.50 1.08 6.60 0.35 4.36 1.01
STM Ocean station M, Norway 66.00 2.00 5.0 0.36 −0.06 6.67 1.98 1.76 0.23 6.39 1.08
SYO Syowa Station, Antarctica, Japan −69.00 39.58 14.0 6.52 0.25 3.81 0.57 6.52 0.17 3.81 0.51
TDF Tierra del Fuego, La Redonda Isla, Argentina−54.87 −68.48 20.0 5.89 −0.75 3.73 0.66 5.89 −0.53 3.73 0.60
WLG Mt. Waliguan, Peoples Republic of China 36.29 100.90 3810.0−33.31 0.18 19.22 4.27 −21.26 −0.32 13.77 1.03
ZEP Ny−Alesund, Svalbard, Spitsbergen 78.90 11.88 475.0 1.57 1.76 9.94 3.31 −3.10 0.29 7.69 1.11

ALL −0.58 0.46 5.54 2.17 1.53 0.21 4.55 1.00

a posterior emission estimate of 30±5 Tg CO.Turquety et al.
(2007) constructed a daily biomass burning emission inven-
tory taking into account the emissions from peat burning.
They estimated a total of 30 Tg CO from June to August
2004 for North America. Outside the biomass burning sea-
son, the inversion attributes increased CO levels to enhanced
anthropogenic emissions in East Asia. From Table1 it is ob-
served that for station Cold Bay the prior bias decreases from
−9.7 ppb in the first inversion cycle to−4.3 ppb in the sec-
ond inversion cycle due to rejection of observations that are
not reproduced by the model, likely due to an underestimated
model error for this station (see Sect.4.2). This rejection im-
proves the a posterioriχ2/n diagnostic for this station from
2.7 to 1.15. The posterior bias is reduced to nearly zero.

For station Sand Island, Midway (Fig.2b), representing
the NH midlatitudes, the prior simulation underestimates ob-
servations during the entire period. This is attributed to an
underestimation of anthropogenic emissions in the EDGAR
inventory, which was compiled for the year 1995. Rapid
economic development, particularly in China and India over

the last decade led to increased anthropogenic emissions.
The posterior simulation shows that increased anthropogenic
emissions over China and India (the inversion roughly dou-
bles Asian anthropogenic emissions, see Table2) results in
15–25 ppb higher CO mixing ratios on stations downwind
of South East Asia. Individual observations due to pollu-
tion plumes that were not reproduced in the prior simula-
tion are captured better by the model in the posterior simu-
lation. This is due to the fact that the 4D-VAR system com-
putes emission increments on the grid-scale of the underly-
ing chemistry-transport model and hence, better exploits the
spatial information present in the measurements. It is ac-
knowledged, however, that a higher spatial model resolution
is required to reduce the artificial smearing of concentration
gradients.

The tropics are represented here by station Ascension Is-
land (Fig.2c), and although the improvement from prior to
posterior simulation is not clearly visible, Table1 shows that
the posterior bias is nearly zero for both cycles, and the pos-
teriorχ2/n diagnostic is reduced from 3.03 in cycle 1 to 1.22
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Table 2. Emissions for 2003 and 2004 per continent for three surface source categories (Anthropogenic, Biomass burning and Natural)
and two global chemical production terms (methane and NMVOCs). Per source category, the second and third columns specify the prior
emission estimates used, the three right-most columns give the posterior emission estimates for the year 2003 (cycle 2) and 2004 (cycle 1
and cycle 2, respectively). The emissions are given in Tg CO yr−1. Note that the sources of CO production from methane and NMVOC
oxidation are given as global totals only, since only a global scaling factor is adjusted. Also, only the biomass burning emission inventory
(GFED2) gives year-to-year emissions, the other sources are for the years specified in the footnotes.

Source/Region Prior Posterior

Anthropogenica 2003/2004 2003 2004 cy 1 2004 cy 2

Nam 105±30 85±27 122±27 105±26
Sam 22±16 −9±16 5±16 0±16
Europe 62±30 67±16 94±16 85±18
Africa 80±52 124±48 159±47 149±45
Asia 258±195 497±107 608±97 526±97
Oceania 5±1 5±1 4±1 4±1
Globe 531±183 770±71 993±68 871±77

Biomass burning 2003 2004 2003 2004 cy 1 2004 cy 2

Nam 32±32 23±19 61±30 47±10 47±10
Sam 60±48 98±105 75±37 115±38 136±39
Europe 3±2 2±1 6±2 4±1 3±1
Africa 162±91 165±94 85±72 224±55 165±63
Asia 114±103 98±79 158±54 59±48 42±52
Oceania 24±28 18±14 13±11 34±14 16±14
Globe 397±138 404±157 400±88 482±68 409±76

Naturalb 2003/2004 2003 2004 cy 1 2004 cy 2

Nam 15±8 12±8 11±8 14±8
Sam 18±13 8±12 28±12 19±12
Europe 4±4 6±4 4±4 5±4
Africa 21±12 29±12 26±12 25±12
Asia 30±12 30±12 33±16 29±11
Oceania 8±6 5±6 6±6 6±6
Globe 115±24 101±24 123±24 111±24

CH4-COc 2003/2004 2003 2004 cy 1 2004 cy 2

Globe 885±10 883±10 893±10 887±10

NMVOC-CO d 2003/2004 2003 2004 cy 1 2004 cy 2

Globe 812±40 574±38 301±37 410±38

a EDGARv3.2, compiled for the year 1995.
b Houweling et al.(1998).
c Constant 1800 ppb CH4.
d From a full-chemistry run with TM4 for 2005Myriokefalitakis et al.(2008). Most important biogenic VOC emissions
in this model, isoprene (501 Tg C/yr) and monoterpenes (127 Tg C/yr), are taken from the POET database.

in cycle 2. For the remote SH, represented here by South Pole
station (Fig.2d), the prior simulation overestimates the ob-
servations by 5–10 ppb all year long. The inversion attributes
this to too high production of CO from NMVOCs since the
station is far away from major sources, but neglecting the
N-S gradient in tropospheric methane in the model, as dis-
cussed before, may also play a role. Again, the posterior bias
is nearly zero in both inversion cycles and theχ2/n diagnos-
tic equals to 1.01 (1.08 in cycle 1).

Overall, Table1 shows that the inversion reduces prior bi-
ases for most of the stations. Although for some stations the
posterior bias is slightly larger in cycle 2 compared to cycle 1
(e.g., ASC, AZR, BMW (acronyms are defined in Table1)),
much larger reductions in the bias are observed for other sta-
tions (BRW, EIC, GMI). Furthermore, theχ2/n diagnostic
is decreased to approximately 1 in cycle 2 (1.53 in cycle 1).
However, for remote stations in the SH,χ2/n is far smaller
than 1 indicating that the measurement error of 1.5 ppb might
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be too conservative or indicating the need to take correlations
in the observation errors into account. The observation error
is further discussed in Sect.4.2.

3.2 Posterior emission estimates

We present the posterior emission estimates and their uncer-
tainties aggregated over continental scale regions as yearly
totals, because the monthly emission estimates on grid-scale
level are highly variable as a consequence of the loose prior
error settings and the small amount of observations. Also,
as shown byMeirink et al. (2008b), the posterior errors
converge only rapidly for larger spatial and temporal scales
(Fig. 3).

Table2 and Fig.3 (blue, solid line) show that on a global
scale, a substantial uncertainty reduction of 60 % for the
anthropogenic emissions is achieved. In particular Asian
anthropogenic emissions are well-constrained by the ob-
servations (258± 195 Tg CO a priori compared to 497±
107 Tg CO in 2003 and 526± 97 Tg CO in 2004 a posteri-
ori, see also Fig.3, dotted blue line). In contrast, African
and South American anthropogenic emissions show a negli-
gible uncertainty reduction (Fig.3, dash-dotted and dashed
line respectively). This was expected though, since atmo-
spheric observations mainly constrain the total emissions and
the error reduction in those regions is largest for the domi-
nant biomass burning source term. It is acknowledged here,
that the presented posterior error reductions are much smaller
compared to the study byKasibhatla et al.(2002). How-
ever, the differences are mainly explained by the inversion
approach used.Kasibhatla et al.(2002) used a synthesis
inversion approach to optimize anthropogenic and biomass
burning emissions for a set of big regions. In such a frame-
work, the posterior emission estimates and their errors can
be computed by a direct matrix inversion and hence the pos-
terior errors are exact. In the 4D-VAR framework presented
here, the cost function is minimized iteratively and consid-
ered converged when the norm of the gradient is reduced by
a factor 100 (or 99 %). As a special case we continued the it-
erative proces up to a gradient norm reduction factor of 1010.
For this case the approximation of the Hessian of the cost
function converged to the true Hessian. The resulting poste-
rior errors are indeed very close to the numbers inKasibhatla
et al. (2002) (not shown). However, a gradient norm reduc-
tion factor of 1010 is not very practical as the computational
burden increases up to a factor 5.

For biomass burning emissions, uncertainty reduction is
achieved in South America (98± 105 Tg CO a priori com-
pared to 136± 39 Tg CO a posteriori in 2004, Fig.3 red
dashed line), Asia (114± 103 Tg CO a priori compared to
158±54 Tg CO in 2003) and North America (23±19 Tg CO
a priori and 47±10 Tg CO a posteriori in 2004 only). Large
changes in biomass burning emissions from 2003 to 2004 are
observed for South America and Africa. For South Amer-
ica (with posterior emissions of 75±37 Tg CO in 2003 and

0 5 10 15 20 25
CONGRAD iteration

0

10

20

30

40

50

60

70

U
n
ce

rt
a
in

ty
 r

e
d
u
ct

io
n
 (

%
)

Globe

South America

Africa

South Asia

Fig. 3. Uncertainty reduction for 2004, defined as 1−
σa
σb

,

where σa(σb) is the aggregated posterior (prior) uncertainty for
the anthropogenic emissions (blue) and biomass burning emis-
sions (red) for four large regions as a function of the iteration
number in CONGRAD. A convergence criterium of 99 % gradient
norm reduction is used here. The regions are defined as rectan-
gular boxes. For each we give the coordinates of the lower left
and the upper right corner. South America: (−85◦ E,−60◦ N),
(−30◦ E,13◦ N). Africa: (−19◦ E,−36◦ N), (51◦ E,36◦ N). South
Asia: (51◦ E,−10◦ N), (180◦ E,36◦ N).

136±39 Tg CO in 2004) this increment was partly present
in the GFED2 prior. Higher emissions in 2004 were also
confirmed by observations from the Scanning Imaging Ab-
sorption Spectrometer for Atmospheric Cartography (SCIA-
MACHY) (Gloudemans et al., 2009) showing the large inter-
annual variability in South American biomass burning emis-
sions. In contrast, the posterior biomass burning emission es-
timates for Africa in 2003 and 2004 seem to compensate for
the difference in NMVOC-CO. This is confirmed by the rel-
atively small error reduction and by the study ofChevallier
et al. (2009), who optimized African emissions using MO-
PITT observations for 2000 to 2006 and did not show large
inter annual variability from 2003 to 2004. Table2 confirms
that natural emissions are hardly constrained by the data.

Finally, the uncertainty of the global scaling parameters
for the production of CO from methane and NMVOC oxi-
dation is only slightly reduced from the prior to the posterior
estimate. This indicates that the current observational dataset
does not constrain these individual parameters substantially.
However, the value of the scaling factor for the NMVOC-CO
(CO from NMVOCs) source is adjusted significantly from a
prior global total of 812±40 Tg CO to a posterior global to-
tal of 574±38 Tg CO in 2003 and 410±38 Tg CO in 2004.
Despite the small prior error, the NMVOC-CO emissions
are considerably reduced, far outside the 2σ (95 %) inter-
val, which is mainly due to the overall very small weight
of the single monthly NMVOC-CO scaling parameters in the

www.atmos-chem-phys.net/11/4705/2011/ Atmos. Chem. Phys., 11, 4705–4723, 2011



4714 P. B. Hooghiemstra et al.: Optimizing CO emissions in a 4D-VAR framework

cost function. Small error settings appeared to be necessary,
because the a priori error settings of this global parameter
have a strong influence on the solution of the inversion. The
optimization approach of NMVOC-CO will be improved in
future studies.

3.3 Validation with independent NOAA aircraft
observations and MOPITT total columns

We validate our inferred emissions with independent (non-
assimilated) aircraft observations from the NOAA aircraft
program for 2004. The comparison with aircraft data pro-
vides a valuable test for the vertical transport in the model.
The NOAA profiles are taken mainly over North Amer-
ica. Figure 4 shows monthly mean deviations (model-
observations) for the prior and posterior simulation for air-
craft samples at altitudes above 2000 m, thus representing
the free troposphere. The prior simulation underestimates
the observations throughout the year (except for May and
June) probably due to too low anthropogenic emissions in
East Asia. The significant overestimation of the prior sim-
ulation in May and June is attributed to a too large a pri-
ori source of CO from NMVOCs. The posterior simulation
matches the observations much better, since the inversion
increased Asian anthropogenic emissions and reduced the
NMVOC-CO source (Table2), in particular in May and June
(not shown). The uncertainty, given here as a 1σ deviation
from the mean, is not reduced significantly from prior to pos-
terior simulation because these observations are not assimi-
lated. Overall, the mean monthly difference is reduced by
50–90 % except for April when deviations were small any-
way. The annual mean and standard deviation of the residu-
als is−6.4±23 ppb a priori and−0.5±22 ppb a posteriori,
showing that the inversion is capable to improve the compar-
ison with independent observations in the free troposphere
over North America.

We further validate our posterior emissions with CO to-
tal column retrievals from MOPITT V4 (level 3, gridded
daily profiles,Deeter et al., 2003, 2007, 2010). The MO-
PITT instrument is mainly sensitive to free tropospheric CO
(4–7 km altitude) and CO at this altitude originates from oxi-
dation of methane or convective transport of surface CO. Fig-
ure5 shows a comparison of observed and modeled CO total
columns, where the MOPITT averaging kernels are used to
compare properly. Over the well-constrained NH midlati-
tudes (30◦ to 60◦ N), the agreement improves for 2004 from
a slight prior underestimate of 5 % to a posterior underesti-
mate of only 1 %. For 2003, the prior underestimate of 5 %
turns to a posterior overestimate of 5 %. In the tropics (30◦ S
to 30◦ N), the comparison improves greatly over the oceans
from an a priori model overestimate of 3–5 % to less than 1 %
a posteriori in 2004. For 2003 the improvement is smaller. In
contrast, over the African continent, the comparison deteri-
orates from a 3 % underestimate a priori to 6 % a posteri-
ori, probably due to difficulties with the MOPITT retrievals
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Fig. 4. Monthly mean difference between the TM5 model and
NOAA aircraft observations for the prior (yellow) and posterior
(blue) simulation. The number of observations per month is also
given.

over deserts as observed previously byde Laat et al.(2010).
In the remote SH (30◦ to 60◦ S), the comparison with MO-
PITT deteriorates from a slight model underestimate of 4–
6 % a priori to an underestimate of 10 % a posteriori in both
years. The prior simulation overestimates surface observa-
tions of CO at the remote SH stations (see Fig.2d). These
SH surface observations thus cause a decrease in CO sources
(mainly NMVOC-CO) which results in even less CO com-
pared to MOPITT. The model underestimate with respect to
MOPITT may be caused by the treatment of vertical trans-
port in the model. For instance, if vertical transport in the
model is too slow, CO emissions will remain at low altitudes
where the MOPITT instrument is not very sensitive. The
comparison with NOAA aircraft profiles suggested however
that the vertical transport in TM5 is reasonable, at least over
North America. Hence, a possible bias in the MOPITT V4
product as was the case for the previous product MOPITT
V3 (Emmons et al., 2009; de Laat et al., 2010) may also play
a role. The apparent inconsistency between surface obser-
vations and MOPITT CO total columns over the remote SH
was (amongst others) also observed byKopacz et al.(2010).
They inverted CO emissions using satellite data only and SH
stations used as validation showed a poorer agreement in the
posterior simulation compared to the prior.

In conclusion, validating our inversion results with inde-
pendent aircraft data shows an improved agreement with re-
spect to the prior simulation in the free troposphere even
though only surface observations are assimilated. For satel-
lite data, the agreement with MOPITT total column CO im-
proves over the well-constrained NH, but deteriorates in the
SH below 30◦ S.

3.4 Comparison with recent inverse modeling results

The posterior emissions match other recent inverse model-
ing results for the year 2004 quite well as shown in Table3.
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Pison et al.(2009) inverted emissions of CO, methane and
H2 simultaneously, using observations from NOAA and up-
dated the OH field within the optimization by assimilating
methyl chloroform observations. Results are comparable to
our results, but slightly higher for Europe and lower for South
America. However, the Australian source ofPison et al.
(2009) included CO emissions from Indonesia and is thus
significantly higher than in the current study.Kopacz et al.
(2010) used satellite data (from MOPITT, the Atmospheric
Infrared Sounder (AIRS) instrument and SCIAMACHY) to
optimize CO emissions for the period May 2004 to April
2005 and their results showed slightly higher emissions over
South America and Asia, but significantly lower emissions
over North America. This might be due to their very low
prior value for fossil fuel emissions over the United States
(35 Tg CO yr−1) based on the US Environmental Protection
Agency National Emission Inventory for 1999 (EPANEI99).
This value was further decreased by 60 % followingHud-
man et al.(2008). In this study we use 105 Tg CO as prior
anthropogenic emission over North America.Jones et al.
(2009) optimized emissions for November 2004 only, using
observations from the MOPITT and TES instruments, and
they presented their results as yearly totals. These results
are also comparable to the current study except for the Aus-
tralian source. This is explained by their inclusion of Indone-
sia into this region.Chevallier et al.(2009) have performed
a detailed analysis of African CO emissions for the period
2000–2006. The total emission estimates are by 25 % lower
than in this study but stay well within the error bounds. The
difference with our results is probably explained by the lack
of surface data in the tropics.Chevallier et al.(2009) used
MOPITT data to constrain the CO emissions and anthro-
pogenic emissions in particular were more constrained than

in the current study. Finally, the large increment in Asian
anthropogenic emissions shown in Table2 also confirms the
previous findings of e.g.,Kasibhatla et al.(2002) andArel-
lano et al.(2004) that anthropogenic emissions over Asia are
too low in EDGARv3.2. All inversions roughly doubled the
Asian emission estimate.

4 Discussion

In our inversions we have used a limited amount of obser-
vations from the NOAA surface network. A consequence of
solving a data sparse system is a large solution space, be-
cause not all degrees of freedom (≈25 000) are constrained
by the observations(≈ 1400 per year). Thus, the obtained
solution will depend on the prior emissions and their error
settings. Another consequence might be that model errors
are compensated for by emission increments. To investigate
these issues, a series of sensitivity studies is presented in
Sect.5. In the following paragraphs we discuss the capa-
bility of the system to separate the emission categories and
the observation error.

4.1 Separating CO emission categories

In the 4D-VAR setup a mismatch between modeled and ob-
served CO mixing ratios is translated to an adjustment of the
prior emissions. However, the observations only constrain
total CO emissions of all source categories. The posterior to-
tal global source estimates in 2003 and 2004 (1744±76 and
1690±75 Tg CO yr−1, respectively) are rather similar. For
individual source categories, large differences are observed
from 2003 to 2004. For example, the anthropogenic source
increased from 770± 71 in 2003 to 871± 77 Tg CO yr−1
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Table 3. Comparison of prior (left columns) and posterior (right columns) continental emission estimates for 2004 of this study with four
recent studies for the same year. Numbers are the sum of anthropogenic, biomass burning and natural emissions given in Tg CO yr−1. Prior
inventories and assimilated datasets are given with footnotes.

Region This study Pison et al.(2009)a Kopacz et al.(2010)b Jones et al.(2009)c Chevallier et al.(2009)d

prior posterior prior posterior prior posterior prior posterior prior posterior

Nam 142±37 167±25 137 188 57 71 135 165 – –
Sam 138±107 156±39 146 131 119 183 113 157 – –
Europe 67±30 92±17 103 128 78 95 110 111 – –
Africa 266±108 338±74 264 317 214 343 234 359 286 255
Asia 385±212 597±98 296 539 389 660 367 483 – –
Oceania 31±15 26±15 96 88 23 41 69 165 – –

Total 1050± 242 1390± 89 1042 1391 880 1393 1028 1440 – –

a EDGARv3 (1995) + GFEDv2 combined with flask and continuous surface measurements (56 stations).
b EDGAR 3.2FT2000-overwritten with EPA-NEI99 (US), BRAVO (Mexico), EMEP (Europe) andStreets et al.(2006) (Asia/China) +
GFEDv2 combined with MOPITT + AIRS + SCIAMACHY retrievals.
c Prior emissions fromDuncan et al.(2007) combined with MOPITT + TES retrievals.
d EDGARv3 + GFEDv2 combined with MOPITT retrievals.

in 2004, whereas the NMVOC-CO source decreased from
574± 38 to 410± 36 Tg CO yr−1. Although year-to-year
variations in the emission estimates is expected, a drop of
150 Tg CO yr−1 in the NMVOC-CO source is not physically
realistic, but rather an artefact due to the data sparse nature
of the current setup.

The prior emission estimates and prior error covariance
matrix prescribe the location and timing of the emissions
from all source categories. Emissions of sources with a spe-
cific timing or spatial pattern prescribed by the prior can be
separated. For example, during the dry season (August–
November) in the SH, biomass burning is the dominant
source of CO, and the system separates the biomass burning
source successfully from other CO sources due to its spe-
cific timing. In contrast, CO emissions from anthropogenic
and NMVOC-CO sources take place throughout the year in
the same regions and are therefore difficult to separate. As
a consequence, increases of the anthropogenic source are, at
least partly, compensated by decreases in the NMVOC-CO
source. This may explain the sharp (unphysical) decrease of
the NMVOC-CO source from 2003 to 2004, and the increase
of the anthropogenic emissions for these years. The inter-
dependence of the anthropogenic and NMVOC-CO source is
further illustrated in Fig.6. The ellipse shows the range of
emission estimates for these two sources within 95 % con-
fidence and the tilted axes indicate the negative correlation
between them.

Optimizing the NMVOC-CO source by one monthly vary-
ing scaling parameter partly caused the compensation be-
tween this source and the anthropogenic source. For ex-
ample, in the remote SH the NMVOC-CO source is the
only important source of CO. The prior simulation overes-
timated the observations in this region, resulting in a de-
crease of the NMVOC-CO scaling parameter and thus a

Fig. 6. 95 % confidence ellipse for the global total annual emissions
for the anthropogenic and NMVOC-CO source for 2004. The center
of the ellipse (red dot) is the posterior emission estimate for the
anthropogenic and NMVOC-CO source (871 and 410 Tg CO yr−1,
respectively). The emission estimates fall within the ellipse with
95 % confidence. The slightly tilted principle axis of the ellipse is
shown as a straight dashed line through the center.

reduced NMVOC-CO source globally. As a consequence,
other sources had to be adjusted to compensate for this re-
duction. However, even with a more advanced optimization
approach for the NMVOC-CO source, compensations are ex-
pected as the observations only constrain total CO emissions
and hence, negative correlations in the posterior emission es-
timates remain apparent.
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Fig. 7. Top: prior (yellow) and posterior (cycle 1 (green) and cycle 2 (blue)) simulations for(a) Mace Head, Ireland,(b) Ny-Alesund,
Svalbard and(c) Ascension Island. The NOAA flasks are shown in red. Rejected observations from cycle 1 to cycle 2 are represented by
dark red crosses. Bottom: the observation error is divided in its fixed part (purple) and the model error (red). The total error is shown in
black.

4.2 Observation error settings

The inversions in this study are performed in two cycles: af-
ter the first cycle, observations that are outside a 3σ interval
from the simulated CO mixing ratio, are left out in cycle 2
(Fig. 7). This selection criterion is applied to prevent single
outliers to bias the inferred emissions. The number of obser-
vations that is left out from cycle 1 to cycle 2 varies largely
from station to station: in the SH, on average 6 % of the ob-
servations are left out. In the NH, on average 25 % of the
observations is left out in cycle 2.

The observation error consists of a measurement error
given byNovelli et al. (1998) as 1.5 ppb and a representa-
tiveness error as mentioned in Sect.2.4. This latter contri-
bution varies between 0–20 ppb for most stations. This ad-
vanced representation of the observation error has been suc-
cessfully applied in inversions for methane (Meirink et al.,
2008b; Bergamaschi et al., 2010). For the shorter-lived CO,
this observation error setting works reasonably for all sta-
tions in the remote SH, but only for a few NH stations (e.g.,
Mace Head, Ireland (MHD), Fig.7a).

Surprisingly, for the other NH stations (and Ascension Is-
land station located on the SH) the observation error appears
rather conservative, and approximately 25 % of the observa-
tions are rejected from cycle 1 to cycle 2. This can be at-

tributed either to an underestimation of the measurement er-
ror (e.g., station Ny-Alesund, Spitsbergen (ZEP), Fig.7b) or
to an underestimation the representativeness error (e.g., sta-
tion Ascension Island (ASC), Fig.7c). Indeed, for station
Ny-Alesund located on Spitsbergen, the measurement error
of 1.5 ppb is the dominant error term which is clearly too
small regarding the number of rejected observations given
as red crosses in Fig.7b. For Ascension Island station the
model error (given in red in the bottom panel of Fig.7c)
never exceeds the measurement error even in periods of high
CO levels due to pollution peaks transported from continen-
tal source regions in either Africa or South America.

The effect of the data rejection strategy on the inferred
emissions can be very large both on regional and global
scales (Table2). For example, Asian anthropogenic emis-
sions decrease by 82 Tg CO yr−1 from cycle 1 to cycle 2,
largely driving the 122 Tg CO yr−1 difference on the global
scale. In addition, biomass burning emissions reduce signif-
icantly in Africa and Oceania but increase for South Amer-
ica. This behavior shows that measurements are rejected with
both very low and very high CO mixing ratios. The global
biomass burning source decreases by 73 Tg CO yr−1 from
cycle 1 to cycle 2. In contrast the global NMVOC-CO source
increases by 109 Tg CO yr−1. Given the discussion in the
previous paragraph a part of this increase likely compensates
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for the drop in anthropogenic emissions. However, the in-
crease in NMVOC-CO alone is not enough to balance the
195 Tg CO yr−1 decrease from cycle 1 to cycle 2 for anthro-
pogenic and biomass burning emissions together. Hence, the
rejection of observations leads to significant changes in the
emissions, even though for most regions the emission esti-
mates remain within 1σ error bounds.

Finally, a sensitivity study with doubled observational er-
rors reduced the number of rejected data points to 7 %. The
emission estimates for this simulation also fall within 1σ er-
ror bounds of the base run, indicating that the inferred emis-
sion estimates are robust given the posterior uncertainties.

We conclude that it is difficult to design an estimation pro-
cedure for the model error that gives correct results for all
stations, hence estimates of the model representation error
will remain a challenging topic for future research.

5 Sensitivity analysis

In this section we discuss 3 sensitivity studies with respect to
prior settings and model errors. Sensitivity study GFED3.1
uses the new version of the GFED product (GFEDv3.1,
van der Werf et al., 2010). For the year 2004, this biomass
burning inventory prescribes lower emissions by a factor 2 to
3 from January to March compared to GFED2. Peak emis-
sions in September in GFED2 of 69 Tg CO month−1 globally
are reduced to 55 Tg CO month−1 in GFED3.1.

Since the distribution of OH and its north-south gradient
remains uncertain, we also investigate the influence of the
tropospheric OH distribution on the inferred emissions by us-
ing an OH field computed from a full-chemistry simulation
with TM5 (Huijnen et al., 2010) and scaled by a factor 1.02
to obtain comparable CO and methyl chloroform lifetimes
as for the OH field used in the base inversion. Compared to
the OH field of the base inversion, the north-south gradient
(computed as an airmass-weighted average,Lawrence et al.,
2001) in the TM5-OH field is more pronounced (NH/SH ra-
tio of 1.15) compared to the OH field used in the base inver-
sion (NH/SH ratio of 1.0).

The next sensitivity study focuses on model uncertainty in
the vertical distribution of biomass burning emissions. The
base inversion uses an injection height for biomass burn-
ing emissions up to 2000 m (distributed as 20 % in layers
0–100 m, 100–500 m and 500–1000 m and 40 % in 1000–
2000 m layer). However, some recent studies (Val Martin
et al., 2010; Gonzi and Palmer, 2010) found evidence that
biomass burning emissions are partly injected higher up in
the atmosphere. In this sensitivity study (FVERT) we apply a
vertical distribution of biomass burning emissions following
the results ofGonzi and Palmer(2010). The vertical biomass
burning emission distribution is defined as

– Boreal region (> 30◦ N): 82 % below 2 km, 10 % in 2–
5 km, 2.5 % in each of the layers 5–8 km and 8–11 km.
The remaining 3 % is injected above 11 km.

– Tropical region: 85 % below 2 km, 10 % in 2–5 km,
2.5 % in both layers 5–8 km and 8–11 km.

The inversion results for these sensitivity tests are sum-
marized in Table4, where we omit the natural emissions
and CH4-CO since these sources do not change significantly
from the prior to the posterior emission estimates in the base
inversion.

5.1 Sensitivity study GFED3.1

The results for sensitivity study GFED3.1 (Table4) show
an increase in biomass burning of 30 Tg CO yr−1 glob-
ally with respect to the prior estimate of 334 Tg CO yr−1.
Biomass burning emissions increase mainly in South Amer-
ica (+45 Tg CO yr−1). However, Asian biomass burning
emissions decrease by 17 Tg CO yr−1. To compensate for the
lower biomass burning emissions, anthropogenic emissions
(932±73 Tg CO) and the NMVOC-CO source (433 Tg CO)
are increased with respect to the base inversion. The ad-
justments in biomass burning emissions were also observed
for the base inversion. For example, for the base inversion
the increase in South America was 38 Tg CO, whereas Asian
biomass burning emissions decreased by 56 Tg CO. This sen-
sitivity study does not support the decrease in global emis-
sions in GFED3.1 compared to GFED2, as emission esti-
mates increase for all regions (except Asia). This could be
partly due to the underestimation of agricultural waste burn-
ing and deforestation fires in GFED3.1 (van der Werf et al.,
2010).

5.2 Sensitivity study OH

The OH field from the TM5 full-chemistry simulation shows
lower OH over tropical land masses compared to the OH
field from Spivakovsky et al.(2000) (Fig. 8, top), in par-
ticular over South America. This OH gap is present since
large amounts of emitted isoprene are oxidized by OH and
hence reduce OH concentrations in the model. However, as
shown byLelieveld et al.(2008), this OH gap is not con-
firmed by field campaigns that show high OH over the trop-
ical forests. An OH recycling mechanism was proposed by
Lelieveld et al.(2008), but was not yet incorporated in the
TM5 simulation (Huijnen et al., 2010). Lower OH concen-
trations over tropical land masses (Fig.8, top) result in a
reduction of biomass burning emissions of 88 Tg CO yr−1

globally in 2004 compared to the base inversion (Table4,
Fig.8 bottom). Africa (−51 Tg CO yr−1) and South America
(−30 Tg CO yr−1) contribute substantially to this decrease.
The NMVOC-CO source is reduced to 369 Tg CO yr−1,
which is 41 Tg CO yr−1 lower than in the base inversion.
This reduction is also attributed to the lower OH concen-
trations in the SH. In contrast, the NH OH concentration
is higher compared to the OH field fromSpivakovsky et al.
(2000). Therefore, higher global anthropogenic emissions
are observed for this study (967 Tg CO yr−1) compared to the
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Table 4. Prior and posterior global emission estimates (in Tg CO yr−1) for 2004 and their uncertainty for the sensitivity studies. The
first column shows the sources/regions. Columns 2 and 3 show the prior (only different for biomass burning in GFED3.1 study). The last
4 columns show the posterior emission estimates for the sensitivity studies. The results for the Base inversion (cycle 2) are included for
completeness.

Source/Region Prior Posterior

Anthropogenic EDGARv3.2 Base GFED3.1 OH FVERT

Nam 105±30 105±26 104±27 114±27 82±26
Sam 22±16 0±16 0±16 1±16 0±16
Europe 62±30 85±18 94±18 76±19 73±18
Africa 80±52 149±45 181±50 140±46 178±44
Asia 258±195 526±97 548±99 630±93 512±86
Oceania 5±1 4±1 5±1 4±1 4±1
Globe 531±183 871±77 932±75 967±74 850±69

Biomass burning GFED2 GFED3.1 Base GFED3.1 OH FVERT

Nam 23±19 33±39 47±10 38±7 35±9 58±10
Sam 98±105 64±56 136±39 109±40 106±28 108±31
Europe 2±1 1±1 3±1 1±1 2±1 2±1
Africa 165±94 146±82 165±63 144±44 114±64 214±67
Asia 98±79 69±53 42±52 52±50 42±63 86±50
Oceania 18±14 21±19 16±14 22±18 20±14 16±14
Globe 404±157 334±119 409±76 365±71 321±73 484±76

NMVOC-CO 2004 Base GFED3.1 OH FVERT

Globe 812±40 410±38 433±38 369±38 403±38

base inversion (871 Tg CO yr−1). This difference is clearly
observed over India in Fig.8. The comparison with MO-
PITT is not improved with respect to the base inversion (not
shown): the remote SH still underestimates MOPITT total
columns.

5.3 Sensitivity study FVERT

When biomass burning CO emissions are released higher
up in the atmosphere, inferred biomass burning emissions
are expected to increase, since the surface concentrations of
biomass burning CO decrease and thus higher CO surface
emissions are required to match the observations. Indeed,
it is observed that the global biomass burning emissions in-
crease by 75 Tg CO yr−1 with respect to the base inversion
(Table4). Moreover, this increase is only partly compensated
by decreased anthropogenic emissions (−21 Tg CO yr−1)
and a decrease in the NMVOC-CO source (−7 Tg CO yr−1),
indicating that a part of the biomass burning CO emissions
released higher in the atmosphere, is not detected by the sur-
face network. Higher biomass burning CO emissions with
respect to the base inversion cause the comparison with MO-
PITT CO total columns to change: over the main biomass
burning regions in Africa, South America and South East
Asia, the comparison deteriorates, because the base inver-
sion already overestimates MOPITT CO total columns over

these regions (Fig.5d). On the remote SH, the comparison
does not change significantly since the NMVOC-CO source
shows only minor changes with respect to the base inversion.
We conclude that the biomass burning injection height is a
potentially important parameter to take into account in inver-
sions. However, the agreement with MOPITT CO on the SH
total columns does not improve. As stated before, it seems
that the surface observations and MOPITT CO total columns
over the remote SH are not consistently modeled.

6 Conclusions

We have presented a 4D-VAR data assimilation system for
CO using simplified chemistry and a fixed OH field, meant
to assimilate large satellite datasets, but tested here using sur-
face network observations from NOAA. The posterior sim-
ulation reproduces background CO mixing ratios including
events with enhanced CO mixing ratios. The mean bias be-
tween modeled CO mixing ratios and observations from the
NOAA surface network reduces for nearly all stations and the
χ2/n characteristic is reduced to values around 1, indicating
that the chosen prior errors result in a well-balanced system.
Approximately 15–20 % of the observations is rejected from
inversion cycle 1 to cycle 2. This indicates that the model
representativeness error requires further improvement. The
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Fig. 8. Top: vertically integrated mass- and rate constant weighted
OH difference field (TM5 –Spivakovsky et al., 2000). Bottom:
emission increments difference for 2004, OH – Base. Reddish col-
ors indicate higher OH levels in the TM5 OH field compared to the
OH field fromSpivakovsky et al.(2000) (top) and increased emis-
sions with respect to the base inversion (bottom). Blueish colors
indicate lower OH levels (top) and decreasing emissions (bottom).

effect on the inferred emission estimates varies per region.
However, for most regions the emission estimates in cycle
1 and cycle 2 are within a 1σ error bound. Uncertainty re-
ductions in the posterior emissions (compared to the prior)
up to 60 % on the global scale were observed. For smaller
(and less constrained) regions uncertainty reductions varied
between 10 and 50 %.

Our annual continental emissions compare well with re-
cent inverse modeling studies, indicating that the global bud-
get of CO is well constrained in our inversion. The posterior
emissions have been evaluated against non-assimilated air-
craft data from NOAA and vertical column data from MO-
PITT V4. The forward simulation with the inferred emis-
sions showed much more resemblance with NOAA aircraft
observations in the free troposphere compared to the prior
simulation, showing that the inversion is capable to improve
the free tropospheric CO distribution even though only sur-
face observations are assimilated. The comparison with MO-
PITT total column CO improves over the well-constrained
NH and in the tropics (except over Africa) from the prior to
the posterior simulation. However, in the remote SH (30◦–
60◦ S), the comparison with MOPITT deteriorates from a
4 % negative bias in the a priori to a 10 % negative bias in the
a posteriori solution, due to an emission decrease suggested
by SH surface observations.

In general, atmospheric observations only constrain to-
tal CO emissions. Since in particular anthropogenic and
NMVOC-CO sources are emitted in the same regions and
throughout the year, it is difficult to separate these sources.

Hence, emission increments in one source, to compensate
for emission changes in another, are observed. However, re-
gions where the timing of the biomass burning emissions is
very important (e.g. South America) illustrate the capabil-
ity to distinguish between anthropogenic and biomass burn-
ing emissions. In addition, due to the low spatio-temporal
resolution of surface flask observations, the inferred emis-
sion estimates are influenced by the emission inventories and
model errors. This was investigated by employing a different
OH field and a different biomass burning emission height.
An OH distribution from a full-chemistry simulation with
TM5 with a higher N-S ratio in OH largely influenced the
inversion results: biomass burning emissions and NMVOC-
CO reduced whereas the anthropogenic emissions increased
compared to the base inversion, indicating that the OH dis-
tribution over the NH and SH is critical for CO inversions.
For this OH field the comparison with MOPITT total column
CO in the SH did not improve and even less CO emissions
were inferred on the SH. The sensitivity study using different
fire injection heights showed that the vertical distribution of
biomass burning also largely influences the inversion results.
Biomass burning emissions increased by 75 Tg CO yr−1 with
respect to the base inversion. Again, the comparison with
MOPITT total columns did not improve. Increased biomass
burning emissions over emission hotspots in South America,
Central Africa and Indonesia result in an even larger discrep-
ancy with MOPITT total columns. On the remote SH the
comparison with MOPITT was similarly poor as in the base
inversion.

The use of satellite data in combination with the network
of surface observations is an obvious next step. Assimila-
tion of MOPITT total column CO is expected to lead to more
NMVOC-CO on the remote SH, which in turn might reduce
biomass burning emissions over the fire hotspots in the SH.
Lower biomass burning emissions will be more in line with
the new GFED3.1 product. However, surface and satellite
observations over the remote SH may bring conflicting infor-
mation. Therefore, like in the assimilation of SCIAMACHY
methane observations (Bergamaschi et al., 2009) a bias cor-
rection scheme for satellite data is currently being developed.
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