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Symbols and Abbreviations

Symbols
A Gain
C Capacitance in F
f0 Fundamental frequency of sine wave in Hz
f1 Start frequency of the sine-sweep in Hz
f2 Stop frequency of the sine-sweep in Hz
f3 Minor third frequency of sine wave in Hz
Fs Sample rate in Hz
G Control for distortion level in Tube Screamer circuit
Is Reverse saturation current of diode in A
L Rate of frequency increase in the synchronised sine method
R Resistance in Ω
TR Exponential rate of frequency increase
Ts Sample period in seconds
Vi Input voltage in V
Vo Output voltage in V
Vt Thermal voltage of diode in V
η Diode ideality
ω1 Start frequency of the sine-sweep in rad/s
ω2 Stop frequency of the sine-sweep in rad/s

Abbreviations
ESR Error-to-signal ratio
FE Forward Euler
FIR Finite impulse response
IIR Infinite impulse response
LM Levenberg-Marquardt
LTI Linear Time-Invariant
LTV Linear Time-Varying
NLB Nonlinear block
TR Trapezoidal Rule
TRR Trust-Region-Reflective
WDF Wave Digital Filter
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1 Introduction
The desire to model nonlinear audio circuits arises from musicians’ and audio engineers’
preference of old analogue devices. These older devices, such as vacuum tube guitar
amplifiers, have various issues including their price, size, weight, and difficulty finding
replacement parts. This resulted in the development of virtual analogue modelling.
The aim of this field of study is to accurately simulate the characteristics of an
analogue device through the use of signal processing.

There are two main approaches to virtual analogue modelling of nonlinear audio
systems: white-box and black-box models. White-box models use knowledge of
the circuit and aim to model the components exactly. These include state space
methods [1, 2, 3, 4, 5], wave digital filters [2, 4, 6, 7, 8] and physical models [9, 10].
These have been used to model amplifiers [11, 12, 13, 14], guitar distortion circuits
[9, 15] and nonlinear aspects of musical instruments [1, 16]. Black-box models do
not require any knowledge of the circuitry and are based on measurements. These
include Volterra series [17, 18, 19], Hammerstein/Wiener models [20, 21, 22] and
static nonlinearities [9, 23]. This approach has been used to model loudspeakers [20],
guitar distortion pedals [22, 23, 24], and guitar amplifiers [25]. Measuring of the
reference device is usually carried out using the swept-sine, or sine-sweep, technique
[20, 24]. This is used to extract the impulse response from the system [26, 27, 28].
Another modelling approach is a combination of these two methods called grey-box
models. These models are based off of measurements but use knowledge of the circuit
in an attempt to improve the accuracy of the model [25, 29, 30].

A novel method is introduced based on the results of previous models. This
proposed method changes the structure of a previous model. It consists of a high-pass
filter, a nonlinearity and a low-pass filter. The filters simulate the linear response of
a nonlinear audio system. The model is intended to reduce the computation time of
the previous model.

The Thesis is structured as follows. Section 2 will introduce various black-box
approaches for modelling nonlinear systems. Section 3 presents two distortion circuits
and their physical model implementation. The circuits modelled were the diode
clipper and the Tube Screamer. This section also details and compares the numerical
methods used in the models. A comparison of the black-box models in relation to the
physical models is given in Section 4. The proposed method is presented in Section 5
with comparisons to a previous black-box model and the physical models. Finally,
Section 6 concludes the Thesis.
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2 Black-box Models
The modelling of nonlinear musical systems has been an active research topic since
the 1970’s [31, 32, 33]. This section will introduce various black-box approaches to
model such systems, as well as nonlinear audio circuits. The first two models are
the Volterra series and the swept-sine technique. These serve as the basis for the
Chebyshev polynomials and Hammerstein models discussed after. The final two
methods are a static nonlinearity, using a polynomial of best fit, and a parametric
model with a nonlinear mapping function. Comparisons between the models will be
made in Section 4.

2.1 Volterra Series

The Volterra series was developed from the functionals defined by Vito Volterra in
1887. They are used to analyse nonlinear systems to create an explicit input–output
relationship of ordinary nonlinear differential equations. The continuous time Volterra
series is described by [18, 19]:

y(t) = h0 +
∫ ∞
−∞

h1(τ1)x(t− τ1)dτ1 +∫ ∞
−∞

∫ ∞
−∞

h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2 + . . .+∫ ∞
−∞

∫ ∞
−∞
· · ·

∫ ∞
−∞

hp(τ1, τ2, . . . , τp)x(t− τ1)x(t− τ2) . . . x(t− τp)dτ1dτ2 . . . dτp + . . .

(1)

where y(t) is the output, x(t) is the input, τ is the time lag, and hp is the Volterra
kernel. This series is similar to the Taylor series; however, the Volterra series is
able to model the memory of a nonlinear system [17]. The discrete time truncated
Volterra series is given in [17, 18]:

y[n] =
N−1∑
m1=0

h1[m1]x[n−m1] +

N−1∑
m2=0

N−1∑
m1=0

h2[m1,m2]x[n−m1]x[n−m2] + . . .+

N−1∑
mp=0

· · ·
N−1∑
m1=0

hp[m1, . . . ,mp]x[n−m1] . . . x[n−mp].

(2)

The h0 kernel can be assumed to equal 0 as it does not affect the adaptive
filter structure [17]. This model becomes increasingly complex for highly nonlinear
systems as they require higher values of N and p and the number of coefficients are
proportional to Np [2, 17]. Due to this, there have been developments in making
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the Volterra series more efficient which include using least-mean square, recursive
least-squares and measuring with sine sweeps [18, 34].

The use of Volterra series in modelling audio-related systems include guitar
amplifiers [34], nonlinear propagation in a pipe for brass instruments [35], strings
[36], and the Moog ladder filter [19, 37].

2.2 Swept-Sine

The use of a sine-sweep for acoustical measurements was first proposed in [38] for a
method known as time delay spectrometry. This used a linear swept-sine and the
method was utilised for loudspeaker and room frequency responses [38, 39, 40, 41].
This technique was then modified to use a logarithmic sine-sweep to obtain room
impulse responses in [26, 27], which was later developed for extracting impulse
responses from nonlinear systems in [28]. The logarithmic sine-sweep is defined as:

x[n] = A sin
(
ω1TR

[
exp

{
n

TR

}
− 1

])
, (3)

where ω1 is the start frequency of the sweep in rad/s, A is the gain of the sweep,

TR = N

ln
(

ω2
ω1

) , (4)

is the exponential rate of frequency increase of the sine-sweep, N is the desired length
of the sweep in samples, and ω2 is the stop frequency of the sweep in rad/s.

Novak et al. [20] resdesigned the generation of the sine-sweep so that the resulting
higher harmonics are synchronised. This method is called the Synchronised Swept
Sine [21, 42]. The equation for this method is:

x[n] = A sin
(
ω1L

[
exp

{
n

L

}])
, (5)

where

L =
round

 f1

ln f2
f1

T̂

/f1 (6)

is the rate of frequency increase, f1 and f2 are the start and stop frequencies of the
synchronised sweep in Hz, and T̂ is the desired time duration of the sweep in seconds.
The synchronised time duration is given as:

T = L ln
(
f2

f1

)
. (7)
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This swept-sine is fed into the nonlinear system under test to produce a distorted
output signal y[n]. This output is used in the convolution with the inverse filter of
the input signal. The inverse filter is the time reversed and amplitude modulated
version of the sweep. It is obtained analytically as [42, 43]:

Xinv(f) = 2
√
f

L
exp

{
−j2πfL

[
1− ln

(
f

f1

)]
+ j

π

4

}
. (8)

The advantage of using the analytical form is that it does not require scaling the
impulse responses [43]. The convolution is then performed as:

h[n] =
M∑

m=1
hm[n+ ∆nm] = F−1 [H(f)] = F−1 [Y (f)Xinv(f)] , (9)

whereH(f) and h[n] are the impulse response of the nonlinear system in the frequency-
and time-domain, respectively, hm[n] is the impulse response of the mth harmonic
up to M total harmonics, and ∆nm is the discrete time index of the mth harmonic
impulse produced via:

∆nm = N

2 − L ln(m). (10)

The results of this convolution for an arbitrary system are shown in Figure 1. The
first impulse response, at ∆n1, is the linear response of the system. These impulse
responses, or harmonics, can be windowed out and used as filters in various black-box
modelling methods [21, 22, 24, 43].

n
5

n
4

n
3

n
2

n
1

Time

0

Figure 1: Nonlinear impulse response after convolution with the inverse filter.
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2.3 Chebyshev Polynomials

The use of Chebyshev polynomials of the first kind to model nonlinear aspects
of music was first documented by Schaefer [31]. This was based on the fact that
Chebyshev polynomials produce the exact harmonics of a sinusoidal input. This was
quickly improved by [32] to take into account the amplitude of the input. This used
the coefficients defined in [31] and normalising in relation to powers of the input gain.
This was further refined in [44] and [45].

These previous approaches focused more on waveshaping rather than modelling
distortion. The use of these polynomials to model distortion was proposed by [21]
using the impulse responses of the harmonics from the nonlinearity system to be
modelled. The responses are extracted using the sine-sweep method and then they
are convolved with the output from the polynomials. These polynomials are defined
by:

T0(x[n]) = 1, T1(x[n]) = x[n], (11)

and by the recurrence relation:

Tk(x[n]) = 2x[n]Tk−1(x[n])− Tk−2(x[n]), k = 2, 3, ... (12)

This model follows a parallel block structure and is shown in Figure 2. The input
is transformed up to the M th Chebyshev polynomial, which represents the highest
harmonic to be modelled. The hm[n] filters are the harmonics from the reference
system up to the M th harmonic. The use of this model is limited, however, as the
Chebyshev polynomials work for sinusoidal inputs only.

Figure 2: Block diagram for the Chebyshev polynomial model.
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2.4 Hammerstein/Wiener

The Wiener model was introduced as an alternate representation of the Volterra
model [18]. The Wiener model consists of a linear filter followed by a nonlinearity and
generally has a parallel block structure. The Hammerstein model is similar in design
but the nonlinearity precedes the filter. A general block diagram of a Hammerstein
model is given in Figure 3.

This model is the same as that of the model in Figure 2; however, the Chebyshev
polynomials have been replaced by the power series. The model consists ofM parallel
branches where each branch has a nonlinearity where the input is transformed to the
power of the mth branch. This results in a static monomial nonlinearity [43]. For
every even power, this results in an output which contains all the even harmonics of
the input up to the power of the branch. Similarly, odd powers will create all the odd
harmonics to the current power. This means that the harmonic impulse responses
from the swept-sine method cannot be used as is, as they do not influence the same
harmonics generated via the nonlinearity. Therefore, the linear filters following the
nonlinearity are the Hammerstein kernels which were created to deal with impulse
response issue.

The Hammerstein kernels (in this implementation) were generated using the
Hammerstein Kernels Identifications by Sine Sweep (HKISS) method detailed in
[43]. This method uses the sine-sweep to obtain the harmonics of the system. After
they have been obtained, they are transformed by a matrix that is developed from
trigonometric power formulas of sine.

Figure 3: Block diagram for the Hammerstein model.
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2.5 Static Nonlinearity

This method aims to model the nonlinearity by approximating the relationship
between the input and output of the nonlinear system. This approximation results
in a memoryless nonlinearity. This method was proposed in [9] but the idea has
existed in other areas of research, for example, in neural response models [46]. This
approximation can be acquired in numerous ways, via measurements or by deriving
a nonlinear ordinary differential equation (ODE) of the circuit by replacing the
capacitors with open circuits. The result can be stored and used as a lookup table
or by fitting a polynomial to the input–output relationship.

Figure 4 compares the diode clipper and a polynomial of best fit, while Figure 5
compares the Tube Screamer to another polynomial of best fit. The grey lines in each
figure are produced from white-box analysis which is detailed in Section 3. The order
for both of these polynomials was 11, as this order is low enough to not produce an
ill-conditioned polynomial but results in sufficient harmonics to perceive an accurate
sound.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Input

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

O
u
tp

u
t

Diode clipper

Polynomial - Order 11

Figure 4: Input–output relationship comparison of the diode clipper and polynomial
of best fit.

The method also consists of a filter which precedes the nonlinearity. This filter
estimates the linear response of the circuit. For the diode clipper, the filter imple-
mented was a first-order low-pass with a cut-off frequency of a sixth of the sampling
rate, Fs. The magnitude response of the low-pass filter in comparison to the linear
response is depicted in the top plot of Figure 6. The linear response of the Tube
Screamer was estimated by cascading a DC blocker and a low-pass FIR filter with
cut-off frequencies of Fs

70 and Fs
3.5 , respectively. The result is a fifth-order band-pass
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filter. The response of this filter in comparison to the Tube Screamer linear response
is displayed in bottom plot of Figure 6.
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Figure 5: Input–output relationship comparison of the Tube Screamer and polyno-
mial of best fit.
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Figure 6: Comparison of linear response of the circuits to estimated filters. Top:
diode clipper. Bottom: Tube Screamer.



9

2.6 Eichas Parametric Model

This model was first proposed in [23] as a parametric Wiener-Hammerstein model. It
consists of a linear time-invariant (LTI) block, a nonlinear block (NLB), and followed
by another LTI block. The LTI block is a band-limited equaliser whose coefficients
can be parameterised. The model was developed further in [24] which changed the
LTI block to an FIR filter where the coefficients of the filter are from the measured
linear response of the nonlinear system to be modelled, obtained via the swept-sine
method. This development meant that the second LTI block was no longer required.
Figure 7 displays the outline of the block diagram for this model as a simplified
Wiener model.

Figure 7: Block outline of the full Eichas’ parametric model.

The nonlinear block consists of a side-chain envelope detector, a dry/mix stage
and a mapping function. The envelope detector models the time-variant behaviour
that nonlinear systems with memory exhibit. It also compensates for the bias voltage
that is introduced by operational amplifiers in some nonlinear circuits. The envelope
detector computes the absolute value of the input signal, low-pass filters this and
then subtracts the result from the main signal path. The low-pass filter is a biquad
filter with a cut-off frequency of 5Hz. The various gains for each stage are stored in
a parameter vector. The block diagram for this model is shown in Figure 8.

Figure 8: Block diagram for the nonlinear block of Eichas’ parametric model.
Adapted from [23].
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The path that includes the |x| and the LPF is the envelope detector and m(x)
is the mapping function. This mapping function is composed of three hyperbolic
tangent functions which control the sharpness of the saturation in the input–output
relationship. They are determined by four parameters: kp and kn, which are the
positive and negative knee points, respectively; and gp and gn, which affect the
smoothness of the knee point transitions. The mapping function is defined in Eq. 13.

m(x) =



tanh(kp)−
[

tanh(kp)2 − 1
gp

tanh(gp(x− kp))
]

if x > kp

tanh(x) if − kn ≤ x ≤ kp

− tanh(kn)−
[

tanh(kn)2 − 1
gn

tanh(gn(x+ kn))
]

if x < −kn

(13)

The final parameter vector is thus

p = (gpre, gbias, kp, kn, gp, gn, gwet, gpost) . (14)

The parameters were limited to [−1, 1], where gpre, gp, gn, and gpost are scaled and
converted to dB, in a given range. In this implementation the range was [−80 dB,
80 dB].

The parameters were optimised using the Levenberg-Marquardt (LM) algorithm
or the Trust-Region-Reflective (TRR) algorithm. The LM method, introduced in
[47] and improved upon in [48], is a gradient-based optimisation procedure which
minimises the residual between the output of the nonlinear system under test and the
nonlinear block. The TRR technique uses a model function to minimise the function
to be solved [49, 50]. This model function simulates the function in a subset at a
given point. This subset is the trust-region. TRR was used when the LM algorithm
produced parameters that exceeded the limits as the LM does not allow for set limits.

The input–output relationship of the model after optimisation for the diode
clipper is shown in Figure 9 and for the Tube Screamer in Figure 10. The input for
optimisation was a single-tone sine wave at 1000 Hz. The amplitude of this sine wave
logarithmically decreased from 10 to 10−5, to cover a wide range of potential inputs.
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Figure 9: Input–output relationship comparison between the diode clipper and the
nonlinear block.
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3 Physical Models
This section will discuss the two circuits that will be used as references for which
the different black-box models detailed in the previous section are evaluated against.
The circuits were modelled as physical models, using nonlinear ordinary differential
equations, which is a white-box modelling technique. The numerical methods used
to model these circuits will be discussed, as well as their accuracy and stability. Only
the distortion of these devices were modelled, while the filtering stages of the devices
were ignored.

3.1 Circuits

3.1.1 Diode Clipper

The basis of most guitar distortion pedals is the diode clipper (or diode limiter) [10].
The diode clipper consists of anti-parallel diode pair coupled with an RC low-pass
filter. The simplified circuit schematic of the diode clipper is shown in Figure 11. The
input and output voltages are defined by Vi and Vo in the schematic, respectively.

Figure 11: Simplified circuit diagram of the diode clipper.

The diode pair limits the maximum voltage to a set value, which is determined
by the diodes used, across the capacitor in either direction. As this circuit has a
capacitor, the nonlinearity has memory and therefore the input–output relationship
has to be the approximated by replacing this capacitor with an open circuit. This
relationship is depicted in Figure 12 with a comparison to the hyperbolic tangent, a
commonly used saturating nonlinear function to model distortion [9].
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Figure 12: Approximation of the input–output relationship of the diode clipper.

The range of the input represents the peak range of this physical model. The
diode clipper is commonly preceded by an non-inverting operational amplifier (not
shown in the schematic in Figure 11). This functions as a linear gain, which in this
instance is a gain of 5.

This circuit can be simulated via the use of an ODE [9]. This ODE can be derived
by using Kirchoff’s laws and the Shockley diode equation:

dVo

dt
= Vi − Vo

RC
− 2Is

C
sinh

(
Vo

ηVt

)
, (15)

where R = 2.2 kΩ and C = 10nF are the component values of the resistor and
capacitor, and Is = 2.52 nA, Vt = 26mV and η = 1.752 are the saturating current,
the thermal voltage and ideality factor related to the diodes, respectively.

3.1.2 Tube Screamer

The Tube Screamer is a popular guitar pedal developed by Ibanez to simulate the
sound of vintage tube amplifiers [51]. It has also been modelled numerous times due
to its popularity, using physical models [10], wave digital filters [15, 52] or with a
black-box mapping function [24]. The circuit diagram of the clipping section of the
Tube Screamer is illustrated in Figure 13.

In this circuit, the diodes limit the voltage across the operational amplifier to
keep it within ideal op-amp conditions. This results in equal voltage at the positive
and negative terminals of the op-amp. For this implementation, the Vbias, which is
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Figure 13: Circuit diagram of the clipping section of the Tube Screamer.

usually incorporated as half of the supply voltage to the op-amp, was ignored as the
op-amp was assumed to have a bipolar power supply.

This circuit can also be simulated using an ODE derived by Kirchoff’s laws and
the Shockley diode equation to produce the following equations:

dV

dt
= I

C2
− V

R2C2
− 2Is

C2
sinh

(
V

ηVt

)
, (16)

where R2 = 51 kΩ + G500 kΩ with G controlling the distortion level and V = Vi−Vo.
The current, I, is calculated in [10] in the s-domain as:

I = Vi
s

R1

(
s+ 1

R1C1

) , (17)

which can be converted to the z-domain via the bilinear transform:

s = 2
Ts

1− z−1

1 + z−1 , (18)

where Ts is the sampling period, defined as the inverse of the sampling rate, to
produce:

I = Vi
b0 + b1z

−1

a0 + a1z−1 , (19)

with

b0 = 2C1, b1 = −2C1 (20)
a0 = Ts + 2R1C1, a1 = Ts − 2R1C1. (21)
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Figure 14: Approximation of the input–output relationship of the Tube Screamer.

Figure 14 shows an approximation of the input–output relationship. In order to
achieve this relationship the system was fed the first quarter of a sine wave, containing
only positive amplitudes and then storing the result. This was repeated for the third
quarter of a sine wave, containing only negative amplitudes. The final result was
obtained by ordering these results to recreate a full distorted sinusoidal output. This
was done due to the differential and the resulting change in direction of the waveform.
The input range is not boosted as the Tube Screamer is not preceded with a linear
gain stage.

3.2 Numerical Methods

Numerical methods use numerical integration to solve equations of the form

dVo

dt
= V̇o = f(t, Vo, Vi), (22)

where Vo is the system state and f(t, Vo, Vi) is a nonlinear function that calculates the
time derivative of the system state depending on the input and the current system
state.

There are two different methodologies to solving these methods: explicit and
implicit. Explicit methods calculate the output solely on the state at previous time
steps. Implicit methods depend on the current state to calculate the output. This
requires an additional iterative solver to compute the ODE if it is nonlinear. The
Newton-Raphson method is the most common solver for this method [9].
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3.2.1 Forward Euler

Forward Euler is a first-order explicit method and is defined as:

Vo[n] = Vo[n− 1] + TsV̇o[n− 1], (23)

where v[n] is the system state at discrete time index n, V̇o[n− 1] is the derivative of
the system state at the previous time index, and Ts is the sampling period, as before.

The equation for the diode clipper (Eq. 15) can be substituted into the above
equation to produce the explicit recursion:

Vo[n] = Vo[n− 1] + Ts

RC
(Vi[n− 1]− Vo[n− 1])− 2TsIs

C
sinh

(
Vo[n− 1]
ηVt

)
. (24)

3.2.2 Trapezoidal Rule

The trapezoidal rule is a second-order implicit method as it uses the average of the
system state derivatives at the current time index n and the previous n− 1. The
trapezoidal rule is given as:

Vo[n] = Vo[n− 1] + Ts

2 (V̇o[n] + V̇o[n− 1]). (25)

Substituting Eq. 15 into the above results in:

Vo[n] = Vo[n− 1] + Ts

2RC (Vi[n] + Vi[n− 1]− Vo[n]− Vo[n− 1])

−IsTs

C

(
sinh

(
Vo[n]
ηVt

)
+ sinh

(
Vo[n− 1]
ηVt

))
.

(26)

3.2.3 Comparison of FE and TR

The two numerical methods were implemented and compared based on the need
for oversampling, the time-domain error and their respective magnitude spectra.
The minimum oversampling requirement to produce an output and the time-domain
result for the methods is shown in Figure 15. The input used for this comparison
was a two-tone sine wave, at frequencies 147Hz and 220Hz at a base sample rate of
Fs = 44100Hz. The time-domain error was computed by using a reference output
created with 32 times oversampling, with the same input signal. The time-domain
error is depicted in Figure 16.
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Figure 15: Time-domain comparison for the diode clipper with a two-tone 147 Hz
and 220 Hz input. Top: Forward Euler. Bottom: Trapezoidal Rule.
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18

Due to stability issues, the minimum oversampling factor required to create
Figure 15 and Figure 16 using the FE method was 3 times oversampling, whereas
none was required when using TR. In Figure 15 there are clear artefacts in the FE
waveform, while the other methods are indistinguishable from one another. However,
in Figure 16 the TR with 8 times oversampling does produce a more accurate result
in comparison to the TR with no oversampling.

The stability of the methods was computed for a high frequency as well. The
input for this test was a single-tone sine wave with a frequency of 10067 Hz and an
input gain of 5. The comparisons in the time-domain are given in Figure 17. The
magnitude spectra results were compared and normalised to a 64 times oversampled
reference. The methods were tested using the same base sample rate of 44100Hz
and the results are given in Figure 18.
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Figure 17: Time-domain waveform comparison for the diode clipper with a 10067
Hz input.

The TR method with no oversampling does not perform as well at higher frequen-
cies at higher gain, evidenced from Figure 17. The FE method requires a minimum
oversampling factor of 24 times to produce a stable result. Comparing the spectra for
the methods in Figure 18 shows that the FE and the TR with no oversampling suffer
from aliasing. The only frequency that should appear in the spectrum modelled is
marked with a red circle in the figures. From this, the TR with 8 times oversampling
was used in all further tests for the diode clipper.

These tests were also performed for the Tube Screamer. It was decided that
the FE method could not produce an accurate result for the circuit. The same
oversampling factor for the TR method in the diode clipper physical model was used
in all further comparisons.
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Figure 18: Magnitude spectra for the diode clipper with a 10067 Hz input.
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4 Comparison of Black-box Models
The black-box models detailed in Section 2 are compared against the physical models
described in Section 3. They are evaluated based on the accuracy of their harmonic
spectra on single and multi-tone inputs with different gains. They are also tested
using two objective evaluation methods to determine their time-domain accuracy.

4.1 Spectra Comparisons

Each method was compared using the following test cases. A single-tone sine wave
with a specific input gain for each model. The Chebyshev and Hammerstein models
had a peak gain for the input of 1, as the models are expected to work with this
gain. For the static nonlinearity the gain of the input was the same as that used for
the input to the system to which the polynomial was fitted to. This was the peak
amplitude for each system, 5 for the diode clipper and 1 for the Tube Screamer. The
Eichas’ parametric model used an input gain of 1, resulting in a peak amplitude of 5
for the diode clipper model. The fundamental frequency, f0, of the sine wave used in
the tests was 220Hz, which is the note A3.

The second test case was a single-tone sine wave but with a different gain. In all
cases the input gain was reduced to 0.5 for the diode clipper and 0.1 for the Tube
Screamer. The fundamental frequency of the sine wave was the same as that of the
first test case.

The third test case was a multi-tone sine wave with the same peak gains used
in the first test case. The frequencies of the sine wave, f0 and f3, were 220Hz and
261Hz, which are notes A3 and C4, creating a minor third. The Eichas’ parametric
model was also tested with a multi-tone sine wave at the same different gain used in
the second test.

For all cases the fundamental frequency of the model and the reference were
normalised to 0 dB. The total number of harmonics, i.e. impulse responses and
kernels, measured was 11 for the Chebyshev and Hammerstein models.

The different test cases were all created with a sample rate of Fs = 44100Hz.
The output of the reference systems were downsampled to this sample rate before
their spectra was calculated.
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4.1.1 Chebyshev Polynomials

The results for the diode clipper and the Tube Screamer are displayed in Figure 19
and Figure 20, respectively.
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Figure 19: Spectra comparisons between the diode clipper and the Chebyshev
polynomial model.

The Chebyshev polynomials exactly match when a single-tone sine wave with the
same gain is used for the diode clipper as depicted in Figure 19a. They also model a
multi-tone sine quite accurately, although in Figure 19c the 7th and 9th harmonics
are several decibels lower than the reference. The model fails once a different gain is
used as observed in Figure 19b.

The multi-tone plot only highlights the multiples of the fundamental, the rest
of the energy plotted is intermodulation components. This is generated via the
distortion and is not aliasing. This is kept consistent for all multi-tone plots presented
throughout.
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Figure 20: Spectra comparisons between the Tube Screamer and the Chebyshev
polynomial model.

When modelling the Tube Screamer, the Chebyshev polynomials are not as
accurate as when modelling the diode clipper. This could be due to the more
complex nonlinearity leading to a loss of information when windowing out the
impulse responses. The single-tone in Figure 20a is accurate with the only noticeable
issue occurring between the 9th and 11th harmonic. Again, the model fails once a
different input gain is used in Figure 20b. The model also does not perform well with
multi-tone inputs, the magnitude of the harmonics are equal for the two frequencies,
which is not the case in Tube Screamer and are also several dB too low. This is most
prevalent at the 9th harmonic in Figure 20c.
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4.1.2 Hammerstein
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(a) Single-tone sine wave (same gain)
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(b) Single-tone sine wave (different gain)
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Figure 21: Spectra comparisons between the diode clipper and the Hammerstein
model.

The single-tone same gain input result for the Hammerstein model in Figure 21a
is nearly identical to that of the Chebyshev model, with only a maximum of 2 dB
difference in a couple harmonics. Surprisingly, the input with a different gain in
Figure 21b produces an accurate result but decays faster after the 7th harmonic than
the reference. The multi-tone input has a similar accuracy with the Hammerstein in
comparison to the Chebyshev model result. The 9th harmonic in Figure 21c is now
accurate but the 7th harmonic still suffers.
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Figure 22: Spectra comparisons between the Tube Screamer and the Hammerstein
model.

The Hammerstein model for the Tube Screamer performs as well as the Chebyshev
model for the single-tone same gain input in Figure 22a. The multi-tone sine wave in
Figure 22c performs slightly better than Figure 20c; however, it does not model the
differing magnitudes of the harmonics of the fundamental frequencies. The different
gain input fails similarly to the Chebyshev polynomial model, which is expected,
in contrast to the Hammerstein diode clipper result. Schmitz and Emcrechts [43]
suggested a potential fix for this by using an amplitude factor function such that the
kernels can be weighted depending on the input gain.
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4.1.3 Static Nonlinearity
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(a) Single-tone sine wave (same gain)
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(b) Single-tone sine wave (different gain)
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Figure 23: Spectra comparisons between the diode clipper and a polynomial of best
fit.

The polynomial of best fit performs just as accurately as the Chebyshev and Ham-
merstein models, for the single-tone same gain input in Figure 23a. It outperforms
those models for the multi-tone input in Figure 23c. This model, however, does not
accurately simulate the magnitude response when using a different gain input, shown
in Figure 23b.
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(a) Single-tone sine wave (same gain)
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(b) Single-tone sine wave (different gain)
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Figure 24: Spectra comparisons between the Tube Screamer and a polynomial of
best fit.

Despite the accuracy of this model for the diode clipper, it fails to model the
high nonlinearity of the Tube Screamer. Increasing the polynomial order did not
do much to improve the accuracy of the model. The polynomial was fitted to the
approximation described in Section 3.1.2 which may explain why this polynomial is
not very accurate, in comparison to the diode clipper polynomial. Another approach
could be to use piecewise polynomials for the central region of the input–output and
then fit ramps to end of the knee points.
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4.1.4 Eichas Parametric Model

In the case of the parametric model, the two different gains were treated as low gain
and high gain.
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(a) Single-tone sine wave (low gain)
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(b) Single-tone sine wave (high gain)
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(c) Multi-tone sine wave (low gain)
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Figure 25: Spectra comparisons between the diode clipper and Eichas’ parametric
model.

Comparing the single-tone sine wave at the different gains in Figure 25a and
Figure 25b indicates that the parametric model for the diode clipper is more accurate
when the distortion is greater. This result is consistent when using a multi-tone
sine wave, as shown in Figure 25c and Figure 25d. However, the intermodulation
components around the 9th-15th harmonics of the frequencies are several dB too low.
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(a) Single-tone sine wave (low gain)
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(b) Single-tone sine wave (high gain)
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(c) Multi-tone sine wave (low gain)
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Figure 26: Spectra comparisons between the Tube Screamer and Eichas’ parametric
model.

The results presented in Figure 26 for the parametric model of the Tube Screamer
suggests that this model is highly accurate at high gains. The high gain inputs in
Figure 26b and Figure 26d follow the same shape of the reference and the largest
difference in magnitude occurs at the 17th harmonic in Figure 26b by about 2-3 dB.
The low gain inputs in Figure 26a and Figure 26c are noticeably less accurate. This is
due to the input signal used to optimise the nonlinear block, as the optimisation was
biased from the higher amplitudes. The prominent even harmonics in the single-tone
inputs could be due to different values for kp and kn which would result in a non-
symmetric input–output relationship. The parametric model models the differing
magnitudes of the harmonics of the two frequencies in both multi-tone plots, which
none of the previous models achieved accurately.
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4.2 Evaluation Scores

The models were also judged by using two different objective measures, the error-
to-signal ratio (ESR) and the correlation coefficient, from [24]. The ESR is the
percentage of error energy of a recorded guitar track played through the model and
the reference system. It is defined as the ratio of error energy to the energy of the
reference,

ESR = Eres

Eref
=

N∑
n=1
|yref[n]− ymodel[n]|2

N∑
n=1
|yref[n]|2

, (27)

where yref[n] and ymodel[n] are the outputs to the reference system and the model,
respectively and N is the length of the guitar track in samples. The closer the ESR
is to 0 the more accurate the model.

The correlation coefficient is a measure of the linear dependence of two variables,

ρyref,ymodel = cov(yref, ymodel)
σyrefσymodel

, (28)

where cov is the covariance between the reference and model output, σyref and σymodel

are the standard deviations of the reference and model output, respectively. When
ρ = 1 the variables follow the same movement. When ρ = −1 the variables are
exactly inverse of one another, i.e. when there is an increase in one, there is a
decrease in the other. Finally, for ρ = 0 there is no relation between the variables.

The low gain for the diode clipper was 0.5 and the Tube screamer was 0.1. The
high gain for the diode clipper was 5 and the Tube Screamer was 1, however, the
high gain used for the Chebyshev and Hammerstein models was 1 for both systems.
This is because these models performed best with this gain and are designed for this
input gain.

Table 1: Objective results for modelling the diode clipper with a low gain input.

(a) Rock riff

Model ESR ρ

Chebyshev 3.2939× 108 0.9989
Hammerstein 3.8347× 1010 0.8876
Polynomial 0.0950 0.9999
Parametric 0.0110 0.9949

(b) Jazz riff

Model ESR ρ

Chebyshev 3.2335× 108 0.9981
Hammerstein 5.9874× 1010 0.9422
Polynomial 0.0943 1.0000
Parametric 0.0145 0.9927

The ESR results for the diode clipper in Table 1a and Table 1b suggests that the
parametric model is the most accurate result, followed by the polynomial of best fit.
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The ρ for the polynomial of best fit is an almost exact match. The high ESR values
for the Chebyshev and Hammerstein models are due to summation of the harmonics
without normalisation. The correlation coefficients for the models are unaffected by
normalisation and from this the Chebyshev model performs quite well.

Table 2: Objective results for modelling the Tube Screamer with a low gain input.

(a) Rock riff

Model ESR ρ

Chebyshev 8.1963× 105 0.5959
Hammerstein 2.1439× 1027 0.5171
Polynomial 0.8258 0.8348
Parametric 0.1037 0.9954

(b) Jazz riff

Model ESR ρ

Chebyshev 3.4050× 105 0.6845
Hammerstein 8.6936× 1026 0.5498
Polynomial 0.8714 0.8463
Parametric 0.1153 0.9947

For the Tube Screamer results in Table 2 the parametric model performs the
best with lowest ESR and highest correlation coefficient. The polynomial does not
perform as well for the Tube Screamer as it did for the diode clipper. The Chebyshev
model, while having a smaller ESR than the diode clipper results, the correlation
coefficient is lower. The results for the Hammerstein model indicate it is highly
inaccurate.

Table 3: Objective results for modelling the diode clipper with a high gain input.

(a) Rock riff

Model ESR ρ

Chebyshev 1.3948× 108 0.9691
Hammerstein 5.0124× 108 0.9734
Polynomial 0.0450 0.9877
Parametric 0.0178 0.9914

(b) Jazz riff

Model ESR ρ

Chebyshev 1.1241× 108 0.9843
Hammerstein 5.5604× 108 0.9733
Polynomial 0.0675 0.9889
Parametric 0.0143 0.9942

Table 4: Objective results for modelling the Tube Screamer with a high gain input.

(a) Rock riff

Model ESR ρ

Chebyshev 2.2739× 108 0.6506
Hammerstein 1.0560× 109 0.6717
Polynomial 0.4652 0.8095
Parametric 0.1291 0.9730

(b) Jazz riff

Model ESR ρ

Chebyshev 8.5605× 107 0.6344
Hammerstein 5.9814× 108 0.6684
Polynomial 0.5659 0.8003
Parametric 0.1079 0.9906



31

The ESR results in Table 3, again, show that the parametric model is the most
accurate model for the diode clipper, followed by the polynomial of best fit. This is
reinforced by the correlation coefficient results. The Chebyshev and Hammerstein
models perform similarly to the low gain inputs.

The models do not perform as well for the Tube Screamer at the higher gain,
as indicated in Table 4. For both riffs, the parametric model performs the best.
Comparing the results from the rock to jazz riff for the parametric model suggests that
this model performs better for slower inputs. Again, the Chebyshev and Hammerstein
models are highly inaccurate.
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5 Proposed Method
Following from the results in Section 4, Eichas’ parametric model was deemed the
most accurate black-box model due to the close match in spectral content and the
flexibility regarding input gain. The purpose of the proposed method is to maintain
this accuracy but reduce the computational time of the parametric model. This
model was specifically designed to simulate the Tube Screamer.

5.1 Novel Model

The proposed method changes the structure of Eichas’ parametric model shown in
Figure 7 of Section 2.6. This new method consists of a high-pass filter, followed by
the nonlinearity block, then a low-pass filter. The block diagram for this novel model
is illustrated in Figure 27.

Figure 27: Block diagram for the proposed model.

The high-pass filter used was the DC Blocker and the low-pass was an FIR filter,
indicated by HDC(z) and HLP(z), respectively. Figure 28 gives a comparison for the
magnitude response of the filters to the linear response of the Tube Screamer.
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Figure 28: Magnitude response of the novel method filters against the linear response
of the Tube Screamer.
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5.1.1 DC Blocker

The DC blocker was used to model the steep high-pass effect of the linear response
of the Tube Screamer. The transfer function for the DC blocker is defined as [53]:

HDC(z) = 1 + p

2
1− z−1

1− pz−1 , (29)

where p is the real pole of the filter (0 < p < 1). The pole is determined by the
cut-off frequency, fc, and the sampling rate:

p = tan
(
π

4 −
πfc

Fs

)
. (30)

The first term in Eq. 29 restricts the filter such that it does not produce a positive
gain on the signal. The cut-off frequency was determined as the low frequency −3 dB
point of the Tube Screamer linear response.

5.1.2 Low-Pass FIR Filter

The low-pass FIR filter was designed as a fourth-order filter with a cut-off frequency
determined by the −3 dB point to the high frequencies from the Tube Screamer
linear response. The transfer function for this filter is:

HLP = b0 + b1z
−1 + b2z

−2 + b1z
−3 + b0z

−4. (31)

5.2 Results

The results for the model were produced using the novel model described above with
the nonlinear block optimised for results of the Eichas’ parametric model in Section 4.
The spectra of the model was compared against the Tube Screamer. The model
was evaluated using the objective measures with comparisons to Eichas’ parametric
model. The final test was to determine the computation time of each model.

5.2.1 Spectra Comparisons

This method was tested using the same test cases as in Section 4.1 for Eichas’
parametric model. The results from the test cases are displayed in Figure 29.
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Figure 29: Spectra comparisons between the Tube Screamer and the proposed
model.

The results above show that model is accurate and produces extremely similar
plots to the Eichas parametric model, in Figure 26 of Section 4.1.4. The novel model
suffers from the same issues as the Eichas’ model due to using the same optimised
nonlinear block.

5.2.2 Evaluation Scores

The novel model was also tested for the ESR and correlation coefficient. In the
following tables the Eichas’ paramteric model is referred to as Eichas’. The inputs to
test the models were the same guitar recordings as used in Section 4.2, using the
same low gain and high gain cases.
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Table 5: Objective results comparisons for Eichas’ and the proposed method for
modelling the Tube Screamer with a low gain input.

(a) Rock riff

Model ESR ρ

Eichas’ 0.1037 0.9954
Proposed 0.1432 0.9666

(b) Jazz riff

Model ESR ρ

Eichas’ 0.1153 0.9947
Proposed 0.1552 0.9653

Table 6: Objective results comparisons for Eichas’ and the proposed method for
modelling the Tube Screamer with a high gain input.

(a) Rock riff

Model ESR ρ

Eichas’ 0.1291 0.9730
Proposed 0.1731 0.9424

(b) Jazz riff

Model ESR ρ

Eichas’ 0.1079 0.9906
Proposed 0.1691 0.9477

The results for the proposed model with a low gain input in Table 5 show that it
is only slightly less accurate than Eichas’ model. The difference in ESR is +4% and
for the correlation coefficient is −0.029. This is also held true for the high gain results
in Table 6; however, the range of difference has increased. The ESR now differs in
the range of +4%–6% and the correlation coefficient increased to −0.030–0.043.

5.2.3 Computational Costs

The novel method and Eichas’ parametric model were also compared on the number
of multiplications, additions, number of states, and the average runtime of the filters
for each model. The tests were ran on a Windows 8.1 64-bit operating system with
an Intel Core i7 @ 2.80GHz laptop CPU and a NVIDIA GeForce GTX 860M. The
results of these tests are presented in Table 7.

Table 7: Number of operations per output sample.

Eichas’ Proposed
Multiplications 2185 7
Additions 2184 6
States 2184 5

The number of multiplications, additions and states are drastically reduced using
the proposed method in comparison to Eichas’ model. The proposed model requires
312 times less multiplications, 364 times less additions, and 436 times less states.
This is equivalent to a 99% reduction in multiplications, additions and states. It
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should be noted that the length of the impulse response used for the Eichas’ model
is not fixed. It is possible to reduce this number; however, in doing so would also
reduce the frequency resolution of the filter.

The average runtime was calculated by running the filtering process of each model
1000 times and taking the average of the time for each run. Four different input
signals were used to test the runtime. The first was a one-second long impulse and
the second was single-tone sine wave of the same length. The final two inputs were
recordings of different guitar riffs, one at a length 4 seconds and another at a length
of 20 seconds. The sampling rate for all inputs was Fs = 44100Hz. Table 8 shows
the average runtimes for these results.

Table 8: Runtime of the models in milliseconds.

Eichas’ Proposed
Impulse 17.6 ms 4.18 ms
Sine 9.45 ms 0.416 ms
Short riff 46.7 ms 2.19 ms
Long riff 249 ms 9.99 ms

The runtime for the novel model shows a significant reduction in each input tested
in comparison to Eichas’ model. The impulse test is interesting as it required longer
than a single-tone sine wave, despite being the same length. The reduction in time
for the impulse was 76%, while all the musical inputs saw a reduction in 95%.
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6 Conclusion
This Thesis presented various black-box modelling techniques. The definition and
implementation of the models were detailed. The models were compared based on
their spectral accuracy, their error in time and their correlation with respect to the
reference. From these results it was determined that the Eichas’ parametric model
performed the best.

A new method was proposed that was based on the previous parametric model.
This model restructured the filtering and nonlinearity stages. It also used filters to
simulate the linear response of the nonlinear audio system, in an effort to reduce
the order of the filtering stage. The model performed with a similar accuracy to the
Eichas model, but was significantly faster. The runtime required was reduced by
95% and the number of operations was reduced by 99%.

For future developments on black-box modelling, one approach would be to place
the nonlinearity in a feedback loop. This would more closely follow the coupling of
the filtering and nonlinear behaviour of a real audio circuit. This was attempted by
using the nonlinear block from Eichas’ parametric model and creating a filter that
could also be parametrised. This resulted in an unstable filter while optimising and
requires further research.

Another possible advancement could be to replace the LTI filter of Eichas’ para-
metric model, with a linear time-varying (LTV) filter. An LTV filter which effectively
changes the cut-off frequency of the filter, depending on the input, would match the
warping of the frequencies of highly nonlinear circuits. This was another method
that was attempted but the effective cut-off frequencies of the filters changed too
dramatically. This resulted in a flat frequency response at high gains, despite the
harmonic spectra results showing some band-pass effect should occur. This was due
to following the power spectrum of the Tube Screamer, which may not be an accurate
method for analysing the warping effect of the distortion pedal.

Evaluating the models via user perception and interaction would be beneficial.
Performing listening tests to determine what humans perceive as the most accurate
model and to identify the most important elements to simulate accurately in the
models. Another possible evaluation would be to have guitarists play with the
models. This could help to discover the model that has the closest “musical feel” to
the physical pedals.
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