
Validation of seat-off and seat-on in repeated sit-to-stand movements using a single-body-

fixed sensor

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 Physiol. Meas. 33 1855

(http://iopscience.iop.org/0967-3334/33/11/1855)

Download details:

IP Address: 130.37.174.99

The article was downloaded on 31/10/2012 at 14:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15475928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0967-3334/33/11
http://iopscience.iop.org/0967-3334
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING PHYSIOLOGICAL MEASUREMENT

Physiol. Meas. 33 (2012) 1855–1867 doi:10.1088/0967-3334/33/11/1855

Validation of seat-off and seat-on in repeated
sit-to-stand movements using a single-body-fixed
sensor

R C van Lummel1, E Ainsworth1, J M Hausdorff2, U Lindemann3,
P J Beek4 and J H van Dieën4
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Abstract
The identification of chair rise phases is a prerequisite for quantifying sit-
to-stand movements. The aim of this study is to validate seat-off and seat-
on detection using a single-body-fixed sensor against detection based on
chair switches. A single sensor system with three accelerometers and three
gyroscopes was fixed around the waist. Synchronized on–off switches were
placed under the chair. Thirteen older adults were recruited from a residential
care home and fifteen young adults were recruited among college students.
Subjects were asked to complete two sets of five trials each. Six features of the
trunk movement during seat-off and seat-on were calculated automatically, and
a model was developed to predict the moment of seat-off and seat-on transitions.
The predictions were validated with leave-one-out cross-validation. Feature
extraction failed in two trials (0.7%). For the optimal combination of seat-off
predictors, cross-validation yielded a mean error of 0 ms and a mean absolute
error of 51 ms. For the best seat-on predictor, cross-validation yielded a mean
error of –3 ms and a mean absolute error of 127 ms. The results of this study
demonstrate that seat-off and seat-on in repeated sit-to-stand movements can be
detected semi-automatically in young and older adults using a one-body-fixed
sensor system with an accuracy of 51 and 127 ms, respectively. The use of the
ambulatory instrumentation is feasible for non-technically trained personnel.
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This is an important step in the development of an automated method for the
quantification of sit-to-stand movements in clinical practice.

Keywords: seat-off, seat-on, sit-to-stand, assessment, accelerometer, gyroscope

(Some figures may appear in colour only in the online journal)

1. Introduction

Sit-to-stand (STS) tasks are frequently used as a test of motor function in clinical populations
(Guralnik et al 2011, Penninx et al 2000, Volpato et al 2008, Guralnik et al 1994, Rolland
et al 2006). In current clinical practice, the total time to perform this task is used as the
outcome variable, while several studies suggest that valuable information may be obtained by
assessing the duration of the different phases of the task (Najafi et al 2002, Ikeda et al 1991,
Lord et al 2002, Janssen et al 2002). The identification of chair rise events is a prerequisite
for such an analysis. STS events of particular interest are seat-off and seat-on because these
mark the transitions to and from an intrinsically stable three-point support (i.e. sitting) and a
dynamically stable two-point support (i.e. standing) (Riley et al 1991). Leaving the chair seat
is a critical factor for a successful STS. It yields higher peak hip contact pressures and requires
greater moment and range of motion at the knee than gait or stair climbing (Hughes et al 1996).
The seat-off has been used to separate STS sub-phases (Schenkman et al 1990, Riley et al
1991, Lindemann et al 2007) and to synchronize different strategies of STS (Doorenbosch
et al 1994, Hirschfeld et al 1999).

The gold standard for the identification of the moment of seat-on and seat-off is to measure
the vertical loading on the chair using seat switches (Kralj et al 1990), a force platform under
the chair (Pai and Rogers 1990, Alexander et al 1991, Hirschfeld et al 1999, Zijlstra et al 2010)
or load-cells (Papa and Cappozzo 1999). If an instrumented chair is not available, foot–floor
reaction forces are used to estimate the moment of seat-off. Several features of the ground
reaction force signals have been used to predict seat-off in previous studies: (1) time of peak
of horizontal ground force (Kralj et al 1990); (2) time of peak of vertical ground force (Riley
et al 1990); (3) time of 100% body weight vertical ground force (McGibbon et al 2004).

Since the early 1990s, body-fixed sensors (BFS) have increasingly been used to measure
kinematic and kinetic parameters (Veltink and van Lummel 1994). BFS have several
advantages. Miniaturizing electronics has made it possible to develop small and light devices
including sensors to capture accelerations and angular velocities in three orthogonal planes.
These devices are unobtrusive and can be positioned anywhere on the body with low patient
awareness. Advances in ergonomic design and fixation methods have improved patient
acceptance (Regueiro et al 2011) and enabled some patients to wear the BFS system for
several weeks. This makes it possible to move from the lab to daily life settings.

Previous studies using BFS during the analysis of STS movements have demonstrated the
ability to: (1) identify the beginning and end of STS transitions, with one gyroscope fixed to the
chest (Najafi et al 2002) and with accelerometers and gyroscopes fixed to the trunk (Giansanti
and Maccioni 2006); (2) decompose accelerometric signals on the trunk and thigh (Janssen et al
2005); (3) combine two accelerometers and one gyroscope to improve the accuracy to measure
trunk and thigh angles (Boonstra et al 2006); (4) reconstruct the trunk trajectory (Giansanti
et al 2007); (5) analyze the peak power (Zijlstra et al 2010), (6) discriminate between healthy
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and frail elderly (Ganea et al 2011) and (7) fully automated analysis of instrumented repeated
STS movements (van Lummel et al 2011).

The objectives of this study were: (1) to develop an automated approach for quantifying
the seat-off and seat-on during STS using a single sensor located at the waist and (2) to
determine the validity of this approach in young and older adults, using switches under the
chair as reference.

2. Methods

2.1. Subjects

In this cross-sectional study, 15 older adults (OA) were recruited from a residential care home
(age: 85.3 ± 6.4 years; height: 168.4 ± 9.3 cm; weight: 74.0 ± 11.0 kg; M ± SD); they had
to be able to perform at least five repeated STS movements. In addition, 15 young adults
(YA) were recruited among college students (age: 20.7 ± 1.4 years; height: 183.2 ± 8.7 cm;
weight: 72.9 ± 9.2 kg). The young subjects had no history of neuromuscular or musculoskeletal
disorders. The protocol was approved by the ethics committee of the Faculty of Human
Movement Sciences of VU University Amsterdam and all participants signed informed
consent.

2.2. Equipment

A BFS system (DynaPort R© Hybrid, McRoberts, The Hague, The Netherlands) was inserted
in an elastic belt and positioned on the lower back at the height of the second lumbar
vertebra, which is close to the body’s center of mass (CoM) in the standing position. The
small and light measurement system (87 × 45 × 14 mm, 74 g) contains three pre-calibrated
seismic accelerometers (STM: sensor range ± 2 g, resolution 1 mg) and three pre-calibrated
gyroscopes (EPSON: range ± 100 ◦ s–1, resolution 0.0069 ◦ /s–1) and has a sampling rate
of 100 samples/s. The accelerometer signals have been shown to be highly reproducible (van
Hees et al 2009). Raw data were stored on a Micro-SD card. The device can connect with a
computer from a distance of up to 100 m via Bluetooth. The supporting acquisition software
can start and stop the sensor system and send event markers to store analysis intervals with
the data. Sensor data and chair switch data are shown in figure 1.

Four on/off switches were connected to a second DynaPort device and positioned under
the corners of a plywood sheet placed underneath the chair. The adjustable thresholds were set
at 98.1 N. The two DynaPort devices were synchronized using a special cable set. The sensors
were connected with the cables in standby mode and started with a button. After the start of
the measurement, the cables were removed.

2.3. Procedures

As illustrated in figure 2, subjects were asked to perform two sets of five STS cycles at a self-
selected speed. A STS cycle is comprised of standing up (a–c), standing including stabilizing
(d-e), sitting down (f-g) and sitting (h). Five STS cycles contain five periods of standing up,
standing and sitting down and four sitting periods. A standard chair without arm rests (height
42 cm) was used. All trials were videotaped from the side to enable post-hoc visual inspection
of successful and failed attempts. Subjects were free to swing their arms but were instructed
to avoid pushing off from the chair with their hands because this meant the switches under the
chair remained on and a seat-off could not be detected. If necessary, subjects were allowed to
push off from their own legs.
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Figure 1. Example of signals of five repeated STS movements of a young adult. In the top panel the
AP acceleration (g) and in the bottom panel the pitch velocity (◦ s–1) of five repeated sit-to-stand-to
sit trials are shown. Sensor data (solid line) and chair switch data (dashed line) were recorded in
synchrony.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2. A STS cycle is comprised of standing up ((a)–(c)), standing including stabilizing
((d)–(e)), sitting down ((f)–(g)) and sitting (h).

2.4. Data analysis

Seat-off was detected when the chair switches underneath the two back corners of plywood
were off. Seat-on was detected when three of four switches were on. Dedicated software
was developed in Matlab (Mathworks, Natick MA, USA) to detect seat-off, seat-on, and to
analyze trunk movements using the accelerations and angular velocities. The acceleration
and the angular velocity in the sagittal plane were used to calculate the trunk pitch angle
(Williamson and Andrews 2001). The effect of the angular displacement was removed from
the raw accelerations using the following equations:

aangle V = sin

(
05 π − ϕ

180 π

)
(1)

atrue V = ameasured V − aangle V (2)
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Figure 3. Example of the signals used for feature extraction of two STS repetitions from one older
adult. The open circles (◦) represent the estimation of the seat-off and the filled circles (•) the
estimation of the seat-on. Vertical lines represent the seat-off (first and third) and seat-on (second
and fourth) as detected by the chair switches.

aangle AP = COS

(
05 π − ϕ

180 π

)
(3)

atrue AP = ameasured A P − aangle AP, (4)

where ϕ is the angle of the accelerometer with respect to the vertical.
Next, atrue_V and atrue_AP were integrated to derive vertical and anterior–posterior (AP)

velocities. Additionally, a discrete wavelet transformation was performed on the sine of the
trunk angle (Najafi et al 2002). Finally, the derivative of this signal was calculated to estimate
the angular velocities.

On these signals, peak detection was performed to derive the following features as
predictors of seat-off and seat-on, respectively (see figure 3)
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(1) Maximum trunk vertical acceleration, aV_max for both seat-on and seat-off.
(2) Minimum and maximum trunk angular velocity, ωmin and ωmax.

(3) Maximum and minimum AP trunk velocity, vAP_max and vAP_min.

(4) Maximum and minimum vertical trunk velocity, vV_max and vV_min.

(5) Minimum of the wavelet transformed sine of the trunk angle, Wsin(α)min for both seat-on
and seat-off.

(6) Minimum and maximum of the derivative of Wsin(α), DWsin(α)min and DWsin(α)max.

Each predictor had an offset relative to the reference values obtained from the chair
switch signals (see figure 3). The average offset (over all trials recorded) was subtracted
from the predictor variable to obtain an estimate of the seat-off or seat-on event. To increase
the precision and robustness of the estimation, a combined estimate was made based on the
weighted average of the individual estimates. The weight for each predictor in the model was
based on the variability of the estimates obtained with the single predictors as described by
equations (5) and (6):

wi = 1

SD i
(5)

weighti = wi

� w

, (6)

where SD is a vector containing the standard deviations of the estimates based on single
predictors. Note that the larger the standard deviation, that is, the larger the uncertainty for
that estimate, the lower the weight. Two models were created, one with all predictor variables
combined (combined all) and one with the two best single predictors (combined optimal), i.e.
the predictors that yielded the offset with the lowest mean and standard deviation. For both
models, all the data of both young and older adults were used.

2.5. Statistical analysis

We determined mean differences between the estimated and reference event times. The mean
difference was subtracted from the estimated event times and the standard deviation of the
resulting estimates was determined as an indicator of precision.

Cross-validation, sometimes called rotation estimation, was used for assessing how the
results of the analyses generalize to an independent data set. This method is mainly used in
settings where the goal is prediction, and one wants to estimate how accurately a predictive
model will perform in practice (Kohavi 1995). Cross-validation can be done in several ways.
Leave-one-out (Stone 1974 and Geisser 1975) is one option and it is more efficient than creating
a hold-out set. Therefore, the predictions were validated with leave-one-out cross-validation.
This involves using a single observation from the original sample as the validation data, and
the remaining observations as the training data. This is repeated such that each observation in
the sample is used once as the validation data.

3. Results

From the 15 YA and 13 OA who did 2 sets of 5 trials, 253 trials (90.4%) were analyzed
successfully; feature extraction failed in only two trials (0.7%). Two OA were not able to stand
up and were excluded. Eighteen trials were removed due to chair sensor problems (YA, 10
and OA, 8). A chair sensor problem means that the seat-off or the seat- on was not correctly
detected, because the sensor-ground contact failed, or the sensor was switched on due to
standing on the plywood, or the subject pushed off from the chair with the hands. Seven YA
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Figure 4. Offset (•) and SD (—) of the timing of each of the predictors relative to seat-off and
seat-on. The results for the young adults (133 trials) are shown in the upper panel and those for the
older adults (120 trials) in the lower panel. The continuous vertical lines represent the separation
between the phases of the STS cycle, the shorter vertical lines represent the moments of seat-off
and seat-on.

performed four instead of five trials. Two trials of OA were removed due to failed feature
extraction.

Figure 3 presents a typical example of the signals from which features were extracted
as predictor variables. The mean offsets relative to seat-off and seat-on and the concomitant
standard deviations for the six predictors are presented in figure 4. The vertical acceleration



1862 R C Van Lummel et al

Table 1. Mean (SD) values of the error absolute error of the seat-off estimates based on single
predictors and the two models combining several predictors (ms).

DWsin Wsin Combined Combined
(α)min (α)min ωmin vAP_max vV_max all optimal

Mean error (ms) 0 (69) 0 (122) 0 (73) 0 (69) 0 (186) 0 (74) 0 (66)
Mean abs error (ms) 51 (50) 94 (77) 63 (47) 56 (40) 161 (109) 58 (45) 49 (44)

Table 2. Mean (SD) values of the error and absolute error of the seat-off estimates based on single
predictors and the model combining the two best predictors in the cross-validation (ms).

DWsin(α)min vAP_max Combined optimal

Mean error (ms) 1 (72) 0 (71) 0 (68)
Mean abs error (ms) 52 (52) 58 (42) 51 (46)

(aV_max) was found to be imprecise because often there were no clearly detectable peaks in the
signal. Therefore, aV_max was not used further in the analysis.

In general, the variability of the timing of the predictors relative to seat-off was much lower
in the YA than in the OA and predictions of the seat-off were less variable than predictions of
seat-on.

3.1. Seat-off

The timing difference between seat-off and the peak in AP trunk velocity (vAP_max) had the
smallest offset and variability and DWsin(α)min was the second best predictor of seat-off. The
mean error and mean absolute error of: (1) the five single estimates, (2) the estimate based on
all five features and (3) the estimate based on the features with the lowest mean absolute error
(vAP_max and DWsin(α)min) are presented in table 1. As can be seen, the last model yielded the
best results, with a negligible mean error and the smallest absolute error of 49 ms.

The best two single predictors and the model using the best two predictors were used in
the leave-one-out cross-validation. The mean error and the mean absolute error are shown in
table 2. The best predictor was the model using the best two predictors, with a mean error of
0 ms and mean absolute error of 51 ms.

3.2. Seat-on

The timing difference between seat-off and DWsin(α)min had the smallest offset and variability
and Wsin(α)min was the second best predictor of seat-off. The mean error and mean absolute
error of: (1) the five single estimates, (2) the model based on all five features, and (3)
the estimate based on the features with the lowest mean absolute error (DWsin(α)min and
Wsin(α)min) are presented in table 3. The combined models did not improve the first prediction
using only DWsin(α)max, which had a negligible mean error and an absolute error of 124 ms.

The best two single predictors and the model using the best two predictors were used in
the leave-one-out cross-validation. The mean error and the mean absolute error are shown in
table 4. The best predictor was DWsin(α)max, with a mean error of –3 ms and mean absolute
error of 127 ms.
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Table 3. Mean (SD) values of the error and absolute error of the seat-on estimates based on single
predictors and the model combining all predictors (ms).

DWsin Wsin Combined Combined
(α)max (α)min ωmax vAP_min vV_min all optimal

Mean error 0 (157) 0 (213) 0 (171) 0 (311) 0 (261) 0 (170) 0 (166)
(ms)
Mean abs 124 (101) 159 (144) 133 (112) 324 (130) 233 (146) 135 (108) 130 (105)
error (ms)

Table 4. Mean (SD) values of the error and absolute error of the seat-on estimates based on single
predictors and the model combining the two best predictors in the cross-validation (ms).

DWsin(α)max Wsin(α)min Combined optimal

Mean error (ms) −3 (163) 0 (221) −3 (176)
Mean abs error (ms) 127 (105) 163 (150) 136 (113)

4. Discussion

4.1. Automated approach of STS quantification

In this study, a method was developed to estimate seat-off and seat-on in the STS task based
on a single-body-fixed sensor system placed on the trunk. Six features of the trunk movement
during seat-off and seat-on were calculated automatically. In two trials of the OA, the automatic
analysis failed. Both trials were removed manually. In this regard, a fully automated approach
has not yet been realized.

4.2. Seat-off prediction

Estimation of seat-off was successful with a mean error of the optimal model during
the cross-validation of 0 ms and a mean absolute error of 51 ms (see table 2). In our study,
the mean total duration of the STS was 1670 ms. Based on the durations measured in this
study, the absolute estimation error for the final model of seat-off was 3.1% of the total STS
duration.

The mean maximum AP velocity is the parameter closest in time to the seat-off (see
figure 4). Bernardi et al (2004) used the peak AP velocity to define the end of the flexion
momentum phase, referring to Riley et al (1991). In these studies, the peak AP velocity is
also close to seat-off. The maximum angular velocity (see figure 4) precedes the AP velocity.
The angular velocity of the trunk generates the momentum, which is necessary to displace the
CoM from the chair to the feet.

The timing and the order of occurrence of events identified during STS was almost
identical for the young and older adults (see figure 4). This could indicate that the strategy was
similar. It could also be explained by the fact that the STS is a constrained movement. The
standard deviation of the timing of these events relative to seat-off was higher in the OA than
in the YA (see figure 4).

We found only one previous study aimed at validating seat-off detection (McGibbon
et al 2004). In that study, predictions were based on signals of a force plate underneath the
subject’s feet, a method that would be less applicable in practice given the costs involved.
Moreover, only healthy subjects with a mean age of 31 years were included. The overall
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absolute error was 4.5 ms. Hence, we can conclude that McGibbon’s method is more precise.
However in our study, young and older adults living in a care home were included and a
single-body-fixed sensor system was used, which may be more versatile and suitable for
clinical applications. Aissaoui et al (2011) used the minimum of the cross-product between
the angular velocity and linear acceleration vectors to determine the seat-off instant. The seat-
off instant occurs earlier, by 87 ms on average, with respect to McGibbon’s model. With our
approach, the absolute error of the instant of seat-off detection is 51 ms.

Maximum AP velocity appears to be the best predictor of the seat-off. What can we learn
from this result for clinical practice? Several authors (e.g. Riley et al 1991) showed that the
CoM moves forward and slightly downward during a successful STS transition. After seat-off,
the CoM moves upward. This trajectory could explain why the AP velocity is the best predictor
of seat-off. Manckoundia et al (2006) showed that during STS, Alzheimer’s disease subjects
reduced their forward displacement and started their upward displacement earlier than healthy
elderly subjects. This resulted in poor STS quality. Thus, one possible clinical interpretation is
that a dynamic trunk flexion, resulting in AP displacement of the CoM, might be a prerequisite
for successful seat-off.

4.3. Seat-on prediction

Estimation of seat-on was successful with a mean error of the optimal model during the cross-
validation of –3 ms and a mean absolute error of 136 ms (see table 4). Estimation of seat-on
revealed that DWsin(α)max (−3 and 127 ms) is a better predictor than the combined features
(see table 4). In our study, the mean total duration of the stand-to-sit was 1845 ms. Based
on the durations measured in this study the absolute estimation error for the best predictor of
seat-off was 6.9% of the total STS duration.

The timing of the mean values during STS shows several differences. All trunk features
of the YA occurred before seat-on and in the OA half of the mean features occurred after
seat-on. The order of the appearance of the features also differed between the young and
older adults. In particular, the minimum AP velocity (vAP_min) was an early feature in the YA,
but occurred close to seat-on in the OA. This may be explained by differences in movement
strategy between the two age groups.

To improve the prediction of the seat-on, separate models could be developed for different
age groups in the future. However, at present, this would require arbitrary choices regarding
age thresholds in application of the estimation procedure and therefore such an approach can
only be developed when recordings over a wide range of ages become available.

4.4. Variance and STS strategies

The estimation error of the seat-on is markedly greater than the estimation error of the seat-off.
A possible explanation for this can be found in the difference in execution (see figure 4).
Apparently, the OA use different strategies for stand-to-sit, compared to the YA, which
could negatively influence the prediction. Inspection of the videos supports this observation.
Ageing is accompanied with the loss of automation and physical capabilities due to decreasing
coordination, force and confidence. These age-associated changes may lead to modified stand-
to-sit strategies, which might affect the magnitude of the variance of STS movement. Although
the variance is used in the method as a weighting factor, differences in the execution of the
STS contribute to the variance of the estimates. Future research should focus on the effect
of different STS strategies (Doorenbosch et al 1994, Hughes et al 1996, Papa and Cappozzo
2000, Mazzà et al 2004, Manckoundia et al 2006, Scarborough et al 2007).
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4.5. Leave-one-out methodology

In estimating the accuracy of the prediction, one would like to have an estimate with low offset
and low variance. The accuracy (offset) is less important than the variance of the estimate or
in other words, the precision (Kohavi 1995). McGibbon et al (2004) used the hold-out method
to validate estimates of seat-off. This method uses a subset of the test sample for learning and
a subset for testing. The hold-out method makes inefficient use of the data (Kohavi 1995).
Therefore, in this study, all data were used in the model to estimate accuracy. The differences
in the standard deviation of the mean error and the mean absolute error between the model
and the cross-validation were very small (see table 1–4). This implies that estimation errors
were not very different for subjects that were not a part of the group that the model was based
on, implying that the prediction will be valid for new subjects.

4.6. Limitations

In this study, a small number of young and older adults were measured. With larger subject
groups, stratified models for age and possibly for other variables such as gender could be
developed in the future. In interpreting the results presented, it must be realized that the
switches do not yield perfect estimates of the seat-off and seat-on events, which contributes to
the estimation errors reported. Other methods of detection of seat-off (e.g. Aissaoui et al 2011,
McGibbon et al 2004) could be compared in future studies to the method we have developed.

5. Conclusions

The present results demonstrate that seat-off and seat-on in a repeated sit-to-stand (STS) task
can be estimated based on a semi-automatic procedure in young and older adults using a
single-body-fixed sensor system with a precision of about 51 and 127 ms, respectively. The
use of the ambulatory instrumentation is feasible for non-technically trained personnel. This
is an important step in the development of an automated method for the quantification of STS
movements in clinical practice.
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