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Abstract

It is proved that the countably infinite power of complete Erdős space Ec is not
homeomorphic to Ec. The method by which this result is obtained consists of showing
that Ec does not contain arbitrarily small closed subsets that are one-dimensional at
every point. This observation also produces solutions to several problems that were
posed by Aarts, Kawamura, Oversteegen and Tymchatyn. In addition, we show that
the original (rational) Erdős space does contain arbitrarily small closed sets that are
one-dimensional at every point.

1. Introduction

In [10] Paul Erdős considered the space E consisting of all vectors in the Hilbert
space �2 all of whose coordinates are rational, and proved that this space is totally
disconnected but not zero-dimensional. The space that is the primary subject of this
paper consists of all vectors in Hilbert space with only irrational coordinates and is
referred to as complete Erdős space Ec.
The spaces E and Ec are important examples of almost zero-dimensional spaces, a

concept that was introduced by Oversteegen and Tymchatyn [13] who proved that
such a space is always at most one-dimensional. We will call a space X almost zero-
dimensional if every point x ∈ X has arbitrarily small neighbourhoods U that can be
written as an intersection of clopen subsets of the space. Note that it is immediate
that almost zero-dimensionality is hereditary and productive. The definition given
here is easier to work with than the definition in [13] where there is the additional
requirement that U have a dense interior. We verify in Section 6 that both definitions
are equivalent.
It is clear that Ec is homeomorphic to its own square (hence E

n
c ≈ Ec for every

n ∈ N). The aim of this paper is to prove that Ec is not homeomorphic to its countably
infinite power E

N

c , that is, Ec is unstable. We accomplish this by showing in Section 3
that Ec does not contain arbitrarily small closed sets that are one-dimensional at
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every point. This result enables us also to prove that several questions in the literat-
ure can be answered negatively. For example, Ec is not the only homogeneous, almost
zero-dimensional, one-dimensional, topologically complete and pulverized space. In
addition, Ec is not homeomorphic to the homeomorphism group of the hairy arc,
and not homeomorphic to the homeomorphism groups of the universal Menger con-
tinua, see Section 4. These observations solve problems that were posed by Aarts,
Kawamura, Oversteegen and Tymchatyn, see [2, 11, 12]. Interestingly, we prove in
Section 5 that the rational Erdős space E does contain arbitrarily small closed sets
that are one-dimensional at every point.

2. Preliminaries

Every topological space in this paper is assumed to be separable and metrizable. We
let Q denote the subspace of rational numbers of the real line R. Let P = R\Q, the
space of irrational numbers, and let I stand for the interval [0, 1].
It is easy to see that Ec is almost zero-dimensional. We shall now present the

argument in a form that we will use in the proof of Theorem 3·1. Consider the
topological vector space RN with the product topology and define the Hilbert norm
from RN to [0,∞] by

‖x‖ =
√∑∞

i=1
x2i

for any x = (x1, x2, . . .) ∈ RN. It is well known that ‖ · ‖ is a lower semicontinuos
(LSC) function on RN, that is, {x ∈ RN : ‖x‖ � M} is closed for every M ∈ [0,∞].
Hilbert space �2 is defined as the vector space {x ∈ RN : ‖x‖ < ∞} equipped with
the topology that is generated by the norm ‖ · ‖.
Let α : �2 → RN be the continuous injection defined by α(x) = x. Put

Ec = {x ∈ �2 : α(x) ∈ PN}

and note that this space is a Gδ-subset of �2 and hence topologically complete. Since
the norm is LSC on RN the closed neighbourhood

Bε(x) = {y ∈ Ec : ‖y − x‖ � ε}

has the property that α(Bε(x)) is closed in PN for each x ∈ Ec and ε > 0. Since PN is
a zero-dimensional space this shows that Ec is almost zero-dimensional.
Erdős’ proof [10] of the one-dimensionality of the original Erdős space applies

also to Ec and shows that the empty set is the only bounded clopen subset of
Ec, see also Dijkstra [8, lemma 1]. This means that if we add a point ∞ to Ec

whose neighbourhoods are the complements of bounded sets then the resulting space
Ec � {∞} is connected. We call a space connectible if it can be imbedded into a
connected space in such a way that the remainder is a singleton. In [11] a totally
disconnected but connectible space is called pulverized. A space is called somewhere
zero-dimensional if it contains a point with a neighbourhood basis consisting of clopen
sets. The following facts are easily verified: a connectible space cannot be somewhere
zero-dimensional, an open subspace of a connectible space is connectible, and the
product of any space with a connectible space is connectible.
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3. Ec and E
N

c

In this section we will show that Ec and E
N

c are not homeomorphic.

Theorem 3·1. Every bounded, closed and nonempty subset of Ec is somewhere zero-
dimensional.

Proof. Let ρ be a complete metric on Ec such that diamρ Ec � 1. Let X be closed
subset of Ec that is bounded and nonempty. Choose an M > 0 such that

X ⊂ B = {x ∈ Ec : ‖x‖ � M}

and note that α(B) is a topologically complete space, being a closed subset of PN. We
construct by induction a sequence of nonempty clopen subsets C0 ⊃ C1 ⊃ · · · of X
such that for each n, diamρ Cn � 2−n.
Put C0 = X. Assume now that Cn has been found. The open set Ec\Cn can be

written as a union of a countable collection of closed balls {Fi : i ∈ N} so that each
α(Fi) is closed in α(Ec), see Section 2. Consequently, α(Cn) is a Gδ-subset of α(B) and
hence α(Cn) is topologically complete. Choose for every x ∈ Cn an ε(x) > 0 such that
U (x) = Cn � Bε(x)(x) has the property diamρ U (x) � 2−n−1. Select a countable set
{xi : i ∈ N} in Cn such that Cn =

⋃∞
i=1 U (xi). Observe that each α(U (xi)) is closed in

α(Cn) because each α(Bε(x)) is closed in PN. By the Baire Category Theorem we have
that some α(U (xi)) has a nonempty interior in α(Cn). Since α(Cn) is zero-dimensional
this means that α(U (xi)) contains a nonempty clopen subset K of α(Cn). Note that
Cn+1 = α−1(K) is a nonempty clopen subset ofCn and hence ofX. SinceCn+1 ⊂ U (xi)
we have diamρ Cn+1 � 2−n−1 and the induction is complete.
Since ρ is complete and X is closed we have that

⋂∞
n=0 Cn = {x} for some x ∈ X

and obviously the Cn’s form a neighbourhood basis for x in X.

The topological property that we will use to distinguish Ec from a number of other
pulverized topologically complete spaces is that every point in Ec has a neighbour-
hood U such that every nonempty closed subset of U is somewhere zero-dimensional,
in particular, U fails to contain a closed copy of Ec.
It is known that Ec is a homogeneous space (cf. Proposition 4·3) and Kawamura,

Oversteegen and Tymchatyn pose the following question in [11, problem 1]: is every
almost zero-dimensional, one-dimensional, topologically complete, pulverized, homo-
geneous space homeomorphic to Ec? The following result shows that the answer is
no.

Corollary 3·2. E
N

c is not homeomorphic to Ec.

Proof. We have that every subset of E
N

c with a nonempty interior contains closed
copies of the space itself namely sets of the form {(x1, x2, . . . , xn)} × E

N

c .

It can be derived from results in [11] and [13] that Ec is a universal space for the
class of almost zero-dimensional spaces, cf. [9]. Let X be an arbitrary nonempty al-
most zero-dimensional complete space. We then can identify X with a subspace
of Ec and we can write X =

⋂∞
i=1 Oi where every Oi is open in Ec. X can now

be imbedded as a closed subset (namely the diagonal) of
∏∞

i=1 Oi. This product is
homeomorphic to E

N

c because it was proved in [11, theorem 4] that every nonempty
open subset of Ec is homeomorphic to Ec. In conclusion, every subset of E

N

c with a
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nonempty interior contains a closed copy of every almost zero-dimensional complete
space, where as Ec obviously does not contain a closed copy of EN

c . This means that E
N

c

is “more universal” than Ec and a better candidate for being the “maximal” element
of the class of almost zero-dimensional complete spaces.
It is obvious that Ec × Ec is homeomorphic to Ec. The Hilbert product �2(Ec) of Ec

is defined as the set {x ∈ E
N

c :
∑∞

i=1 ‖xi‖2 < ∞} equipped with the topology that is
generated by the metric

√∑∞
i=1 ‖xi − yi‖2. Note that �2(Ec) is homeomorphic to Ec.

The following result answers a question that was also posed in [11, p. 98]: is every
pulverized and dense Gδ-subset of Ec homeomorphic to Ec?

Corollary 3·3. There exists a connectible and dense Gδ-subset of Ec that is not
homogeneous.

Proof. Let a be some fixed element of Ec. Consider the dense Gδ-subset G × Ec of
Ec×Ec, whereG = {x ∈ Ec : 1/‖x−a‖ � N}. Since Ec is connectible we have thatG×Ec

is connectible as well. Note that for each n ∈ N, the set Vn = {x ∈ Ec : 1/(n + 1) <
‖x − a‖ < 1/n} is clopen in G and open in Ec, so Vn is connectible. Thus every
neighbourhood of a point (a, x) in G×Ec contains a connectible and closed Vn ×{x}
(and hence G×Ec is not homeomorphic to Ec). Since (G \ {a})×Ec is open in Ec×Ec

every point of that set has a neighbourhood that contains only closed nonempty sets
that are somewhere zero-dimensional. So G × Ec is not homogeneous.

4. Homeomorphism groups

We will now consider some interesting homeomorphism groups that are al-
most zero-dimensional but not zero-dimensional. If X is a compact metric space
then H(X) is the group of autohomeomorphisms of X with the topology of uni-
form convergence. Let 1X denote the identity. If O is an open subset of X then
HO(X) = {h ∈ H(X) : h |X\O = 1X\O} is the closed subgroup of H(X) consisting of
homeomorphisms that are supported on O.
In [1] Aarts and Oversteegen introduce a continuum H called the hairy arc. The

hairy arc is topologically unique and can be represented as follows. Let l : I → I be a
function such that

(a) l is upper semicontinuous, that is, {x ∈ I : l(x) < t} is open for each t ∈ I,
(b) l(0) = l(1) = 0 and the set {x ∈ I : l(x) = 0} and its complement are both dense

in I, and
(c) for each x ∈ I with l(x) > 0 there exist sequences (an)n and (bn)n in I such

that an ↗ x and bn ↘ x and lim l(an) = lim l(bn) = l(x).

Then Hl = {(x, y) ∈ I2 : y � l(x)} and a hairy arc H is any space that is homeomorphic
to an Hl. According to [1, theorem 3·2] all hairy arcs are homeomorphic to each
other. The set of endpoints of hairs El = {(x, l(x)) : l(x) > 0} of Hl is dense in
Hl and Kawamura, Oversteegen and Tymchatyn [11, section 5] prove that El is
homeomorphic to Ec as an application of their Characterization Theorem.
Aarts and Oversteegen prove that H(H) is almost zero-dimensional but not zero-

dimensional and they ask in [2, problem 2·9] whether the homeomorphism group of
the hairy arc is homeomorphic to the set of endpoints of the hairy arc. We show that
the answer is no.
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Corollary 4·1. The homeomorphism group of the hairy arc is not homeomorphic to

Ec.

Proof. Consider Hl and its base arc B = I × {0}. Let H+ stand for the subgroup of
H(Hl) consisting of homeomorphisms that fix the endpoints ofB. Since every element
of H(Hl) maps B onto B (see [2, corollary 1·5]) H+ is a clopen subgroup of H(Hl)
and hence one-dimensional at each element. We will show that every neighbourhood
of the identity contains closed copies of H+ which means that neither H+ nor H(Hl)
can be homeomorphic to Ec.
Let ε > 0 and select an a ∈ (0, ε) such that l(a) = 0 and l(x) < ε for all x ∈ [0, a].

Then O = Hl � ([0, a)× [0, ε)) is an open subset of Hl such that its closure O � {(a, 0)}
is a hairy arc (stretch the interval [0, a] to I). We obviously have thatH+,HO(O), and
HO(Hl) are all homeomorphic. Using the max metric on I2 we have that diamO < ε
so every element of the closed group HO(Hl) is ε-close to the identity and the proof
is complete.

The Lelek fan is a space that can be obtained by identifying the base arc of the
hairy arc to a point. A similar argument as we used for the hairy arc shows that the
homeomorphism group of the Lelek fan is not homeomorphic to Ec (use [7] or [5]
instead of [1]).
Let µn, n ∈ N, denote the universal Menger continuum of dimension n and

let Mn+1
n denote the n-dimensional Sierpiński carpet, see [3], respectively [6].

Oversteegen and Tymchatyn [13, theorem 5] show that H(µn) and H(Mn+1
n ) are

almost zero-dimensional and they conjecture that H(µ1) is homeomorphic to Ec, see
[12, conjecture 7·8]. We disprove this conjecture:

Corollary 4·2. If X = µn for n ∈ N or X = Mn+1
n for n ∈ N\{3} then the

homeomorphism group of X is not homeomorphic to Ec.

Proof. Let ε > 0 and choose a nonempty open subset O ofX such that diamO < ε
with respect to some metric on X. In [8, remarks 5 and 9] it is shown that HO(X)
is one-dimensional. (This result can be derived by combining [4, theorem 2·1] with
[3, 6]. However, there is a problem with the proof of [4, theorem 2·1]; specifically,
it is proved in [8, section 3] that [4, lemma 2·2] is false.) Since diamO < ε every
element ofHO(X) is ε-close to the identity 1X . So every neighbourhood of 1X inH(X)
contains a nonempty closed set that is one-dimensional and homogeneous and hence
not somewhere zero-dimensional. We may conclude that H(X) is not homeomorphic
to Ec.

We conclude this section by showing that the failure of H(H) and H(µn) to be
homeomorphic to Ec is not connected to the existence of a group structure. A group
is boolean if every element equals its inverse.

Proposition 4·3. Ec admits the structure of a (boolean) topological group.

Proof. Let C be the “middle third” Cantor set in I. Every a ∈ C has a unique
representation as a =

∑∞
i=1 2[a]i3

−i, where [a]i ∈ {0, 1} for all i ∈ N. Let � denote
the standard boolean group operation on C: [a � b]i = [a]i+[b]i mod 2. Consider now
the topological group CN with (x1, x2, . . .) � (y1, y2, . . .) = (x1 � y1, x2 � y2, . . .). We
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define E
′
c = {x ∈ �2 : α(x) ∈ CN} and note that this space satisfies the Characteriz-

ation Theorem [11, theorem 3] and hence it is homeomorphic to Ec, see [8, proposi-
tion 3].
Note that if a, b, c, d ∈ C are such that |a − b|, |c − d| < 3−n then [a]i = [b]i and

[c]i = [d]i for all i � n thus

|a � c − b � d| =
∣∣∣∣∣

∞∑
i=n+1

2([a � c]i − [b � d]i)3−i

∣∣∣∣∣ �
∞∑

i=n+1

2 · 3−i = 3−n.

This implies that (always)

|a � c − b � d| � 3max{|a − b|, |c − d|} � 3(|a − b| + |c − d|).

Let x, y, z, w ∈ E
′
c, so x = (x1, x2, . . .) etc. We have

‖x � y − z � w‖ =
√∑∞

i=1
(xi � yi − zi � wi)2

�
√∑∞

i=1
9(|xi − zi| + |yi − wi|)2

� 3(‖x − z‖ + ‖y − w‖).

This result means that E
′
c is closed under � and that the operation is continuous with

respect to the norm topology. Since the group is boolean this suffices to show that
E
′
c is a topological group.
If we do not require the group to be boolean then we can represent Ec by a closed

subgroup of (�2,+):

G = {x ∈ �2 : nxn ∈ Z for every n ∈ N}.

Proposition 3 in [8] shows that also G is homeomorphic to Ec.

5. The space E

It is clear that themethod used to prove Theorem 3·1 relies heavily on completeness
and does not work for the original Erdős space E. In fact, we show that Theorem 3·1
is false for E:

Theorem 5·1. Every nonempty open subset of E contains a nonempty subset that is
closed in E and that is one-dimensional at every point.

Proof. Since E is a vector space over Q it suffices to prove that there exists a
bounded, closed, and nonempty subset Y of E that is one-dimensional at every
point.
Our construction takes place in the product space QN. If x ∈ QN and ε > 0 then

we define the closed set

Fε(x) = {y ∈ QN : ‖x − y‖ � ε}.

Recall that E =
⋃∞

n=1 Fn(0) equipped with the norm topology, where 0 stands for
the zero vector. For A ⊂ QN we define diamA = sup{‖x − y‖ : x, y ∈ A}. For n ∈ N

we will identify Qn with {x ∈ QN : xi = 0 for i > n} and we define the projection
ξn : QN → Qn by ξn(x) = (x1, . . . , xn, 0, 0, . . .). Put D =

⋃∞
n=1 Qn and note that D is a
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countable dense subset (but not a subspace) of E. Let {(ti, ni) : i ∈ N} enumerate the
set D × N in such way that t1 = 0 and for each i ∈ N we have ni � i and ξi(ti) = ti.
We construct by induction two sequences of sets Yi and Ui such that for every

i ∈ N:

(1) Yi is a closed subset of QN;
(2) ‖x‖ < 1 for each x ∈ Yi;
(3) ξk(Yi) is closed in Qk for each k ∈ N;
(4) ξk(Yi) ⊂ Yi for each k � i;
(5) ξ1(Yi) is finite and disjoint from

⋃i−1
j=1 ξ1(Yj);

(6) Ui is a closed subset of Qni ;
(7)

⋃i
j=1 Yj �

⋃i
j=1 ξ−1nj

(Uj) = �;

(8) if ξni
(ti) �

⋃i
j=1 ξni

(Yj) then Ui is a neighbourhood of ξni
(ti) in Qni ; and

(9) if ti ∈
⋃i−1

j=1 Yj then there is an ri ∈ F1/i(ti) � Yi such that every clopen
neighbourhood C of ri in Yi with the norm topology has diamC � (1−‖ti‖)/2.

For i = 1 we put Y1 = {t1} and U1 = � and note that all hypotheses are trivially
satisfied. Let us now assume that Yi and Ui have been constructed.

Case I: ξni+1 (ti+1) �
⋃i

j=1 ξni+1 (Yj). Since by hypothesis (3) the set A =
⋃i

j=1 ξni+1 (Yj)
is closed we can find a closed neighbourhood Ui+1 of ξni+1 (ti+1) in Qni+1 that is disjoint
from A. Putting Yi+1 = � we note that all hypotheses are trivially satisfied for i+ 1.

Case II: ti+1 ∈
⋃i

j=1 Yj . Note that this case is incompatible with Case I and hypo-
thesis (8) is satisfied for i+1 nomatter what choice wemake for Yi+1.We putUi+1 = �.
By hypothesis (2) we have δ = 1−‖ti+1‖ > 0. Let ε = min{δ/4, 1/(i+1)} and select an
ri+1 ∈ Fε(ti+1) that differs from ti+1 only in the first coordinate which has been chosen
from the complement of the finite set

⋃i
j=1 ξ1(Yj). Since the set V =

⋃i
j=1 ξ−1nj

(Uj) is
closed and does not contain ti+1 by hypothesis (7) we may assume that ri+1 � V . Note
that ξi+1(ri+1) = ri+1 because ti+1 has this property. Define

Yi+1 = {x ∈ QN : ξi+1(x) = ri+1 and ‖x − ri+1‖ � δ/2}

and note that this set satisfies hypothesis (1) because the norm is LSC. The choice of
the first coordinate of ri+1 guarantees that hypothesis (5) is also satisfied. If x ∈ Yi+1

then ‖ti+1 − x‖ � 3
4δ < 1− ‖ti+1‖ so hypothesis (2) is satisfied. Note that if k � i + 1

then ξk(Yi+1) = {ξk(ri+1)} and if k � i+ 1 then ξk(Yi+1) = Yi+1 � Qk which means that
hypotheses (3) and (4) are satisfied. Since ξi+1(Yi+1) = {ri+1}, ri+1 � V , and for every
j � i, nj < i + 1, we have Yi+1 � V = �. Since moreover Ui+1 = � we may conclude
that hypothesis (7) is satisfied for i + 1.
We will now verify hypothesis (9). Obviously, we have ri+1 ∈ F1/(i+1)(ti+1) � Yi+1.

Recall that Erdős [10] proved that every clopen nonempty subset of E is unbounded.
This implies that if C is a clopen nonempty subset of, say, B = {x ∈ E : ‖x‖ � δ/2}
then C contains a point x with ‖x‖ = δ/2. Let C be a clopen neighbourhood of ri+1

in Yi+1 with the norm topology. Note that Yi+1 is an isometric copy of B where ri+1

plays the role of the zero vector so C contains an x with ‖x − ri+1‖ = δ/2 and hence
diamC � δ/2.

Case III: neither Case I nor Case II. We can choose both Yi+1 and Ui+1 to be empty.
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The induction being complete we put Y =
⋃∞

i=1 Yi and note that every element of
Y has norm less than 1 and hence Y is a bounded subset of E. Y is nonempty because
it contains the zero vector t1.

Claim 1. Y is a closed subset of QN.

Proof. Let x be an arbitrary element of QN. We consider two cases.
Case I: there is a k ∈ N such that ξk(x) � ξk(Y ). Let i ∈ N be such that ξk(x) = ti and

k = ni. Thus ξni
(ti) = ti � ξni

(Y ) and hence by hypothesis (8) Ui is a neighbourhood
of ti in Qni . We now have that ξ−1ni

(Ui) is a neighbourhood of x that is disjoint from
Y by hypothesis (7).
Case II: ξk(x) ∈ ξk(Y ) for every k ∈ N. Then ξ1(x) ∈ ξ1(Ym) for some m. By

hypothesis (5) we have that this implies that ξk(x) ∈ ξk(Ym) for every k. Since Ym is
closed in QN we have that x ∈ Ym ⊂ Y .

Claim 2. For every x ∈ Y and every clopen neighbourhood C of x in Y with the norm
topology we have diamC � (1− ‖x‖)/2.

Proof. Letm be such that x ∈ Ym and let ε > 0 be such that Fε(x)� Y ⊂ C. Select
a k ∈ N such that k > m, 1/k < ε/2, and ‖x − ξk(x)‖ < ε/2 and let i be such that
ξk(x) = ti and k = ni. Since i � ni = k > m we have by hypothesis (4) that ti ∈ Ym

and by hypothesis (9) that ri ∈ Yi and ‖ti−ri‖ < 1/i � 1/k < ε/2. Thus ‖x−ri‖ < ε
and ri ∈ C. This means that diamC � diam(C �Yi) � (1− ‖ti‖)/2 � (1− ‖x‖)/2.

Since the norm topology is stronger than the product topology Claim 1 implies
that Y is closed in E. Claim 2 shows that Y with the norm topology is not zero-
dimensional at any point.

In [9] Dijkstra and van Mill prove that E is in fact homeomorphic to E
N.

6. Equivalent notions of almost zero-dimensionality

We conclude by showing that the definition of almost zero-dimensionality that we
use in this paper is equivalent to the original definition in [13].

Proposition 6·1. If X is almost zero-dimensional then there exists an (open) basis O
for the topology of X such that O can be written as an intersection of clopen subsets of X
for each O ∈ O.

Proof. Let X be almost zero-dimensional. Since X is separable metric we can find
a countable collection B = {Bi : i ∈ N} that satisfies the following conditions:
(1) for every x ∈ X and every neighbourhood U of x there is an i ∈ N such that

x ∈ intBi ⊂ Bi ⊂ U ;
(2) every Bi ∈ B is an intersection of clopen subsets of X.

Note that every Bi can be written as
⋂∞

j=1 Dij where every Dij is clopen in X. Then
{Dij , X\Dij : i, j ∈ N} forms a subbasis for a separable metric, zero-dimensional
topology on X that is weaker than the original topology. Call X with this zero-
dimensional topology Z and let β : X → Z be the identity map. Note that every
β(Bi) is closed in Z.



Complete Erdős space is unstable 473

Consider an open set U in X and an x ∈ U . We will construct a set W ⊂U that is
an intersection of clopen sets and with a dense interior that contains x. Put F0 = �
and let (Fn)∞n=1 be an enumeration of the elements of {Bi : Bi � U = �}. Note
that X\U =

⋃∞
n=1 Fn and that every β(Fn) is closed. We construct inductively a

sequence G0, G1, . . . of subsets of U and a sequence C0, C1, . . . of clopen subsets of Z
such that every β(Gn) is a closed set in Z and Cn �β(Fn) = �. Select a Bk such that
x ∈ intBk ⊂ Bk ⊂ U and put G0 = Bk and C0 = Z. Assume that Gn−1 and Cn−1
have been found and consider the open set

Vn = intBn �
n−1⋂
i=0

β−1(Ci).

If Vn � U = � then we put Gn = � and if Vn � U � � then we put Gn = Bm for
somem such that Bm ⊂ Vn � U and intBm ��. Note that

⋃n
i=0 β(Gi) and β(Fn) are

disjoint closed subsets of the zero-dimensional space Z so there is a clopen Cn ⊂ Z
with

⋃n
i=0 β(Gi) ⊂ Cn and Cn � β(Fn) = �.

PutW =
⋂∞

n=0 β−1(Cn) soW is an intersection of clopen sets. Note thatW �Fn =
� for each n so W ⊂ U . By the construction, Gi ⊂ Cj for all i, j thus the open set
O =

⋃∞
n=0 intGn is contained in intW and x ∈ intG0 ⊂ intW . It now suffices to

show that W ⊂ O. Let y ∈ W and let Bn be arbitrary such that y ∈ intBn. Note
that Vn is an open set that contains y and since y ∈ U we have that Vn � U � �.
So Bn � U contains the nonempty set intGn and since Bn can be chosen arbitrarily
small we have that y ∈ O.
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Sn(n � 4). Fund. Math. 79 (1973), no. 2, 107–112.

[7] W. J. Charatonik. The Lelek fan is unique. Houston J. Math. 15 (1989), 27–34.
[8] J. J. Dijkstra. On homeomorphism groups of Menger continua. preprint.
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