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Abstract

Attack and defense strengths of football teams vary over time due to changes in

the teams of players or their managers. We develop a statistical model for the analysis

and forecasting of football match results which are assumed to come from a bivariate

Poisson distribution with intensity coefficients that change stochastically over time.

This development presents a novelty in the statistical time series analysis of match

results from football or other team sports. Our treatment is based on state space and

importance sampling methods which are computationally efficient. The out-of-sample

performance of our methodology is verified in a betting strategy that is applied to

the match outcomes from the 2010/11 and 2011/12 seasons of the English Premier

League. We show that our statistical modeling framework can produce a significant

positive return over the bookmaker’s odds.

Some key words: Betting; Importance sampling; Kalman filter smoother; Non-Gaussian

multivariate time series models; Sport statistics.

1 Introduction

The prediction of a football match is a challenging task. The pundit usually has strong

beliefs about the outcomes of the next games. Bets can be placed on a win, a loss or a draw

but they can also concern the outcome of the match itself. The collection of the predictions

are reflected by the bookmaker’s odds. In this paper we study a history of all football match

results from the English Premier League in the last nine years. The number of goals scored

by a team may depend on the attack strength of the team, the defense strength of the

opposing team, the home ground advantage (when applicable) and the development of the

match itself. We analyse the match results on the basis of a dynamic statistical modelling

framework in which the attack and defense strengths of the teams are supposed to vary over
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time. We show that the forecasts from this model are sufficiently accurate to gain a positive

return over the bookmaker’s odds.

Many statistical analyses of match results are based on the product of two independent

Poisson distributions, also known as the double Poisson distribution. The means of the

two distributions can be interpreted as the goal scoring intensities of the two competing

teams. In our modelling framework, the double Poisson distribution is used in combination

with a dependence parameter which allows for correlation between home and away scores.

It represents the phenomenon that the ability or the effort of a team during a match is

influenced by the other team or by the way the match progresses. For example, if the home

team leads with 1-0, and there is only ten minutes left to play, the away team can become

more determined and can take more risk in an effort to end the match in a draw. This

possible change in the score due to a change in the behaviour of the team or both teams

is captured by a dependence parameter. Furthermore, we let the goal scoring intensities of

the two teams depend on the attack and defense strengths of the two teams. The attack

and defense strengths for each team is allowed to change stochastically over time. This

time-varying feature becomes more important when we jointly analyse the match results for

a series of consecutive football seasons. For example, when an excellent scorer leaves the

team to play elsewhere after a number of seasons, it is expected that the attack strength has

become weaker of this specific team. In modern football, the composition of a team can be

quite different from one season to another season. However, the overall attack and defense

strengths are expected to change slowly over time.

The basis of our modelling approach is proposed by Maher (1982). In this study, the

double Poisson distribution, with the means expressed as team-specific attack and defense

strengths, is adopted as the underlying distribution for goal scoring. Maher (1982) explored

the existence of a small correlation between home and away scores; he found a considerable

improvement in model fit by trying a range of values for the dependence parameter. He did

not provide parameter estimates of the correlation or dependence parameter. Furthermore,

the basic model of Maher is static; the team’s attack and defense strengths do not vary

over time. Dixon and Coles (1997) consider the double Poisson model with a dependence

parameter that is estimated together with the other parameters. They suggest that the

assumption of independence between goal scoring is reasonable except for the match results

0-0, 1-0, 0-1 and 1-1. They also introduce a weighting function to downweight likelihood

contributions of observations from the more distant past. Karlis and Ntzoufras (2003) also

use a bivariate Poisson distribution; they argue that even a small value for the dependence

parameter leads to a more accurate prediction of the number of draws. However, attack

and defense strengths are kept static over time in their analysis. Rue and Salvesen (2000)

incorporate the framework of Dixon and Coles (1997) within a dynamic generalized linear

model and adopt a Bayesian estimation procedure to study the time-varying properties of

the football teams. In their empirical analysis, they truncate the number of goals to a

maximum of five because they argue that the number of goals beyond five provide no further

information about the attack and defense strengths of a team. Crowder, Dixon, Ledford, and

Robinson (2002) represent the model of Dixon and Coles (1997) as a non-Gaussian state space
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model with time-varying attack and defense strengths. In this study, they use approximate

methods for estimation because they state that an exact analysis would be computationally

too expensive. Finally, Ord, Fernandes, and Harvey (1993) consider multivariate extensions

of a Bayesian dynamic count data model for the analysis and forecasting of number of goals

scored by a specific team.

A short overview of the relevant models for our study is presented in Table 1. The bottom

right panel of the table is left empty because we believe that our bivariate Poisson model with

stochastic time-varying attack and defense strengths is not considered before. We aim to fill

this gap in the literature and to show that football match results can be analysed effectively

in our statistical modelling framework based on a non-Gaussian state space model where

the observed pairs of counts are assumed to come from a bivariate Poisson distribution. We

base our analysis on exact maximum likelihood and signal extraction methods which rely on

efficient Monte Carlo simulation techniques such as importance sampling. For our statistical

analysis, there is no need to truncate the observed match outcomes to some maximum value.

Table 1: Relevant contributions in the literature

An overview of relevant contributions in the literature is given. The two columns provide references to studies
in which the attack and defense performances of a team are modelled as a non-stochastic or a stochastic
function of time. The two rows provide references to studies in which match results are treated by a bivariate
Poisson model with or without a dependence coefficient. The lower right entry is kept empty since we regard
this combination as our contribution to the literature.

Non-stochastic Stochastic

Double Poisson
Maher (1982) Crowder et al. (2002)
Dixon and Coles (1997) Rue and Salvesen (2000)

Bivariate Poisson
Karlis and Ntzoufras (2003)
Goddard (2005)

The remainder of the paper is organised as follows. Our dynamic statistical modelling

framework for the bivariate Poisson distribution is introduced and discussed in detail in

Section 2. It is shown how we can represent the dynamic model in a non-Gaussian state

space form. The statistical analysis relies on advanced simulation-based time series methods

which are developed elsewhere. We provide the implementation details and some necessary

modifications of the methods. The analysis includes maximum likelihood estimation, signal

extraction of the attack and defense strengths of a team, and the forecasting of match results.

In Section 3 we illustrate the methodology for a high dimensional dataset of football match

results from the English Premier League during the seasons from 2003/04 to 2011/12. The

first seven seasons are used for parameter estimation and in-sample diagnostic checking of

the empirical results while the last two seasons are used for the out-of-sample forecast eval-

uation of the model. For example, we show that key parts of our model are the dependence

coefficient for the correlation between the two scores of a match, home ground advantage

and the time-varying attack and defense strengths of the two teams. A forecasting study is

presented in Section 4 where we give evidence that our model is capable of turning a positive

return over the bookmakers odds by applying a simple betting strategy during the seasons

of 2010/11 and 2011/12. Concluding remarks are given in Section 5.
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2 The statistical modelling framework

We analyse football match results in a competition for a number of seasons as a time series

panel of pairs of counts. We assume that an even number of J teams play in a competition

and hence each week J/2 matches are played. It also follows that a season consists of 2(J−1)

weeks in which each team plays against another team twice, as a home team and as a visiting

team. The specific details of our data set for the empirical study is discussed in Section 3.

2.1 Bivariate Poisson model

The result or outcome of a match between the home football team i and the visiting football

team j in week t is taken as the pair of counts (X, Y ) = (Xit, Yjt), for i 6= j = 1, . . . , J and

t = 1, . . . , n where n is the number of weeks available in our data set. The first count Xit

is the non-negative number of goals scored by the home team i and the second count Yjt is

the number of goals scored by the visiting team j, in week t. Each pair of counts (X, Y ) is

assumed to be generated or sampled from the bivariate Poisson distribution with probability

density function

p(X, Y ;λx, λy, γ) = exp (−λx − λy − γ)
λXx
X !

λYy
Y !

min(X,Y )
∑

k=0

(

X

k

)(

Y

k

)

k!

(

γ

λx λy

)k

, (1)

for X = Xit and Y = Yjt, with λx and λy being intensity coefficients for X and Y , respec-

tively, and γ being a coefficient that measures the dependence between the two counts in

the pair, X and Y . In short notation, we write

(X, Y ) ∼ BP (λx, λy, γ).

The means, variances and covariance for the home score X and the away score Y are

E(X) = Var(X) = λx + γ, E(Y ) = Var(Y ) = λy + γ, Cov(X, Y ) = γ, (2)

and hence the correlation coefficient between X and Y is given by

ρ =
γ

√

(λx + γ)(λy + γ)
.

The above definition of the bivariate Poisson distribution is not unique, other formulations

have also been considered; see, for example, the discussions in Kocherlakota and Kocher-

lakota (1992) and Johnson, Kotz, and Balakrishnan (1997).

The difference between the counts X and Y determines whether the match is a win, a

loss or a draw for the home team. The variable X−Y has a discrete probability distribution

known as the Skellam distribution; see Skellam (1946) and Karlis and Ntzoufras (2003). A

particular feature of the Skellam distribution for X −Y is its invariance of γ when (X, Y ) ∼
BP (λx, λy, γ) for γ > 0.
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2.2 Dynamic specification for goal scoring intensities

The scoring intensities of two teams playing against each other are determined by λx, λy
and γ. In our modelling framework, we let λx and λy to vary with the pairs of teams

that play against each other. Furthermore, we allow these intensities to change slowly over

time since the composition and the performance of the teams will change over time. The

intensity of scoring for team i, when played against team j, is assumed to depend on the

attack strength of team i and the defense strength of team j. We also acknowledge the home

ground advantage in scoring; this relative advantage is considered to be the same for all

teams. The attack strength of the home team i in week t is denoted by αit and its defense

strength is denoted by βit for i = 1, . . . , J . The home ground advantage is denoted by δ and

is the same for all teams and it is constant over time. The goal scoring intensities for home

team i and away team j in week t are then specified as

λx,ijt = exp(δ + αit − βjt), λy,ijt = exp(αjt − βit). (3)

where δ is the home ground advantage coefficient. We assume that the dependence γ between

the two scores in a match is the same for all matches played. In a football season with

J(J − 1) matches, 2J(J − 1) goal counts and for some time index t, we can identify the

unknown signals for attack αit’s and defense βit’s together with coefficient δ, that is 2J + 1

unknowns, when the number of teams is J > 2. The time variation of the attack and defense

strengths can be identified when we analyse match results from a series of football seasons.

All teams in the competition are assumed to have unique attack and defense strengths

which we do not relate to each other. In effect we assume that each team can compose

their teams independently of each other. The attack and defense strengths of the team can

change over time since the composition of the team will not be constant over time. Also

the performances of the teams are expected to change over time. We therefore specify the

attack and defense strengths as autoregressive processes. We have

αit = µα,i + φα,iαi,t−1 + ηα,it, βit = µβ,i + φβ,iβi,t−1 + ηβ,it, (4)

where µα,i and µβ,i are unknown constants, φα,i and φβ,i are autoregressive coefficients and

the disturbances ηα,it and ηβ,it are normally distributed error terms which are independent

of each other for all i = 1, . . . , J and all t = 1, . . . , n. We assume that the dynamic processes

are independent of each other and that they are stationary. It requires that |φκ,i| < 1

for κ = α, β and i = 1, . . . , J . The independent disturbance sequences are stochastically

generated by

ηκ,it ∼ NID(0, σ2
κ,i), κ = α, β,

for i = 1, . . . , J and t = 1, . . . , n. The initial conditions for the autoregressive processes αit

and βit can be based on means and variances of their unconditional distributions which are

given by

E(κit) = µκ,i / (1− φκ,i), Var(κit) = σ2
κ,i / (1− φ2

κ,i), κ = α, β.
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Other, and possibly more complicated, dynamic structures for αit and βit can be considered

as well but in our current study we will only consider the first-order autoregressive processes

as given in (4).

Our basic and simple modelling framework for football match results is introduced. The

football match outcomes in our model rely on the stochastic and dynamic properties of

the attack (αit) and defense (βit) strengths of the teams but also on the scoring intensity

dependence (γ) of the two teams that play against each other, and the scoring advantage

of the home team (δ). The dynamic properties of the attack and defense strengths depend

on φκ,i and σ2
κ,i, for κ = α, β, respectively. Once the paths over time for αit and βit are

determined, the probability of each possible match outcome can be determined from the

bivariate Poisson distribution.

2.3 State space representation

For our model-based analysis, it is convenient to present the model into the general state

space form. The pair (Xit, Yjt) is the observed outcome of the match of home team i against

the visiting team j which is played at time t. The statistical dynamic model for the match

result (Xit, Yjt) of home team i against team j is given by

(Xit, Yjt) ∼ BP (λx,ijt, λy,ijt, γ), (5)

with link functions λx,ijt = sx,ij(zt) and λy,ijt = sy,ij(zt) for i 6= j = 1, . . . , J and with the

linear dynamic process for the state vector zt given by

zt = µ+ Φzt−1 + ηt, ηt ∼ NID(0, H), (6)

for t = 1, . . . , n, where µ is the constant vector, Φ is the autoregressive coefficient matrix,

disturbance vector ηt is normally distributed with mean zero and variance matrix H , and all

unknown coefficients in the model are collected in the parameter vector ψ. The state vector

zt contains the attack and defense strengths of all teams, that is

zt = (α1t, . . . , αJt, β1t, . . . , βJt)
′, t = 1, . . . , n. (7)

The initial condition for the state vector z1 can be obtained from the unconditional properties

of zt. Similarly, we have ηt = (ηα,1t, . . . , ηα,Jt, ηβ,1t, . . . , ηβ,Jt)
′. For our modelling framework

of the dynamic scoring intensities, it follows that matrices µ, Φ and H in (6) are given by

µ = (µα,1, . . . µα,J , µβ,1, . . . , µβ,J)
′,

Φ = diag(φα,1, . . . φα,J , φβ,1, . . . , φβ,J),

H = diag(σ2
α,1, . . . σ

2
α,J , σ

2
β,1, . . . , σ

2
β,J),

where diag(v) refers to a diagonal matrix with the elements of v on the leading diagonal.

Given the intensities and the dependence coefficient γ, we can determine the stochastic
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properties of the match result (Xit, Yjt). The link functions sx,ij(zt) and sy,ij(zt) select the

appropriate αit and βjt elements from zt and transforms these variables to the intensities as

given by (3).

2.4 Likelihood function

We opt for the method of maximum likelihood to obtain parameter estimates with optimal

properties in large samples. Hence we require to develop an expression for the likelihood

function of our model. For the evaluation of the likelihood function we require simulation

methods because the multivariate model is non-Gaussian and nonlinear and hence we cannot

rely on linear estimation methods for dynamic models such as the Kalman filter.

We have J/2 match results for each week t. A specific match result is denoted by

(Xit, Yjt) with i 6= j and i, j ∈ {1, . . . , J}. The number of goals scored by all teams at time

t are collected in the J × 1 observation vector yt. The observation density of yt for a given

realization of the state vector zt is then given by

p(yt|zt;ψ) =
J/2
∏

k=1

BP (λx,ijt, λy,ijt, γ), (8)

where the index k represents the kth match between home team i against visiting team

j. We notice that λx,ijt = sx,ij(zt) and λy,ijt = sy,ij(zt) where the link functions can, for

example, be based on (3). In this case we can express the signal vector that is implicitly

used for the density p(yt|zt;ψ) as

E(yt|zt;ψ) = exp(atδ + Atzt), (9)

where vector at has element 1 if the number of goals in the corresponding element of yt
is from the home team and 0 otherwise, matrix At, with 1s, 0s and -1s, selects the attack

strength (+1) of the team, the defense strength (-1) of the opponent team and 0 otherwise.

The homeground advantage coefficient δ is part of the parameter vector ψ.

We define y = (y′1, . . . , y
′

n)
′ and z = (z′1, . . . , z

′

n)
′ for which it follows that

p(y|z;ψ) =
n
∏

t=1

p(yt|zt;ψ). (10)

Finally, we can express the joint density as p(y, z;ψ) = p(y|z;ψ)p(z;ψ) where

p(z;ψ) = p(z1;ψ)

n
∏

t=2

p(zt|z1, . . . , zt−1;ψ). (11)

Given the linear Gaussian autoregressive process for the state vector zt in (6), the evaluation

of p(zt|z1, . . . , zt−1;ψ) is straightforward. The parameter vector ψ includes the coefficients

φκ,i and σ2
κ,i for κ = α, β and i = 1, . . . , J . The evaluation of the initial density p(z1;ψ)
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can be based on the unconditional properties of zt. The constants µκ,i, for κ = α, β and

i = 1, . . . , J , are incorporated in the initial condition for z1.

The likelihood function for y is based on the observation density (1) and is given by

ℓ(ψ) = p(y;ψ) =

∫

p(y, z;ψ)dz =

∫

p(y|z;ψ)p(z;ψ)dz, (12)

which we want to evaluate for different values of the parameter vector ψ. An analytical

solution to evaluate this integral is not available and therefore we rely on numerical evaluation

methods. It is well established that numerical integration of a multi-dimensional integral

becomes quickly infeasible when the dimension increases. We therefore adopt in practice

Monte Carlo simulation methods. We can use such methods since explicit expressions for the

densities p(y|z;ψ) and p(z;ψ) are available. A naive Monte Carlo estimate of the likelihood

function is given by

ℓ̂(ψ) =
1

M

M
∑

k=1

p(y|z(k);ψ), z(k) ∼ p(z;ψ), (13)

where M is the number of Monte Carlo replications. Since the state vector density p(z;ψ)

is associated with the autoregressive process (6), we obtain z(k) simply via the simulation

of autoregressive processes for a given parameter vector ψ. The draws z(1), . . . , z(M) are

generated independently from each other. This Monte Carlo estimate is numerically not

efficient (nor feasible) since the simulated paths are having no support from the observed

data y. A more effective approach for the evaluation of the likelihood function is to adopt

Monte Carlo simulation methods based on importance sampling as proposed by Shephard

and Pitt (1997) and Durbin and Koopman (1997). The specific details of this estimation

methodology are discussed in the Appendix B.

The maximization of the likelihood function with respect to ψ can then be carried out

by standard numerical maximization procedures. To obtain a smooth multi-dimensional

likelihood surface in ψ for its maximization, each likelihood evaluation should be based

on the same random numbers that generate the series of M simulated paths for z. The

maximum likelihood method produce parameter estimates with optimal properties in large

samples. These optimal properties remain when using Monte Carlo simulation methods

appropriately although the estimates are subject to simulation error.

2.5 Signal extraction of attack and defense strengths

We use simulation methods for the signal extraction of the attack and defense strengths αit

and βit in a similar fashion as for the Monte Carlo maximum likelihood estimation of the

parameters φκ,i, σ
2
κ,i, γ and δ, with i = 1, . . . , J , based on the simulated likelihood function

(13). However, the same drawbacks apply as for likelihood evaluation via (13). For a given

value of the parameter vector ψ, we estimate the attack and defense strengths in the state
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vector z by evaluating the conditional expectation ẑ = E(z|y;ψ) where

E(z|y;ψ) =
∫

zp(z|y;ψ)dz = p(y;ψ)−1

∫

zp(z, y;ψ)dz = p(y;ψ)−1

∫

zp(y|z;ψ)p(z;ψ)dz.

Given the Monte Carlo method for computing the observation density p(y;ψ) and given the

known expressions for p(y|z;ψ) and p(z;ψ) above, we can estimate ẑ by the same Monte

Carlo simulation importance sampling method. This argument can be generalized to the

estimation of any known (linear and nonlinear) function of the state vector z. It implies that

we can evaluate the estimated variance, percentile and distribution of any element of z but

also that we can evaluate the estimate of the intensities λx,ijt and λy,ijt. Further details are

discussed in the Appendix B.

3 Empirical application

3.1 Data description

We analyse a panel time series of nine years of football match results from the English

Premier League for which 20 football clubs are active in each season. The 20 football clubs

that participate in a season vary because the three lowest placed teams at the end of the

season are relegated. In the new season they are replaced by three other teams. The number

of different teams in the panel is 36. Only 11 teams have played in all nine seasons of our

sample while 10 teams have only played in one season. In the time dimension, we span

a period from the season 2003/04 to the season 2011/12. The seasons run from August

to May. Each team plays 38 matches in a season (19 home and 19 away games) so that

in total we have 380 matches in the season. Most games are played in the afternoons

of Saturdays and Sundays, the other games are played during weekday evenings (mostly

Mondays). The total number of matches played in our dataset is 9× 380 = 3, 420. The first

seven years are used for parameter estimation and the last two years are used to explore

the out-of-sample performance of the model. The data used in our study can be found on

http://www.football-data.co.uk.

Our data set of football match results can be treated as a time series panel of low counts.

In approximately 85% of all matches in our sample, the teams have only scored 0, 1 or 2

goals. In Figure 1 we present the distribution of home and away goals scored during the nine

seasons. Although working with low counts, a significant difference can be identified in the

number of goals scored and conceded between the competing teams. A low ranking team

rarely scores more than two goals in an away match while the top ranking teams sometimes

reach scores of five or higher. This feature of the data is visualized in Figures 2 and 3 where

we present the number of goals scored and conceded, respectively, over time for all teams in

the data set.
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Figure 1: Histograms of home and away goals
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Histograms of home and away goals in the English Premier League over nine seasons ranging from 2003/04
to 2011/12. The average of home goals and away goals is 1.5287 and 1.0994, respectively. Averages are
calculated as the average number of goals scored by the home and visiting teams in official time. No matches
are played in overtime or finished with penalties.

3.2 Model details

Our analysis of the Premier League football match results is based on the modelling frame-

work presented in Section 2. The panel data set has J = 36 teams and we therefore need

to estimate 36 attack strengths over time and 36 defense strengths; the dimension of the

state vector zt is 72. In comparison to other empirical studies where state space time series

analyses are carried out, the state vector has a high dimension. Since only 20 teams are

active during a season, we need to treat large sections of the observations in the time series

panel as missing. The state space methodology can treat missing observations in a routine

manner; see the discussion in the Appendix B. The time index t in our analysis does not

refer to calendar weeks. Each week in a football season when at least one match is played

officially for the Premier League is indexed and is indicated with some time index t. The

last week of football matches in one season and the first week in the next football season

have then consecutive time index values. It means that summer (but also winter) breaks are

not accounted for in our analysis. If all teams play their matches on a weekly basis, each

season consists of 38 weeks. However, due to unforeseen circumstances, specific matches are

postponed and extra time periods need to be added in the data set. The resulting time index

t is adopted in our analysis; see also Figures 2 and 3.

The dynamic properties of the attack and defense strengths are given by (4) or collectively

in the state vector by (6). Given the high number of teams, we restrict the autoregressive
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Figure 2: Goals scored over time
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Figure 3: Goals conceded over time
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coefficients and the disturbance variances to be the same amongst the teams:

φα,i = φα, φβ,i = φβ, σ2
α,i = σ2

α, σ2
β,i = σ2

β ,

for i = 1, . . . , J . These restrictions are not strong since we expect the persistence and the

variation of the time-varying attack and defense strengths to be small and similar amongst

the teams. In other words, we expect the attack and defense strengths for all teams to be

evolving slowly over time. The attack and defense time paths for all teams can still change

very differently over time. The home ground advantage δ in (4) is also restricted to be the

same for all teams. We also do not regard this restriction as being strong. When a home team

plays on an artificial pitch, it would clearly be a different matter; see the study of Barnett

and Hilditch (1993). In such cases we could add an extra parameter in the model to account

for this effect. However, artificial pitches are prohibited in the English Premier League and

therefore the issue does not arise. Finally, the dependence in the scoring intensities of two

opposing teams is γ and appears in (1). This dependence parameter is the same for all

matches played.

The parameter vector is then given by

ψ = (φα, φβ, σ
2
α, σ

2
β , δ, γ)

′,

and is estimated by the method of Monte Carlo maximum likelihood as described in Section

2.4. The parameters are transformed during the estimation process such that the parameter

values are within their restrictive ranges as given by

0 < φκ < 1, σ2
κ > 0, δ > 0, 0 < γ < c,

for κ = α, β and where c represents the upper bound given in Appendix A. The signal

extraction of the time-varying attack and defense strengths has been carried out by the

Monte Carlo methods as described in Section 2.5. We have used a common set of random

numbers to generate M Monte Carlo paths for z. The choice of M can be relatively low due

to the effective importance sampling methods that have been used; the details are provided

in the Appendix B. The computations have been implemented using the numerical routines

developed and presented in Koopman, Shephard, and Doornik (2008); they are carried out

on a standard computer. We have not encountered numerical problems while the computing

times have been relatively short despite the high-dimensional state vector.

3.3 Parameter estimates

For our time series panel of number of goals scored by teams in the English Premier League

during the seven seasons from 2003/04 to 2009/10, the parameter estimates are presented

in Table 2. To show the robustness of our Monte Carlo maximum likelihood methods, we

present the estimates for different importance sampling replications M .

The parameter estimates are clearly robust to different choices of M . We may conclude
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Table 2: Estimates of parameter vector ψ

The table reports the Monte Carlo estimates for the parameter vector ψ together with the value of the
maximized loglikelihood value for number of simulated paths M = 50, 200, 1000. The Monte Carlo estimates
of the standard errors are between parentheses. The dataset used for estimation consists of seven seasons of
the English Premier League (2003/2004 – 2009/2010).

ψ M = 50 M = 200 M = 1, 000

φα 0.9985 0.9985 0.9985
(0.00044) (0.00044) (0.00044)

φβ 0.9992 0.9992 0.9992
(0.00027) (0.00027) (0.00027)

σ2α 0.000205 0.000206 0.000206
(2.20e-05) (2.27e-05) (2.28e-05)

σ2β 0.000141 0.000143 0.000143

(2.05e-05) (2.02e-05) (2.02e-05)

δ 0.3662 0.3643 0.3641
(0.0196) (0.0269) (0.0252)

γ 0.0966 0.0966 0.0966
(0.0232) (0.0232) (0.0232)

ℓ̂(ψ) -9608.56 -9608.38 -9608.38

that the choice of M = 200 is sufficient in our analysis but that we can also take M = 50 for

repeated analyses of the model. Since we only need to consider small Monte Carlo simulation

samples, the computing times are relatively short. Further evidence of the reliability of our

results is discussed in Appendix B.

Table 2 presents the estimates of the autoregressive coefficients of the latent dynamic

processes for the signals related to the attack and defense strengths. Apparently, the coef-

ficients are estimated close to one which indicate that the attack and defense strengths are

highly persistent and behave almost as random walks. However, it reflects the persistence

from week to week during the football seasons during which we do not expect much changes.

More changes are expected from season to season in which a season consists of 38 weeks.

When we consider the persistence of the signals from season to season we obtain autoregres-

sive coefficients equal to (0.9985)38 = 0.94 and (0.9992)38 = 0.97 which still imply persistent

processes for the signals but their behaviour are clearly stationary.

The estimated disturbance variances for the signals are reported as relatively small values

which illustrate that the attack and defense signals do not vary much over time. We again

emphasize that these estimated variances determine the scale of the fluctuations from week

to week which we expect to be very small. We do not expect that a top team turns into a

relegation candidate during one season. Furthermore, the number of goals in a match scored

by one team is typically low. In our data set, 85% of the scores consists of counts of 0, 1 or

2. Hence changes in the signals for attack and defense strengths can only be observed from

the data in a very subtle way.
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3.4 Signal estimates of attack and defense strengths

By replacing the parameter vector ψ with its estimate as given in Table 2, we can apply the

Monte Carlo signal extraction method of Section 2.5 to obtain the estimates for the attack

and defense signals. The state vector z consists of all these signals for all time periods

and for all football teams. Once we have computed its importance sampling estimate ẑ, we

can present elements of these estimates over time together with their standard errors. The

standard errors can also be computed by the importance sampling method as indicated in

Section 2.5.

Figure 4: Attack and defense strengths of two high ranking teams
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The panels show attack and defense strengths of the two highest ranking teams at the end of the 2011/12
season of the English Premier League. The solid lines are the estimated attack and defense strengths. The
dotted lines provide the symmetric confidence intervals based on one standard error. The bars represent the
number of goals scored and conceded from the 2003/04 towards the 2011/12 season which accounts for 404
time periods.

The estimation results of the previous section have indicated that the attack and defense

strengths do not fluctuate strongly over time, from week to week. However, the changes in

attack and defense strengths from season to season can be more substantial. We present

in Figures 4 the signal estimates for the time-varying attack and defense strength of the

well-known football teams Manchester United and Manchester City. The attack strength of

United have remained relatively constant from 2006 onwards while in the earlier years we

observe an upwards trend in their attack strength. The attack strength of City has increased

much more dramatically since 2007 and stabilised somewhat in the most recent season of

2011/12. Manchester City has been able to invest more in high quality players in the last

five years due to the new owners of the club. It is interesting to observe that the investments

of Manchester City has been more directed towards forward players since the upward trend

of the attack strength is stronger than the upward trend of the defense strength.

The estimated attack and defense strengths for Bolton and Blackburn are presented in
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Figure 5: Attack and defense strengths of two low ranking teams
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The panels show attack and defense strengths of the two lowest ranking teams at the end of the 2011/12
season of the English Premier League. The solid lines are the estimated attack and defense strengths. The
dotted lines provide the symmetric confidence intervals based on one standard error. The bars represent the
number of goals scored and conceded from the 2003/04 towards the 2011/12 season which accounts for 404
time periods.

Figure 5. These two football teams from the Premier League have been low ranking teams at

the end of the 2011/12 season. The defense strength of Bolton has deteriorated significantly

in the last years and hence it may explain their low ranking. For both teams the attack

strengths have remained stable over the years. Hence the model may suggest that both

teams should invest more in their defense strengths in the coming years.

3.5 Model validation: in-sample and out-of-sample

To validate in-sample estimation and out-of-sample prediction results for our main model, we

present a selection of estimation and testing results for a set of restricted and related model

specifications. Based on these results and comparisons, we can investigate the empirical

relevance or the contribution of the different features of our main model. The comparative

study includes six different model specifications and they are listed and labelled below.

(a) Main model with the estimation results presented in Table 2 and discussed in the

previous section.

(b) Main model with dependence parameter set equal to zero, that is γ = 0. This model

specification reduces the observation density to the one of the independent double

Poisson distribution.

(c) Main model with the dependence parameter equal to the team-dependent and time-

varying specification

γijt = γ∗
√

λx,ijtλy,ijt, γ∗ ≥ 0, (14)
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where γ∗ is a scaling coefficient that we estimate together with the other unknown

parameters. The dependence coefficient is time-varying due to its dependence on the

time-varying attack and defense strengths. This model specification of the dependence

parameter is proposed by Goddard (2005) but the time-varying feature has not been

considered in his study.

(d) Main model where the goal scoring intensities are not modelled as (3) but reduced

to λit = exp(θit) for all i = 1, . . . , J with the same autoregressive specifications as

in (4) but with αit replaced by θit and with βjt deleted. The decomposition of the

log-intensities of goals scored into attack and defense strengths of teams is aborted.

The home ground advantage parameter δ also does not play a role in this specification.

The dependence parameter γ is still estimated.

(e) Main model with time-invariant attack and defense strengths. The autoregressive

processes (4) are dropped for αit and βit and we take them as fixed coefficients in the

state vector (7), that is zt = µ in (6). We can adopt the same state space time series

analysis but with system matrices Φ = 0 and H = 0 in (6). The dependence parameter

γ only needs to be estimated.

(f) Model specification (d) but with time-invariant attack and defense strengths as in (e).

For all these model specifications, (a), . . . , (f), the loglikelihood value is calculated as

described in Section 2.4 using match results in seven seasons of the English Premier League,

those from 2003/04 to 2009/10. For each model specification, the loglikelihood function is

maximised with respect to the unknown parameters. The application of the importance

sampling method for the Monte Carlo evaluation of the loglikelihood function is based on a

simulation sample size of N = 50. The same random draws are used for the evaluation of the

loglikelihood value, for each model specification and for each value of the parameter vector.

For our in-sample validation of restrictions imposed on our main model specification (a), we

adopt the likelihood ratio (LR) test statistic as given by LR = −2
[

ℓ(b)(ψ̂(b))− ℓ(a)(ψ̂(a))
]

where ℓ(m)(ψ(m)) is the loglikelihood function for model (m) and ψ̂(m) is the maximum like-

lihood estimate of the parameter vector ψ(m) for model (m) with m = a, b. Under standard

regularity conditions and as the sample size increases, the LR test converges in distribution

to a χ2 with k degrees of freedom where k is the number of elements that vector ψ(a) exceeds

vector ψ(b). The maximised loglikelihood values and the LR test statistics are reported in

Table 3 for all models. In terms of the LR tests, we can conclude that all features of our

main model cannot be rejected by the restrictions or simplifications implied by the models

(b) upto (f). The exception may be model (c) where the alternative specification of Goddard

(2005) is close to the maximised loglikelihood value of model (a) but in actual levels, the

likelihood value of our main model is higher. Hence we do not feel that sufficient evidence

is given for the incorporation of this specification into our main model.

The rejection of the hypothesis γ = 0 as implied by model (b), also implies the rejection

of the double Poisson model. It confirms the in-sample significance of our estimate for γ as
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reported in Table 2. Earlier contributions have reported that the independent double Poisson

model has a tendency to underpredict the number of draws in a competition; see, for example,

Dixon and Coles (1997) and Karlis and Ntzoufras (2003). In the latter article, the importance

of a relatively small value for the dependence parameter γ, implying a weak correlation

between home and away scores, is illustrated by a simulation exercise. For example, when

they set γ = 0.05 with λx = λy = 1 in (1), the number of draws increased by 3.3% compared

to the double Poisson model, that is γ = 0. When the dependence is set to γ = 0.20, the

number of draws shows an increase of 14%. In our study, γ is estimated close to 0.10 and

we may therefore conclude that our main model shows an increase of more than 6.5% in the

number of expected draws, when compared to model (b).

The strong in-sample rejections of the models (d), (e) and (f) imply that the modelling

framework of Maher (1982) and the time-varying nature of the attack and defense strengths

are clear features in the football match results data from the English Premier League. It

provides further support to the empirical in-sample results which are reported and discussed

in the previous subsections.

For the out-of-sample validation of our main model, we carry out a thoroughly conducted

one-step ahead forecasting study. For each model, we forecast the outcome of the matches in

the football seasons 2010/11 and 2011/12 using a so-called rolling window strategy. We have

estimated the parameter vector for the multiple time series of seven seasons of match results.

At time t, the week before the first week of football season 2010/11, we forecast the match

outcomes for the first week of the season 2010/11, that is time t + 1, based on our model

and the estimated parameter vector. Since the realisations are known, we can compare the

forecasts with the actual outcomes. The differences between realisations and forecasts are

collected in the 20×1 forecast error vector et+1. Next we compute the sum of squared errors

which we take as our loss function, that is Lt+1 = e′t+1et+1. This loss function is computed for

each model, that is L
(m)
t+1 for m = a, . . . , f . The difference in accuracy compared to our main

model can be measured as d
(m)
t+1 = L

(a)
t+1 − L

(m)
t+1 for m = b, . . . , f . For the next period t + 1,

we re-estimate the parameter vector by including the match results of time t+1 in our data

but removing the match results in the first week of our sample, seven years ago. Hence the

estimation sample remains constant when re-estimating the parameter vector for producing

the next forecasts. This procedure of re-estimation and forecasting is then repeated for each

week in the two football seasons that we use for our out-of-sample validation. The predictive

accuracies of the different models are compared with each other on the basis of the Diebold-

Mariano (DM) test statistic; see Diebold and Mariano (1995). The test is designed for the

null hypothesis of equal out-of-sample predictive accuracy between two competing models.

The DM test statistic for model m is computed by (i) taking the average of the out-of-sample

computed values d
(m)
t+1’s over time, for each m = b, . . . , f ; (ii) standardizing this average by

a consistent measure of the long-term variance of dt+1. We require the long-term variance

because the time series of dt+1 is serially correlated by construction since at least only one

of the two competing models can be correctly specified. In general, the DM test statistic

should not be applied when we compare the predictive accuracy between two nested models

since the numerator and denominator of the DM test statistic have their limits at zero, when
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the in-sample and out-of-sample dimensions increase. However, it is argued by Giacomini

and White (2006) that the DM test statistic can still be applied as long as the forecasts are

generated with a rolling window and for a relatively short out-of-sample horizon. Diebold and

Mariano (1995) show that the DM test statistic is asymptotically distributed as a standard

normal random variable. Hence, we reject the null hypothesis of equal predictive accuracy

at the 5% significance level if the absolute value of the DM test statistic is larger than 1.96.

Our main model produces the most accurate out-of-sample forecasts in comparison to a rival

model when the DM value is smaller than −1.96. The resulting loss function values and DM

test statistics in our out-of-sample forecasting study are reported in Table 3.

Table 3: Model comparisons: in-sample and out-of-sample results

We compare the in-sample fit and out-of-sample forecasting accuracy for six competing model specifications.
The maximized loglikelihood values and the likelihood-ratio (LR) tests are computed by importance sampling
methods with M = 50 simulation draws. The in-sample results are based on seven seasons of the English
Premier League (from 2003/04 to 2009/10). The squared loss functions and the Diebold-Mariano (DM) tests
are based on one-step ahead forecasts from a rolling window sample. The out-of-sample results are based
on the two seasons 2010/11 and 2011/12. The test statistic values with ∗∗ indicate significance at the 5%
significance level.

Model Restrictions #pars log lik LR test sqr loss DM test

(a) None 6 −9608.56 2088.40
(b) γ = 0 5 −9617.44 17.76∗∗ 2089.90 −0.63
(c) γ as (14) 6 −9609.68 2090.20 −1.35

with γ̂∗ = 0.0812
(d) δ = 0, only intensity signal 3 −9851.43 485.74∗∗ 2249.00 −4.34∗∗

(e) time-invariant signals for (a) 1 −9670.08 123.04∗∗ 2189.10 −3.49∗∗

(f) time-invariant signal for (d) 1 −9884.93 67.01∗∗ 2272.80 −4.65∗∗

The out-of-sample squared loss function values reported in Table 3 show that model (a)

has the smallest loss compared to the other five models. However, the losses for models (b)

and (c) are also small and close to the loss of model (a). It appears that the dependence

parameter γ does not have a large impact on the out-of-sample forecast accuracy of the model

while the γ has been estimated as strongly significant in-sample. A possible explanation is

the relatively short out-of-sample that we have used in our study. The results are confirmed

by the reported DM test statistics which indicate that we cannot reject the hypothesis that

models (b) and (c) are equally accurate as model (a) in out-of-sample forecasting. The

in-sample rejections of models (d), (e) and (f) relative to model (a) are confirmed by the

out-of-sample statistics in Table 3. The loss functions for these models are much higher and

the DM test statistics show that the equal predictive accuracy hypothesis can be rejected

for the models (d), (e) and (f) when compared to model (a). Overall we conclude that

model (a) is our preferred specification for both in-sample fit and out-of-sample forecasting

accuracy for the range of specifications considered here.
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4 Out-of-sample performance in a betting strategy

We have shown that our statistical dynamic modelling framework is able to forecast match

results accurately in comparison to other specifications. It is therefore interesting to verify

the out-of-sample performance of our model for the betting on a win, a loss or a draw of

the home team for a selection of matches each week during the two seasons of 2010/11 and

2011/12. The betting on matches in the English Premier League is immense popular and

is really a world-wide activity. In our betting evaluation study we carry out the same out-

of-sample rolling window strategy as used in the previous section. At time t, we estimate

γ and the other parameters and we forecast the intensities λx,ij,t+1 and λy,ij,t+1 using the

data upto time t. We then have the full distributional properties of the next ten games

implied by the bivariate Poisson model (1) with its unknown parameters replaced by their

estimates and forecasts. It enables us to compute the probabilities of all possible outcomes

of a match and hence the probabilities of a win, a loss or a draw for the home team. We

compute these probabilities based on the Skellam distribution; see Section 2.1. Although

the Skellam distribution is invariant to γ, the dependence coefficient remains to affect the

estimated properties of the attack and defense strengths. Once the probabilities for a win, a

loss or a draw (they sum up to one) are established for all ten next week’s matches, we can

visit the bookmaker’s office and bet on these matches.

Different betting strategies can be followed and we illustrate our basic and conservative

strategy as follows. For example, consider the first match of the out-of-sample 2010/2011

season where Aston Villa played against West Ham. The forecasted intensities for this

match are λx,ij,t+1 = 1.7272 and λy,ij,t+1 = 0.8127 which correspond to win, loss and draw

probabilities for the home team of 0.591, 0.174 and 0.235, respectively. The bookmaker offers

the following odds for the home team: 1.96 for a win, 4.03 for a loss and 3.30 for a draw.

For each outcome, the expected value (EV) of a unity bet on an event A is given by

EV(A) = P (A)× [Odds(A)− 1]− P (Not A)× 1 = P (A)×Odds(A)− 1,

where event A represents a win, a loss or a draw of the home team, P (A) is the probability

of event A and Odds(A) is the bookmaker’s odds for event A. In our illustration we obtain

0.159, −0.300 and −0.224 as expected values for an unity bet on a win, a loss and a draw

for the home team, respectively. A basic strategy could be to bet on all events for which

the expected value is positive, EV(A) > 0. In this illustration we then bet on a win for the

home team. However, we will consider a less risky betting strategy which is based on the

following guidelines. First, we bet only on “quality” events which are defined as bets with

EVs that exceed some benchmark τ , that is EV(A) > τ for some τ > 0. Second, we also

consider possible longshot events which are defined as small probability events with such

high odds that they pass as quality events. The probability of losing the bet on a longshot

is of course high. We therefore explicitly mark longshots in our study. We consider events

with odds higher than 7 as longshots.

Our validation exercise is for the English Premier League data set. The forecasts of
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the intensities and hence the forecasts of the probabilities of all possible match results (the

events of a win, a loss and a draw) are computed by the rolling window strategy used for our

out-of-sample validation in the previous section. We follow the basic strategy as described

above and we bet an unity value on each quality event for some value of τ . We also bet on

longshots but reduce this bet to a value of 0.3 unit.

The expected and actual profit for all our bets in the 2010/11 and 2011/12 seasons can

now be determined as described above for a range of τ values. The sample variance of the

computed profit at each time t is obtained by the bootstrap method based on 1, 000 bootstrap

samples; we have carried out a standard bootstrap method as described in Davidson and

MacKinnon (2004). The odds for betting are offered by many different bookmakers. We

consider the average odds taken from 28 to 40 bookmakers (depending on the match) which

are collected online at http://www.football-data.co.uk. During the two seasons, the 40

bookmakers have provided us with 760 betting opportunities, for all matches played. In the

example match between Aston Villa and West Ham above, the implied probabilities given

by the bookmakers odds have been, on average, 1/1.96, 1/4.03 and 1/3.30 in the respective

order of a win, a loss and a draw by the home team. The sum of these probabilties is given

by 106.1%. Everything above the 100% is the profit of the bookmaker (or the bookmaker’s

edge) which is 7% on average. This means that the expected profit under random betting

of a unity value is −0.07. Random betting is referred to as having an unity bet on a win,

a loss or a draw randomly chosen for each match. Hence our betting strategy must achieve

an overall return that overtakes the bookmaker’s edge of 7% but also generates a positive

overall return.

In Figure 6 we present the outcomes of our betting strategy for different values of τ . In

the first panel (i) the overall return is presented as the solid line and it is compared with the

negative overall return of 7%, the bookmaker’s edge. The 90% bootstrap confidence interval

is represented by the dotted lines. A similar graph is presented by Dixon and Coles (1997).

For τ = 0, the majority of betting opportunities is marked by the model as quality bets.

For 0 < τ < 0.12, the average return is expected to be around zero which is due to possible

model misspecification and parameter uncertainty. We start to obtain positive mean returns

at τ > 0.12. The number of betting opportunities become small, less than 40, for τ = 0.45.

Hence the generated mean returns for τ > 0.45 are not reliable which is reflected by the

bootstrap confidence intervals. We do not report the mean returns for τ > 0.45 in Figure 6.

We observe that for small values of τ , the forecasts of our model imply a zero return on

average while a negative return on average also finds support in the 90% interval. When the

benchmark τ for a quality bet increases, the number of actual bets decreases in our strategy

as is shown in panel (ii) of Figure 6. However, the quality bets from a higher benchmark

will also provide us with a higher return on average as we learn from panel (i). For example,

when we set τ equal to 0.40, we take 50 bets in the two seasons and we expect a return of

just below 0.5 on average. When we then play with 1 unit for each of the 50 bets, we expect

to receive 75 units from the bookmakers in return; this is a profit of 25 units, a 50% return,

on average. Since negative returns are not likely given the 90% confidence interval, we do

not expect to loose money in our betting strategy for τ = 0.4.

21



Figure 6: Returns of betting strategy for the 2010/11 and 2011/12 seasons
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(i) The solid line is the average return from betting on match outcomes in the 2010/11 and 2011/12 seasons
of the English Premier League using our strategy for different values of the threshold τ ; the dashed line
represents the average return under random betting which we have established at −0.07; the dotted lines
are 90% bootstrap confidence intervals. (ii) Number of quality bets for different values of τ out of the 760
betting opportunities in the two seasons.

The average returns in Figure 6(i) is not a smooth function of τ . This is partly due to

the role of longshots in this exercise. For example, at τ = 0.11, we obtained 74 longshots

from which 8 have been correct resulting in a net profit of 5.07 units. Even when we bet

with 0.3 units for longshots, the betting strategy remains highly variable because for another

value of τ , another small number of correct longshots is obtained that can lead to a very

different net profit. A more advanced betting strategy takes into account the variation of

odds amongst the bookmakers. We abstain from such more advanced strategies since we

only want to illustrate the performance of our model in a basic and simple betting strategy.

The presented results can be used as a benchmark for the more advanced betting strategies

based on our model. No definitive conclusions can be drawn from this illustration. We

regard this validation study as an example of how our modelling framework can be used in

practice.

5 Conclusions

We have presented a non-Gaussian state space model for the analysis and forecasting of

football matches. Our model takes a match result as a pairwise observation that is assumed

to come from a bivariate Poisson distribution with intensity coefficients for the number of

goals scored by the two teams and a dependence coefficient for measuring the correlation

between the two scores. The intensity coefficients depend on attack and defense strengths

of the teams and they are allowed to evolve stochastically over time. The intensities are also
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subject to a fixed coefficient for home ground advantage. The resulting dynamic bivariate

Poisson model is a novelty and can be used for the analysis of match results in many different

competitions for team sports. Our empirical study is for a dataset of match results from nine

seasons of the English Premier League. The last two seasons are 2010/11 and 2011/12 and

are used as an out-of-sample evaluation period for the forecasting of football match results.

The model-based forecasts are of sufficient accuracy for their exploitation in a basic betting

strategy. Although we believe that we have presented promising results, we also believe

that further improvements can be made in different directions. First, other dynamic model

specifications for the attack and defense strengths can be considered such as random walk or

long memory processes. Also we can include specific effects for summer and winter breaks in

a sequence of football seasons. Second, our statistical modelling framework only uses match

results as data. The forecasting performance of the model can be further improved by adding

more information about the matches. For example, potential explanatory variables for match

results are the duration between matches played by a team and the traveling distance of the

visiting team. Third, as football betting in the United Kingdom is very popular, large sums

of money are wagered on matches in the English Premier League. One can expect that odds

provided by bookmakers are highly efficient. The odds used in our forecasting study are

averages of odds provided by 28 to 40 bookmakers, depending on the match. In the liquid

market of football betting, one can easily find higher odds than the averages that we have

used in our study. More advanced betting strategies that take account of the variance of a

bet can improve the returns further.

APPENDICES

A Upper bound for correlation coefficient

Assume that X and Y are from the bivariate Poisson distribution with means λx + γ and

λy + γ, respectively, where γ = ρ
√
mxmy where mx = λx + γ and my = λy + γ; see the

definitions in Section 2.1. Since λx, λy ≥ 0, we have mx ≥ γ and hence ρ ≤
√

my/mx.

Similarly, we have my ≥ γ and ρ ≤
√

mx/my. The upper bound for ρ is given by

ρ ≤ min

{
√

λx + γ

λy + γ
,

√

λy + γ

λx + γ

}

.
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B Simulated maximum likelihood estimation

B.1 Likelihood evaluation

Given our model specification for the time series of pairs of counts collected in y with its

dependence on the states in z, we can express the likelihood function ℓ(ψ) as given by (12).

The individual observations and states at time t are indicated by yt and zt, respectively;

see the discussion in Section 2.4. We evaluate the integral numerically by the method of

importance sampling as developed by Shephard and Pitt (1997) and Durbin and Koopman

(1997), hereafter referred to as SPDK. A comprehensive treatment of the method, together

with other and related methods, is provided by Durbin and Koopman (2012, Part II). The

SPDK method is based on an approximating linear Gaussian model g(y, z;ψ) which allows

us to compute the approximate likelihood function g(y;ψ) by means of the Kalman filter

and to simulate random samples for z from g(z|y;ψ) by means of the simulation smoother;

see the discussions in Jungbacker and Koopman (2007). The simulated random samples for

z will give a better support to y although they come from an approximating model.

The likelihood function of the approximating Gaussian model g(y, z;ψ) = g(y;ψ)g(z|y;ψ)
can be expressed as

ℓg(ψ) = g(y;ψ) =
g(y, z;ψ)

g(z|y;ψ) =
g(y|z;ψ)p(z;ψ)

g(z|y;ψ) , (15)

since p(z;ψ) ≡ g(z;ψ). Substituting p(z;ψ) = g(y;ψ)g(z|y;ψ)/g(y|z;ψ) into (12), we obtain

ℓ(ψ) = g(y;ψ)

∫

p(y|z;ψ)
g(y|z;ψ)g(z|y;ψ)dz = ℓg(ψ)Eg

{

p(y|z;ψ)
g(y|z;ψ)

}

, (16)

where Eg refers to expectation with respect to the Gaussian density g(z|y;ψ). This method

has proved to work effectively for multivariate time series models; see, for example, Koopman

and Lucas (2008). In our model specification, the individual observations yt are independent

for given zt as implied by (8) for t = 1, . . . , n. Hence we can also assume that g(y|z;ψ) =
∏n

t=1 g(yt|zt;ψ). The construction of an approximating model is discussed in Section B.2.

For a given approximating model, we estimate the likelihood function via Monte Carlo

simulation as

ℓ̂(ψ) = ℓg(ψ)
1

M

∑

wi, wi =
p(y|zi;ψ)
g(y|zi;ψ) , zi ∼ g(z|y;ψ), (17)

where wi is referred to as an importance weight, ℓg(ψ) is obtained from the Kalman filter

and zi is computed by the simulation smoother for i = 1, . . . ,M . We can refer to ℓ̂(ψ) as

the importance sampling estimate of the likelihood function. For the purpose of likelihood

maximisation with respect to ψ, it is preferred to work with the loglikelihood function.

Taking the log of ℓ̂(ψ) in (17) introduces a bias that can be accounted for in the usual way;

see Durbin and Koopman (1997).
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The effectiveness of the importance sampling method for likelihood evaluation relies on

the properties of the importance sampling weight function w(y, z;ψ) = p(y|zi;ψ) / g(y|zi;ψ);
see Geweke (1989) who provides conditions for w(y, z;ψ) under which a central limit theorem

is valid for the estimate ℓ̂(ψ). An important condition is the existence of a variance for

weight function w(y, z;ψ). Based on a sample of importance weights w1, . . . , wM , Koopman,

Shephard, and Creal (2009) discuss diagnostic test statistics to validate the existence of a

variance for the importance sampling weights.

B.2 Construction of approximating model

For the implementation of the SPDK importance sampling method, the approximating linear

Gaussian state space model is given by

g(y, z;ψ) = g(y|z;ψ)g(z;ψ) = g(z;ψ)
n
∏

t=1

g(yt|zt;ψ), (18)

where g(z;ψ) represents the density of the dynamic state process (6) and we let g(yt|zt;ψ)
be represented by the linear Gaussian model equation

yt = atδ + Atzt + ct + εt, εt ∼ NID(0, Vt), t = 1, . . . , n, (19)

or more explicitly

g(yt|zt;ψ) = NID(atδ + Atzt + ct, Vt), t = 1, . . . , n, (20)

where vector at has element 1 if the number of goals in the corresponding element of yt is

from a home team and 0 otherwise, matrix At, with elements of 1s, 0s and -1s, selects the

attack (+1) and defense (-1) strengths of the relevant teams, and mean correction ct and

variance Vt are selected such that the first and second derivates of logdensities log p(yt|zt;ψ)
and log g(yt|zt;ψ) with respect to zt are equal to each other, for t = 1, . . . , n. We notice

that atδ + Atzt represents the signal as also defined in (9). Closed-form solutions of these

two sets of n equalities are not available and hence we solve them iteratively with the use of

the Kalman filter and smoother; more details and discussions are given by Jungbacker and

Koopman (2007). The approximating model g(y, z;ψ) is effectively a second-order Taylor

expansion of the true model and it is also equivalent to computing the mode of p(z|y;ψ)
for z; see the discussions in Durbin and Koopman (1997), So (2003) and Jungbacker and

Koopman (2007). Our application for the bivariate Poisson model is not straightforward

and we require to provide some further clarification. We will briefly discuss these necessary

details for a successful implementation next.

To obtain values for ct and Vt in (19), we need to solve the equations

ġt(zt) = ṗt(zt), g̈t(zt) = p̈t(zt), t = 1, . . . , n,
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where

ṗt(zt) =
∂ log p(yt|zt;ψ)

∂zt
, p̈t(zt) =

∂2 log p(yt|zt;ψ)
∂zt∂z′t

,

and ġt(zt) and g̈t(zt) are defined similarly. It follows straightforwardly that

ġt(zt) ≡ A′

tV
−1
t (yt − ct − atδ −Atzt), g̈t(zt) ≡ −A′

tV
−1
t At, t = 1, . . . , n.

The derivatives for log p(yt|zt;ψ) are more intricate and we develop expressions for ṗt(zt)

and p̈t(zt) in the next section. Hence we obtain expressions for ct and Vt by

Vt = −Atp̈
−1
t (zt)A

′

t, ct = yt − atδ − At

[

zt + p̈−1
t (zt)ṗt(zt)

]

, t = 1, . . . , n. (21)

We notice that matrix A−1
t exists in our framework. The mean ct and variance Vt depend on

the state vector zt and hence we solve these equations iteratively. For starting values of ct and

Vt, we construct the linear Gaussian state space model for g(y, z;ψ) and apply the Kalman

filter smoother to obtain ẑ = Eg(z|y;ψ). From the value z = ẑ, we can obtain new values

for ct and Vt and can construct or update a new approximating model. The Kalman filter

smoother produces a new ẑ and we iterate this process until convergence. When this process

has converged, the linear Gaussian model with the final values for ct and Vt represents the

approximating model g(y, z;ψ) as given by (19). It is well established that the Kalman filter

and related methods can treat missing observations straightforwardly; see the discussions in

Durbin and Koopman (2012, Part I).

B.3 The derivatives for the model observation density

Equation (8) implies that the matches played at time t, for a given zt, are treated as inde-

pendent events. Hence we can treat each match separately. A match is for home team i

and visiting team j. The scoring intensities for both teams are collected in the 2× 1 vector

λijt = (λx,ijt, λy,ijt)
′ which are functions of zt, that is λijt = sij(zt) since λx,ijt = sx,ij(zt)

and λy,ijt = sy,ij(zt); see the discussion in Section 2.4. The first derivative of the log of the

bivariate Poisson density (1) with respect to zt can be obtained via the chain rule as

∂ log p(X, Y ;λx,ijt, λy,ijt; γ)

∂zt
= ṡij(zt)× ṗλ(λijt),

where X and Y are specific elements of yt and represent the numbers of goals scored by

teams i and j, respectively, at time t, and where

ṡij(zt) =
∂λ′ijt
∂zt

, ṗλ(λijt) =
∂ log p(X, Y ;λx,ijt, λy,ijt; γ)

∂λijt
.

The second derivative can be obtained in the same way, that is

∂2 log p(X, Y ;λx,ijt, λy,ijt; γ)

∂zt∂z
′

t

= ṡij(zt)× p̈λ(λijt)× ṡij(zt)
′,
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where

p̈λ(λijt) =
∂2 log p(X, Y ;λx,ijt, λy,ijt; γ)

∂λijt∂λ′ijt
.

An expression for ṡij(zt) is obtained easily for link functions sx,ij(zt) and sy,ij(zt) as given

by (3).

The general expressions for ṗλ(λijt) and p̈λ(λijt) follow from (1) and are decomposed as

ṗλ(λijt) =

(

ṗλx
(λijt)

ṗλy
(λijt)

)

, p̈λ(λijt) =

[

p̈λxx
(λijt) p̈λxy

(λijt)

p̈λxy
(λijt) p̈λyy

(λijt)

]

. (22)

The first derivative elements are given by

ṗλx
(λijt) = λ−1

x,ijt[X − λx,ijt − U(1, λijt)], ṗλy
(λijt) = λ−1

y,ijt[Y − λy,ijt − U(1, λijt)],

where U(m, λ) = S(m, λ)/S(0, λ) with

S(m, λ) =

min(X,Y )
∑

k=0

(

X

k

)(

Y

k

)

k! km
(

γ

λx λy

)k

,

and with λ = (λx, λy)
′ for m = 0, 1, 2. We notice that

∂S(m, λ)

∂λu
= −λ−1

u S(m+ 1, λ), u = x, y, m = 0, 1,

and S(m, λ) = 0 when γ = 0, for m = 1, 2. We further observe that S(0, 0) = 1 so that

function U(m, λ) is properly defined for all γ ≥ 0. The second derivative elements are given

by

p̈λxx
(λijt) = −λ−1

x,ijt

[

1 + ṗλx
(λijt)− λ−1

x,ijtU̇(λijt)
]

,

p̈λyy
(λijt) = −λ−1

y,ijt

[

1 + ṗλy
(λijt)− λ−1

y,ijtU̇(λijt)
]

,

p̈λxy
(λijt) = λ−1

x,ijtλ
−1
y,ijtU̇(λijt),

with

U̇(λ) = U(2, λ)− U(1, λ)2,
∂U(1, λ)

∂λu
= −λ−1

u U̇(λ), u = x, y.

Finally, it follows that

ṗt(zt) =
∑

i,j∈yt

ṡij(zt)× ṗλ(λijt), p̈t(zt) =
∑

i,j∈yt

ṡij(zt)× p̈λ(λijt)× ṡij(zt)
′,

where the notation i, j ∈ yt implies that we consider all matches played at time t with a

home team i and a visiting team j, for t = 1, . . . , n.
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Figure 7: Positive, negative, and indefinite areas of the Hessian matrix
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The figure illustrates combinations of counts which generate positive, negative and indefinite “variances”
in the approximating model, for different values of λx, λy and γ. The areas below and left from the lines
correspond to counts that generate positive variances. The areas above and right from the lines represent
counts that provide negative or indefinite variances. The coefficient γ ranges from 0.05 to 0.20 with 0.05
increments. The panels are for (i) λx = λy = 1.0; (ii) λx = 1.5, λy = 1.0; (iii) λx = 2.0, λy = 1.5; (iv)
λx = 2.5, λy = 2.0.

B.4 Computational issues

The construction of the approximating model and the generation of the importance samples

require the application of the Kalman filter smoother applied to the linear Gaussian model

(19). Since matrix Vt in (21) is a variance matrix, we require that Vt is positive definite or

that p̈−1
t (zt) is negative definite which effectively insists that the 2× 2 matrix p̈λ(λ) in (22)

is negative definite. Jungbacker and Koopman (2007) have argued that even when Vt is not

positive definite, the application of the Kalman filter and the corresponding computations are

still appropriate for our purposes. However, it is insightful to verify under which conditions

p̈λ(λ) in (22) is negative. We therefore need to verify the determinant of p̈λ(λ). Without

providing the details, we present in Figure 7 the values of X and Y for which we obtain a

positive definite matrix p̈λ(λ). In case γ = 0, the variance Vt is well defined since the model

reduces to a double Poisson which imposes a proper variance; see Durbin and Koopman

(2012, Chapter 10.6) for the details. In case γ > 0, the variance Vt becomes negative

when X and/or Y are large in relation to their intensities λx and/or λy, respectively. The

benchmark values can be deduced from Figure 7.
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