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Group theoretical arguments seem to indicate the discrete symmetry S4 as the minimal flavor symmetry

compatible with tribimaximal neutrino mixing. We prove in a model-independent way that indeed S4 can

realize exact tribimaximal mixing through different symmetry breaking patterns. We present two models

in which lepton tribimaximal mixing is realized in different ways and for each one we discuss the

superpotential that leads to the correct breaking of the flavor symmetry.
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I. INTRODUCTION

Harrison, Perkins, and Scott (HPS) [1] proposed the so-
called tribimaximal mixing matrix
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This matrix keeps in surprising agreement with experimen-
tal data [2]. Lots of theoretical models have been done to
explain the mixing matrix of Eq. (1) by means of non-
Abelian flavor symmetry, such as S3 [3–13], A4 [14–29], T

0
[30–34], S4 [35–39], and � (27) [40–43]. The non-Abelian
discrete groups have irreducible representations of dimen-
sion bigger than one [44]. The most interesting case arises
when the group contains a triplet as irreducible represen-
tation, allowing one to embed the observed three genera-
tions of fermions.

Let us consider a group G and one of its subgroups G0.
Then an irreducible representation r of G decomposes into
the irreducible representations ofG0 as r ¼ r1 þ r2 þ � � � .
We define Uri

G0 the projector of r into ri and we denote with

UG0 the collection of projectors that decomposes the rep-
resentations of G according to G0.

When a non-Abelian discrete group G is broken to one
of its subgroup G0 the projector UG0 that decomposes the
representations of G according to G0 can be fixed and are
completely model independent. This is the case, for ex-
ample, of A4 broken to Z3: the triplet representation of A4 is
sent to the one-dimensional representations of Z3, 1, 1

0, 100.
In fact, if we choose for A4 the basis in which the generator
T of its Z3 subgroup is given by

T ¼
1 0 0
0 0 1
0 1 0

0
@
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the A4 triplet representation decomposes into the singlet
representations of Z3 through the matrix U! defined as

U! ¼ 1ffiffiffi
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On the contrary, the one-dimensional representations of A4

coincide with the corresponding ones of Z3. A good can-
didate to give a tribimaximal (TBM) is a discrete group G
that has a triplet representation, at least two subgroups, G0
that decomposes according to UG0 , and G00 that decom-
poses according to UG00 . It is necessary to have at least two
different subgroups of G to obtain a lepton mixing matrix
different from the identity: if G were broken to the same
subgroup G0 both in the charged lepton and in the neutrino
sector the lepton mixing matrix would be given by Ulep ¼
Uy

G0UG0 ¼ I . On the other hand when G is broken in two

different ways in the charged and neutral lepton sectors,
such misalignment gives large angles in the lepton mixing
matrix.
A priori A4 seems to be a good candidate because it is the

smallest discrete group that contains a triplet as irreducible
representation. Furthermore it has two different subgroups,
Z3 and Z2. However, while the transformation associated to
Z3 is fixed and model independent, the one associated to Z2

is model dependent [45]. A similar analysis done with the
discrete symmetry T0 leads to the same conclusion [30].
This means that A4 and T

0 yield exact or approximate TBM
only assuming a fine-tuning in the parameters of the
Yukawa Lagrangian or a particular model realization. We
mention that by assuming further constraints, also models
based on S3 can yield an approximate TBM, although its
largest irreducible representation is a doublet and not a
triplet.
It has been recently claimed [46] that the minimal flavor

symmetry naturally related to the tribimaximal mixing is
S4, the permutation symmetry of four objects. The author
of [46] proved this through group theoretical arguments
without entering into the details of a concrete model real-
ization. In this paper we reconsidered S4 and its subgroups.
We have found that S4 is able to reproduce TBM following
two different symmetry breaking patterns. We have built
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two different models that realize TBM through the two
patterns dictated by the group analysis considerations.
Finally we discuss the possible superpotential that can
break S4 in the correct way.

II. THEDISCRETE SYMMETRYGROUP S4AS THE
ORIGIN OF TBM

A. The group S4

The discrete group S4 is given by the permutations of
four objects and it is composed of 24 elements. It can be
defined by two generators S and T that satisfy

S4 ¼ T3 ¼ 1; ST2S ¼ T: (4)

The 24 elements of S4 belong to five classes

C1: I;

C2: S2; TS2T2; S2TS2T2;

C3: T; T2; S2T; S2T2; STST2; STS; S2TS2; S3TS;

C4: ST2; T2S; TST; TSTS2; STS2; S2TS;

C5: S; TST2; ST; TS; S3; S3T2: (5)

The elements of C2;4 define two different sets of Z2 sub-

groups of S4, the ones of the class C3, a set of Z3 Abelian
discrete symmetries, and those belonging to C5, a set of Z4

Abelian discrete symmetries. The S4 irreducible represen-
tations are two singlets, 11, 12, one doublet, 2, and two
triplets, 31 and 32. We adopt the following basis:
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for the doublet representation and
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for the triplet representations. Clearly the generators
ðSþ; TÞ and ðS�; TÞ define the two triplet representations
31, 32 respectively. All the product rules can be straight-
forwardly derived. We refer the reader to the product rules
reported in [36].

B. S4 symmetry breaking patterns: generic case

We have seen in the introduction that given a discrete
non-Abelian group G a predictive lepton mixing matrix
may be obtained ifG is broken to one of its subgroups, with
the subgroup preserved in the charged lepton sector differ-
ent from the subgroup preserved in the neutrino sector.

We disregard therefore the case when S4 is completely
broken in one of the two sectors. At the same time, if the
left-handed leptons transform nontrivially under S4, the
case of S4 unbroken in one sector is ruled out. Indeed in
this case we could choose for lepton families the S4 triplet

representation or the singlet plus doublet representations.
With these choices the requirement of unbroken S4 would
lead to a diagonal mass matrix with at least two degenerate
states—namely the doublet.
As consequence if S4 is broken to its subgroupsG

0 in the
charged lepton sector, in the neutrino sector it has to be
broken to another subgroup G00 � G0. The couple ðG0; G00Þ
identifies a possible symmetry breaking pattern. In this
notation the lepton mixing matrix is given by

Ulep ¼ Uy
l U� ¼ Uy

G0UG00 ; (8)

with UG0 , UG00 being the projectors that decompose the
representations of S4 into the representations of G0, G00
respectively.
S4 contains a non-Abelian subgroup S3, the permutation

group of three objects composed by six elements. The
elements of S4 that belong to S3 correspond to C1, T, and
T2 of C3 and TSTS2, STS2, S2TS of C4. Furthermore S4
contains the Abelian subgroups Z2, Z3, Z4 corresponding
to the elements of the classes C2;4, C3, and C5 respectively.
The only representation that breaks S4 to S3 is the triplet 31.
The reason is the following. The six elements that define S3
belonging to S4 are I, T, T

2, TSTS2, STS2, S2TS, where S
and T are defined in Eq. (7). When a triplet �1 � 31
develops vacuum expectation value (VEV) as (1, 1, 1),
all the S3 elements above are preserved. On the contrary,
when a triplet �2 � 32 develops VEVas (1, 1, 1), only the
three elements that define Z3 are preserved—I, T, T2—
while TSTS2, STS2, S2TS built according to Eq. (7) are
broken.
The representations of S3 are two singlet, 11 and 12, and

a doublet, 2. In general if S4 is broken to S3 the represen-
tations of S4 would transform under S3 according to

31 ! 11 þ 2; 32 ! 12 þ 2; 2 ! 2;

11 ! 11; 12 ! 12:
(9)

When S4 is broken to S3, a triplet of S4, F�
ðF1; F2; F3Þ � 31, will decompose under S3 as a singlet
plus a doublet Fð31Þ ! c 0ð11Þ þ c ð2Þ.
The eigenvector that identifies the singlet is given by

1ffiffiffi
3

p ð1; 1; 1Þ ! c 0 ¼ 1ffiffiffi
3

p ðF1 þ F2 þ F3Þ:

Since S3 is not broken the doublet components are degen-
erate and the corresponding eigenvectors are identified up
to an arbitrary rotation. This arbitrariness reflects the arbi-
trary freedom we have in fixing the doublet basis in an
independent way with respect to the triplet basis. Indeed in
the basis we have chosen the doublet reads as

c ¼ ðF3 � F2Þ=
ffiffiffi
2

p
ð2F1 � F2 � F3Þ=

ffiffiffi
6

p
 !

; (10)

and therefore we can rewrite
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where � is the arbitrary rotation in the doublet component
space c � ðc 1; c 2Þ and where we have assumed that the
second eigenvector corresponds to the singlet. The reason
for the choice of this particular basis is very simple: in the
limit in which � goes to zero we recover the TBM matrix.
However � is undetermined as long as S3 is unbroken. In
the basis given by Eq. (11) the generic mass matrix for
�� ðc 1; c 0; c 2Þ is given by

M� ¼
x 0 0
0 y 0
0 0 x

0
@

1
A; (12)

with c 1 and c 2 degenerate as expected. If we now assume
that S3 is broken only in the doublet subspaceM� becomes

M� ¼
x1 0 x3
0 y 0
x3 0 x2

0
@

1
A: (13)

It is clear that if x3 ¼ 0, then � ¼ 0 and we are left with
three nondegenerate eigenstates and the relation between
the original S4 triplet and the mass eigenstates is given by

F ¼ UTB ��: (14)

x3 ¼ 0 is realized by requiring that S3 in the doublet sub-
space is broken to Z2 identified in the specific basis we
have chosen by the S generator.1

C. S4 symmetry breaking patterns: realizing exact
TBM

We now assume that F� Lwith L being the left-handed
lepton doublets and for the moment we leave undetermined
the transformation properties under S4 of the electroweak
SUð2Þ singlets.

The first case we consider is the symmetry breaking
pattern ðS3; G00Þ, that means that we start by breaking S4
into S3 in the charged lepton sector while we still do not
know which is its corresponding S4 subgroup in the neu-
trino sector. Applying the general results obtained in

Sec. II B we conclude that MlM
y
l is diagonalized by US3

given by
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that would lead to the wrong relation me ¼ m�. If we now
break this degeneracy as sketched in Sec. II B, from
Eq. (14) we would obtain Ul ¼ UTBM and Ulep ¼
UT

TBMU�.
To cure this problem we could require that the neutrino

mass matrix were diagonalized by UTBMUTBM in order to
reproduce the TBM through Ulep ¼ UT

TBMUTBMUTBM ¼
UTBM. However there is no G00 subgroup of S4 that yields
UG00 ¼ UTBMUTBM and therefore exact TBM cannot be
obtained according to Eq. (8). In fact the most general
neutrino Majorana mass matrix diagonalized by
UTBMUTBM should take the following form:

ðUTBMUTBMÞTm�UTBMUTBM

¼ m
diag
� ! m�

�
a b c

b aþ �1bþ �1c aþ �2bþ �2c

c aþ �2bþ �2c aþ �3bþ �3c

0
BB@

1
CCA; (16)

where �1;2;3 and �1;2;3 are fixed coefficients. By applying

all the elements of S4, excluding the identity, according to
GTm�Gwe discover that for all of them it holdsGTm�G �
m�. This means there is no subgroup of S4 that leads to
Eq. (16) in the basis we have chosen.
On the other hand we could require one to break the

degeneracy me ¼ m� breaking S3 into Z2 not only in the
doublet subspace but also in the singlet one. This would

mean that MlM
y
l after the US3 rotation and the breaking

S3 ! Z2 would read as

x1 0 0
0 y x3
0 x3 x2

0
@

1
A: (17)

It is clear that in this case the final Ul would depend on
the mass parameters, and therefore the correct lepton mix-
ing could be obtained only through a fit. We conclude that
the symmetry breaking pattern with S4 broken into S3 in
the charged lepton sector is ruled out.
We now analyze what happens considering the breaking

pattern ðZ3; G
00Þ. As in the previous case the subgroup G00,

corresponding to the neutrino sector, is undetermined. As
already said in S4 the breaking into Z3 is realized when a
triplet 32 develops a VEV in the direction (1, 1, 1) We
expect that if we break S4 into Z3 in the charged lepton
sector the charged lepton mixing matrix will send the S4
triplet ðL1; L2; L3Þ in the Z3 eigenstates, 1, 10, 100. Indeed
the mixing matrix responsible for this rotation is the U!

1From the point of view of model realization the assumption
that S3 is broken only in the doublet component space is not
different from assuming that S4 is broken to different subgroups
in the charged lepton sector and in the neutrino one. Indeed we
will see in Sec. III B how singlet and doublet sectors can be
easily separated.
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defined in Eq. (3). Given U! the correct TBM can be
reproduced if the UG00 of Eq. (8) is given by

U� ¼
0 1 0
1ffiffi
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B@
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or in other words if the neutrino mass matrix m� is diago-
nalized by U� and it has the following form:

m� ¼
a 0 0
0 c b
0 b c

0
@

1
A: (19)

The matrix form of Eq. (19) is recovered by requiring the
invariance of m� under the G00 ¼ Z2 � Z2 subgroup of S4
associated to the element TST of the class C4 and to the
element S2 of the class C2 respectively. This breaking
pattern corresponds to the usual one used in models based
on A4—where the breaking is given by A4 ! Z2. However
we stress that in the context of S4 we have obtained TBM
only according to group theory considerations.

If we consider now the case ðZ2; G
00Þwe discover that S4

behaves exactly as A4 and exact TBM cannot be recovered.
For a detailed analysis we refer the reader to the appendix
of [45].

In the case ðZ4; G
00Þ we found that the charged lepton

mass matrix MlM
y
l has a maximal angle. Taking, for

example, the Z4 associated to the S generators of S4 we
have that

STðMlM
y
l ÞS ¼ ðMlM

y
l Þ ! MlM

y
l ¼

x1 0 0
0 x2 ix3
0 �ix3 x2

0
@

1
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(20)

that gives rise to a maximal �l23 and three distinct eigen-

values (x1, x2 � x3, x2 þ x3). In this case exact TBM
would be recovered if U� would be given by a rotation in
the plane �12 characterized by tan�212 ¼ 1=2 or in other
words if m� would present the following form:

m� ¼
a b 0
b aþ b=

ffiffiffi
2

p
0

0 0 c

0
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1
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However it is easy to check that in the basis we are
considering there is no G0 subgroup of S4 that is left
invariant by a m� of the form given in Eq. (21).
Therefore we conclude that even the breaking of S4 into
Z4 in the charged lepton sector does not lead to exact TBM.

So far we have considered all the possible cases in which
the subgroup fixed in the charged lepton sector gives rise to
a nondiagonal structure to the charged lepton mass matrix
Ml. We could ask if there is any way to realize a diagonal
Ml with three different mass eigenvalues. Indeed this is
easily realized breaking S4 to Z2 � Z2 corresponding to the
elements S2 and T2S2T of the class C2. It is obvious that if

the charged lepton mass matrix is diagonal all the mixing
structure arises by the neutrino sector. Therefore the last
symmetry breaking pattern we are going to consider is
(Z2 � Z2, S3) that means that we break S4 into S3 in the
neutrino sector and then S3 into Z2 to have three non-
degenerate mass eigenstates, as we have seen in the generic
discussion in sec. II B that leaded to Eq. (14).
Contrary to what happened in the charged lepton sector,

the breaking pattern S4 ! S3 ! Z2 in the neutrino sector
leads to exact TBM. Indeed from Eqs. (11)–(14) we have
that Ulep ¼ UTBM being the charged lepton mass matrix

diagonal.
In conclusion of this first model-independent part, we

have seen that on the basis of theoretical considerations
based on the subgroups of S4, the flavor symmetry S4 has
two symmetry breaking patterns giving exact TBM in the
lepton sector. In the next section we will present a model
realization for each breaking pattern. In the last section we
build the corresponding superpotential responsible for the
correct S4 symmetry breaking patterns.

III. MODEL REALIZATION

In the standard model (SM), the most general way to
introduce Majorana neutrino mass terms is by means of
five-dimension Weinberg operators. These operators could
arise from type-I as well as type-II or type-III seesaw
mechanism. The first mechanism is based on the exchange
of a heavy fermion SUð2Þ singlet. In the second mechanism
the neutrino Majorana mass term arises from the exchange
of SUð2Þ Higgs triplet while in the third mechanism the
heavy particle integrated out is an isotriplet fermion. In
principle using an effective operator approach we should
consider all the mechanisms together. In fact ultraviolet
realizations, like minimal SOð10Þ grand unified theory
(GUT) models, give rise for examples both to type-I and
type-II contributions. Other nonminimal GUT scenarios
could give rise to the type-III contribution as well. On
the other hand we lack experimental motivations to extend
the SM both with right-handed neutrinos, SUð2Þ scalar
triplets, and SUð2Þ fermion triplets and therefore models
with just one seesaw type contribution are allowed. Below
we will study two models with, respectively, type-II and
type-I plus type-II seesaw. As we will see in Sec. III B in
the second model we present, the only type-I contribution
arising by a S4 doublet of right-handed neutrinos cannot fit
the correct �m2

sol. Therefore a further contribution is

needed to the neutrino masses and in the model studied
this is obtained from type-II seesaw. From a point of view
of model realization, type-III seesaw is very similar to the
type-I, so our model can be equivalently described making
use of type-III plus type-II seesaw. For simplicity we have
chosen the case with type-I plus type-II seesaw without
entering into the details of the type-III version. It is worth
emphasizing that type-I and type-III realizations present
different phenomenological implications, whose study
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goes beyond the scope of this paper and could be studied
elsewhere.

A. Model I: S4 ! Z3 & S4 ! Z2

The first model we consider reproduces TBM through
the breaking of S4 into Z3 and Z2 in the charged lepton and
neutrino sector, respectively. We assume our model to be
supersymmetric. Matter and scalar supermultiplets are re-
ported in Table I. The scalar supermultiplets charged under
S4, that in the following we will identify as flavons, are
electroweak SUð2Þ �Uð1Þ singlets. Therefore the Yukawa
superpotentialW Y of Eq. (22) includes effective operators
of dimension 5.� is the cutoff of the model and an extra Z5

symmetry has been introduced to separate the charged
lepton sector from the neutrino one.

In Table I we have omitted the supermultiplets Ĥu and
�̂�, doublet and triplet of SUð2Þ, respectively, necessary to
give mass to the up-quarks and to cancel anomalies in a
realistic model.

The full leading order S4 � Z5 Yukawa superpotential
W Y is given by

W Y ¼ 1

�
y0ðL̂ÊcÞ1�̂Ĥd þ 1

�
ysðL̂ÊcÞ31�̂1Ĥ

d

þ 1

�
yaðL̂ÊcÞ32�̂2Ĥ

d þ y�1ðL̂ L̂Þ1�̂

þ 1

�
y�2ðL̂ L̂Þ31�̂ �̂ : (22)

When the S4 triplet and doublet flavons align as

h�1i � h�2i � ð1; 1; 1Þ h�i � ð1; 0; 0Þ; (23)

the charged lepton and neutrino mass matrices present the
usual forms

Ml ¼
h0 h1 h2
h2 h0 h1
h1 h2 h0

0
@

1
A m� ¼

a 0 0
0 a b
0 b a

0
@

1
A (24)

that satisfy

U!MlU
y
! ¼ Mdiag

l ; UT
�m�U� ¼ mdiag

� ; (25)

with U! and U� given in Eq. (3) and (18) respectively.
TBM is obtained as usual by UTB ¼ U!U�. The mass
eigenvalues for the charged lepton are given by

me ¼ h0 þ h1 þ h2; m� ¼ h0 þ h1!
2 þ h2!;

m� ¼ h0 þ h1!þ h2!
2;

(26)

and for the neutrino by (aþ b, a, b� aÞ). By assuming
that the flavon VEVs are of order �	2� with 	 the
Cabibbo angle, the deviations from TBM induced by the
next-to-leading order corrections to the Yukawa superpo-
tential slightly modify lepton mixing keeping it still in
agreement with neutrino data. Notice that the VEV align-
ments

h�1i � h�2i � ð1; 1; 1Þ (27)

preserve the Z3 subgroup of S4 associated to the element T
because �2 � 32—as we have already said �1 � 31 alone
with VEValignment (1, 1, 1) preserves the S3 subgroup of
S4, while the 32 triplet representation does not. On the
contrary the VEV alignments

h’i � ð0; 1Þ h�i � ð1; 0; 0Þ; (28)

preserve the Z2 � Z2, where the first Z2 is associated to the
element TST while the second Z2 to the element S2 that in
the doublet and triplet representation reads, respectively, as

TST ¼ �1 0
0 1

� �
; TST ¼

1 0 0
0 0 1
0 1 0

0
@

1
A (29)

S2 ¼ 1 0
0 1

� �
; S2 ¼

1 0 0
0 �1 0
0 0 �1

0
@

1
A: (30)

B. Model II: S4 ! Z2 � Z2 and S4 ! S3

The second model we describe realizes TBM through
the sequential breaking of S4 into S3 and then into Z2 in the
neutrino sector and the breaking of S4 into two different
Z2 � Z2 in the charged lepton sector. The step through S3
is crucial: if we broke S4 directly into Z2 in the neutrino
sector we would find a generic neutrino mass matrix�� �
invariant not diagonalized by TBM. On the contrary, in the
model that we present, the step through S3 leads to a
neutrino mass matrix m� which is �� � invariant and
satisfies the relation m�

11 ¼ m�
22 þm�

23 �m�
13 that ensures

TBM diagonalization. We will see that the key ingredient
in building the correct m� is the introduction of the right-
handed neutrinos transforming as a doublet of S4. The
reason is very simple. Recovering Eqs. (12) and (13) in
Sec. II Bwe have that the neutrino mass matrix obtained
when S4 is broken to S3 has to be given by

m�
S3
�

x 0 0
0 y 0
0 0 x

0
@

1
A; (31)

and then when S3 is broken to Z2 only in the doublet
subspace m�

S3
becomes

TABLE I. Matter and scalar content of model I. The lepton
mixing matrix is TBM.

L̂ Êc Ĥd �̂ �̂ �̂1 �̂2 �̂

SUð2Þ 2 1 2 3 1 1 1 1

S4 31 31 1 1 1 31 32 31
Z5 1 !4

5 1 1 !5 !5 !5 1
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m�
diag ¼

x 0 0
0 y 0
0 0 xþ z

0
@

1
A: (32)

If we now write m� �UTBMm
�
diagU

T
TBM we see that the z

contribution has to have the following structure:

0 0 0
0 z=2 �z=2
0 �z=2 z=2

0
@

1
A� z=2

0
1
�1

0
@

1
A � ð0; 1;�1Þ: (33)

In the S4 basis we are working, the vector ð0; 1;�1ÞT can
be obtained through the coupling ð31 � 2HÞ31 with h2Hi �
ð1; 0Þ. This means that the contribution of Eq. (33) may be
obtained by an effective operator

1

�
ðL�Þ31ðL�Þ31 (34)

with L, � transforming under S4 as L� 31 and �� 2.
This effective operator is obtained by integrating out a S4
doublet of right-handed neutrinos. Therefore their intro-
duction in our model realization is crucial.

As in the case of the model presented in Sec. III A we
assume our model to be supersymmetric and the flavon
supermultiplets electroweak singlets. Matter and scalar
supermultiplets are reported in Table II. As done in

Sec. III A we have omitted the supermultiplet �̂�, triplet
of SUð2Þ, necessary to cancel anomalies. Two extra dis-
crete Abelian symmetries, Z3 and Z5, have been introduced
in order to avoid interferences between the sectors.

The full leading order S4 � Z3 � Z5 invariant Yukawa
superpotential is given by

W Y ¼ 1

�
ysðL̂l̂cÞ1�̂Ĥd þ 1

�
ydðL̂l̂cÞ2�̂Ĥd þ y1ðL̂ L̂Þ1�̂

þ 1

�
y2ðL̂ �̂Þ2N̂cĤu þMdN̂

cN̂c þ ~yN’̂N̂
cN̂c;

(35)

where as usual � is the cutoff of the model and all the
Yukawa terms are of order 4 with the exception of the ones
involving right-handed neutrinos. We assume that the fla-
vons � and ’, triplet and doublet under S4 respectively,
align as

h�i � ð1; 1; 1Þ h’i � ð0; 1Þ: (36)

The VEV h�i preserves S3 as has been already discussed in
Sec. II B. The VEV h’i preserves the S generators of S3
that coincides with the S generator of S4 of the doublet
representation—Eq. (6).
The doublet � does not align and develops VEV as

h�i � ðv1; v2Þ—this means that S4 is broken to Z2 � Z2

corresponding to the elements S2 and TS2T2 of C2 that in
the 31 triplet representation read as

S2 ¼
1 0 0
0 �1 0
0 0 �1

0
@

1
A; TS2T2 ¼

�1 0 0
0 1 0
0 0 �1

0
@

1
A:
(37)

For the charged lepton sector we have

Ml ¼ 1

�
vd

y0sv� � 2y00dv
�
2 0 0

0 y0sv� þ y0dv
�
1 þ y00dv

�
2 0

0 0 y0sv� � y0dv
�
1 þ y00dv

�
2

0
B@

1
CA; (38)

with v� ¼ h�i, v�
1;2 ¼ h�1;2i, vd ¼ hHd

0 i, and the product
factors absorbed in y0s and y0d, y

00
d. The neutrino mass matrix

gets contributions both from type-I and type-II seesaw

m� ¼ mLL �mD � 1

MN

�mT
D; (39)

where mLL ¼ y1v� � I with v� ¼ h�i and

mD ¼ y2
v�

�
vu

0 �2
ffiffiffi
6

p
1=

ffiffiffi
2

p
1=

ffiffiffi
6

p
�1=

ffiffiffi
2

p
1=

ffiffiffi
6

p

0
B@

1
CA;

MN ¼ Md þ V’ 0
0 Md � V’

� �
;

(40)

with vu ¼ hHu
0 i, v�

1;2;3 ¼ v�, and V’ ¼ ~yNh’2i=
ffiffiffi
2

p
. After

the usual seesaw mechanism the Majorana neutrino mass
matrix is given by

TABLE II. Matter and scalar content of model II. The lepton
mixing matrix is TBM.

L̂ l̂c N̂c Ĥu Ĥd �̂ �̂ �̂ �̂ ’̂

SUð2Þ 2 1 1 2 2 3 1 1 1 1

S4 31 31 2 1 1 1 31 1 2 2

Z3 !2 1 1 1 !2 ! ! 1 1 1

Z5 1 !3
5 1 1 1 1 1 !2

5 !2
5 1
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m� ¼
aþ 2

3 b � 1
3 b � 1

3 b� 1
3b aþ 1

6 bþ 1
2 c

1
6b� 1

2 c� 1
6b

1
6b� 1

2 c aþ 1
6 bþ 1

2 c

0
B@

1
CA; (41)

with

a ¼ y1v�; b ¼ �y22

�
v�

�

�
2 ðvuÞ2
Md � V’

;

c ¼ �y22

�
v�

�

�
2 ðvuÞ2
Md þ V’

:

(42)

The neutrino mass matrix m� is diagonalized by TBM and
its eigenvalues are (aþ b, a, aþ c) that can accommodate
experimental neutrino mass splitting data being expressed
in terms of three independent combinations of the parame-
ters of the model. As in the model discussed in Sec. III A by
assuming the flavon VEVs of order �	2� next to leading
order corrections to the Yukawa superpotential produce
small deviations from TBM that are still compatible with
neutrino data.

IV. REALIZING THE CORRECT VACUUM
CONFIGURATIONS IN S4

In the context of a flavor model based on non-Abelian
discrete symmetry the lepton TBM is obtained thanks to
specific alignments of the flavons. The so-called alignment
problem in A4 and T0 has been extensively discussed in
[18,21,25]. Different strategies have been used: the intro-
duction of a soft breaking term of the flavor symmetry [25],
the use of a continuous Uð1ÞR symmetry [21] preserved by
the scalar potential, and the promotion of the model to a
fifth dimension [18]. In the context of S4 in [39] the flavon
superpotential was softly broken to guarantee the desired
vacuum configuration.

In S4 as well as in A4 and T0 it is impossible to build a
flavon superpotential that guarantees the alignments
needed. In the next sections we will show that the extra
discrete Abelian symmetries introduced in Sec. III to sepa-
rate the two lepton sectors are sufficient to give the correct
vacuum configurations at leading order. In general next-to-
leading (NLO) order contributions will shift the vacuum
alignments of an amount of order vi=� with vi the generic

flavon VEV. It has been shown that in order not to destroy
lepton mixing, vi=�� 	2 with 	 being the Cabibbo angle
[18]. However a complete analysis of the NLO corrections
is above the purposes of this work. Our motivation was to
show two different S4 based model realizations that at
leading order (LO) provide exact TBM and to furnish
two examples of the scalar potentials that could give the
correct LO vacuum alignments.

A. Model I: Minimization of the potential

The complete flavor scalar content of the model is given
in Table III. Thus the flavon potential is obtained by the
following part of the full S4 � Z5 superpotential

W Y ¼ M
�
̂ �̂þ	
�
̂ �̂ ’̂þ	���̂ �̂ �̂þ	
�1
̂�̂1�̂1

þ 	
�2
̂�̂2�̂2 þ 	
�12
̂�̂1�̂2 þM��̂ �̂

þM’’̂ ’̂þ	’��̂ �̂ ’̂þ	’’̂ ’̂ ’̂þ	��̂ �̂ �̂ :

(43)

We assume that the flavor symmetry is broken in the
supersymmetry (SUSY) limit and therefore the vacuum
configuration is obtained solving the system @W Y=@fi ¼
0, where fi are the f components of the supermultiplets
entering in Eq. (43) and i runs on all the supermultiplets.
By assuming the general vacuum configuration

h�i ¼ ðv�
1 ; v

�
2 ; v

�
3 Þ; h’i ¼ ðv’

1 ; v
’
2 Þ;

h�1i ¼ ðv�
1 ; v

�
2 ; v

�
3 Þ; h�2i ¼ ðu�1 ; u�2 ; u�3 Þ;

h
i ¼ ðu
1 ; u
2Þ; h�i ¼ ðz�; z�Þ h�i ¼ v�;

(44)

the set of equations is given by

@W=@f�1 ¼ 2ffiffiffi
3

p M�v
�
1 � 2ffiffiffi

3
p 	�’v

�
1 v

’
2 þ 2	�v

�
2 v

�
3 ¼ 0 (45a)

@W=@f�2 ¼ 2ffiffiffi
3

p M�v
�
2 þ 1ffiffiffi

3
p 	�’v

�
2 ðv’

2 þ ffiffiffi
3

p
v’
1 Þ þ 2	�v

�
1 v

�
3 ¼ 0 (45b)

@W=@f�3 ¼ 2ffiffiffi
3

p M�v
�
3 þ 1ffiffiffi

3
p 	�’v

�
3 ðv’

2 � ffiffiffi
3

p
v’
1 Þ þ 2	�v

�
1 v

�
2 ¼ 0 (45c)

TABLE III. Scalar content of model I including the flavons
that contribute to the mass matrix structures and the ones the
drive the correct vacuum alignments, the driving fields.

�̂ �̂1 �̂2 �̂ ’̂ 
̂ �̂

SUð2Þ 1 1 1 1 1 1 1

S4 1 31 32 31 2 2 2

Z5 !5 !5 !5 1 1 !3
5 !2

5
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@W=@f’1 ¼ ffiffiffi
2

p
M’v

’
1 þ 	
�

2
ðu
2z�1 þ u
1z

�
2 Þ þ

	�

2
½ðv�

2 Þ2 � ðv�
3 Þ2� ¼ 0 (45d)

@W@f’2 ¼ ffiffiffi
2

p
M’v

’
2 þ 	
�

2
ðu
1z�1 � u
2z

�
2 Þ þ

	�

2
ffiffiffi
3

p ½�2ðv�
1 Þ2 þ ðv�

2 Þ2 þ ðv�
3 Þ2� ¼ 0 (45e)

@W=@f
�
1 ¼ M
�ffiffiffi

2
p u
1 þ

	
�

2
ðv’

1 u


2 þ v’

2 u


1Þ þ

ffiffiffi
2

p
	��v�z

�
1 ¼ 0 (45f)

@W=@f�2 ¼ M
�ffiffiffi
2

p u
2 þ
	
�

2
ðv’

1 u


1 � v’

2 u


2Þ þ

ffiffiffi
2

p
	��v�z

�
2 ¼ 0 (45g)

@W=@f� ¼ 	��ffiffiffi
2

p ½ðz�1 Þ2 þ ðz�2 Þ2� ¼ 0 (45h)

@W=@f
1 ¼ 1ffiffiffi
2

p M
�z
�
1 þ 1

2
	
�ðz�1v’

2 þ z
�
2 v

’
1 Þ þ

1

2
	
�1½ðv�

2 Þ2 � ðv�
3 Þ2� þ

1

2
	
�2½ðu�2 Þ2 � ðu�3 Þ2�

þ 1

2
ffiffiffi
3

p 	
�12ð2v�
1 u

�
1 � v�

2 u
�
2 � v�

3 u
�
3 Þ ¼ 0 (45i)

@W=@f
2 ¼ 1ffiffiffi
2

p M
�z
�
2 þ 1

2
	
�ðz�1v’

1 � z
�
2 v

’
2 Þ þ

1

2
ffiffiffi
3

p 	
�1½�2ðv�
1 Þ2 þ ðv�

2 Þ2 þ ðv�
3 Þ2�

þ 1

2
ffiffiffi
3

p 	
�2½�2ðu�1 Þ2 þ ðu�2 Þ2 þ ðu�3 Þ2� þ
1

2
	
�12ðv�

2 u
�
2 � v�

3 u
�
3 Þ ¼ 0 (45j)

@W=@f�1

1 ¼ 1ffiffiffi
3

p ð	
�12u
�
1 u



1 � 2	
�1u



2v

�
1 Þ ¼ 0 (45k)

@W=@f�1

2 ¼ u
1

�
	
�1v

�
2 � 1

2
ffiffiffi
3

p 	
�12u
�
2

�
þ u
2

�
	
�1ffiffiffi

3
p v�

2 þ 1

2
	
�12u

�
2

�
¼ 0 (45l)

@W=@f�1

3 ¼ u
1

�
�	
�1v

�
3 � 1

2
ffiffiffi
3

p 	
�12u
�
3

�
þ u
2

�
	
�1ffiffiffi

3
p v�

2 � 1

2
	
�12u

�
2

�
¼ 0 (45m)

@W=@f�2

1 ¼ 1ffiffiffi
3

p ð	
�12v
�
1 u



1 � 2	
�2u



2u

�
1 Þ ¼ 0 (45n)

@W=@f�2

2 ¼ u
1

�
	
�2u

�
2 � 1

2
ffiffiffi
3

p 	
�12v
�
2

�
þ u
2

�
	
�1ffiffiffi

3
p u�2 þ 1

2
	
�12v

�
2

�
¼ 0 (45o)

@W=@f�2

3 ¼ u
1

�
�	
�2u

�
3 � 1

2
ffiffiffi
3

p 	
�12v
�
3

�
þ u
2

�
	
�2ffiffiffi

3
p u�2 � 1

2
	
�12v

�
2

�
¼ 0: (45p)

By assuming not spontaneous breaking of CP, Eq. (45h)
implies z�1;2 ¼ 0. As first consequence we have that a
possible solution of Eqs. (45f) and (45g) and Eqs. (45k)–
(45p) is given by

ðu
1 ; u
2Þ ¼ ð0; 0Þ and v� � 0: (46)

By substituting ðz�1 ; z�2 Þ ¼ ð0; 0Þ, ðu
1 ; u
2Þ ¼ ð0; 0Þ, and
v� � 0 in the equations not yet solved it is easy to check
that a possible solution for Eqs. (45a)–(45e) is given by the
vacuum configuration

ðv’
1 ; v

’
2 Þ ¼ ð0; v’Þ with v’ ¼ M�

	�

ðv�
1 ; v

�
2 ; v

�
3 Þ ¼ ðv�; 0; 0Þ with v� ¼ 61=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M’M�

p
	�

:

(47)

Finally Eqs. (45i) and (45j) are solved by the vacuum
configuration

ðv�
1 ; v

�
2 ; v

�
3 Þ ¼ v�ð1; 1; 1Þ and

ðu�1 ; u�2 ; u�3 Þ ¼ u�ð1; 1; 1Þ:
(48)

The solution found is not unique but can be stabilized once
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we add apposite SUSY soft breaking terms. In Sec. III Awe
have assumed that the flavon VEVs is of order 	2�.
Therefore the next-to-leading order corrections to the
Yukawa superpotential induced by the driving fields are
sufficiently suppressed.

B. Model II: Minimization of the potential

The complete flavor scalar content of the model is given
in Table IV. Thus the flavon potential is obtained by the
following part of the full superpotential

W ¼ 	�

̂ �̂ �̂þ	��̂ �̂ �̂þM

̂ �̂þ	

̂ 
̂ 
̂

þ 	��̂ �̂ �̂þM’’̂ ’̂þ	’’̂ ’̂ ’̂þ	� �̂� �̂ �̂

þ 	� �̂� �̂ �̂ : (49)

By assuming the general vacuum configuration

h�i ¼ ðv�
1 ; v

�
2 ; v

�
3 Þ; h’i ¼ ðv’

1 ; v
’
2 Þ;

h�i ¼ ðv�
1 ; v

�
2 Þ; h
i ¼ v
; h�i ¼ v�

h�i ¼ v�; h ��i ¼ v ��;

(50)

the minimization of the scalar potential obtained in the
SUSY limit gives the following set of equations

@W Y=@f
�
1 ¼ ffiffiffi

2
p

	�
v
v
�
1 þ ffiffiffi

3
p

3	�v
�
2 v

�
3 ¼ 0

@W Y=@f
�
2 ¼ ffiffiffi

2
p

	�
v
v
�
2 þ ffiffiffi

3
p

	�v
�
1 v

�
3 ¼ 0

@W Y=@f
�
3 ¼ ffiffiffi

2
p

	�
v
v
�
3 þ ffiffiffi

3
p

	�v
�
1 v

�
2 ¼ 0

@W Y=@f

 ¼ ffiffiffi

3
p

	�
½ðv�
1 Þ2 þ ðv�

2 Þ2 þ ðv�
3 Þ2�

þM
v� þ 3	
v
2

 ¼ 0

@W Y=@f
� ¼ M
v
 þ 3	�v

2
� ¼ 0

@W Y=@f
’
1 ¼ ffiffiffi

2
p

M’v
’
1 þ 3	’v

’
1 v

’
2 ¼ 0

@W Y=@f
’
2 ¼ ffiffiffi

2
p

M’v
’
2 þ 3

2
	’½ðv’

1 Þ2 � ðv’
2 Þ2� ¼ 0

@W Y=@f
�
1 ¼ ffiffiffi

2
p

	�v
�
1 v �� ¼ 0

@W Y=@f
�
2 ¼ ffiffiffi

2
p

	�v
�
2 v �� ¼ 0

@W Y=@f
� ¼ 2	 ��v�v �� ¼ 0

@W Y=@f
�� ¼ 1ffiffiffi

2
p 	�½ðv�

1 Þ2 þ ðv�
2 Þ2� þ 	 ��v

2
� ¼ 0:

(51)

Discarding for the triplet and the doublets the trivial solu-
tions that do not break S4, the solution of the system of
Eqs. (51) is given by the following vacuum configuration:

v�
1 ¼ v�

2 ¼ v�
3 ¼ v� with v� ¼ ffiffiffi

2
p 	�
	�

	�

v2
�

M


v
 ¼ �3	�

v2
�

M


with v3
� ¼ �M3




	2
�

	2
�ð2

ffiffiffi
3

p
	3
�
 þ 27	
	

2
�Þ

ðv’
1 ; v

’
2 Þ � ð0; 0Þ with

8>>>>>><
>>>>>>:

ð0; 2
ffiffi
2

p
3

M’

	’
Þ

ð
ffiffi
2
3

q
M’

	’
;�

ffiffi
2

p
3

M’

	’
Þ

ð�
ffiffi
2
3

q
M’

	’
;�

ffiffi
2

p
3

M’

	’
Þ

v2
� ¼ � 1ffiffiffi

2
p 	�

	�

½ðv�
1 Þ2 þ ðv�

2 Þ2� � 0 and v �� ¼ 0:

(52)

The three solutions corresponding to h’i are degenerate
and corresponding to the breaking of S3 to its 3 different Z2

subgroups. Through appropriate choices of soft terms that
break the discrete Abelian symmetry Z3 and Z5 and not S4
we can stabilize as absolute minimum the vacuum configu-
ration h’i � ð0; 1Þ.

V. CONCLUSION

In this paper we have discussed the idea that S4 is the
minimal discrete non-Abelian group naturally related to
TBM in the lepton sector. We have shown that S4 can yield
exact TBM according to a general group theory analysis
and we have presented two explicit model realizations of

TABLE IV. Scalar content of model II including both flavon
and the driving field supermultiplets.

�̂ �̂ �̂ ’̂ �̂� 
̂ �̂

SUð2Þ 1 1 1 1 1 1 1

S4 31 1 2 2 1 1 1

Z3 ! 1 1 1 1 ! !2

Z5 1 !2
5 !2

5 1 !5 1 1
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how TBM can be obtained in S4 once the basis of its
generators is fixed. In addition we have provided a detailed
study of the corresponding scalar potentials. The two mod-
els require two triplets with different VEValignments. For
each model we have built a potential that in the SUSY limit
contains the minimum required. The problem of the triplet
and doublet alignments is solved in a more economical
way than in models based on A4 [14–29]. To separate the
charged lepton sector from the neutrino one we have
introduced extra Abelian symmetries. The construction of
the potentials has not required additional symmetries than
such extra Abelian symmetries, but just the addition of
‘‘driving’’ fields that do not enter in the Yukawa part. We
have studied neither the quark sector nor the possibility to

embed such a model in a grand unified theory nor the next
leading order corrections. We leave these subjects for a
future publication. It is worth mentioning that in S4 there is
more freedom to generate the mixing in the quark sector
than in A4. Indeed the doublet irreducible representation
could play an important role as happens in T0 [30].
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