
Never Too Old To Learn
On-line Evolution of Controllers
in Swarm- and Modular Robotics

Evert Haasdijk
Department of Computer Sciences
Faculty of Sciences, Vrije Universiteit

2012

Thesis Reading Committee:

prof.dr. L. Bull Department of Computer Science, The University of
the West of England, UK

prof.dr. D. Floreano Laboratory of Intelligent Systems, Ecole Polytech-
nique Fédérale de Lausanne, Switzerland

dr. A. Visser Informatics Institute, Faculty of Science, University
of Amsterdam, The Netherlands

dr.ir. D. Thierens Department of Information and Computing Sciences,
Utrecht University, The Netherlands

prof.dr. J. Treur Agent Systems Research Group, Faculty of Sciences,
VU University Amsterdam, The Netherlands

SIKS Dissertation Series No. 2012-35
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

VRIJE UNIVERSITEIT

Never Too Old To Learn
On-line Evolution of Controllers
in Swarm- and Modular Robotics

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op donderdag 1 november 2012 om 15.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Evert Willem Haasdijk

geboren te Voorburg

promotor: prof. dr. A.E. Eiben

For Willem and Keetje

Listen to the MUSTN’TS, child.
Listen to the DON’TS.

Listen to the SHOULDN’TS,
The IMPOSSIBLES, the WON’TS.

Listen to the NEVER HAVES,
Then listen close to me—

Anything can happen, child,
ANYTHING can be.

Shel Silverstein

Table of Contents

Acknowledgements . v

1 Summary 1

2 Background and Contributions 5

3 More Than the Sum of its Parts 15
3.1 Population-based Adaptive Systems 18

3.1.1 Three Tiers of Adaptation . 19
3.1.2 The Environment and the Agents 21
3.1.3 Adaptation Mechanisms . 24
3.1.4 Relationships Between Adaptation Mechanisms 28
3.1.5 Discussion . 31

3.2 Learning Benefits Evolution . 33
3.2.1 The Experiments . 34
3.2.2 Experiment I . 36
3.2.3 Experiment II . 39
3.2.4 Discussion . 40

3.3 Social Learning as Enabler of a Knowledge Reservoir 41
3.3.1 Energy and Agent Quality . 43
3.3.2 Social Learning in Detail . 43
3.3.3 Experimental Set-up . 46
3.3.4 Results . 48
3.3.5 Discussion . 51

3.4 Conclusion . 51

4 Look Ma, No Hands! 53
4.1 Introduction . 54
4.2 On-line, On-board Evolution . 56
4.3 The Encapsulated Approach . 58
4.4 The Distributed Approach . 61
4.5 The Hybrid Approach . 65
4.6 Considerations in On-line, On-board Evolutionary Robotics 66

4.6.1 Actual performance matters 66
4.6.2 Evaluation in vivo . 67

i

ii TABLE OF CONTENTS

4.6.3 Parameter control and/or robust parameter settings 68
4.6.4 Situatedness . 69

4.7 Directions For Future Research . 71

5 Growing Pains 73
5.1 On-line, On-board Evolution of Robot Controllers 75

5.1.1 Background and Introduction 75
5.1.2 The (1+1)-online Evolutionary Algorithm 77
5.1.3 Experimental Setup . 79
5.1.4 Results . 82
5.1.5 Conclusions and Further Work 88

5.2 On-line evolution of robot controllers by an encapsulated evolution
strategy . 90
5.2.1 Introduction . 90
5.2.2 Considerations in On-Line Evolution 93
5.2.3 The (μ + 1) on-line Evolutionary Algorithm 94
5.2.4 Experimental Set-up . 97
5.2.5 Results and discussion . 100
5.2.6 Conclusion . 105

5.3 Racing to Improve On-line, On-board Evolutionary Robotics 106
5.3.1 Introduction . 106
5.3.2 Related work . 109
5.3.3 Racing in (μ + 1) on-line . 110
5.3.4 Experimental comparison . 112
5.3.5 Results and Discussion . 118
5.3.6 Conclusions . 120

6 The Proof of the Pudding 123
6.1 Introduction . 123
6.2 On-line, On-board Evolutionary Robotics 126
6.3 The (μ + 1) on-line Evolutionary Algorithm 129

6.3.1 Evolutionary operators . 130
6.3.2 Re-evaluation to combat noise 131
6.3.3 Racing to shorten fitness evaluations 133

6.4 Scientific Testing . 134
6.5 Bonesa . 136
6.6 Experimental Set-up . 138

6.6.1 Four Tasks . 140
6.7 Results . 147

6.7.1 Generalism vs Specialism . 148
6.7.2 Parameter Tolerance . 149
6.7.3 Parameter Interaction . 149

6.8 Discussion . 152
6.9 Conclusion . 154

TABLE OF CONTENTS iii

7 United We Stand, Divided We Fall 157
7.1 Distributed On-line, On-board Evolutionary Robotics 159

7.1.1 Introduction . 159
7.1.2 Related Work . 161
7.1.3 On-line, On-board Evolution 163
7.1.4 Experimental Assessment . 168
7.1.5 Results . 173
7.1.6 Discussion and Conclusion . 176

7.2 A Peer-to-Peer Distributed Algorithm 179
7.2.1 Introduction . 179
7.2.2 Related work . 181
7.2.3 Algorithms . 182
7.2.4 (μ + 1) on-line . 182
7.2.5 EvAg . 183
7.2.6 Experiments . 185
7.2.7 Evaluation with parameter tuning 187
7.2.8 Results and Discussion . 188
7.2.9 Conclusion . 191

7.3 Migration Policies for Hybrid On-line Evolution of Robot Controllers 193
7.3.1 Introduction . 193
7.3.2 State of the art . 194
7.3.3 Algorithms and Experimental Setup 195
7.3.4 Results and Analysis . 199
7.3.5 Conclusions and future work 204

7.4 The Emergence of Multi-Robot Organisms using On-line On-board
Evolution . 205
7.4.1 Introduction . 205
7.4.2 Related Work . 206
7.4.3 System Description & Experiments 209
7.4.4 Results & Analysis . 212
7.4.5 Conclusion & Further Research 216

8 It’s Life, But Not As We Know It 219
8.1 Introduction . 220
8.2 What is Embodied Artificial Evolution? 221
8.3 Motivations, Expected Benefits . 224
8.4 Relevant Research Areas . 227

8.4.1 Micro- and Nano- Mechatronic Systems, Evolvable Hardware 227
8.4.2 Top-down Bio-Synthetic Systems 229
8.4.3 Bottom-up Chemo-Synthetic Systems 230
8.4.4 Hybrid Mechatronic and Biochemical Systems 231

8.5 Applications . 231
8.5.1 Evolving Robots . 232
8.5.2 Functional Organisms . 233

iv TABLE OF CONTENTS

8.5.3 Evolutionary Personal Fabrication 233
8.6 Grand Challenges . 234

8.6.1 Body Types . 234
8.6.2 How to Start – Reproduction of Functional Elements 235
8.6.3 How to Stop – Kill Switch . 235
8.6.4 Evolvability and Rate of Evolution 236
8.6.5 Process Control and Methodology 236
8.6.6 Body-mind Coevolution and Lifetime Learning 237

8.7 Final Remarks . 238

9 Discussion 241
9.1 The Scheme of Things . 245
9.2 Current and Future Research . 247

References 273

Summary in Dutch: Nooit Te Oud Om Te Leren 275

Acknowledgements

First of all I am, of course, beholden to my parents: they encouraged intellectual
curiosity, were always ready with advice and encouragement and generally gave
me a solid, trusted basis that knew I could always rely on. Thanks mum, thanks
dad. I am very sad that mum is no longer with us to see this.
When I was young, probably about thirteen or fourteen years old, Dutch tele-

vision aired the incomparable Carl Sagan’s Cosmos series. I was allowed to stay
up late one night each week to watch Carl Sagan take us on his cosmic voyage
into science, into what we know, what we guess at and how we find things out.
These were magical evenings; I would sit there with my dad watching carl Sagan’s
infectiously enthusiastic, yet at the same time serene presentation of this phantas-
magoric illustration of man’s curiosity and inventiveness. It may go too far to say
that Carl Sagan is responsible for my interest in science, but he certainly helped
kindle it.
At the end of my studies at the UvA, I was lucky enough to find a position as

an intern at Cap Gemini Innovation where I worked closely with Rob Walker and
David Barrow. Together with Rob, David and Colin Baker I later went on to run
KiQ. During our years together we not only had loads of fun, but working with
Rob and David has defined the first ten years of my career and taught me many
things that have stood me in good stead over the years.
Over the last years, I have been fortunate to work with some very talented

and intimidatingly smart people at the VU and our partners in the new ties and
symbrion projects. It has been a pleasure and an education to work with you
all and I hope to see many of you in further collaborations. In particular my
roommate Selmar Smit with whom I had so many discussions, coffees and beers:
thanks. I’m glad we managed to co-author a chapter of both our theses.
Thank you, my other co-authors Arif Atta-ul-Qayyum, Nicolas Bredèche, Gusz

Eiben, Pablo Garcı́a-Sánchez, Robert Griffioen, Robert-Jan Huijsman, Giorgos Karafo-
tias, Serge Kernbach, Abraham Prieto, Andrei Rusu, Martijn Schut, Paul Vogt,
Berend Weel, Willem van Willigen and Alan Winfield.
And of course thank you, my friends and colleagues in the CI group with

whom I haven’t (yet) co-authored anything: Joeri Bekker, Nivea Ferreira, Vincent
van der Goes, Eelco den Heijer, Mark Hoogendoorn, Rob Konijn, Zoli Szávik and
Christian Tzolov.

v

I owe a great debt of gratitude to Gusz Eiben, not just for his support and
guidance during the research that led to this thesis, but more importantly because
he took a chance on me, first hiring me for what should have been a postdoc
position, then for his efforts to secure my (provisional) assistant professorship
when Martijn Schut left our group, even though I hadn’t yet completed my thesis.
I am looking forward to many more years of joint research, project meetings that
run on into the night and feet-on-the-table discussions on a host of topics long
after the meeting has ended, with the beer flowing freely.
Thank you, members of the reading committee. For your time, your attention

and your feedback: Larry Bull, Dario Floreano, Arnoud Visser, Dirk Thierens and
Jan Treur.
Thank you, my paranymphs: darling sister Suzan and dear friend Luuk, for

being there. Always.
Thank you, Tom, for suggesting that I consider a position as PhD student when

I was looking for a more challenging job than freelance programmer.
Thank you, reader, for taking the time to read this. I’m sure I’ve forgotten

someone in the frantic effort of getting this thesis to the printer in time. I’m sorry.
Remind me sometime and I’ll buy you a beer to make up for it.
Much, if not all, of the work presented in this thesis was made possible by the

European Union FET funding the new ties project under grant agreement 003752
and FET’s Proactive Initiative: Pervasive Adaptation funding the symbrion project
under grant agreement 216342.
Last, but certainly not least: thank you Dorien, Willem and Keetje. For being

there, for bearing with me and for making me a better person than I could possibly
be by myself. I love you.

vi

It Beats...as it Sweeps...as it Cleans

Gerald Page-Wood for the Hoover Company

1
Summary

The work described in this thesis was inspired by a vision of truly autonomous
robots that can adapt their behaviour, possibly even their shape, to suit varying
tasks and circumstances. Autonomy occurs at two levels: not only do the robots
perform their tasks without external control, they also adapt their behaviour with-
out referral to external oversight and so learn autonomously.

Such versatility is well beyond most autonomous robots that have been de-
signed for particular tasks (“weld the body to the chassis”) in well-defined envi-
ronments. To be able to handle unexpected circumstances and tasks, robots must
acquire the ability to learn appropriate behaviours and morphologies as they en-
counter these circumstances and are given these tasks. This ability to learn, to
adapt, autonomously is the focus of our research.

Robots can be programmed to adapt individually, by themselves, without refer-
ral to any external overseers, but when there are multiple robots that try to tackle
the same task it makes sense to seek strength in numbers by learning collectively.
Robots can then combine their knowledge through evolution (evolutionary adap-
tation) or they can exchange knowledge through social interaction (social learning)
to boost their individual learning processes. Thus, there are three possible ways in

1

Chapter 1. Summary

which a collective of robots can implement adaptivity: individually, socially and
evolutionarily.

The research described in this thesis was undertaken as part of the symbrion
project, which envisages groups of dozens of robots that can link together to form
and manipulate ‘organisms’, but that can also act separately, in ‘swarm mode’. The
robots must be able to learn, jointly as well as individually, to perform tasks in
diverse environments: they must exhibit the adaptivity lacking in regular robotics.

We have looked closely at learning behaviour at the individual level. One of
our fundamental choices was to rely on evolution as the main enabler of adap-
tivity. Therefore, we implement even individual learning through an evolutionary
algorithm, encapsulating a population of evolving controllers in each individual
robot. This may be somewhat confusing, since this mechanism does not implement
evolution at the level of the robot collective. This becomes clear when we consider
that there is no exchange of information among the robots, and robots learn in
isolation just as they learn in the presence of their peers. Adding such exchange
of information amounts to introducing ‘proper’ evolution, leading to a distributed
evolutionary mechanism. Finally, we can combine these two mechanisms to obtain
an implementation of social learning.

We have performed comparative analyses with algorithms that implement evo-
lutionary adaptation by distributing evolution over the robots in the collective and
hybrid algorithms that combine encapsulated and distributed evolution into a so-
cial learning approach.

We set out to answer three main research questions:

− Can we devise evolutionary algorithms that allow robots to learn to perform
simple tasks autonomously?

− Which approach –encapsulated, distributed or hybrid– offers the best results?

− How does the performance of our algorithms depend on parameter settings?

We have developed and tested an encapsulated evolutionary algorithm called
(μ + 1) on-line that provides for individual learning in robots. This algorithm
proved capable of adapting robot behaviour to perform a number of simple tasks
like obstacle avoidance and patrolling, allowing the robots to learn to perform
these tasks without the need for any external oversight.

2

We have also developed distributed and hybrid alternatives for (μ+ 1) on-line,
and we have seen that it is in general beneficial to learn collectively, but that care
should be taken when the task implies competition among the robots.
Extensive tests of the algorithms have shown –as expected– that their perfor-

mance depends profoundly on the parameter settings. However, we found that
there is no ‘silver bullet’ setting that works equally well across our experiments.
This indicates a need for further research into parameter control schemes that will
allow the algorithms to adjust their parameters according to the circumstances and
the task.

3

Es ist nichts trauriger anzusehen als das unvermittelte Streben
ins Unbedingte in dieser durchaus bedingten Welt

Johann Wolfgang von Goethe

2
Background and Contributions

Imagine a group of small, relatively simple, autonomous robots that collectively
have to perform various complex tasks. To achieve their goals, the robots can
move about individually, but more importantly, they can physically attach to each
other to form and manipulate multi-robot organisms for tasks that an unconnected
group of individual robots cannot cope with. Think, for instance, of scaling a wall
or holding a relatively large object in place. One of the advantages of a swarm
of simple robots is the increased robustness compared to complex monolithic sys-
tems: if a single robot fails, the swarm can carry on regardless because of redun-
dant modules that can replace the failing robot. Another advantage is that the
robots can reconfigure the organism to suit particular tasks and circumstances,
something that large, complex and monolithic robots would find impossible.

Because of the inherent versatility of such robots, they seem ideal for au-
tonomous deployment in unknown and dynamic environments: environments
that we cannot fully describe at deployment time and where the circumstances
under which the robots must operate as well as the tasks that they must tackle
change over time. Autonomous deployment means that the robots are isolated
from direct human control. To ensure robustness of the robot collective, control

5

Chapter 2. Background and Contributions

must be distributed over the individual modules: if there were some central unit
responsible for the whole, that would become the single point of failure, negat-
ing the possibility of robots autonomously replacing any failing member of the
collective.

The level of flexibility that we envisage is very ambitious and calls for, among
other things, many levels of adaptation. It requires adaptation of morphology: the
robotic modules must be able to reconfigure the structure they form collectively to
meet some challenge. For instance, scaling a wall requires a different, larger shape
than negotiating a warren of narrow pathways. They must also be capable of
learning new shapes to fit circumstances that we cannot foresee when we develop
the system. All this also requires adaptivity of control: the controllers of the robot
modules must be able to learn to perform well in circumstances that we do not
know in advance, in configurations that will develop over time, to perform tasks
that we cannot yet specify.

This vision has inspired the start, in 2008, of the EU-funded Symbiotic Evolu-
tionary Robot Organisms (symbrion) project and its sister project Robotic Evolu-
tionary Self-Programming and Self-Assembling Organisms (replicator). Particu-
larly in the symbrion project, a substantial proportion of the researchers concen-
trate on researching and developing techniques that allow the robots to learn – to
adapt their controllers and the shape of the organisms they form to various tasks
and circumstances – in this context. As symbrion’s full name implies, evolution is
an essential aspect of this research: the ability to learn is provided through the use
of evolutionary algorithms.

We can distinguish between the design and operational stages of a robot’s life.
Prior to deployment, at design time, we can then see evolutionary algorithms as
tools for the design of robots and their controllers, but after deployment, during
a robot’s operational phase, evolutionary algorithms become tools that provide
adaptivity. To differentiate between the use of evolution in these two phases, we
call it off-line and on-line, respectively.

We claim that the ability to adapt autonomously is a condicio sine qua non for
the successful implementation of collective robotic systems so that they may cope
with a number of challenges:

Unforeseen environment The environment where the robots operate may not be
fully known during the design process. Therefore, the robot controllers at the

6

time of deployment are only approximate solutions that need to be adapted
to the environment as it is found at operational time.

Changing environment The environment may change to such an extent that the
initial skill set of the robots is no longer adequate. Hence, controllers must
adapt to changing situations.

Reality gap Even if the environment were known beforehand and constant during
operational time, it is very likely that the design process uses approximations
and simulations of real operational conditions. Hence, the robot controllers
will have to be fine-tuned after deployment.

In their overview of tasks considered in evolutionary robotics, Nelson et al.
make an eloquent case for the necessity of adaptation 2009:

“Advanced autonomous robots may someday be required to negotiate envi-

ronments and situations that their designers had not anticipated. The future

designers of these robots may not have adequate expertise to provide appropri-

ate control algorithms in the case that an unforeseen situation is encountered

in a remote environment in which a robot cannot be accessed. It is not always

practical or even possible to define every aspect of an autonomous robot’s envi-

ronment, or to give a tractable dynamical systems-level description of the task

the robot is to perform. The robot must have the ability to learn control without

human supervision.”

In the vision professed above, such adaptation is necessarily on-line and with-
out human intervention: a robot’s controller changes on-the-fly, as it goes about its
regular tasks.

To set the scene, assume that the individual robots in our collective have to
learn to avoid obstacles while moving around, a common task in evolutionary
robotics. They drive around a maze-like arena filled with obstacles. While driv-
ing around, they perform on-line, on-board evolution, replacing their controller at
regular intervals to test controller configurations proposed by the on-board evolu-
tionary algorithm. They measure their performance with every controller they test
(e.g., do they (nearly) bump into obstacles, does the controller cause then to stop
moving or does their average speed increase); these measurements guide the cre-
ation of new controllers to test. When they are done evaluating one controller, they

7

Chapter 2. Background and Contributions

replace the controller and continue their wandering through the arena, measuring
the performance of this new controller. The robots may communicate to exchange
controllers so that they can pool their knowledge or they can adapt purely individ-
ually, without referring to others. As you can see, the adaptive process never ends:
in fact, the robot’s behaviour is an everlasting sequence of controller appraisals.
The evolutionary process must make sure that the proposed controllers actually
lead to the desired behaviour and that the robots perform their taks – obstacle
avoidance, in this case. In our research, we have performed these kinds of exper-
iments with simulated robots: the real robots we would use are being developed
in the replicator project mentioned earlier are only now becoming available; we
expect to continue this work with real robots over the coming years.

What distinguishes the research in this thesis from most other research into
evolutionary robotics is the on-line nature of adaptation: this is a major departure
from ‘traditional’ evolutionary robotics, where the controllers are developed off-
line, and remain fixed once the robots are deployed actually to perform their tasks.
On-line evolutionary robotics is in many ways radically different from regular
evolutionary algorithms because it has to address a number of uncommon or even
game-changing impositions. We consider these below and after that, table 2.1
provides a summary of these issues.

On-line, on-board evolution has to contend with limited processing power. Al-
though the microprocessors one finds in small robots rapidly become better and
better, there is and will always remain a lag between what is possible inside a robot
and the processors available for the desktop or even supercomputers.

Populations in on-line evolution are small, and this is due to two reasons.
Firstly, there are the limitations of robot memory size: often measured in kilo-
bytes for small robots where computers measure their memory in gigabytes. The
advent of cheap replaceable memory, e.g. on SD-cards makes this less of a worry
than it used to be (although the recently developed kiloboti still sports only 32
kilobytes of programmable memory). More fundamentally, a large population
would necessitate a long episode of testing the initial population, entailing very
poor performance for a fairly long period with all its attendant risks.

In typical applications of evolutionary algorithms, the be-all and end-all is a
champion individual that is as good as possible: the best performing individual
at termination has to be as close to optimal as we can get. The performance of

ihttp://www.k-team.com/mobile-robotics-products/kilobot

8

the remainder of the population is, in the end, of no consequence as they will be
discarded when the champion is deployed; their only reason for existence is to
guide evolution’s search process to the pinnacle that is the best individual in the
population. Things are very different for on-line evolution: controllers evolve as
the robots go about their tasks and so the robots’ actual performance is determined
by the quality of all controllers that they evaluate, not that of any single individual
controller alone. When a robot evaluates poor controllers, that robot’s actual per-
formance will be inadequate, no matter how good the best known individuals as
archived in the population. Therefore, the evolutionary algorithm must converge
rapidly to a good solution (even if it is not the best) and search prudently: it must
display an acceptable level of performance throughout the continuing search. To
put it bluntly, the evolutionary algorithm can’t afford too many bad guesses – they
lead to unacceptable task performance and may even cause damage to the robot.

These real-life, real-time fitness evaluations are inevitably very noisy because
the initial conditions for the genomes under evaluation vary considerably and
there is no oversight, human or otherwise, to control these conditions. Different
controllers will be evaluated under different circumstances: any controller’s eval-
uation will start wherever and in whatever state the previous evaluation left the
robot. The very dissimilar evaluation conditions caused by one –possibly very
poor– individual setting the scene for the evaluation of another individual result
in very noisy fitness assessments. As Nordin and Banzhaf (1997) note:

“Each individual is thus tested against a different real-time situation leading

to a unique fitness case. This results in ‘unfair’ comparison where individuals

have to navigate in situations with very different possible outcomes.”

A traditional evolutionary process is centrally orchestrated because the selec-
tion of parents and survivors is performed in a single loop where the fitness of ev-
ery individual is known. Such a scheme would violate our premise of distributed
control: even if the robots’ regular controllers operate in a distributed manner,
if their adaptation were centralised, that central authority would become the sin-
gle point of failure. Therefore, the evolutionary process must run autonomously
across the robot collective and there is no central authority that decides which ro-
bot controllers reproduce and which ones are replaced and there is no omniscient
presence who knows (let alone determines) the fitness values of all individuals.
Consequently, the robots gauge their own (and each other’s) fitness themselves

9

Chapter 2. Background and Contributions

and it is they themselves who autonomously decide (based on their fitness infor-
mation) when to mate and with whom. If the algorithm is distributed across mul-
tiple robots, this introduces the notion of a neighbourhood from which robots can
select partners. This neighbourhood can be physical and consist of other robots
that happen to be within communication range or it can be in terms of a social
network across the population using long-distance communication. The robot’s
fitness must be evaluated in vivo: the quality of any given controller is determined
by actually using that controller for some time.

It is well known that the performance of evolutionary algorithms depends in
large part on their parameter settings, even to the extent that optimal parameter
values for an evolutionary algorithm often differ from problem to problem (Eiben
et al., 1999b). The common practice of parameter tuning (seeking good parameter
values through trial runs) before deployment is not an option for on-line evo-
lution, because the robots have to adapt to operational circumstances – without
human intervention – that are unknown beforehand. Such unknown, possibly dy-
namic circumstances imply that the evolutionary mechanism through which the
controllers adapt must be somehow (re)tuned to be equal to these (new) circum-
stances. Hands-free adaptation therefore requires evolutionary algorithms that are
either capable of calibrating themselves on the fly (known as parameter control) or
that use robust parameter settings that work well under (almost) all circumstances.

To reduce the number of costly evaluations, traditional evolutionary computa-
tion can turn to surrogate models: a candidate solution’s quality is estimated by
a surrogate model that approximates the expensive calculations or trials needed
for definite assessment (Ratle, 1998). This estimate may then be used, for instance,
to determine which candidate solutions are then evaluated properly (and expen-
sively). Section 6.5 describes such a procedure as used in the Bonesa (Smit and
Eiben, 2011) parameter tuning approach. For off-line evolutionary robotics, sim-
ulators can provide surrogates, but for on-line evolution on the kind of platform
we have in mind, the computational requirements of simulators is beyond what
the robot’s processor can handle. If sufficient computational power were avail-
able, however, this may become a feasible option to reduce the risk of evaluating
poor controllers in real time. In the case of self-reconfiguring robots where the
exact morphology of the robot may not be known at run time, a self-modelling ap-
proach may be beneficial. Bongard et al. (2006) describe how robots can calibrate a
simple simulator to reflect their body plan. Such a self-model would greatly boost

10

the applicability of on-board simulation as a surrogate model for self-reconfiguring
robots.

On-line, on-board
evolutionary robotics

Off-line evolutionary
robotics

Evolutionary
computing

Limited processing
power

Virtually unlimited
processing power

Virtually unlimited
processing power

Limited population size Virtually unlimited
population size

Virtually unlimited
population size

Requires good progress
with few evaluations

Only end result matters;
rate of progress is

immaterial

Only end result matters;
rate of progress is

immaterial

Poor individual entails
low task performance,
may break robot

Poor individual wastes
time and resources

Poor individual wastes
time and resources

Requires parameter
control

Requires parameter
tuning or control

Requires parameter
tuning or control

Implicit noise Implicit noise Noise possible

No control over initial
conditions for an
evaluation

Control over initial
conditions for an
evaluation

Control over initial
conditions for an
evaluation

No surrogate model Surrogate model
(simulation)

Surrogate model
possible

Local, de-centralised
selection

Global, centralised
selection

Global, centralised
selection

Table 2.1 – Summary of technical challenges for on-line, on-board evolutionary robot-
ics compared to off-line evolutionary robotics and ‘regular’ evolutionary comput-
ing.

This thesis describes, for the most part, work undertaken at the Computational
Intelligence group at the VU University Amsterdam towards the symbrion en-
deavour. The symbrion project can be seen as tackling two major challenges: on
the one hand, that of autonomously (re-)forming multi-robotic organisms and on
the other hand that of on-line, on-board adaptation through evolution. The re-
search described in this thesis focusses on the latter challenge: the development
and study of on-line, on-board evolutionary algorithms to allow robots to learn
how to tackle specific tasks. However, section 7.4 in particular shows a shift in fo-

11

Chapter 2. Background and Contributions

cus towards the organism aspect that reflects the progress of our research beyond
the scope of this thesis. We will get back to this shift in emphasis in chapter 9.
Other techniques, for instance reinforcement learning, Hebbian learning or Learn-
ing Classifier Systems (also evolutionary) could also be considered as providers
of on-line adaptivity. These techniques are outside the purview of our research,
however, and are therefore not treated in this thesis.
The aim of our research, then, can be phrased as developing novel evolution-

ary algorithms that meet the challenges outlined above, considering the following
questions:

− First and foremost: can on-line evolution provide the ability to learn as re-
quired and provide consistent task performance?

− How can we tackle the peculiar demands that on-line evolution poses?

− Which parameters of the algorithms we investigate have the most influence
on the quality of control?

The remainder of this thesis describes our efforts to answer these questions,
bundling papers in which we investigate the pitfalls and possibilities of on-line
evolutionary robotics. These papers have been published elsewhere or are under
review. As a result, each chapter, and in the case of chapters 5 and 7 each section,
can be read separately. Consequently, there is a certain repetitivity; the vision
underlying this research as professed above, for instance, is re-stated in every
chapter, just as the description of algorithms and experiments pop up in more
than one place, to put it mildly.
Chapter 3 introduces a conceptual framework for positioning Population-based

Adaptive Systems in general, not limited to robotic systems. The framework differ-
entiates between three techniques that can provide adaptivity to collective systems:
individual learning, social learning and evolution. The chapter also provides some
case-studies concerning the interplay between these three approaches to adaptiv-
ity.
Chapter 4 reviews related work in on-line evolutionary robotics, introducing

a classification into encapsulated, distributed and hybrid approaches to on-line evo-
lution. It also catalogues issues that on-line evolutionary robotics has to contend
with that are not commonly considered in evolutionary computing research and
proposes a research agenda to bring this field forward. This chapter provides the

12

best introduction into the vision that underlies our work and highlights the issues
that on-line evolution of robot controllers poses.
Chapter 5 contains a collection of shorter (conference) publications that de-

scribe stages of development and initial analysis of the (μ + 1) on-line algorithm
for on-line evolutionary robotics. It details our efforts to tackle the issues raised in
chapter 4.
Chapter 6 provides an in-depth analysis of (μ + 1) on-line. Apart from the

analysis itself, this chapter proposes a methodology and tool – Bonesa – for scien-
tific testing of stochastic adaptive algorithms.
Like chapter 5, chapter 7 combines a number of conference papers. These,

however, concern themselves with implementations of distributed and hybrid on-
line evolution, where the subject of chapter 6 takes the encapsulated approach.
Chapter 8 provides a vision, a manifesto if you will, of where artificial evolution

– not just of robots – could go in the coming decades.
Finally, chapter 9 draws overall conclusions, returning to the research questions

stated above. It also suggests future research to follow up on the findings in this
thesis.

This thesis is based on the following papers:

Evert Haasdijk, A.E. Eiben, Alan F.T. Winfield (2011). Individual, Social and Evo-
lutionary Adaptation in Collective Systems. Chapter 13 in S. KernbachHandbook
of Collective Robotics - Fundamentals and Challenges, Pan Stanford Publishing,
Singapore.

Evert Haasdijk, A.E. Eiben. Look Ma, No Hands! – An Overview of On-Line,
On-Board Evolutionary Robotics. Submitted to Swarm and Evolutionary Com-
putation, Elsevier.

Nicolas Bredeche, Evert Haasdijk and A.E. Eiben (2009). On-line, On-board Evo-
lution of Robot Controllers. In Pierre Collet et al., Artificial Evolution, 9th
International Conference, Evolution Artificielle, EA, 2009, Strasbourg, France, Oc-
tober 26-28, 2009, Pages 110–121, Springer-Verlag, Berlin / Heidelberg.

Evert Haasdijk, A.E. Eiben and Giorgos Karafotias (2010). On-line evolution of
robot controllers by an encapsulated evolution strategy. In Proceedings of the
2010 IEEE Congress on Evolutionary Computation, Pages 1–7, IEEE Press, Pis-
cataway, NY.

13

Chapter 2. Background and Contributions

Evert Haasdijk and Arif Atta-ul-Qayyum and A.E. Eiben (2011). Racing to Im-
prove On-line, On-board Evolutionary Robotics.In Natalio Krasnogor et al.,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2011), Pages 187–194, ACM, NY.

Evert Haasdijk, S.K. Smit and A.E. Eiben. Exploratory Analysis of an On-line
Evolutionary Algorithm in Simulated Robots. To appear in Evolutionary In-
telligence, Springer-Verlag, Berlin / Heidelberg.

Giorgos Karafotias, Evert Haasdijk and A.E. Eiben (2011). An Algorithm for Dis-
tributed On-line, On-board Evolutionary Robotics. In Natalio Krasnogor et
al., Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2011), Pages 171–178, ACM, NY.

Robert-Jan Huijsman, Evert Haasdijk and A.E. Eiben (2011). An On-line On-
board Distributed Algorithm for Evolutionary Robotics. In Jin-Kao Hao et al.,
Artificial Evolution, 10th International Conference, Evolution Artificielle, EA, 2011,
Angers, France, October 24-26, 2011, Pages 119–131, Springer-Verlag, Berlin /
Heidelberg.

P. Garcı́a-Sánchez, A. E. Eiben, E. Haasdijk, B. Weel and J.J. Merelo (2012). Testing
diversity-enhancing migration policies for hybrid on-line evolution of robot
controllers. In Di Chio et al., Proceedings of EvoApplications 2012: Applications
of Evolutionary Computation, Pages 52–62, , Springer-Verlag, Berlin / Heidel-
berg.

Berend Weel and Evert Haasdijk and A.E. Eiben (2012). The Emergence of Multi-
Robot Organisms using On-line On-board Evolution. In Di Chio et al., Pro-
ceedings of EvoApplications 2012: Applications of Evolutionary Computation, Pages
124–134, , Springer-Verlag, Berlin / Heidelberg..

A.E. Eiben, S. Kernbach and Evert Haasdijk (2012). Embodied Artificial Evolution
– Artificial Evolutionary Systems in the 21st Century. To appear in Evolution-
ary Intelligence, Springer-Verlag, Berlin / Heidelberg.

14

Without deviation from the norm, progress is not possible

Frank Zappa

3
More Than the Sum of its Parts

Individual, Social and Evolutionary Adaptation in Collective Systems

This chapter focusses on adaptivity as a pivotal enabler of future robotic systems.
It is the fundamental premise of our vision that future robots will have to be capa-
ble of autonomous adaptation, that is, able to change their control systems without
human intervention.

To define adaptation –“learning control without human supervision,” in the
words of Nelson et al. (2009) – clearly, consider a robot’s controller as a process
that maps inputs, read from the robot’s sensors and internal states, to outputs,
typically actuator and state settings. Adaptation is then defined as any changes to
this mapping process, including the setting of its parameters.

This chapter appeared as part of:

Evert Haasdijk, A.E. Eiben, Alan F.T. Winfield (2011). Individual, Social and Evolutionary
Adaptation in Collective Systems. Chapter 13 in S. Kernbach Handbook of Collective Robotics
- Fundamentals and Challenges, Pan Stanford Publishing, Singapore.

15

Chapter 3. More Than the Sum of its Parts

According to this definition, changing the output threshold on some artificial
neural net controller constitutes adaptation because the mapping from in- to out-
puts changes, but varying outputs due to some internal state does not, because
the mapping remains the same, even though behaviour changes. Adaptation is
necessarily on-line and without human intervention: the robot controller changes
on-the-fly, as it goes about its tasks. We can distinguish two stages in the robot
life-cycle: design time and operational time, separated by deployment. In these
terms, adaptivity amounts to changing robot controllers autonomously during op-
erational time. There are various optimisation and design techniques based on
adaptive systems, e.g., evolutionary algorithms, particle swarm optimisation, neu-
ral networks, etc., that can outperform traditional methods. Such techniques can
be used, and often are to great effect, during design time to find (near-)optimal
robot controllers. However, these adaptive techniques fall outside of the scope of
this chapter if the controllers remain static after deployment.
The vision that underlies this chapter is that adaptivity is a necessary feature

in collective robotic systems to cope with a number of fundamental challenges:

1. Unforeseen environment The environment where the robots operate may not
be fully known during the design process. Therefore, the robot controllers
at the time of deployment are only approximate solutions that need to be
adapted to the real requirements during operational time.

2. Changing environment The environment may change to such an extent that
the given skill set of the robots is not adequate anymore. In a robot collec-
tive this environment might include the robots’ social environment. Hence,
controllers must adapt to the new situation.

3. Reality gap Even if the environment is known in advance and is not changing
during operational time, it is very likely that the design process is based on
approximations and simulations of the real operational conditions. Hence,
the robot controllers have to be fine-tuned after deployment.

In this chapter we elaborate on the notion of adaptation and place adaptive
systems into one conceptual framework, called Population-based Adaptive Systems

(PAS). The notion of PAS serves as the unifying concept and the name PAS as an
umbrella term. Within this framework we further distinguish different types of
adaptation. One of the fundamental distinctions we make is based on differenti-
ating learning and evolution. In turn, this is based on distinguishing phenotypes

16

and genotypes regarding robot controllers (Eiben et al., 2010a). Simply put, this
distinction means that:

− We perceive the controllers with all their structural and procedural complex-
ity as phenotypes.

− We introduce a (typically structurally simpler) representation of the control-
lers as genotypes.

− We define a mapping from genotypes to phenotypes, that might be a simple
mapping or a highly complex transformation.

For example, a robot controller may consist of two artificial neural nets and
a decision tree, where the decision tree specifies which ANN will be invoked to
produce the robot’s response in a given situation. This decision tree can be as
simple as calling neural net 1 when the environment is lit and calling neural net 2
when the environment is dark. This complex controller, i.e., phenotype consisting
of a decision tree and two artificial neural nets, could be represented by a simple
genotype of two vectors, showing the weights of the hidden layer in neural net 1,
respectively neural net 2. A technical distinction between learning and evolution
is now straightforward if we postulate that learning acts at the phenotypic level,
while evolution only affects the genotypes.

This chapter is structured as follows: section 3.1 establishes a framework that
identifies three main forms of adaptation (evolution, individual learning, and so-
cial learning) in the context of population-based adaptive systems, ranging from
artificial life systems to robot swarms. Section 3.2 presents a case study carried out
in a system where individual learning and evolution are combined in such a way
that they can directly influence each other, rather than acting independently on
the agent/robot population. We demonstrate that in such a system learning – that
optimises for the benefit of the individual – can effectively kill the population by
ignoring the group level benefits of reproduction. In section 3.3 we investigate so-
cial learning as a mechanism to disseminate ‘knowledge nuggets’ –bits of adapted
controller– in a population of agents/robots. Thus we show how the results of
individual learning efforts (that would normally disappear if the individual dies)
can be kept. In other words, here we demonstrate how social learning can facilitate
the emergence of a knowledge reservoir in a population. While the experiments
reported in these sections were conducted in an artificial life setting, the conclu-

17

Chapter 3. More Than the Sum of its Parts

sions are just as pertinent to robot swarms that implement combinations of these
forms of adaptation. Finally, section 3.4 concludes the chapter.

3.1 Population-based Adaptive Systems

We coin the phrase “Population-based Adaptive Systems” (PAS) to label systems such
as robot swarms or artificial life systems that have adaptive behaviour at agent
and/or population level. Such systems can be characterised by two essential fea-
tures:

− A group of basic units (agents or robots) that can perform actions, e.g., com-
putation, communication, interaction, etc. By acting, these units exhibit be-
haviour – individual behaviour at unit level, as well as collective behaviour
at the group level.

− The ability to adapt at individual and/or group level. If the exhibited be-
haviour is generated through behavioural rulesi inside the units, then adap-
tation implies that these rules change. For instance, a change can take place
inside an existing unit by replacing an existing rule by a new one, or a change
can take place on population level by creating a new unit with a new set of
rules.

There is a large variety of PASs with quite different examples. For instance, a peer-
to-peer computer system where each node (peer) is able to improve its workings
through experience, a genetic algorithm seeking an optimal solution to the travel-
ling salesman problem, a group of learning robots collectively gathering red rocks
on Mars, or a simulation of socio-economic processes by means of adaptive agent
society. Such systems have received increasing interest over recent years with an
increasing number of related papers. However, the lack of a common underlying
framework of terminology means that the presentation of related problems and so-
lutions shows a large (application dependent) variation. This forms an obstacle for
identifying similar concepts, problems, solutions, etc. over various publications
and implies the risk that individual researchers reinvent the wheel. A common
conceptual framework describing a large class of PASs forms a helpful stepping
stone towards futher developments in the area.

iWe do not necessarily mean a set of IF-THEN rules, but any representation, including, for
instance, neural nets, decision trees, etc.

18

3.1. Population-based Adaptive Systems

We introduce the notion of Population-based Adaptive Systems and identify re-
lated concepts and research issues in this section. We focus our study on a class of
PAS where adaptation occurs through three fundamental adaptation mechanisms:
evolution, individual learning and social learning.

In the remainder of this section, we present a conceptual framework that cap-
tures a wide class of adaptive systems and identify research issues of general rele-
vance in PAS.

3.1.1 Three Tiers of Adaptation

We use an agent-based metaphor, where the group of basic units is perceived as
a population of agents (be they software agents or robots) whose behaviour is
controlled by themselves — subject to environmental constraints, of course. That
is, we assume that each agent has a controller that takes observations regarding
the environment and the agent’s internal state as input and generates actions to
be executed by the agent as output. Furthermore, we assume that two levels of
change can occur:

1. Changes at agent level: the controllers of the agents can change;

2. Changes at population level: it is possible to delete existing and to add new
agents. In common parlance, this amounts to birth and death in the system.

As mentioned above, we see adaptation as change of controllers in a population
of agents and distinguish three fundamentally different adaptation mechanisms.
Denoting the set of all possible controllers by C, we can perceive adaptation mech-
anisms in PASs as search algorithms traversing the space C in a volume oriented
manner – maintaining a population of controllers P = {c1, . . . , cn} ⊂ C simultane-
ously. Adaptation or learning then amounts to taking search steps, moving from
the presently given set P of controllers to a new set P′ and we distinguish adapta-
tion on agent level (cf. property 1) and adaptation on population level (cf. property
2). We will call these lifetime learning and evolution, respectively. Furthermore, we
make an additional distinction between two types of lifetime learning. In individ-
ual learning, an agent adapts its controller through a purely internal procedure, not
through some oracle or other agents. If agents adapt their controllers by commu-
nicating controller information to each other and incorporating (good) pieces of

19

Chapter 3. More Than the Sum of its Parts

knowledge from each other, we speak of social learning. Figure 3.1 illustrates this
taxonomy and the corresponding terminology.

Adaptation

Evolution Lifetime Learning

Individual Learning Social Learning

Figure 3.1 – Taxonomy of adaptation mechanisms in PASs

To delineate this framework, consider a few examples. (1) A genetic algorithm
solving the Travelling Salesman Problem has birth and death, but the agents (in-
dividuals, candidate solutions) do not have a controller because they are not sup-
posed to do anything other than producing offspring. Reproduction, moreover,
is not actively controlled by the individuals themselves. Rather, they undergo it,
arranged by an “oracle”–the outer loop of the evolutionary algorithm procedure.
Thus, in this example we have no controllers and changes occur only at popu-
lation level. (2) In embodied evolution as introduced by Ficici et al. (1999), the
robots broadcast (possibly mutated) genes at a rate proportional to their fitness
(measured as the number of batteries collected). Robots also resist “infection” at
a similar rate. A good individual, collecting many batteries by virtue of its supe-
rior controller will infect many others before being replaced (i.e., infected) itself.
If we see infection as death and immediate replacement, the robots in such a sys-
tem do not adapt individually and changes occur at population level. (3) As a
third example consider a single Web-agent serving a single user by selecting news
items every morning using some given set of rules that are continuously improved
through reinforcement learning. Here, the agent does have a controller (the rule
set) that can change, but the population is a singleton and there is no death – no
changes at population level. (4) Finally, consider the aegis artificial life system
(Buresch et al., 2005; Eiben et al., 1999a), where a population of agents exists in an
artificial habitat. The agents can move, eat, mate, fight, etc. as determined by their
controllers and they undergo adaptation of their body characteristics (by evolution
from generation to generation) and their controllers (by evolution from generation

20

3.1. Population-based Adaptive Systems

to generation or by learning during lifetime). In this system, we have controllers
and changes occur at both individual and population levels.
As an example of a PAS with adaptation through evolution as well as individual

and social learning, we consider the new ties systemii, which we will describe
before we elaborate on the three adaptation mechanisms (section 3.1.3) and their
interactions (section 3.1.4) and research challenges these raise. Note, that new ties
serves as an example only and that, although we describe many design choices
that were made for this particular system, the interactions between adaptation
mechanisms that we describe are not specific to this example implementation and
mostly do not depend on the design choices described.

3.1.2 The Environment and the Agents

The new ties system provides a simulation platform in which a cultural society de-
velops through evolution, individual learning and social learning of autonomous
agents (Gilbert et al., 2006). The artificial, virtually embodied agents that make up
this artificial society live in a grid world containing objects such as food sources
(plants), tokens, places and building bricks.
In this world, time passes in discrete steps. Every time-step, the agents receive

stimuli regarding objects (including agents) that they see or carry, messages from
other agents that they hear and their internal state (e.g., their own energy level).
The agents process these stimuli to select actions such as move or turn, pick up or
put down objects, eat, communicate or interact otherwise with other agents (e.g.,
mating, or giving or taking objects to/from other agents). To process these inputs
and arrive at a decision about which action to take, the agents use their individual
controllers.
The project models agents anthropomorphically, thereby imposing strict au-

tonomy, (virtual) embodiment and situatedness. This limits our options when de-
signing agent interactions (e.g., agents cannot communicate unless they are within
each other’s vicinity), perception (e.g., they cannot see inside each other’s heads)
and learning mechanisms (e.g., no supervised learning).
Agents have to husband their energy: performing the selected action, even if

that amounts to inactively surviving a time-step, costs energy. Should an agent
run out of energy, it dies. To gain energy, an agent must eat food (plants). Other

iiNew and Emerging World models Through Individual, Evolutionary and Social learning (new
ties), EU FP6 Project, http://www.new-ties.org

21

Chapter 3. More Than the Sum of its Parts

than that, agents die when they reach a certain maximum age. There is no other
selection mechanism: as long as an agent lives, it can act—and therefore, engage
in mating or social learning. To gain energy, an agent must eat food (plants). The
laws of nature governing the environment determine the preconditions and the
results of actions, e.g., specifying the amount of energy a plant yields when eaten
and the costs of movement, the maximum lifetime for agents, or a minimum age
and energy level at which agents can mate. Agents decide on their actions using
a controller. In other words, the controller is the decision making unit inside an
agent that maps inputs, i.e., perceptions of the agent regarding the world and its
own internal state, to outputs, i.e., the agent’s action.

3.1.2.1 Decision making and agent controllers

At every time-step, the agent processes the incoming information and describes
the situation it finds itself in in terms of concepts. Then, based on this description,
the agents decides on an action to perform.

Categorisation and conceptualisation To reduce the dimensionality of the ob-
servation space (the raw data where attributes are the elementary attributes of all
possible entities in the world), a process of categorisation and conceptualisation
map it onto another space, where the attributes are the so called concepts. Raw
data is aggregated in two steps. First, it is aggregated to form categories that are
then further aggregated to concepts. The incoming information is processed by
categorising the raw data-bundle of features. Each feature concerning objects in
the world, like color or shape, can be regarded as an axis in the features space;
a category is defined by a range of possible values within the whole range of a
feature. For example, for the feature colour everything between 1, . . . , 10 could be
considered green. Concepts are (multi-dimensional) entities composed from (one-
dimensional) categories. For instance, plants could be the green and triangular

objects while agents could be pink and circular. Concepts are stored in an agent’s
ontology and are used to provide a characterisation of a given situation on a higher
level than the original raw data.

Decision making The agents’ controllers are implemented as special kinds of
decision trees, decision Q-trees (DQTs). The ’Q’ refers to the fact that they can be

22

3.1. Population-based Adaptive Systems

adapted through Q-learning (Sutton and Barto, 1998), the new ties implementa-
tion of individual learning. With crossover and mutation operators inspired by
those used in genetic programming (Koza, 1992), these trees can also be adapted
through evolution when two agents mate to create offspring.

carry plant?

eat

pick up

see plant?

move turn

?

y

y n

n

Figure 3.2 – A simplified example of a decision Q-tree (DQT).

DQTs consist of test, bias and action nodes (Fig. 3.2; depicted as lozenges,
trapezoids and rounded rectangles, respectively).

A test node evaluates a Boolean query based on concepts known to the agent,
e.g., “Is there a plant ahead?” or “Is there an agent nearby?”, and depending
on the answer (Yes or No) the tree is further traversed through either of the two
child nodes. Thus, a full path from the root to a leaf (an action to be performed)
node forms a conjunction of statements that together provide a partial situation
description in terms of the agents’ concepts.

To traverse a bias node, the agent probabilistically selects one of multiple
branches for further traversal – each of these branches has a bias that determines
the likelihood of it being selected. These biases are determined genetically through
evolution and onto-genetically through individual and social learning.

The leaves of the DQT are action nodes that select an action. Action nodes, like
bias nodes, are probabilistic: the actual action is stochastically chosen according
to a weight distribution over all possible actions. The available actions are simple
actions – such as move, turn-left or turn-right –, unary – such as eat(x) or hit(y) –,
and binary actions such as give(a,o). The arguments for the higher arity actions are
implied by the tests that were traversed to select an action –e.g., testing for visible
agents implicitly selects all agents in sight– and can be any object, but if, e.g., an
agent attempts to eat a non-food item, this action will fail in the world.

23

Chapter 3. More Than the Sum of its Parts

3.1.3 Adaptation Mechanisms

As outlined in section 3.1, we envision adaptation as the change of controllers
in a population of agents. In new ties, this amounts to changing DQTs. In this
subsection we discuss how the general trinity of adaptation is instantiated in new
ties. To begin with, we note that all three adaptation mechanisms work in the
same search space – that of all possible DQTs.

3.1.3.1 Evolution

new ties deliberately adopts a non-Lamarckian notion of evolution (Lamarck,
1809), so inheritable material cannot change during an agent’s lifetime. This means
that an agent created with a controller c seeds its descendants by exactly this con-
troller c, regardless of any changes brought by lifetime learning.

The two pillars of evolution are selection and variation; variation is realised
by straightforward tree-crossover and tree-mutation operators, much as in genetic
programming. Viewing adaptation as search through the space of controllers, one
elementary search step in this context amounts to combining two existing con-
trollers c1 and c2 into a new one c3.

It is an essential aspect of this system that selection is not based on some ob-
jective function to be maximised (Menczer and Belew, 1996; Mitchell and Forrest,
1994). Survivor selection is strongly environmental: agents die if they run out of
energy or reach the maximum age. As for parent selection, an agent can decide
any time to mate (subject to some constraints). If the controller chooses to mate,
the agent selects itself as a would-be parent. To procreate, it needs to find and
“convince” another agent: it sends a special message, a mate proposal. Only if the
other agent accepts this mate proposal do the two agents become actual parents
and produce a child. To make the child viable, each parent donates a portion of its
current energy, consequently incurring a cost.

The new ties evolutionary system differs from usual evolutionary algorithms
in a number of essential aspects.

1. Fitness is not an a priori utility measure that determines the number of off-
spring. One could say there is no notion of fitness at all, or rather, that in new
ties fitness is a secondary, observable measure determined by the number of
offspring rather than vice versa – a truly Darwinian notion.

24

3.1. Population-based Adaptive Systems

2. Reproduction is not orchestrated by some central authority. Individuals au-
tonomously and asynchronously decide to mate.

3. Reproduction is detached from survivor selection. Newly produced individ-
uals can be added to the population without removing old ones. Likewise,
an individual can die without being replaced by a new one. As a side-effect,
there is no clear definition of a generation here.

These properties have two prominent consequences. Firstly, in the absence of
an explicit objective function the selection probabilities (that embody the system
bias for quality) must be based on indirect quality indicators. In general, the age
and the energy level of agents can be used here: an agent that survives for a long
period and/or has accumulated much energy must be well adapted, hence worthy
of being reproduced. In this respect, PAS of this kind are closer to natural selection
than, for instance, Genetic Algorithms where selection probabilities are calculated
from an objective function.

The second effect is that points 2 and 3 imply a kind of reproduction –“natural
reproduction”– where the population size inherently changes over time. Users of
such systems face a tough challenge concerning the calibration of the system to
avoid unlimited population growth (explosion) or complete extinction (implosion).
In a particular system, such as new ties or aegis, ad hoc solutions can work, based
on balancing energy supply (number of plants, energy of plants, reproduction
rate of plants) and energy consumption (costs of actions). From a general evolu-
tionary point of view, population size can be controlled by tuning the selection
mechanisms. For instance, the parameters specifying the minimum age or energy
required for mating. At the moment, there are no general guidelines or design
heuristics available to cope with this problem.

3.1.3.2 Individual Learning

A newborn agent, and with it individual learning, starts with the controller that is
provided by (one of) its parents. The most appropriate learning type for individual
learning is reward based: supervised learning is difficult, because agents can be in
an environment of which the most optimal (set of) action(s) is unknown. Unsuper-
vised learning is inappropriate, because information present in the environment is
wasted if not used as feedback for learning.

25

Chapter 3. More Than the Sum of its Parts

new ties implements reward based individual learning as reinforcement learn-
ing (Kaelbling et al., 1996; Sutton and Barto, 1998). Reinforcement learning can
change the DQT by policy change. An agent’s policy is –in the context of rein-
forcement learning– represented by its DQ tree. Any path in the DQT leading to
an action is a result of the policy. Policies can be altered by changing the values
of the edges that change the likelihood of taking a specific path. new ties uses
SARSA, one of the variants of Q-learning (Sutton and Barto, 1998).

In new ties, the reward is usually based on energy, but other types of ‘cur-
rency’, e.g. something based on emotions or some mix of simpler currencies, are
possible. The currency must in any case be accessible to the agent, or the agent
would not able to use it for computing rewards. Such a mixture is probably needed
for the problem described in section 3.1.4.1, where agents would unlearn to repro-
duce if reward is only based on energy – this is investigated in detail in section
3.2.

An important challenge for reinforcement learning is that the state-space cre-
ated by the perceptual input is huge. To illustrate, the state-space for the visual
field is #typeO fObjects#gridcellsVisualField. Given that new ties has at least 3 types of
objects and that the visual field is 50 grid cells, it is obvious that the state space
is very large, maybe intractably so. Moreover, the state space is further extended
by non-visual perceptual input of auditory, internal and reproductive stimuli. To
cope with the size of this state-space, it is not partitioned by the input stimuli, but
by the tests in the test nodes of the DQT. The tests in a test-node test for certain
concepts, for instance green agent. This divides the state space in agents that are
green and all other coloured objects. The test-node uses the input, only testing for
particular aspects of the environment.

3.1.3.3 Social Learning

Many studies have focussed on social learning with approaches including imi-
tation, copying behaviour as well as using socially provided corrective feedback
(Dautenhahn and Nehaniv, 2002; Acerbi et al., 2008). In new ties, by contrast,
agents communicate explicitly and social learning entails an agent modifying its
controller by incorporating a piece of knowledge it receives from another agent.
Social learning requires at least two agents a1 and a2 with controllers c1 and c2;

26

3.1. Population-based Adaptive Systems

one search step amounts to changing c1 into c′1 (assuming that a1 learns from a2),
where c′1 is some combination of c1 and c2.

iii

Agents communicating in this manner implies a multi-faceted set of features
and parameters that govern issues such as (social) networks of knowledge ex-
change, levels of trust and relative merit of knowledge, etc. In general, they con-
cern:

− when and with whom to exchange knowledge;

− the selection of knowledge to send or elicit;

− when and how to accept offered knowledge.

Obviously, a general consideration when designing these features is including
a bias for quality. In other words, at least some of the choices involved in import-
ing a “knowledge nugget” from another agent must favor learning from a better
agent. Similar to introducing a bias for quality in evolution (cf. section 3.1.3.1), the
age and the energy level of agents can be used as quality indicators here. Apart
from any specific quality-driven social learning scenario, there is always qualita-
tive pressure as described in section 3.1.3.1: agents with poor controllers die sooner
and therefore cannot participate in social learning exchanges (“teach”) as often as
agents with good controllers.

Note, that communication introduces a “social dimension”; an overlay network
in technical terms. The properties of this network depend on the given implemen-
tation, but in general, the network changes over time. In new ties, this is realised
by a protocol similar to gossiping in peer-to-peer systems. Every agent maintains
a (fixed length) list of acquaintances – agents it has seen and talked to before.
This list is updated with new observations (encounters with other agents) using a
FIFO policy. The construction and maintenance of this social network can also be
influenced by quality indicators of peers.

A knowledge nugget in our system is represented by a sub-DQT (extracted
from the sender’s controller). In the current implementation, this sub-DQT is in-
cluded in the tree of the receiving agent by inserting –at some appropriate location
in the DQT– a bias node that has two children: the foreign sub-DQT and the al-

iiiRemember the non-Lamarckian nature of new ties’ reproduction: these controller changes do
not affect the genetic material (which in effect is a copy of the initial controller with which an agent
is created).

27

Chapter 3. More Than the Sum of its Parts

ready existing native sub-DQT. These alternatives are weighted by newly defined
biases based on the ratio between the sender and recipient’s age and energy levels.

Section 3.3.2 provides a more detailed description of the social learning mech-
anism in new ties.

3.1.4 Relationships Between Adaptation Mechanisms

To position evolution, individual learning, and social learning it is helpful to con-
sider them from the knowledge transfer perspective, where knowledge is seen as
(good) pieces in the agent controllers. From this point of view, knowledge is trans-
ferred vertically by evolution, down along the line of descendants. (Recall the
note from section 3.1.3.1 that we do not have a clear notion of generations here,
because agents residing on different levels of the family tree can live at the same
time in the same population.) On the other hand, individual learning is a sink:
in the absence of social learning, individually accumulated knowledge simply dis-
appears when the agent carrying it dies. Social learning can alleviate this, since
it amounts to horizontal knowledge transfer, passing knowledge nuggets within
the current population. In this respect, social learning makes the population into a
knowledge reservoir, reducing (at least potentially) the risk that knowledge must
be rediscovered over and over again.

3.1.4.1 Evolutionary and Lifetime Learning

A marked distinction between evolution and lifetime learning is that evolution-
ary operators do not change the controllers of agents during their lifetime, while
lifetime learning operators obviously do. If evolution were the only adaptation
mechanism, agents would die with the controller they were born with. Hence,
evolution does not take place on an individual, but strictly on a population level.
From this perspective, the death of an agent represents a contribution to the evolu-
tion process, because the population adapts with each death.iv This is particularly
not the case for individual learning, where the death of an agent terminally de-
stroys the results of the learning process.
In our example, evolution also differs from lifetime learning in the entity that

initiates a learning step: individual learning and social learning steps are initiated
without the influence of the agent’s controller – by an oracle, or subconsciously,

ivSupposedly changing for the better, cf. survival of the fittest.

28

3.1. Population-based Adaptive Systems

if you will. This is not the case for evolution search steps, because the agent has
to decide itself to reproduce by sending or accepting a mate proposal. As a com-
pelling consequence, agents can unlearn reproduction through lifetime learning
because the individual reward for mating is negative: it costs energy without any
mitigating personal benefit. To counteract such tendencies, one can introduce some
specific reward for mating (orgasm), make mating a subconscious process or take
population-level benefits into account in lifetime learning.v Section 3.2 investigates
this consequence in detail.

Memetic algorithm research has pointed out positive interactions between evo-
lution and lifetime learning, by showing that combinations of evolution and indi-
vidual learning are particularly beneficial (Krasnogor, 2002). An interesting and
promising interaction between evolution and lifetime learning is described by Best
(1999). This study finds that lifetime learning decreases the need for evolution to
get it spot-on: the chance of finding the optimal solution is much greater with
lifetime learning and evolution combined.

3.1.4.2 Individual and Social Learning

As noted above, the non-Lamarckian nature of evolution in new ties entails that
knowledge that an agent acquires through individual learning cannot affect in-
heritable material, and therefore is lost when that agent dies. By proliferating
knowledge over the population of agents, social learning preserves such knowl-
edge pieces that would otherwise disappear. Thus, social learning turns the pop-
ulation into a reservoir of (individually acquired) knowledge.

A system that combines individual learning and social learning can be thought
of as having division of labour: individual learning generates novel knowledge
nuggets and social learning disseminates these. Social learning can also be seen as
an accelerator making the system more efficient. Think, for instance, of agent a1
learning x, agent a2 learning y and a1 and a2 telling x and y to each other, rather
than having to learn these knowledge pieces themselves. In general, efficiency
improves if the costs of, respectively, time needed for and learning through com-
munication, are lower for the agents than the costs/time of acquiring knowledge
individually – an assumption that holds in a great many systems. As a net effect,
combining social learning and individual learning allows agents to possess knowl-

vTaking a learning step in both individual learning and social learning could also be made into
a conscious action, in which case similar considerations would apply.

29

Chapter 3. More Than the Sum of its Parts

edge regarding situations they never encountered themselves, acquired at greater
speed and at lower costs. Such constellations have been shown to outperform
either adaptation mechanism by itself, e.g. by Bull et al. (2007).
Section 3.3 investigates this interaction in detail.

3.1.4.3 Individual and Social Learning as Evolution

Recall from section 3.1.3.3 that knowledge nuggets are sub-DQTs. Incorporating
such sub-DQTs into an agent’s controller amounts to an operation similar to cross-
over in GP. Similarly, one can see an analogy between a learning step in individual
learning and a GP mutation operator: both turn some controller c into c′. From
this perspective it is quite natural to see the combination of individual learning
and social learning as an evolutionary process. Similar observations were reported
by e.g. Bull et al. (2007), Smith et al. (2000) and Richerson and Boyd (2005).
The selection components for this evolutionary system consist of the mecha-

nisms regulating when two agents engage in sending/receiving knowledge pieces
(parent selection)vi and the policies to accept and incorporate a received piece of
knowledge (survivor selection).
It should be noted that this constitutes an evolutionary process quite different

from the one described in section 3.1.3.1. The most visible difference lies in the
replacement strategies: in the lifetime learning-based evolutionary process, repro-
duction and survivor selection are coupled: a new controller, whether made by
mutation or crossover, immediately replaces an existing one: its parent and the
population size remains unaffected. Another difference is that here, a new con-
troller is created by either crossover (social learning step) or mutation (individual
learning step), while in evolution this happens by crossover and mutation (which
occurs sequentially in the reproduction procedure). Furthermore, we should note
that here we do have an explicit fitness measure, used in at least some parts of
the system. For the parent selection component this is not necessarily the case; an
agent can perform a mutation (do an individual learning step) regardless of the
quality of its present controller c – making c the parent of the new c′ – and the
same holds for an agent a1 deciding to talk to a2 – selecting their controllers c1 and
c2 as would-be parents. We can distinguish two cases of survivor selection: in the
case of mutation (an individual learning step), survivor selection does not involve
fitness either: the old c (the controller being improved by individual learning) is
viCombined with Darwinian survival of the fittest as described in 3.1.3.1

30

3.1. Population-based Adaptive Systems

simply deselected and replaced by c′ (the improved controller). However, if a new
controller is created by crossover (an social learning step), a utility function is used
to determine the relative merit of the received knowledge when integrating it with
the already known c1 to create the new c′1. This utility is related to the relative ages
and energy levels of the two agents involved.
Considering individual learning and social learning in this light raises two

prominent research questions. First, how does existing evolutionary computing
knowledge, e.g., regarding variation, selection and their balance, translate into
these contexts? Second, how do the two evolutionary processes, genetic evolution
on the one hand, social learning and individual learning on the other, interact in
one system?

3.1.5 Discussion

Most of the technical details we introduced are merely illustrative in the sense
that they do not restrict the generality of our discussions. Using trees to represent
agent controllers is one such detail. Our line of thought about variation operators
in evolution and merge operators in social learning can be repeated for other data
structures as well. A similar argument holds for the categorisation and conceptu-
alisation mechanism to pre-process sensory input of the agents; the general point
here is dimensionality reduction. This is critical when using reinforcement learn-
ing algorithms, because they scale very badly with the size of the state-space, but
this aspect is likely to occur in many systems.
The main contribution of this chapter is the definition of a system where three

different adaptation mechanisms – genetic evolution, individual learning, and so-
cial learning – can work simultaneously, yet clearly distinctly. The separation of
the learning mechanisms is based on a differentiation between inheritable and
learnable agent characteristics.vii Designating agent characteristics as inheritable
or learnable is one of the major design decision when implementing PASs. Inher-
itable properties can undergo evolution through appropriate variation operators
and environmental selection, learnable properties can undergo lifetime learning
through individual and social learning. By the clear separation between evolution,
individual learning, and social learning, particular adaptation mechanisms can be
switched on and off independently, thus allowing research on their effects sepa-

viiIn the system we described, these are the same, but our considerations are still valid if this is
not the case.

31

Chapter 3. More Than the Sum of its Parts

rately or in various combinations. This allows us to gain insight in their mutual
effects on each other and on the adapting population. Research in this area of-
fers great benefits by the high potential of “fully powered” adaptive systems. In
general:

− Social learning can act as an accelerator for individual learning in each agent
and can preserve the individually discovered knowledge nuggets for the pop-
ulation that would otherwise be lost after the death of the individual that
learned them;

− The combination of individual learning and social learning can be seen as an
evolutionary system, creating an opportunity to use existing knowledge in
evolutionary computing when designing such combined systems.

The specific choices concerning evolution in new ties are reflected in our treat-
ment of evolution. In particular, we focus on systems with natural reproduction,
cf. section 3.1.3.1. In many applications, e.g., ALife, social simulations, peer-to-
peer systems, this is the obvious choice of reproduction scenario, so we can safely
state that the subset of PAS with natural reproduction is large and interesting.
Considering such systems we observed that:

− In an evolutionary process relying on natural reproduction, population size
is inherently volatile. This creates a tough challenge for designers and users
of such systems: to design (selection) mechanisms that prevent explosion and
implosion of the population;

− While, in general, combining lifetime learning and evolution is a powerful
combination (cf. memetic algorithms), in PAS with natural reproduction life-
time learning can counteract evolution by unlearning mating.

In many instances of PAS, one is mainly interested in emergent phenomena,
particularly in emerging behaviour and emerging structures, such as the con-
trollers of the agents (world models) or the social network generated by social
learning, or the emergence of ‘traditions’ in the socially learned behaviours across
the population. It is characteristic that the experimenters can influence system
properties only indirectly, via the adaptation mechanisms. Given some demand-
ing world where agents only survive if they adapt to the particular challenges
of that world, the experimenter’s task is to engineer an appropriate mix of the

32

3.2. Learning Benefits Evolution

adaptation mechanisms so that these mechanisms will generate the desired emer-
gent behaviours and structures. It is this aspect that makes understanding the
trichotomy of evolution, individual learning, and social learning crucial to apply
them successfully in any PAS, be it new ties or a robot swarm.

3.2 Learning Benefits Evolution

This section considers the interplay between two of the three levels of adaptation
introduced in section 3.1, namely evolution and individual learning. Combinations
of evolution and learning have been investigated before (Belew and Mitchell, 1996),
cf. the hundred years of the Baldwin effect (Turney et al., 1996). Prominent related
work can be found within memetic algorithms, or hybrid evolutionary algorithms
(Moscato, 1999; Krasnogor, 2002), evolutionary robotics (Nolfi and Floreano, 1999;
Ijspeert et al., 1998) and ALife (Todd and Miller, 1990; Belew et al., 1990; Munroe
and Cangelosi, 2002; Curran and O’Riordan, 2006; Buresch et al., 2005).

As described in section 3.1.3.1, the combination of features in new ties implies
that the population size can change, even to extinction. This property is typically
absent in related workviii, even some work that claims to model natural systems
(Ruppin, 2002), although it is evident that in nature populations can and do die
out. Past research by Hinton and Nowlan (1996); Mayley (1996); Munroe and
Cangelosi (2002); Nolfi and Floreano (1999) has focussed on the costs and benefits
of learning in evolution and on identifying factors that influence this relationship
(Mayley, 1996; Nolfi and Floreano, 1999). This section continues research in this
direction, but specifically in the context of a changing population size.

Remember that in new ties, the evolutionary mechanism is under the control
of the agents, because it is the agents themselves who decide if and when to create
offspring. This means that the development of agent controllers (through evolution
and/or learning) can lead to intensively reproducing agents or just the opposite:
the evolutionary mechanism itself is subject to changes over time.

Evolution and individual learning act in a common search space: that of the
set of all possible agent controllers. Hence, an agent can be born with controller C,
created by some evolutionary operators applied to its parents’ controllers, and can
change C into C′, C′′, etc., during its lifetime through individual learning. Evolu-

viiiResearch on predator-prey phenomena is not usually concerned with combinations of evolution
and learning.

33

Chapter 3. More Than the Sum of its Parts

tion is non-Lamarckian: when this agent reproduces, only its original controller C
is used for creating a child, any individually learned modifications in C′ etc. are
disregarded as inheritable material. As noted in section 3.1.3.2, individual learn-
ing is implemented as reinforcement learning. In essence, reinforcement learning
changes the controller by regulating agent preferences for actions based on a re-
ward system. It is important to note that reinforcement learning can strengthen or
weaken preferences for any agent action, including the mating action required for
offspring creation. Thus, it is possible that individual learning unlearns reproduc-
tion and effectively counteracts evolution.
The questions we have to ask ourselves, then, are these:

1. What is the effect of adding individual learning through reinforcement learn-
ing?

− On the viability of the population?

− On the performance of the population?

− On the evolutionary engine?

2. How does this depend on the rewards used by reinforcement learning? In
particular:

− When rewards are energy-based.

− When rewards are hard-wired by the user.

3.2.1 The Experiments

As noted above, the system is not meant to set the agents any specific task other
than to win the struggle for life. The environment can, of course, be set up to
challenge the agents in specific ways. The agents then have to deal with these
challenges in order to survive and prosper. In other words, an experimental set-up
in new ties represents a particular challenge or learning task that agents must
solve through adaptation.
In the experiments we describe here, the environment is set up so that agents

can only survive if they successfully tackle the well-known poisonous food prob-
lem (Cangelosi and Parisi, 1998; Nolfi and Parisi, 1995; Todd and Miller, 1990).
The agents find themselves in an environment where there are two types of plants,
both of which can be picked up and eaten. One type is nutritious and yields an

34

3.2. Learning Benefits Evolution

energy increase, the other type is poisonous and eating them actually drains en-
ergy. Agents can choose not to, but they can distinguish between the two types of
plant. They do not, however, know a priori that one kind – let alone which kind –
is poisonous. Because agents must eat to replenish their energy level as mentioned
above, they have to learn to disregard poisonous food if they are to survive.

In these experiments, the world is a 200×200 grid, initialised with 500 agents,
8,000 edible plants and 10,000 poisonous plants. There is a maximum to the num-
ber of agents: agents are unable to reproduce when this limit is reached, but it
may be exceeded through the concurrent creation of a number of new-born agents.
Agents and both types of plants are randomly distributed over the grid. We call
our atomic time step a day and 365 days a year; the minimum mating age for
agents 1,000 days: i.e., they cannot successfully reproduce for the first 1,000 days
of their lives. The maximum age for agents is 7,300 days (7.3 times the minimum
mating age), when they reach this age they die, whatever their energy level. The
experiments run for 30,000 days. Initially, agents are assigned a random age be-
tween zero and one year. The initial controller of all agents is the same; in this
controller some behaviours are pre-wiredix, like looking for food. However, the
behaviour for eating the correct type of food is not present. This can be acquired
by changing the tree structure and/or tuning the biases of bias nodes and ac-
tion bias nodes, although the probability that the latter succeeds is small in the
tree-structure of the initial controller. Evolution (without sub-tree mutation) and
individual learning are the only active adaptation mechanisms; social learning is
turned off.

3.2.1.1 Measurements

To answer the research questions we must measure the viability and performance
of the population and provide insights into the evolutionary engine.

To measure the viability, we use the population size. A run is considered suc-
cessful if the population size did not reach zero during that run.

ixPre-wired is not the same as hard-wired: pre-wired controllers can be modified by the adapta-
tion mechanisms.

35

Chapter 3. More Than the Sum of its Parts

As a behavioural performance measure we use a function based on the ratio of
the different types of food the population eats:

g(t) =
∑t
t−1 eath

∑t
t−1 eatp + ∑t

t−1 eath
(3.1)

Where ∑t
t−1 eath and ∑t

t−1 eatp are the number of wholesome and poisonous plants
eaten by the population between t− 1 and t.
Additionally, we measure the total and average energy of the population and

the total and average age.
To measure the performance of the evolutionary system we monitor the average

number of mate-agreements of the population.

3.2.2 Experiment I

In the first experiment, poisonous plants drain twice the energy that an edible
plant yields. We ran two sets of experiments; one where individual learning was
either turned off or used only energy-based rewards and one where we introduced
a specific reward for reproduction. The results are summarised in figure 3.3.

3.2.2.1 Evolution only and Evolution-reinforcement learning combination with

energy based rewards

Figure 3.3(a) shows clearly that evolution only (indicated by the dashed line “EL”)
survives for approximately 1,000 time steps and thus does not yield a viable pop-
ulation. Adding energy based reinforcement learning to evolution markedly im-
proves viability, as can be seen in figure 3.3(a) (the dotted line “EL-RL (e)”). In
the long run, however, this is not a viable solution, because after 15,000 time-steps
the population is as good as extinct.
So, the combination with energy based reinforcement learning is thus unable

to make a population viable. This might be because reinforcement learning is
unlearning reproduction, since it costs energy and therefore produces negative
rewards. The rewards for other actions, except the eat action, are also negative, but
usually not as bad as reproduction, because that costs a third of the agent’s energy.
The “EL-RL (e)” curve in figure 3.3(c) proves that reward based reinforcement
learning is unlearning reproduction, because the total number of mate-agreements
steadily decreases. Moreover, figure 3.3(d) indicates that agents do not reproduce

36

3.2. Learning Benefits Evolution

(a) Population Sizes

0 5,000 10,000 15,000 20,000
0

500

1000

1500

2000

2500

Time

S
i
z
e

EL
EL−RL (e)
EL−RL (0)
EL−RL (10000)
EL−RL (1000000)

(b) g Measure

0 5,000 10,000 15,000 20,000
0.4

0.5

0.6

0.7

0.8

0.9

1

Time

M
e
a
s
u
r
e

EL
EL−RL (e)
EL−RL (0)
EL−RL (10000)
EL−RL (1000000)

(c) Average Number of Mate Agree-
ments per agent per time-step

0 5,000 10,000 15,000 20,000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Time

A
g
r
e
e
m
e
n
t
s

EL
EL−RL (e)
EL−RL (0)
EL−RL (10000)
EL−RL (1000000)

(d) Average Age

0 5,000 10,000 15,000 20,000
0

1000

2000

3000

4000

5000

6000

7000

Time

A
g
e

EL
EL−RL (e)
EL−RL (0)
EL−RL (10000)
EL−RL (1000000)

Figure 3.3 – Results for experiment I; graphs compare results for evolution by
itself (el), combined with reinforcement learning based on energy (el-rl (e))
and combined with reinforcement learning with different “orgasm” levels (el-rl
(0;10,000;1,000,000)).

37

Chapter 3. More Than the Sum of its Parts

enough to sustain the population: agents reproduce once every 3,000 time-steps,
while the average age in the population is only 1,000.

There are two reasons why agents reproduce at all in the face of the negative
reward. Firstly, they have to try to reproduce at least once to learn its negative
effects. Secondly, during exploration agents can still choose the mate-agreement
action, even if they unlearned it. The periodic behaviour of the curve is a side-effect
of the setting of the ages of the initial population and the minimal reproduction
age.

3.2.2.2 Combination of evolution and reinforcement learning with a hardwired

reward

The results in the previous subsection suggest that reproduction is unlearned or
becomes so rare that the agent population is unable to sustain itself. To test the
explanation that this is due to agents receiving negative rewards for reproduction,
we introduce a special reward for reproduction. Its only role is to make mating
actions attractive, so it can be regarded as a kind of pleasure or orgasm. We ran
experiments with three levels of reward: 0, 10,000 and 1,000,000.
The most striking result is that a hardwired positive reward renders the pop-

ulation viable. Note, that even a reward of zero works because all other actions
except eating yield a negative reward.

In terms of population performance, the results show that higher rewards for
reproduction result in better performance. For instance, in the g measure graphs
(figure 3.3(b)), the curve for a reproduction reward of 1,000,000 increases much
more steeply than for a value of 10,000, indicating that the population learns to
avoid poisonous food very quickly.

The intensity of the evolutionary engine is measured by the number of mate-
agreements, displayed in figure 3.3(c). The general trend is that the higher the
mate-reward the higher the number of mate-agreements.

Note that in all different simulations, including that of evolution alone, the g
measure is similar for the first 1,000 time steps. This means that the combination
of reinforcement learning and evolution is unable to learn the task during this
period, implying that individual learning somehow keeps agents alive that would
die in the case of evolution alone. To find out how agents were able to survive,
we analysed the results by tracking the agents’ actions. This analysis showed that
agents often choose to do nothing (the NULL action). Agents thus learn to save

38

3.2. Learning Benefits Evolution

their energy. This suggests a hiding effect: individual learning preserves agents
with a non-optimal strategy (Mayley, 1996).

3.2.3 Experiment II

To test whether a hiding effect occurs as suggested above, we change the environ-
ment so that evolution alone can make the population viable. The only change
from the previous experiments is that the levels of nutrition and poisonousness
have been set so that a poisonous plant drains an equal amount of energy that an
edible plant yields. We run experiments with evolution only and with both evo-
lution and reinforcement learning. The average results over 10 runs are shown in
figure 3.4.

(a) Population Sizes

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
0

500

1000

1500

2000

2500

3000

3500

Time

S
i
z
e

EL
EL−RL

(b) g Measure

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
0.4

0.5

0.6

0.7

0.8

0.9

1

Time

M
e
a
s
u
r
e

EL
EL−RL

(c) Average Agent Energy

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Time

E
n
e
r
g
y

EL
EL−RL

(d) Evolution Actions

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

A
c
t
i
o
n
s

MATE
TURN
NULL
MOVE
EAT

(e) Evolution + Reinforcement Learning Ac-
tions

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

A
c
t
i
o
n
s

MATE
TURN
NULL
MOVE
EAT

Figure 3.4 – Results for experiment II; graphs (a), (b) and (c) compare results for
evolution by itself (el) and combined with reinforcement learning (el-rl).

Both the combination of evolution and reinforcement learning and evolution by
itself yield viable populations in this set-up. The soft cap on population size causes

39

Chapter 3. More Than the Sum of its Parts

some boundary effects such as the fluctuating population size and the decrease of
energy levels at some point.
The main result, however, is that there clearly is a hiding effect: the combi-

nation of evolution and reinforcement learning hides the ill-adapted nature of
non-optimal agents. The population with only evolution very rapidly learns to
eat only wholesome plants (figure 3.4(b)) and therefore accumulates much more
much energy than the combination of evolution and reinforcement learning (figure
3.4(c)).
With evolution only, the agents accumulate enormous reserves of energy so

that they can get by without any food; this changes the evolutionary pressure
from eating (and preferring edible plants) to reproduction: we see the evolution of
agents that only perform actions involved with reproduction.
Figure 3.4(e) clearly shows that the average number of mate-agreements is

much lower with the combination of evolution and reinforcement learning than
with only evolution; reinforcement learning apparently hinders evolution. The dif-
ference in number of mate-agreements already appears within the first 5,000 time
steps, while there us no appreciable difference in g value or population size to ex-
plain the difference. One possible explanation is that the combination of evolution
and reinforcement learning creates another type of agent that doesn’t reproduce
as often because while evolution is mainly focussed on reproduction, the agents
with reinforcement learning try to balance between both eating and reproduction
in order to maximise their rewards.

3.2.4 Discussion

Over the years there has been a fair amount of research into combinations of learn-
ing and evolution, in particular regarding their costs, benefits (Hinton and Nowlan,
1996; Mayley, 1996; Munroe and Cangelosi, 2002; Nolfi and Floreano, 1999) and fac-
tors that influence this relationship (Mayley, 1996; Nolfi and Floreano, 1999). We
now (re)consider these issues in a context where agents:

− decide autonomously if and when they reproduce (natural reproduction, im-
plying a dynamic population size);

− can adapt their controllers to unlearn the mating action.

Our experiments show that in such systems learning can counteract evolution.
To be concrete: with a straightforward reward system based on energy, reinforce-

40

3.3. Social Learning as Enabler of a Knowledge Reservoir

ment learning will cause the agents to lose interest in mating because of the high
individual costs. Hereby the group benefits (maintaining the evolving popula-
tion) are lost. This effect can be counteracted by introducing a specific reward for
the mating action that gives positive feedback to the agents, regardless of the re-
lated energy costs. One could of course argue that this trick is known in nature,
commonly called an orgasm. All in all, this indicates that we must consider the
reward for reproduction as another factor that influences the effect of learning on
evolution in addition to the list proposed by Mayley (1996).

In terms of the viability and performance of the population, our experiments
show that learning can quite literally be a matter of life and death. In our first
scenario, evolution by itself was not powerful enough to sustain the population.
Adding reinforcement learning changed this, yielding populations that survive
and prosper until the end of the simulations. Simply put: learning keeps the pop-
ulation alive. It can do so by creating controllers that minimise energy expenditure,
a non-optimal behaviour, in the sense that such agents do not learn to eat the cor-
rect plant type. This is one of the costs of learning: learning causes a clear hiding
effect because it allows non-optimal controllers to survive. By contrast, evolution
by itself optimises by harshly cutting out the bad agents, but always with the risk
that there is no population left. In a system allowing a changing population size
this can be lethal.

Further research could show whether there is an optimal value for the repro-
duction reward (i.e., the extent of “pleasure” during mating). A good value would
not frustrate evolution and still make a population viable when needed. One pos-
sibility is to make this value self-adaptive by adding it to the genome, allowing
evolution to tune itself.

3.3 Social Learning as Enabler of a Knowledge Reser-

voir

As mentioned in section 3.1.3, agents in the new ties PAS decide autonomically on
the actions they perform by means of a controller that is inherited (for the initial
population: generated) at birth. They implement evolution and reinforcement
learning for individual learning. Through evolution, only the inherited controller
is passed on (i.e. non-Lamarckian evolution (Lamarck, 1809)): agents do not inherit

41

Chapter 3. More Than the Sum of its Parts

knowledge (modifications to the controller) that their parents may have gained
through experience; they can only recombine the controllers that their parents had
at birth (with some mutation added). This means that, without some additional
method of spreading knowledge through the population of agents, everything an
agent learns through experience (i.e., through individual learning) will be lost
when that agent dies.

This is where social learning comes into play: with social learning in place,
anything an agent learns during its lifetime can be taught to other agents, so that
this knowledge does not necessarily die with the agent that originally discovered
it. With agents exchanging knowledge pieces –bits of adapted controller– through
social learning, the population as a whole effectively becomes a knowledge repos-
itory – although not a randomly accessible one for individual agents – for indi-
vidually discovered adaptations. Obviously, social learning can also speed up the
learning process at the population level as found in e.g., (Acerbi and Nolfi, 2007;
Denaro and Parisi, 1996; Bull et al., 2007)
Social learning can only play this role if it can effectively disseminate individu-

ally acquired knowledge pieces. The question, then, that we seek to answer is the
following:

Is social learning an efficient mechanism to spread knowledge pieces through

the population, thus creating a knowledge repository for individually acquired

knowledge?

In nature, social learning can be achieved through a host of mechanisms rang-
ing from imitation to social guidance in individual learning (Acerbi and Nolfi,
2007). Here, we consider the case where social learning consists of agents actively
suggesting behavioural rules (knowledge pieces) for the consideration of other
agents in a peer-to-peer fashion. The recipients of these knowledge pieces then
choose whether or not to integrate them into their own set of rules. The fact that
all agents participate in social learning on an equal footing implies an inherent
parallelism in the spreading of knowledge pieces: all agents that have acquired
a knowledge piece can simultaneously share it with other agents, who can then
share it in turn, and so on.

Cultural algorithms employ belief spaces (Reynolds, 1999), which can be seen
as explicit knowledge repositories that the individuals build collectively. In the
research presented in this subsection, however, knowledge repositories are formed

42

3.3. Social Learning as Enabler of a Knowledge Reservoir

implicitly by the population and any individual agent can use only that part of
the repository it embodies. It has been shown that social learning through imi-
tation (sometimes called ‘cultural evolution’) can be beneficial by decreasing the
learning time for individuals, particularly in cases where the required behavioural
rules are difficult to acquire (Acerbi and Nolfi, 2007; Denaro and Parisi, 1996).
Such implementations of social learning typically focus on a limited number of
‘experienced’ individuals instructing uninitiated individuals one by one and thus
do not exploit the inherently parallel ink-stain effect present in the peer-to-peer
knowledge exchange that we envisage. Similarly, in ensembles of learning classi-
fier systems, social learning – termed ‘rule-sharing’ – has been shown to boost the
learning speed (Bull et al., 2007) of the ensemble. Comparing such ensembles with
a population of interacting, mortal agents is tenuous, however: the constituent
parts of the ensembles are not considered separately, only the performance of the
ensemble’s aggregated behaviour is taken into account.

3.3.1 Energy and Agent Quality

As mentioned in section 3.1 and contrary to typical evolutionary algorithm or evo-
lutionary robotics applications (Eiben and Smith, 2008; Nolfi and Floreano, 2000),
the PAS we use as an example lacks a crisp optimisation criterion as well as a
concrete task to be performed optimally. The agents survive whatever the envi-
ronment throws at them or they do not—that’s all there is. This also entails that
there is no measure of fitness in this system: the only selection mechanism is –truly
Darwinian– the struggle for life in the environment: environmental selection.

To gauge their relative quality, agents can, however, be compared in terms
of their perceivable attributes such as age or energy level. Crucially, such com-
parisons cannot be performed by some central selection mechanism – as would
be the case in traditional evolutionary algorithms – but by the individual agents
themselves when they autonomously decide to mate, engage in social learning, or
otherwise interact with another agent.

3.3.2 Social Learning in Detail

Social learning is implemented in a push model, where teachers volunteer knowl-
edge pieces that the students then may accept. Alternatively, social learning can be
implemented in a pull model, where agents request knowledge from other agents.

43

Chapter 3. More Than the Sum of its Parts

A combined model, where agents advertise that they believe that they have useful
knowledge to share and other agents can then request that knowledge (similar to
the plumage concept in (Smith et al., 2000)) could be implemented as well. Social
learning as described here uses a measure of relative quality R(a, b) (described
below) that compares agents a and b in terms of energy and age, but could have
used, for example, a reputation-based measure just as well.
Generally, this subsection describes the implementation of social learning with-

in new ties—alternative design choices could be made and implemented at every
level described here. As mentioned above, however, some options are infeasible be-
cause of the anthropomorphic nature of agents in these experiments. For instance,
agents have to be within range (‘earshot,’ if you will) to be able to communicate
and hence engage in social learning.
Social learning is implemented in the following sequence for every agent at

every time-step:

1. An agent chooses to initiate sending (‘teaching’) probabilistically (p = 0.2).

2. If it decides to send, the agent describes the trace through its DQT that led to
the current action (e.g., “I’m moving because there is no food to pick up”).

3. Of all the agents in range, the teacher then selects the one with the lowest
energy as the ‘student’.

4. When an agent receives a knowledge piece, it stochastically chooses to inte-
grate (p = 0.2) or disregard it.

5. When an agent s incorporates a DQT path P it received from an agent t, agent
s selects the most similar path P′ in its own DQT according to the following
criteria:

(a) Percentage of matching tests

(b) The number of tests P but not in P′

(c) The number of tests in P′ but not in P

If the percentage of matching elements in P is 100%, the bias for the action
that P results in is multiplied with the relative quality R(t, s) (see below).
Otherwise, the agent engages in a kind of dialectic: it inserts a bias node
at the first point of divergence between P and P′. The remainder of P′ is

44

3.3. Social Learning as Enabler of a Knowledge Reservoir

inserted as one option at that node, a sub-tree corresponding to the non-
matching entries in P is inserted as the alternative. The biases for the options
are set proportionally to the relative quality R(t, s). Figure 3.5 illustrates this
procedure.

Figure 3.5 – The result of integrating the path [not carry plant; see agent] ⇒
mate into the DQT from Fig. 3.2.

As described above, this social learning implementation requires some measure
of (relative) quality for agents to be able to assess the merit of received knowledge
pieces when incorporating those pieces. To that end, an agent a can determine the
relative quality R(a, b) of another agent b from their relative ages Aa and Ab and
energy levels Ea and Eb, respectively:

R(a, b) = 0.5 · (Aa
Aa + Ab

+
Ea

Ea + Eb
)

This measure ranges from 0, where agent b devastatingly outperforms agent a
to 1, where the converse is true. If the agents have the same energy and are equally
old, R(a, b) equals 0.5. Note that this measure does not constitute an optimisation
criterion as typically used in evolutionary algorithms: it does – without specifying
any goal – allow for the comparison of the success of adaptation of individuals.

Social Learning as an Evolutionary Algorithm

(Smith et al., 2000) already showed that an agent-based knowledge exchange mech-
anism similar to social learning constitutes an evolutionary algorithm. Moreover,
as pointed out in (Eiben and Smith, 2008), an evolutionary algorithm requires:

− Selection as a force to push quality;

45

Chapter 3. More Than the Sum of its Parts

− Variation operators to create the necessary diversity and thereby create nov-
elty.

This implementation of social learning achieves the former of these at various
levels. Firstly, ill-adapted individuals tend to die relatively quickly, and hence
cannot further distribute their knowledge, while well-adapted individuals tend to
survive and have ample opportunities to distribute their knowledge. The second
level is that of student selection mentioned above: when an agent has to choose
between potential recipients of a knowledge piece, it selects the one with the lowest
energy. Finally, the integration mechanism uses the relative quality R(a, b) to set
the bias for already known or newly received knowledge.

Variation is provided by the knowledge integration mechanism, which can be
seen as a guided adaptation of crossover such as commonly used in genetic pro-
gramming. Although this suffices, individual learning and social learning dovetail
very nicely in this respect (as well as because of the benefit that we expect from
social learning providing a knowledge repository for individual learning): indi-
vidual learning then plays the part of a mutation-like variation mechanism.

3.3.3 Experimental Set-up

In this section, we –or rather,the agents– revisit the poisonous food challenge de-
scribed in section 3.2.1 where agents have to learn to avoid poisonous food and eat
only healthy food.

To measure the efficacy of social learning as a mechanism for the proliferation
of knowledge pieces through a population (i.e., for the population as a whole to
adapt from individually learnt adaptations), we ran a series of experiments where
the population consists of two kinds of agents: knowers and students. The knowers
have pre-built controllers that allow them to tackle the poisonous food problem.
The students have a partially randomly constructed controller—they know how to
pick and eat plants (regardless of their being poisonous or not) and how to mate,
but the rest of their DQT is constructed randomly. A varying proportion of the
agents with pre-built controllers can send, but not receive social learning messages
(‘teachers’), while students both send and receive social learning messages. The
remaining knowers do not engage in social learning in any way; they are only there
to ensure that the environment contains the same amount of agents eating away at
the wholesome plants across the experiments, so that the results are comparable.

46

3.3. Social Learning as Enabler of a Knowledge Reservoir

Another difference between students and knowers is that the former can mate
to produce offspring where the latter cannot. Note, that this does not – in these
particular experiments – constitute evolution: there is no variation operator be-
cause it does not entail recombination, but cloning of either parent. Therefore,
there is no evolution at play to disturb our measurements. Neither kind of agent
can perform individual learning in these experiments.

This set-up serves as an idealised exemplar of a population where some agents
– represented by the teachers – have discovered, through individual learning or
otherwise, a particularly useful bit of knowledge: to eat only wholesome plants.
Note, that these teachers play quite a different role from the ‘experienced indi-
viduals’ employed by (Acerbi and Nolfi, 2007; Denaro and Parisi, 1996): from the
students’ point of view, they are no different from any other agent they encounter.
We ran the experiment with varying numbers of teachers to compare the rate at
with which the population of students learns to differentiate between nutritious
and poisonous food.

In our experiments, the agents can move in a 200×200 grid. There are initially
250 students and 100 knowers, of which 0, 1, 5 or 50 individuals are teachers.
Agents can live well beyond the length of the experiments, so agents can only die
of lack of energy. Each experiment was repeated 20 times. Poisonous plants drain
1.5 times the energy that wholesome plants yield, the environment is initialised
with 16,000 plants of each type. Plants regrow practically immediately (within 2
time-steps), even if they’ve been picked, similar to food in SugarScape (Epstein
and Axtell, 1996). Thus, there is always food (and poison) available and the ratio
poisonous/wholesome plants remains more or less at the initial value of 0.5.

To quantify behaviour, we use the g measure introduced in Eq. 3.1 – the ra-
tio between wholesome and poisonous plants eaten. We also employ a structural
measure that actually detects the presence of the required knowledge. There are,
of course, many different strategies that allow the agents to eat only wholesome
plants—e.g., “only pick up wholesome plants and eat anything you carry”, or
“drop any poisonous plant and eat anything you still carry”. In these experiments,
however, we know exactly which knowledge piece we expect to find because it is
the relevant trace through the handcrafted knowers’ DQT: it’s [carry wholesome

plant] ⇒ eat. This allows us to identify, during a run, those students that have
incorporated this rule by inspecting their DQTs. Thus, we can measure the inci-
dence among the students of the appropriate knowledge piece.

47

Chapter 3. More Than the Sum of its Parts

Note, that the measurements we present here were taken only over the popu-
lation of students.

3.3.4 Results

Figure 3.6 shows the development over time of g(t) – averaged over 20 runs – for
the students with 0, 1, 5 and 50 teachers. For reasons of legibility we omitted error
bars; the 4 curves do differ considerably, although the standard deviation for 0 and
1 teacher is large, due to the fact that in many of these simulations, the students
didn’t eat at all.

Figure 3.6 – Development over time of g(t) –the ratio between wholesome and poi-
sonous plants eaten– for the student population for different numbers of teachers.

As can be seen, g(t) remains level just above 0.5 for 0 teachers – there is no
learning at all – the slight improvement over fully random behaviour is due to
environmental selection: agents that eat too much poisonous food simply die at
a faster rate than agents that do not or less so, leaving a slightly better set of
surviving agents. In the case with a single teacher, the performance of the students
increases substantially: even from so small a seed, a knowledge repository can
grow. For 5 and 50 teachers, the population behaviour improves rapidly until g(t)
reaches a plateau between 0.8 and 0.9—there is no substantial difference between

48

3.3. Social Learning as Enabler of a Knowledge Reservoir

these experiments after that point. This seems to imply that in both cases the
population of students becomes saturated – at least at a behavioural level – with
the appropriate knowledge piece.

5 teachers

50 teachers

0 400 40001000

1 teacher

Figure 3.7 – Spread of knowledge pieces over the students for typical runs with 1, 5
and 50 teachers at timesteps 0, 400, 1000 and 4000.

Figure 3.7 shows a series of maps of the world displaying the incidence of
the required knowledge piece ([carry wholesome plant] ⇒ eat) geographically.
The three sequences of maps show the spread of knowledge over time for typical
runs with 1, 5 and 50 teachers respectively. Students that contain the required
knowledge show white, those that don’t show dark grey. Teachers and knowers
are not shown. Note the logarithmic time-scale.

Again, it is plain that, even with a single teacher to initiate dissemination, the
decisive knowledge is spread through a significant part of the population—the
population as a whole stores the knowledge effectively and robustly. As could be

49

Chapter 3. More Than the Sum of its Parts

expected, the knowledge becomes even more widespread for the experiments with
5 and 50 teachers.

While we have seen the behaviour for the student population reach similar lev-
els for the experiments with 5 and 50 teachers, this is not the case for the incidence
of the expected knowledge piece. With 50 teachers, practically all students have
obtained this knowledge piece after 4000 time-steps, but in the 5 teachers case, a
portion of the students remains unaware of this information at that time. Similarly,
there is no appreciable difference between g(t) at time-step 1000 and at time-step
4000 for the 50 teachers experiments, but there is a marked difference in incidence
of the required knowledge piece. From this we can conclude that, after a certain
level of prevalence has been achieved, further proliferation of the knowledge piece
has no perceivable effect on population behaviour in terms of g(t).

Figure 3.8 – Development over time of the percentage of students with the crucial
knowledge piece.

Figure 3.8 shows how the percentage of students that have learned the requisite
knowledge develops over time with 1, 5 and 50 teachers, respectively, averaged
over 20 runs. Because the students spread the knowledge they receive, incidence
grows almost exponentially as can be seen from the graph.

Note, that at time-step 0, a portion of the population does contain the knowl-
edge as part of the randomly initialised tree while g(t) for the runs without any
teachers doesn’t increase over time. This can be explained by the context in which

50

3.4. Conclusion

the knowledge piece may be present (i.e., as sub-clause in a more complex, possi-
bly nonsensical rule) and by the fact that the action node’s weights (as described
in section 3.1.2) aren’t sufficiently biased towards actually selecting the eat action.

3.3.5 Discussion

We asked ourselves the questions of whether social learning can provide a suc-
cessful mechanism to spread knowledge pieces over a population, and is there a
minimum requirement to enable the population to create a knowledge repository
for otherwise volatile individually acquired knowledge.

The results of the poisonous food experiments clearly show that social learning
does provide an efficient mechanism for the dissemination of knowledge pieces
through a population of agents. Even from a single agent, the knowledge can
spread over the majority of the population like an ink-stain on tissue paper. Within
the framework of PAS in general and the implementation in new ties in particu-
lar, this means that social learning is capable of allowing the population to form
a knowledge repository for individually acquired knowledge so that such knowl-
edge doesn’t necessarily expire with the agent that discovered it.

3.4 Conclusion

We began the chapter by introducing a framework for adaptation in population-
based adaptive systems (PAS), positioning and relating evolution, individual and
social learning.

The examples in this chapter illustrate that there are many ways to set up adap-
tive behaviour in a PAS, be it individually or collectively. The experiments show
that evolution, individual and social learning all provide powerful mechanisms for
initiating and spreading adaptation. Combining mechanisms may further enhance
the population’s performance, as indicated by the experiment in section 3.3. There,
we saw that social learning can provide an excellent method to share individually
acquired adaptations among the population, allowing the whole population to
benefit from an individual’s experience and preventing valuable knowledge from
being lost when an individual –be it a software agent or a robot– ceases to function.

We saw that social learning can constitute (part of) an evolutionary adaptive
system. The ‘telepathic’ version described in section 3.3 can co-operate with in-

51

Chapter 3. More Than the Sum of its Parts

dividual learning; individual learning provides variation, while social learning
implements recombination. Selection is done environmentally (poorly adapted
individuals disappear) and/or in social learning.
Indiscriminate combination of adaptive mechanisms, however, carries a dan-

ger: it may lead to the emergence of unwanted interactions as shown in section
3.2. There, we saw that individual learning can counteract as well as promote
evolution depending on the rewards the learning is based on: a case in point that
illustrates how the goals of the adaptation mechanisms have to be in tune with
each other. Therefore, careful consideration should be given to the interactions be-
tween the adaptive mechanisms when designing a PAS: one cannot simply design
the mechanisms in splendid isolation.
Investigating these interactions, then, is one of the challenges that future PAS

research will have to address to understand how adaptive mechanisms can be
combined to enable truly autonomous robots, robots that can indeed learn control
without human supervision.

52

If I have seen further it is only by standing on the shoulders of
giants

Sir Isaac Newton

4
Look Ma, No Hands!

An Overview of On-line, On-board Evolutionary Robotics

Typical implementations of evolutionary robotics optimise robot controllers prior
to proper deployment in the real world. This contrasts with the use of evolution for
on-line adaptation where the robots autonomously optimise their own controllers
while they go about their tasks.

We survey research that does employ on-line evolution to endow the robots
with continuous and autonomous adaptivity. We distinguish three schemes in
which on-line evolution can be implemented and classify existing work along these
lines. We establish common issues in on-line evolutionary robotics and identify
research in mainstream evolutionary computing that may provide solutions and
suggest directions for future research.

This chapter was submitted as:

Evert Haasdijk, A.E. Eiben. Look Ma, No Hands! – An Overview of On-Line, On-Board
Evolutionary Robotics. Submitted to Swarm and Evolutionary Computation, Elsevier.

53

Chapter 4. Look Ma, No Hands!

4.1 Introduction

Imagine a collective of autonomous robots that find themselves in a dynamic en-
vironment that they (or rather, their designers) didn’t know to expect. Obviously,
they cannot rely on pre-defined behaviour determined by fixed controllers to cope
robustly with the unknown challenges in such a scenario. Rather, the robots have
to learn to cope with their environment and any changes in it, just as they have
to learn to react to changes in their own bodies, for instance as a result of hard-
ware failure or reconfiguration. An essential capability, therefore, of such robots
is the ability to adapt their controllers – to learn – in the face of challenges they
encounter in a hands-free manner, without supervision — human or otherwise.

This review is inspired by the vision of robots one day being able to adapt like
this as so eloquently articulated by Nelson et al. (2009):

“Advanced autonomous robots may someday be required to negotiate envi-

ronments and situations that their designers had not anticipated. The future

designers of these robots may not have adequate expertise to provide appropri-

ate control algorithms in the case that an unforeseen situation is encountered

in a remote environment in which a robot cannot be accessed. It is not always

practical or even possible to define every aspect of an autonomous robot’s envi-

ronment, or to give a tractable dynamical systems-level description of the task

the robot is to perform. The robot must have the ability to learn control without

human supervision.”

There are many approaches besides evolutionary algorithms that can provide
on-line adaptation, and there has been substantial research into areas such as re-
inforcement learning. For the purposes of this overiew, however, we focus on
evolutionary approaches and a comparison with these alternatives is outside the
purview of this review.

We can distinguish between the design and operational stages of a robot’s life.
Prior to deployment, at design time, we can then see evolutionary algorithms as
tools for the design of robots and their controllers, but after deployment, during
a robot’s operational phase, evolutionary algorithms become tools that provide
adaptivity. To differentiate between the use of evolution in these two phases, we
call it off-line and on-line, respectively.

54

4.1. Introduction

We claim that the advanced robots in our vision must have the ability to adapt
on-line in an autonomous manner so that they may cope with a number of chal-
lenges:

Unforeseen environment The environment where the robots operate may not be
fully known during the design process. Therefore, the robot controllers at the
time of deployment are only approximate solutions that need to be adapted
to the environment as it is found at operational time.

Changing environment The environment may change to such an extent that the
initial skill set of the robots is no longer adequate. Hence, controllers must
adapt to changing situations.

Reality gap Even if the environment were known beforehand and constant during
operational time, it is very likely that the design process uses approximations
and simulations of real operational conditions. Hence, the robot controllers
will have to be fine-tuned after deployment.

To provide such levels of autonomous adaptivity, an evolutionary algorithm
must run on-board, without any external master computer to execute evolutionary
operators or evaluations. Crucially, the robots’ controllers change on the fly, as
they go about their proper tasks: adaptation occurs on-line, during the operational
period of the robots.
The overwhelming majority of evolutionary robotics research to date, however,

involves off-line adaptation during the design stage preceding the operational pe-
riod. Additionally, the evolutionary algorithm that develops the robot controllers
actually doesn’t run on the robots themselves at all, but it runs on a separate
computer that centrally maintains the population of robot controllers (or rather,
their genetic encodings) and performs selection and genetic operators. The robots
themselves (be it real or simulated) only come into play to evaluate candidate con-
trollers. Once the controllers are deployed on the actual robots to perform their
tasks for real, the evolutionary process is terminated and the controllers are mod-
ified no more — at least not through evolution. Nolfi and Floreano (2000) provide
ample illustration of this approach to evolutionary robotics. In these cases, evolu-
tion does not provide the on-line adaptive capabilities that we envisage.
Essentially, this off-line approach to evolutionary robotics is no different from

other fields of evolutionary computation as we have known them since the 1960s

55

Chapter 4. Look Ma, No Hands!

such as Evolution Strategies, Genetic Algorithms, Genetic Programming, Differ-
ential Evolution, to name but a few. Traditional evolutionary robotics and main-
stream evolutionary algorithms share the centralised management of evolution-
ary operators, where would-be parents do not select mates and produce offspring
autonomously, but are being selected by an ‘oracle’ (the outer loop of the main
evolutionary algorithm) and undergo variation operators passively.

For the on-line adaptive capabilities without supervision as we envisage, this is
not an appropriate scheme. For that, the adaptation mechanism – the evolutionary
algorithm – must operate in a decentralised, autonomous fashion.

In section 4.2 we argue that this departure from centrally controlled evolution
fundamentally changes the rules of the game and introduces specific issues that are
not commonly considered in off-line approaches to evolutionary robotics. We also
present a classification to categorise on-line, on-board evolution implementations
based on how they delegate control of the evolutionary process.

Sections 4.3 to 4.5 present a survey of relevant research that considers decen-
tralised autonomous approaches to evolution. We focus on evolution towards spe-
cific tasks with well-defined fitness function, for instance, tasks such as avoiding
obstacles (Nordin and Banzhaf, 1997) or collecting objects (Watson et al., 2002).
We do not consider machine learning approaches that do not employ evolutionary
computation, for instance reinforcement learning.

We conclude the survey by suggesting directions for future research in section
4.7.

4.2 On-line, On-board Evolution

In the previous section we identified two critical requirements of employing evo-
lutionary algorithms to provide adaptivity as we envisage: it is on-line and it is
autonomous.

Instead of a pre-deployment phase where evolution is free to try anything as
long as the end result meets the requirements, evolution now takes place post-
deployment, implying less control over and higher stakes during the evaluations.
Lower control because the designer of the system has no control over, possibly not
even knowledge of the exact circumstances in which subsequent evaluations of
controllers take place. Higher stakes because evaluating a poor controller doesn’t

56

4.2. On-line, On-board Evolution

just waste development time, it also affects system performance directly. We will
investigate the consequences of this requirement in section 4.6.
The requirement of an autonomous evolutionary process entails a departure

from traditional evolutionary algorithms in two points in particular:

− There is no central authority external to the robots that decides which robot
controllers reproduce and which ones are replaced;

− There is no omniscient presence who knows (let alone determines) the fitness
values of all individuals.

Consequently, the robots gauge their own (and each other’s) fitness themselves
and it is they themselves who autonomously decide (based on their fitness infor-
mation) when to mate and with whom. As noted by Eiben et al. (2007):

[T]he key element here is the locally executable selection. Crossover and muta-

tion never involve many individuals, but selection in evolutionary algorithms

usually requires a comparison among all individuals in the population.

In other words, the operators that are specific for decentralised evolution (as op-
posed to a traditional, centrally controlled evolutionary algorithm) are the selection
operators: mate selection instead of parent selection and a local survivor selection
instead of a global replacement strategy. The variation operators (mutation and
crossover) need not be specifically designed for on-line evolution, but should only
match the given genetic representation. Note that these, too, should be executed
locally, though.
There are examples of evolutionary algorithms that do away with external se-

lection and modification of the individuals. Such algorithms have a very different
look-and-feel than a run-of-the-mill genetic algorithm solving, say, the travelling
salesman problem, but they are clearly evolutionary. Intuitively, they are a dif-
ferent kind of evolutionary system, where the essence is not optimisation in some
abstract search space, but a population of actively reproducing agents that undergo
selection in some (possibly virtual) environment.
Implementations of on-line, on-board evolutionary robotics can be distinguish-

ed by how control of the evolutionary algorithm (particularly of the selection op-
erators, as noted above) is devolved away from a central authority and onto the
robots themselves. This can be achieved by encapsulating the complete evolution-
ary algorithm in the robot, by distributing the selection operators over a collective
of robots or by hybridising these two approaches:

57

Chapter 4. Look Ma, No Hands!

The encapsulated approach Each robot has an evolutionary algorithm implemented
on-board, maintaining a population of genotypes inside itself. The robots run
these (possibly different) evolutionary algorithms locally and perform the fit-
ness evaluations autonomously. This is typically done in a time-sharing sys-
tem, where one member of the inner population is activated (i.e., decoded
into a controller) at a time and is used for a while to gather feedback on its
quality. Here, the iterative improvement of controllers is the result of the
evolutionary algorithms running in parallel on the individual robots.

The distributed approach Each robot has a single genotype and is controlled by
the corresponding phenotype. Robots can reproduce autonomously and
asynchronously and create offspring controllers by recombination and/or
mutation. Here, the iterative improvement of controllers is the result of the
evolutionary process that emerges from the exchange of genetic information
among the robots;

The hybrid approach The two previous approaches can be combined, resulting in
a set-up akin to an island model as used in parallel genetic algorithms. In
such a combined system, each robot contains a complete evolutionary algo-
rithm on board, just as in the encapsulated case, but in addition exchanges
genetic information with other robots as in the distributed case. Thus, each
robot is an island, and the iterative improvement of controllers is the re-
sult of the evolutionary process that emerges from intra-island variation (i.e.,
within the population of the enclosed evolutionary algorithm in one robot)
and inter-island migration (between two or more robots).

4.3 The Encapsulated Approach

Evolutionary algorithms that embrace the encapsulated approach may not seem
materially different from ‘regular’ evolutionary algorithms because the whole pro-
cess runs on a single robot, just as it would run inside a single computer. We will
see, however, that there are particularities of on-line evolution; these will be elab-
orated on in section 4.6.
One practicality of (especially encapsulated) on-line evolution is time-sharing;

obviously, only a single controller can be active at any one time on a single robot.
Therefore, the encapsulated algorithm can only evaluate a single individual (which

58

4.3. The Encapsulated Approach

defines a single controller) at a time. To evaluate multiple individuals (as any
evolutionary process must) the algorithm has to try them in sequence, one after
the other: a controller runs for a certain amount of time and the task performance
over that period determines the controller’s fitness. Then, the next controller is
loaded and gets its chance to control the robot while fitness is measured, and so
on. As a consequence, there can be no guarantee that two individuals are evaluated
in the same or even similar circumstances; we will return to this in section 4.6.

To our knowledge, the oldest implementation of on-line evolution of robot con-
trollers is that of Nordin and Banzhaf (1997). Nordin and Banzhaf implemented
a genetic programming system to evolve machine code for a Khepera’s micro-
controller. They successfully evolved controllers for obstacle avoidance and for
obstacle following, with the robot learning the first task in 40 to 60 minutes and
the latter in around 30 minutes.

The initial implementation, for which the results are reported, used an external
computer to run the actual evolutionary algorithm (and is therefore off-board, but
still on-line), but the algorithm was subsequently ported to run on the Khepera’s
own micro-controller. No results of this on-board version are noted, but with
battery life ranging from 40 to 60 minutes, successful evolution of controllers for
both tasks is feasible.

Floreano et al. (2002) describe a fully on-board implementation of an algorithm
to evolve spiking neural networks for obstacle avoidance in very limited hardware
(an Alice robot with a PIC16F628 processor). While the paper focusses on the
practicalities of implementing an evolving spiking neural net in the cramped con-
ditions of a small robot’s microprocessor, the evolutionary algorithm can serve as
an illustration of two characteristics that are common in almost all encapsulated
and hybrid implementations of on-line, on-board evolutionary algorithms. Firstly,
the algorithm implements steady-state evolution: an individual is tested and pos-
sibly replaces an individual in the current population so that parents and offspring
may exist side-by-side. In this case, the new individual replaces the worst in the
population if it performs better. Secondly, the population on a single robot (con-
sisting of only 6 individuals) is tiny compared to what is common in evolutionary
computation; after all, it had to fit inside the robot’s on-board memory.

Walker et al. (2006) show one of the benefits of on-line, on-board evolution in
addition to hands-free adaptivity: it can help overcome the ‘reality gap’ where
a simulator irons out the wrinkles and warts of reality. Often, when robot con-

59

Chapter 4. Look Ma, No Hands!

trollers are developed using a simulator (typically cheaper and faster than using
real robots), the controllers in reality perform worse than might be expected due
to infidelities in the simulation and particularities of individual hardware (see
Brooks, 1992). Walker et al. take a two-staged approach: they first employ an off-
line, centralised evolutionary algorithm to develop controllers in simulation (the
‘training phase’). They then transfer the resulting controllers onto a real robot,
and implement an on-line, on-board evolutionary algorithm that further refines
the controller and adapts it to a changing environment. In their experiments, the
robot has to avoid randomly placed obstacles while moving towards a goal. The
environment changes by moving the obstacles and by varying the number of ob-
stacles in the arena. The dynamics of the environment highlight the hands-free
adaptivity that on-line, on-board evolution enables. Walker et al.’s on-line algo-
rithm has a single champion genome that serves as parent to a challenger; the
challenger replaces its parent if it performs better. To this fairly common arrange-
ment they add a buffer memory: a second child can replace the challenger (but
not the parent directly) if it outperforms it. Every iteration, the second child is re-
placed with a newly mutated version of the parent, so the first child is the current
best challenger. This two-tiered approach was designed to overcome the problem
mentioned above: as a result of sequential evaluation, the circumstances of evalu-
ation could differ significantly from one individual to the next and ‘a poor chro-
mosome could perform uncharacteristically well and be rewarded and vice-versa.’
The population of the on-line algorithm is (again) tiny: only three individuals are
considered, in all. Walker et al. mention that this carries the benefit of promoting
rapid adaptation to changes in the environment: ‘the smaller the population size,
the faster each generation of chromosomes is evaluated and the sooner the effects
of evolution manifest.’

Haroun Mahdavi and Bentley (2006) describe experiments involving encapsu-
lated on-line evolution in robots that use shape memory alloy actuators: metal
filaments that change shape when a small current is applied. In one set of exper-
iments, Haroun Mahdavi and Bentley use on-line evolution to let a snake-shaped
robot learn to move forward. These experiments don’t actually exhibit the level
of autonomy suggested by on-line, on-board evolution because the fitness was not
measured by the robot itself but by the experimenters (and therefore evolution
took place, at least in part, off-board), but they, nonetheless, provide a striking
example of one of the benefits of on-line adaptation.

60

4.4. The Distributed Approach

During one experiment, one of the filaments broke while the robot was evolv-
ing a gait. Normally, this would spell disaster and mean that the robot must be
fixed and the experiment restarted. Haroun Mahdavi and Bentley, however, re-
alised that this was an excellent opportunity to see the controller adapt to the new
circumstances and continued the experiment with one broken actuator. In short
order, the robot adapted its gait to move with one less actuator, showing how
on-line evolution can help robots cope with hardware failure. Similar robustness
under on-line, on-board adaptation was reported by Christensen et al. (2010), who
purposely introduced hardware faults (for instance, failing modules in a modular
robot body) during some experiments with an on-line, on-board stochastic adap-
tation method akin to Newton-Raphson minimisation methods.

Bredeche et al. (2009) implement the μ + 1 on-line evolutionary algorithm, later
elaborated by Karafotias et al. (2011), where a robot maintains a population of
μ individuals on-board. In this algorithm, some evaluation cycles are used not
to generate and test new controllers, but to re-assess controllers already in the
population. This should reduce the impact of the fact that two individuals can be
evaluated in very dissimilar circumstances.

4.4 The Distributed Approach

In their seminal papers, Ficici et al. (1999) (elaborated in Watson et al. (2002))
coin the phrase Embodied Evolution for a system where “a population of physi-
cal robots [...] autonomously reproduce with one another while situated in their
task environment.” In other words, the controllers evolve on-line (“in their task
environment”) through the physical robots exchanging genetic material with one
another. This constitutes a groundbreaking example of the distributed approach:
the evolutionary process is not embedded in individual robots or in some external
overseeing module, but it emerges from the interactions between the robots.

Watson et al. introduce a fully autonomous scheme where the robots broad-
cast (mutated) genes on local-range communication channels at a rate proportional
to their fitness (Probabilistic Gene Transfer Algorithm, PGTA). Also, robots resist
‘infection’ with genes broadcast by other proportionally to their fitness. Robots
incorporate received genes into their own genome and so immediately update the
controller and continually evaluate its performance. In this scheme, there is no
central authority or global view of the population, but there is, in fact, one item of

61

Chapter 4. Look Ma, No Hands!

global information: the maximum possible fitness which is used to determine the
broadcast and resistance rates. This seems to limit the applicability of PGTA, but it
would seem reasonably straightforward to propagate at least the best achieved fit-
ness through a gossiping-like algorithm as described in Jelasity et al. (2005) and so
avoid the need for a pre-specified maximum fitness. Wickramasinghe et al. (2007),
described below provide an example of such an approach. The research shows that
the robots learn to tackle a phototaxis task very efficiently, even outperforming a
Braitenberg-based benchmark controller.

Elfwing et al. (2005) show another example of a distributed algorithm where
the robots have to learn to harvest batteries to maintain their energy level. The
robots run controllers sequentially; controllers ‘die’ after a certain time expires or
if the energy runs out. When a controller completes a full lifetime (i.e., they do not
run out of energy because they successfully harvest batteries), a child is created
from the tested controller and one of the genomes that the robot received from
another robot (the robots have to be physically close to exchange genomes). If a
controller’s lifetime is cut short because the energy runs out, a child from an ear-
lier controller that did survive is selected. Elfwing et al. compare this scheme with
a standard centralised algorithm. The results show that the centralised scheme
performs better, but not significantly so, due to the large variance in performance.
The authors note that this may also be a result of the number of batteries cap-
tured being an explicit measure for the centralised case, while it is only indirectly
rewarded in their on-line scheme.

Wischmann et al. (2007) investigate the interplay between embodied evolution
and individual learning by introducing a maturation period during which no mat-
ing or replacement can occur. During this maturation period, part of the artificial
neural net that controls a robot adapts through backpropagation; this allows the
controllers to adapt using individual learning before feeling any selective pres-
sure. The evolutionary algorithm itself is a slightly modified version of Watson
et al.’s PGTA. In their experiments, a population of prey agents evolves and learns
to move around while avoiding non-evolving (but learning through backpropa-
gation) predators. The results show that whether or not learning may facili-
tate evolution depends on the right timing of individual maturation and that the
choice of maturation time significantly influences the rate of evolutionary adapta-
tion. Purely in terms of distributed on-line, on-board evolutionary robotics, this
research does not add much to Watson et al. (2002) other than offering another

62

4.4. The Distributed Approach

successful application of Embodied Evolution. It is, however, noteworthy because
of its focus on the interplay between evolution and learning.

Simões and Dimond (2001) implement a panmictic (fully connected) distributed
evolutionary algorithm where the robots use radio to transmit their fitnesses; the
best individuals are selected and recombined to create new controllers with which
to reprogram the entire population. The algorithm is synchronised through in-
ternal timers on the robots; once a minute, all robots broadcast a ‘mating call’
over the radio containing their identification, fitness values, and chromosomes.
Subsequently, the best individuals are selected to procreate and the worst robots
are reprogrammed with the results. How and by what agency the selection takes
place remains somewhat unclear. Simões and Dimond’s experiments show that
this algorithm is capable of evolving controllers that efficiently solve the task of
collision-free navigation: to move as fast as possible while avoiding obstacles. This
implementation requires that each robot be connected to all other robots (by radio),
which might imply issues with scalability for large populations or for populations
spread over a large area, where not all robots are in range of each other.

Nehmzow (2002) describes a similar system where the population consists of
two robots that regularly suspend their normal tasks to switch to a mating mode.
In mating mode, the robots physically seek each other out by homing on each
other’s infrared emissions to exchange fitness and genomes. The weaker of the
two robots recombines the two genomes and replaces its current controller with the
result, while the stronger mutates its current genome either randomly or by taking
a single bit from a cached ‘best-so-far’ genome. Subsequently, both robots resume
their tasks to evaluate the new genomes. Just as that of Simões and Dimond
(2001), this is a synchronised scheme where the robots suspend ‘regular’ behaviour
after a fixed amount of time to reproduce. The robots successfully learn to tackle
phototaxis and obstacle avoidance tasks in this research.

As noted in eminent books such as those by Dawkins (1976) and Richerson and
Boyd (2005), social interactions also result in processes of development of common
knowledge or culture that can be viewed as evolutionary. Correspondingly, some
social learning approaches in agent-based systems can also be seen as evolution-
ary. For these cases, as Kendall and Su (2007) put it, “evolution occurs through
the storage and dissemination of information and knowledge by means of social
learning”. Typically, these approaches give rise to evolutionary schemes that we
would classify as distributed.

63

Chapter 4. Look Ma, No Hands!

Smith et al. (2000), for instance, describe a social learning algorithm where a-
gents invite potential partners by sending ‘plumage’ objects containing ‘sperm’
(the genome) at fixed intervals. When an agent has received five of these objects,
the best is chosen (note that this boils down to tournament selection with tourna-
ment size five) and the agent’s own genetic material is combined with the sperm
to create an ‘egg’ that replaces the current agent. Smith et al. note that the effect
of certain design decisions in embodied evolution can be unexpected, even coun-
terintuitive, for practitioners of traditional evolutionary algorithms. For instance,
adding elitism (agents only accept plumage objects that have higher fitness than
they themselves) could be expected to lead to faster convergence, but, in terms of
wall-clock time, the reverse is true, probably due to added communication over-
head because the agents have to receive more genomes before they find five that
perform better than their own.

Vogt and Haasdijk (2010) describe a system where agents continually broadcast
a partial description of their controller (implemented as a decision tree) by explain-
ing what action they are taking and how they selected that action. Nearby agents
that receive these messages sometimes (depending on proclivity and relative qual-
ity) incorporate the description in their own controller. In the context of the
well-known poisonous plant task, Vogt and Haasdijk show that this scheme leads
to rapid dissemination of useful strategies throughout the population of agents
and that a population with social learning enabled provides a reliable knowledge
repository.

At first glance, Cultural Algorithms (Reynolds, 1994) ought to be a prime can-
didate for an overview such as this, but the system for which Reynolds coined
this phrase is centralised: it requires a centralised knowledge repository in which
commonly available useful knowledge bits are stored and shared. The knowledge
bits are distributed through acceptance and influence functions that implement se-
lection based on a global view of the population. Obviously, such centralisation
goes against our requirement of autonomous adaptation. Similarly, Kendall and
Su’s imperfect evolutionary system (Kendall and Su, 2007) describes a scheme with
a centralised knowledge repository.

64

4.5. The Hybrid Approach

4.5 The Hybrid Approach

With the hybrid approach, the robots each implement a complete encapsulated
evolutionary algorithm and exchange individuals with each other, just as those in
distributed approaches. This leads to an architecture very similar to the island-
based model in parallel evolutionary algorithms. Alba and Tomassini (2002) inves-
tigate a number of issues from the perspective of parallel evolutionary algorithms;
they differentiate between panmixia, island-based and structured models (and var-
ious hybrids). Apart from the speed increase due to parallel evaluation, they note
two benefits of island-based and cellular variants: “better sampling of the search
space and improve the numerical as well as runtime behavio[u]r of the basic algo-
rithm in many cases”. For the island model, high diversity and species formation
are well-reported features.

Perez et al. (2008) provide a case study of a hybrid implementation in collision-
free movement. The robots run an encapsulated genetic programming algorithm
and exchange parts of individuals (subtrees) asynchronously. In Watson et al.’s
experiments (Watson et al., 2002), the rate of transfer of genetic material depends
on the fitness level; in contrast, Perez et al.’s Distributed Genetic Programming
system broadcasts genetic material at a fixed rate, regardless of utility, but with
the utility attached. To determine whether or not to incorporate received genetic
material, the utility associated with a received subtree (that of the individual it was
part of) is compared to that of the worst local individual; if the associated utility
is higher, the subtree is incorporated into the worst local individual. Perez et al.’s
results show that all robots (five simulated Khepera units) learn to move around
the arena without colliding into walls, obstacle for each other. Also, transferring
genetic material in this manner between robots helps to increase the variability of
the local population in each robot.

Usui and Arita (2003) implement an evolutionary algorithm that runs in a tra-
ditional manner within the robot itself. Locally created new individuals and in-
dividuals received from other robots – very similar to migration in island-based
parallel evolutionary algorithms – are queued for evaluation, after which they are
placed into the pool of the local algorithm, replacing the worst individual (unless
they themselves turn out to be worse). In Usui and Arita’s experiments, six Khep-
era robots are placed in an arena where they have to learn to move around without

65

Chapter 4. Look Ma, No Hands!

hitting obstacles. Experimental results show that migration enhances performance
when compared to the purely encapsulated case.

4.6 Considerations in On-line, On-board Evolutionary

Robotics

From the work outlined above, we identify a number of issues in on-line, on-board
evolutionary robotics that normally do not feature prominently in regular evolu-
tionary computation. Some of these considerations, such as parameter control,
have been investigated in other evolutionary computation research, while others,
for instance the need for good average performance, have, to our knowledge, not
yet benefitted from such attention. Let us take a closer look at these issues.

4.6.1 Actual performance matters

In typical applications of evolutionary algorithms, the be-all and end-all is a cham-
pion individual that is as good as possible: the best performing individual at ter-
mination has to be as close to optimal as we can get. The performance of the
remainder of the population is, in the end, of no consequence as they will be dis-
carded as the champion is deployed; their only reason for existence is to guide
evolution’s search process to the pinnacle that is the best individual in the popu-
lation.
Things are very different for on-line evolution as we envisage here: remember

that controllers evolve as the robots go about their tasks and so the robots’ perfor-
mance is determined by the quality of all individuals that they evaluate, not that
of any single individual controller alone.
When a robot evaluates poor controllers, that robot’s actual performance will

be inadequate, no matter how good the best known individuals as archived in
the population. Therefore, the evolutionary algorithm must converge rapidly to a
good solution (even if it is not the best) and search prudently: it must display an
acceptable level of performance throughout the continuing search. Balancing this
need for rapid convergence and more or less stable performance with the variation
that evolution requires is an especially challenging task when using on-line evo-
lution, similar to the considerations concerning the trade-off between exploration
and exploitation in reinforcement learning.

66

4.6. Considerations in On-line, On-board Evolutionary Robotics

Endowing robots with a self-modelling capabilities, for instance as described by
Bongard et al. (2006) may alleviate this issue: the robots could use their self-model
in an on-board simulator as a surrogate model for an approximate assessment of
candidate controllers before actually deploying them and truly assessing them.
The increasing capabilities of robotic hardware (small, low-power processors in
particular) make this an increasingly feasible and attractive option.

4.6.2 Evaluation in vivo

In the end, fitness must be evaluated in vivo: the quality of any given controller is
determined by actually using that controller in a robot as it goes about its tasks.
The real-life, real-time fitness evaluations are inevitably very noisy because the
initial conditions for the genomes under evaluation vary considerably. Whatever
the details of the evolutionary mechanism, different controllers will be evaluated
under different circumstances: any controller’s evaluation will start wherever and
in whatever state the previous evaluation left the robot. The very dissimilar eval-
uation conditions caused by one (possibly very poor) individual setting the scene
for the evaluation of another individual result in very noisy fitness assessments.
As Nordin and Banzhaf (1997) note:

Each individual is thus tested against a different real-time situation leading to

a unique fitness case. This results in “unfair” comparison where individuals

have to navigate in situations with very different possible outcomes. However,

our experiments show that over time averaging tendencies of this learning

method will even out the random effects of probabilistic sampling and a set of

good solutions will survive.

When generating new individuals, Nordin and Banzhaf select two parents in a
four-way tournament, replacing the two losers with the offspring of the two best-
performing individuals. To determine the tournament outcome, every individual
in the tournament is evaluated, regardless of any previous evaluations. This im-
plies that, to stay in the population, individuals have to perform well time and
again, or they will be replaced – these re-evaluations provide the averaging effect
Nordin and Banzhaf claim.
Bredeche et al. (2009) suggest an explicit re-evaluation mechanism where evalu-

ation cycles are sometimes (the frequency is a parameter) used to re-assess existing
solutions and update that individual fitness with a moving average.

67

Chapter 4. Look Ma, No Hands!

Walker et al. (2006) also realised that ‘a poor chromosome could perform un-
characteristically well and be rewarded and vice-versa.’ They propose a two-tiered
replacement strategy to overcome this problem.

Another consequence of evaluating performance on-the-fly in real-life is that
the robot has to decide how long to evaluate individuals for: too long, and adap-
tation moves at too slow a pace, too fast and the fitness assessments become too
noisy. Haasdijk et al. (2010) showed that this introduces a parameter that has great
influence on robot performance.

Finally, all the information for the fitness assessment must be accessible through
the sensors that the robots have: in terms of the ‘fitness space’ introduced by Nolfi
and Floreano (2000), fitness assessment must be performed internally. This pre-
cludes outside agents (like experimenters) that monitor and measure robot perfor-
mance.

Research into regular evolutionary computation in noisy and/or dynamic envi-
ronments such as that by Beyer (2000) or Yang et al. (2007) provides some guidance
on dealing with similar issues.

4.6.3 Parameter control and/or robust parameter settings

It is well known that the performance of evolutionary algorithms depends heavily
on their parameter settings (Lobo et al., 2007). In particular, the optimal parameter
values for an evolutionary algorithm may differ from problem to problem. The
common practice in traditional evolutionary computing is to seek good parameter
values by parameter tuning, performed by the experimenter before the ‘real’ run
of a given algorithm.

Unfortunately, this is not an option in scenarios that we consider here, because
the robots have to adapt to operational circumstances – without human interven-
tion – that are unknown beforehand and/or dynamic. Such unknown, possibly
dynamic circumstances imply that the evolutionary mechanism through which the
controllers adapt must be somehow (re)tuned to be able to deal with these (new)
circumstances. Christensen et al. (2010) present an interesting example demon-
strating this problem: running experiments evolving modular controllers for dif-
ferent multi-module body shapes, they noted that the evolutionary algorithm suc-
cessfully developed gaits in both cases, but only after recalibrating the algorithm’s
learning rate parameter.

68

4.6. Considerations in On-line, On-board Evolutionary Robotics

Obviously, (re)tuning the evolutionary algorithm parameters in the traditional
manner is impossible in the hands-free applications of on-line evolutionary robot-
ics. Such hand-free adaptation requires evolutionary algorithms that are either
capable of calibrating themselves on the fly or use robust parameter settings that
work well under (almost) all circumstances. A combination is also possible: some
parameters can have a robust value, while others can undergo permanent recali-
bration. To meet this challenge, knowledge in traditional evolutionary computing
can be utilised. The relevant sub-areas here are that of evolutionary algorithm
parameter control and parameter tuning aiming at robust settings. The need for
evolutionary algorithms with good parameter control mechanisms was noticed as
early as the 1990s, but most progress has been achieved in recent years. The main
approaches are based on the idea of adapting (selecting) evolutionary operators
or adapting evolutionary algorithm parameters (Eiben et al., 1999b; Fialho et al.,
2008; Kramer, 2010; Maturana et al., 2010; Montero and Riff, 2011). There is less
readily available knowledge about parameter tuning specifically to obtain robust
settings in the existing evolutionary computation literature. In fact, there are few
generic parameter tuning methods and these are typically used to achieve top algo-
rithm performance on a narrow range of problems (Eiben and Smit, 2011). Robust
settings, although they were a popular subject in the early days of evolutionary
computing (Goldberg, 1989), are rarely discussed these days in mainstream evolu-
tionary computing or in evolutionary robotics.

4.6.4 Situatedness

Distributed (and, by extension, hybrid) implementations of on-line, on-board evo-
lution share – sometimes implicitly – the concept of a neighbourhood from which
partners are selected. This neighbourhood can be physical and exist of other robots
that happen to be within communication range or it can be in terms of a social net-
work across the population using long-distance communication. This prompted
Schut et al. (2009) to label these kinds of algorithm as ‘situated’ because this sit-
uates the robots (or agents) vis a vis each other. In Wickramasinghe et al. (2007),
for instance, the neigbourhood is fluid as a result of the dynamics of peer-to-peer
networks. The gossiping algorithm in fact defines a dynamic overlay network that
defines which nodes are neighbours. Nehmzow (2002) and Simões and Dimond
(2001) implement panmixia: in the spirit of a global village, all the robots (in fact,

69

Chapter 4. Look Ma, No Hands!

only two in Nehmzow’s case) are interconnected and the neighbourhood extends
to all robots. Others, like Watson et al. (2002), implicitly define a dynamic neigh-
bourhood that consists of those agents (robots) that meet – that is, that come within
communication range of each other – by chance.

Partners are selected by sampling from this neighbourhood and a new individ-
ual is created by combining the partners’ genomes. For virtual agents, for instance
in Wickramasinghe et al. (2007), a new agent may be constructed ad libitum to
evaluate this new individual, but it is difficult to envisage how to achieve this in
the case of robots – although Schwarzer (2008) achieve something along these lines
by having robots ‘die’ and then wait to be reprogrammed with a new individual.
In most cases, however, an existing robot has to replace its controller with the new
individual to evaluate it – just as robots evaluate consecutive controllers in the
time-sharing scheme described above.

The agent that replaces its controller can be – and in robotics, usually is – one
of the parents, for instance in Smith et al. (2000), but it can also be selected in turn
from the neighbourhood as in Schwarzer (2008).

Selecting parents and survivors within a (local) neighbourhood is a recurring
theme in spatially structured or cellular evolutionary algorithms (Alba and Dor-
ronsoro, 2008). Here, the elements that make up the population are located in
a (possibly virtual) grid, often with the nodes of this grid located on different
CPUs. To minimise communication overhead, selection schemes that limit com-
munication to relatively small neighbourhoods in the grid are preferable. Dis-
tributed on-line, on-board evolution in robotics, with chance encounters providing
the sampling mechanism, can be seen as equivalent to cellular evolutionary algo-
rithms with continuous random rewiring of the grid connections. Therefore, it is
useful to consider some research into neighbourhood selection schemes from this
field.

In Gorges–Schleuter’s investigation of spatially structured evolution strategies
(Gorges–Schleuter, 1998), experiments show that the spread of knowledge through
the network is faster when connectivity extends in multiple directions (a torus
topology outperforms a ring, for instance) and is fastest for a panmictic topology.
This is deemed due to increasing selection pressure and therefore “coupled with
a decrease of the loss of variability of the gene pool”. As in all cellular evolution-
ary algorithms, the potential mates are the nodes in each other’s neighbourhood
(one might say that this is the defining attribute of structured evolutionary algo-

70

4.7. Directions For Future Research

rithms). Parents are either both randomly selected from the neighbourhood (local
selection) or one is randomly selected and the other is the central node in a neigh-
bourhood (centric selection); centric parent selection outperforms local selection in
all experiments in this study.

De Jong and Sarma (1995) analyse three different mechanisms for local selec-
tion in a spatially structured evolutionary algorithm. They find that local ranking
as well as local binary tournament selection (providing constant selection pressure
independent of actual fitness value) outperform local proportional selection, which
is sensitive to the actual fitness value. In their research, a neighbourhood size of
around nine seems to be optimal. Based on their experiments, De Jong and Sarma
suggest to combine local tournament selection on small neighbourhoods with an
elitist survivor strategy. Analysing selective pressure, they conclude that “higher
variance is generally more strongly correlated with poor search performance when
small population sizes are involved”, so one should either decrease selection vari-
ance or increase population size if this is an issue. As we have seen, the latter is
not always an option in on-line, on-board evolutionary robotics.

Eklund (2004) tests various cellular evolutionary algorithm variations, compar-
ing grid topologies and neighbourhood shapes. He investigates various selection
schemes: binary tournament, roulette, ranking, fitness uniform, best and random
selection to confirm De Jong and Sarma’s finding that local elitism is required for
good performance. In terms of situatedness, the most interesting conclusion is that
larger neighbourhoods lead to faster convergence. Fitness uniform selection is re-
ported to perform well, but note that this performs poorly vis a vis actual fitness
(Hutter, 2002), so it would seem to be at odds with requiring good performance
across the population.

Wickramasinghe et al. (2007) show that the gossiping algorithm (Jelasity et al.,
2005) can be employed to compare an agent’s fitness to the population average
without central calculation, even in the face of a randomly rewiring grid. Laredo
et al. (2010) also employ the gossiping algorithm to disseminate genetic material
through the population.

4.7 Directions For Future Research

The considerations listed in the previous section identify the need for further re-
search in the field of on-line, on-board evolutionary robotics. This research may

71

Chapter 4. Look Ma, No Hands!

be novel and chart previously unknown ground, or it may draw on established
practices in other evolutionary computing disciplines.
In the evolutionary computing literature, we do not know of much work to

draw on when it comes to developing evolutionary algorithms that perform well
across the population instead of focussing on finding the best possible champion
solution only. Research in the field of reinforcement learning, where the trade-
off between exploration and exploitation is a similar issue may be of benefit here.
Also, as mentioned, providing self-modelling capabilities could provide surrogate
models, allowing for pre-selection stages based on internal simulations; work like
that of Bongard et al. (2006) provides insight into how this could be achieved.
Sequentially testing controllers gives rise to unequal circumstances in which

controllers are assessed. Further research is required to fully understand the im-
plications of such noisy or ‘unfair’ comparisons. Research into evolutionary com-
puting in noisy or dynamic environments may provide inspiration for this issue
(Beyer, 2000; Yang et al., 2007).
The area of parameter control is rapidly developing in mainstream evolution-

ary computing, where it is mostly applied to (static) optimisation problems. Re-
search is needed to investigate which (if any) of the control techniques developed
in this area are applicable in on-line, on-board evolutionary robotics. A very recent
development is that of solid tuning algorithms. These may help discover robust
parameter settings that allow algorithms to tackle a wide range of circumstances
without the need for recalibration. However, only one implementation we know of
is designed specifically to find robust parameter values across multiple problems
(Smit and Eiben, 2011). Little is known about the relevance of typical evolutionary
algorithm parameters in on-line evolution; this requires further study.
As can be seen from subsection 4.6.4, there is a substantial body of work to

draw on when it comes to the design of overlay networks in which multiple robots
can exchange genetic material. The most important fields to consider are those
concerning parallel and cellular evolutionary algorithms, but interesting work can
also be found concerning evolutionary agent-based systems in artificial life.

72

To stop worrying about it will require worrying about it a lot at
first

Ken Arnold

5
Growing Pains

Developing an Encapsulated Algorithm

The development of the (μ + 1) on-line algorithm was undertaken to provide
continuous on-line adaptivity to the robots under development in the symbrion
project. Originally, these robots were to be equipped with Cortex M3 processors
and very limited amounts of memory (256kb). The first implementation of (μ + 1)
on-line was therefore designed specifically to fit in these confines. Among other
things, this led to a population size of only one (μ = 1).

This small population size increased the susceptibility to noisy or ‘unfair’, in
Nordin and Banzhaf’s words, evaluations, because the single individual might
easily be replaced by an individual that was lucky enough to be evaluated in a
particularly easy circumstances. That is bad enough, but one may hope that a
robust search process can recover from such setbacks. However, there is a more
sinister and crippling consequence of these unrealistic high appraisals: such a
lucky individual would be very hard to replace by other candidate solutions that,
although inherently better, are less fortunate in the circumstances of their evalua-
tions. To address this issue, (μ+ 1) on-line introduced the notion of re-evaluation:
every once in a while (how often exactly is determined by the re-evaluation rate

73

Chapter 5. Growing Pains

parameter), an evaluation cycle is spent not to assess a newly created candidate,
but to re-assess an individual from the current population.
Section 5.1 contains the first published paper on (μ + 1) on-line and focusses

on some of the intricacies of its re-evaluation scheme. Note, that in this paper, we
used the term ‘enclosed’ for on-line evolutionary systems that we have meanwhile
dubbed ’encapsulated.’ Our initial (μ + 1) on-line efforts also implemented a
control heuristic for one of the algorithm’s parameters that we expected to be
influential: the mutation step-size, σ.
The second publication, which makes up section 5.2, took this a step further

and investigated some of (μ + 1) on-line’s parameters in more detail, including
alternative, more common schemes for σ adaptation.
Section 5.3, published at GECCO 2011, introduces racing to cut short evalua-

tions that seem not to be worthwhile. This has two beneficial effects: it allows the
algorithm to focus evaluations on promising candidate solutions and it reduces the
time the robots spend performing badly; the latter is an important improvement
when we take the requirement of good overall performance of the robots in an on-
line learning setting. More important, though, is that we see racing as a first step
towards or at least an inspiration for a control scheme for the evaluation period
length τ. Further research in this area is under way.

74

5.1. On-line, On-board Evolution of Robot Controllers

5.1 On-line, On-board Evolution of Robot Controllers

This section reports on a feasibility study into the evolution of robot controllers
during the actual operation of robots (on-line), using only the computational re-
sources within the robots themselves (on-board). We identify the main challenges
that these restrictions imply and propose mechanisms to handle them. The result-
ing algorithm is evaluated in a hybrid system, using the actual robots’ processors
interfaced with a simulator that represents the environment. The results show that
the proposed algorithm is indeed feasible and the particular problems we encoun-
tered during this study give hints for further research.

5.1.1 Background and Introduction

Evolutionary computing has proved a powerful technology for developing robot
controllers (Floreano et al., 2008) and has resulted in the establishment of Evo-
lutionary Robotics. The overwhelming majority of evolutionary robotics applica-
tions use an off-line flavour of evolution. In these cases an evolutionary algorithm
is used to optimise the robot controllers before the robots start their actual opera-
tion. This process may rely on real-life fitness evaluations or on a simulation-based
assessment of controller quality, but in all cases the evolutionary algorithm is exe-
cuted on one or more computer(s) distinct from the robots. Once the development
process has terminated, the controllers are deployed on real robots and remain
fixed while the robots go about their given tasks. Thus, during the operational
period of the robots, the controllers do not adapt anymore (or at least, not by evo-
lutionary operators (Nolfi and Parisi, 1993; Nolfi et al., 1994; Urzelai and Floreano,
2001)).
The present study was undertaken as part of the symbrion project that explic-

itly aims at using evolution on-line. That is, the evolutionary algorithm is required
to adapt the robot controllers during the actual operation period of the robots. Such

Section 5.1 was published as:

Nicolas Bredeche, Evert Haasdijk and A.E. Eiben (2009). On-line, On-board Evolution of
Robot Controllers. In Pierre Collet et al., Artificial Evolution, 9th International Conference,
Evolution Artificielle, EA, 2009, Strasbourg, France, October 26-28, 2009, Pages 110–121,
Springer Berlin / Heidelberg.

75

Chapter 5. Growing Pains

a switch from (off-line) optimisation to pervasive adaptation offers advantages in
cases where the environment is changing and/or it is impossible to optimize the
robots for circumstances in which they will operate (for instance, because they
are not known well enough in advance). One of the premises of the symbrion
project is the presence of a large group of robots that form a changing “social en-
vironment” for each other, which in turn, necessitates on-line adaptation again.
All in all, we aim at a system that is decentralised, on-board, without any master
computer that executes the evolutionary operators, and fully autonomous, with no
human intervention. These requirements imply two major restrictions:

1. Fitness must be evaluated in vivo, i.e., the quality of any given controller is
determined by actually using that controller in a robot as it goes about its
tasks.

2. All necessary computation must be performed by the robots themselves, im-
plying limited processing power and storage capacity.

The real-life, real-time fitness evaluations are inevitably very noisy because the
initial conditions for the genomes under evaluation vary considerably. Whatever
the details of the evolutionary mechanism, different controllers will be evaluated
under different circumstances; for instance, the nth controller will start at the final
location of the (n− 1)th one. This leads to very dissimilar evaluation conditions
and ultimately to very noisy fitness evaluations. The limited processor power and
storage capacity implies that we must use a “lightweight” evolutionary algorithm,
with a small population per robot. Obviously, this could limit the exploratory
power of the evolutionary algorithm , with a high risk of premature convergence
at a local optimum. Taking these considerations into account, we formulate the
following research objectives:

1. Provide an evolutionary mechanism that can cope with noisy fitness evalua-
tions.

2. Provide an evolutionary mechanism that can perform balanced local and
global search even with very small populations.

Related work on the on-line, on-board evolution of robot controllers can be
roughly divided into two categories:

76

5.1. On-line, On-board Evolution of Robot Controllers

The distributed embodied evolution approach. Each robot carries one genotype
and is controlled by the corresponding phenotype. Robots can reproduce au-
tonomously and asynchronously and create offspring controllers by recom-
bination and/or mutation. Here, the iterative improvement (optimisation)
of controllers is the result of the evolutionary process that emerges from the
exchange of genetic information among the robots. See Watson et al. (2002)
for an example of this approach.

The enclosed embodied evolution approach. Each robot has an evolutionary al-
gorithm implemented on-board, maintaining a population of controllers in-
side itself. The robots run these (possibly different) evolutionary algorithm
s locally and perform the fitness evaluations autonomously. This is typically
done in a time-sharing system, where one member of the inner population
is activated (i.e., decoded into a controller) at a time and is used for a while
to gather feedback on its quality. Here, the iterative improvement (optimi-
sation) of controllers is the result of the evolutionary algorithm s running in
parallel on the individual robots. Walker et al. (2006), for example, take this
approach.

Note, that both approaches inherently work with a heterogeneous population
of robot controllers. The two approaches can also be combined, and often are,
resulting in a setup akin to an island model as used in parallel genetic algorithms.
In such a combined system, there are two ways of mixing genetic information:
intra-island variation (i.e., within the ”population” of the enclosed evolutionary
algorithm in one robot) and inter-island migration (between two, or more, robots).
Nehmzow (2002); Usui and Arita (2003); Wischmann et al. (2007); Perez et al.
(2008); Elfwing et al. (2005) provide examples of this hybrid approach.

The work presented here falls in the second category, i.e. the enclosed ap-
proach, explicitly aiming at online adaptation for a single robot.

5.1.2 The (1+1)-online Evolutionary Algorithm

We propose an evolutionary algorithm based on the classical (1+1) Evolution Strat-
egy (Schwefel, 1981). In our experiments, the genome consists of the weights in
an artificial neural networks that controls the robot, formally a real-valued vec-
tor x̄ = 〈x1, . . . , xn〉. The controlling neural network is a perceptron with 9 input

77

Chapter 5. Growing Pains

nodes (8 sensor inputs and a bias node), no hidden nodes and 2 output nodes (the
left and right motor values) –18 weights in total. Thus, the genome is a vector
of 18 real values. The perceptron uses a hyperbolic tangent activation function.
Variation in a (1+1) evolution strategy is necessarily restricted to mutation. This
is implemented as straightforward Gaussian mutation, adding values from a dis-
tribution N (0, σ) to each xi in the genotype x̄. Parent selection in a singleton
population is trivial and for survival selection we rely on the so-called + strategy:
the child (challenger) replaces the parent (champion) if its fitness is higher. This
simple scheme defines the core of our evolutionary algorithm, but it is not suffi-
cient to cope with a number of issues in our particular application. Therefore, we
extend this basic scheme with a number of advanced features, described below.

Adapting σ values A singleton population is very sensitive to premature conver-
gence to a local optimum. To overcome this problem, we augment the evo-
lutionary algorithm with a mechanism that varies the mutation stepsize σ

on the fly, switching from local to global search and back, depending on
the course of the search. In particular, σ is set to a pre-defined minimum
to promote local search whenever a new genome is stored (that is, when
the challenger outperforms the champion). Then, σ gradually increases up
to a maximum value (i.e., the search shifts towards global search) while the
champion outperforms its children. If local search leads to improvements,
σ remains low, thus favouring local search. If no improvement is made on
a local basis, either because of a neutral landscape or a local optimum, the
increasing σ values ensure that the search will move to new regions in the
search space.

Recovery period Because we use in vivo fitness evaluation, a new genome x̄ needs
to be “activated” to be evaluated: it has to be decoded into a neural network
and take over the control of the robot for a while. One of the essential design
decisions is to avoid any human intervention during evolution, such as repo-
sitioning the robot before evaluating a new genome. Consequently, a new
controller will start where the previous one finished, implying the danger of
being penalised for bad behaviour of its predecessor that, for instance, may
have manoeuvred itself into an impossibly tight corner. To reduce this effect,
we introduce a recoveryTime, during which robot behaviour is not taken into
account for the fitness value computation. This favours genomes that are effi-

78

5.1. On-line, On-board Evolution of Robot Controllers

cient at both getting out of trouble during the recovery phase and displaying
efficient behavior during the evaluation phase.

Re-evaluation The evaluation of a genome is very noisy because the initial condi-
tions for the genomes vary considerably: an evaluation must start at the final
location of the previous evaluation, leading to very dissimilar evaluation con-
ditions from one genome to another. For any given genome this implies that
the measurenemt of its fitness, during the evaluation period, may be mislead-
ing, simply because of the lucky/unlucky starting conditions. To cope with
such noise, we re-evaluate the champion (i.e., current best) genome with a
probability ρ. This is, in effect, resampling as advocated by Beyer (2000) to
deal with noisy fitness evaluations and it implies sharing the robot’s time
between producing and evaluating new genomes and re-evaluating old ones.

The fitness value that results from this re-evaluation could be used to refine
a calculation of the average fitness of the given genome. However, we choose
to overwrite the previous value instead. This may seem counterintuitive, but
we argue that this works as a bias towards genomes with low variance in
their performance. This makes sense as we prefer controllers with robust
behaviour. It does, however, entail an intrinsic drawback as good genomes
may be replaced by inferior, but lucky genomes in favourable but specific
conditions. Then again, a lucky genome which is not good on average will
not survive re-evaluation, avoiding the adaptive process getting stuck with a
bad genome.

5.1.3 Experimental Setup

We evaluate the (1+1)-online algorithm in a set-up that features actual robotic
hardware, a Cortex M3 board with 256kb memory. This controls a simulated au-
tonomous robot in a Player/Stagei environment. Using the Cortex board instead
of a fully simulated setup is due to administrative constraint in the project within
which this research takes place: the Cortex board is the same hardware that is
currently being integrated in the symbrion robot prototypes and there is a strong
emphasis on validation with similar hardware constraints. After N time-steps, the
evaluation of the current controller is complete and the controller parameters are

ihttp://playerstage.sourceforge.net

79

Chapter 5. Growing Pains

for evaluation = 0 to N do
if random() < ρ then
Recover(Champion)
FitnessChampion = RunAndEvaluate(Champion)

else
Challenger = Champion + N(0, σ) {Gaussian mutation}
Recover(Challenger)
FitnessChallenger = RunAndEvaluate(Challenger)
if FitnessChallenger > FitnessChampion then
Champion = Challenger
FitnessChampion = FitnessChallenger
σ = σmin

else
σ = σ · 2

end if
end if

end for
Algorithm 1: The (1+1)-online evolutionary algorithm.

replaced with values from a new genome, which is evaluated from the location the
previous controller left it in. This means that no human intervention is ever needed.
We run the experiment 12 times.

Figure 5.1 illustrates the experimental set-up, with a Cortex board connected
to the computer running Player/Stage. The simulated robot is modelled after
an ePuck mobile robot with two wheels and eight proximity sensors. The maze
environment used in our experiment is exactly as shown in this figure.

For each run of the experiment, the robot starts with a random genome and
a random seed. The fitness function is inspired by a classic one, described by
Nolfi and Floreano (2000) which favours robots that are fast and go straight-ahead,
which is of course in contradiction with a constrained environment, implying a
trade-off between translational speed and obstacle avoidance. The following equa-
tion describes the fitness calculation:

f itness =
evalTime

∑
t=0

(speedtranslational ∗ (1− speedrotational) ∗ (1−minSensorValue))

All values are normalised between 0 and 1. minSensorValue is the value of the
proximity sensor closest to any obstacle, normalised to [0, 1] (i.e., the value de-
creases as an obstacle gets closer). We used the following settings during our ex-
periments: both recoveryTime and evaluationTime are set to 30 time-steps, Preeavulate

80

5.1. On-line, On-board Evolution of Robot Controllers

Figure 5.1 – The experimental setup: the Cortex board connected to Player/Stage. The
numbers in the player-stage arena indicate the starting positions for the validation
trials.

is set to 0.2, the σ initial value is set to 1 and may range from 0.01 up to a maximum
of 4 and the gene values are defined to be in [−4,+4].
It is important to note that this fitness function is used as a test function. In-

deed, the current algorithm is by no mean limited to optimize collision avoidance.
Relying on such a fitness function makes it possible to focus on the dynamics of
the evolutionary algorithm with regards to desired properties.

To provide an indication of the true performance and reusability of the best in-
dividuals found by (1+1)-online evolution, a hall-of-fame is computed during the
course of evolution from the champions of all runs. The 10 best genomes from the
hall-of-fame are validated by running each from six initial positions in the environ-
ment, indicated in figure 5.1. Starting from each of these positions, the genomes
are evaluated for ten times the number of steps used for evaluation during evolu-
tion. Note, that one of the validation starting positions has certainly never been
visited during development (test no.4, within a small enclosed area) and provides
an extreme test case in a very constrained environment. This decomposition into
an evolution (development) phase and a post-experiment testing phase is simi-
lar to the learning and testing phases commonly seen in Machine Learning and
does not imply a deployment phase as in traditional, off-line evolutionary robotics
approaches.

81

Chapter 5. Growing Pains

5.1.4 Results

Evolution dynamics. We conducted a series of twelve independent experiments
(1+1)-online evolution, with parameters set as stated above. Each experiment
started with a different random controller (with very poor behaviour indeed) and
a different random seed. The experiments ran for 500 evaluations and displayed
different overall fitness dynamics with very similar patterns. Figure 5.2 shows typ-
ical statistics from one of those runs. Evaluations are denoted on the x-axis. The
y-axis consists of two parts: the top half shows the fitness of the current cham-
pion genome. When a champion is re-evaluated very poorly or is replaced by an
individual that upon re-evaluation turns out to be very bad, the fitness drops dra-
matically, as happens in this case after about 250 evaluations. The bottom half of
the y-axis shows the number of (re-)evaluations of the current champion (down-
wards; the lower the line, the higher the number of re-evaluations). Every time the
champion is re-evaluated, the line drops down a notch, until a new champion is
found; then, the number of re-evalations is reset and the line jumps back to the
top. The small vertical markers near the x-axis indicate whenever a new champion
is adopted, i.e., when the challenger outperforms the current champion.

Figure 5.2 – Evolution dynamics of a typical run

By analysing the course of the evolutionary process for the experiments, we
can observe important mechanisms such as local search (small continuous im-
provements in the fitness values due to nearby genomes), global search (the ability
to get out of a neutral landscape or to jump from a local optimum to a different re-

82

5.1. On-line, On-board Evolution of Robot Controllers

gion), performance and robustness (the ability of certain genomes to display good
performance and to remain champion even through re-evaluation).

Initially, performance is quite low, as is the number of re-evaluations; in effect,
we are waiting for random search (σ is very high at this point) to bootstrap the
adaptation. Then, after about 90 evaluations, an interesting individual is selected
as champion that produces children that are even better. We observe a quick
sequence of new, better performing individuals and an increasing fitness. After
about 160 evaluations, we find that the champion has good fitness and is very
robust: the individual survives many re-evaluations (the bottom line goes down)
while displaying similar fitness values after successive re-evaluations.

During this period, σ steadily increases (as prescribed by the algorithm), caus-
ing mutation to become more and more aggressive, approaching random search.
Eventually, this results in a challenger that beats the champion –either because this
newcomer is actually very good or because it was lucky (favourable environmental
conditions or taking advantage of an unfortunate re-evaluation of the champion).
Observation during experiments showed that the latter option is more likely: at
some point, the champion encounters a very difficult set-up and is re-evaluated as
performing badly so that almost any challenger has a good chance of beating it. In
the plot, this is exactly what happens at the precipitous drop in performance after
250 evaluations.

In all our experiments, we saw a similar pattern of initial random search char-
acterised by many different genomes with poor fitness; then, local search charac-
terised by subsequent genomes with increasing fitness until a robust genome is
found that survives re-evaluation for some time and then a switch to another re-
gion that yields good results or towards an inferior genome that got lucky (almost
a restart, in effect).

From the point of view of operational robot control such performance degra-
dation may seem undesirable, but bear in mind that the (1+1)-online algorithm
is meant as a global search algorithm. Therefore, such regular fitness reversals are
a desired property as long as the search is slightly conservative around good in-
dividuals (as is evident from the lengthy episodes of re-evaluation in Figure 5.2).
The regular re-evaluation of the champion promotes (in addition to the varying σ

discussed below) global search; because of the noisy fitness calculation, if nothing
else, it will occasionally be assessed as performing very poorly indeed. Such an

83

Chapter 5. Growing Pains

occurrence provides an opportunity for a lucky new and possibly quite different
genome to overthrow the champion.

Validation of the hall-of-fame. As described in section 5.1.3, a hall-of-fame was
maintained during the course of the experiments for further validation of the -
apparently- best genomes. Figure 5.3 shows the results of the validation of the
hall-of-fame for the selected re-evaluation scheme (the champion’s fitness is over-
written after every re-evaluation) and for two alternatives: one where the fitness is
the average of all re-evaluations and one where there is no re-evaluation at all. This
allows us to assess two things: whether high ranking genomes in the hall-of-fame
are also efficient in a new set-up and whether the ”overwrite fitness” re-evaluation
scheme is relevant.

The y-axis shows the normalised performance: the best of all individuals for
a scenario is set to 1.0, the performance of the other individuals is scaled accord-
ingly. For each scenario (arranged along the x-axis), the graphs show a mark for
each individual from the hall-of-fame. All results for a given genotype are linked
together with a line.

The graph clearly shows that re-evaluation improves performance substan-
tially; from the ten best solutions without re-evaluation, only a single one performs
at a level comparable to that of the ones with re-evaluation. The best individuals
in the hall-of-fame for both re-evaluation variants are, on the whole, quite efficient;
some come quite close to the maximum possible performance for these test cases
(30,000). It is harder to distinguish between the performance of either variants: On
the one hand, the spread of performance seems greater for the case with averaging
fitness than it does for overwriting fitness, which would endorse the reasoning
that overwriting after re-evaluation promotes individuals with high average fit-
ness and low standard deviation. On the other hand, however, the nature of real
world experiments have a negative impact on the amount of data available for
statistically sound comparison of re-evaluation strategies, as is often the case with
real hardware, and keep from formulating a statistically sound comparaison. In
particular, hardware contingencies implies strong constraints regarding time and
human intervention, as robots should be re-located for each experiment and the
Cortex board should be reloaded with the genome to be tested, as opposed to
the completely autonomous setup during the evolution phase. Overall, the testing

84

5.1. On-line, On-board Evolution of Robot Controllers

Figure 5.3 – Performance on validation scenarios for various re-evaluation schemes.
Top: overwrite-last-fitness scheme ; Middle: average-fitness scheme ; Down: no re-
evaluation scheme. X-axis shows the results on the six different validation setups
(see fig.1), y-axis shows normalized fitness performance for each run. For a given
genome, results in the six validation setups are joined together with a line.

of ten genomes took approx. a full day of work with full investment from the
experimenterii.

iiTo some extent, an illustrative metaphor is that of a biologist performing an experiment with
mice.

85

Chapter 5. Growing Pains

Behavioural diversity. Further analysis of the ten best individuals with the over-
write-fitness re-evaluation scheme shows that the controllers actually display dif-
ferent kinds of behaviour –all good, robust, but different wall avoidance and/or
open environment exploration strategies, ranging from cautious long turns (reduc-
ing the probability of encountering walls) to exploratory straight lines (improved
fitness but more walls to deal with). Figure 5.4 illustrates this by showing the
pathways of these individuals, starting from an initial position on the left of the
environment. This reflects the genotypic diversity observed in the hall-of-fame and
hints at the algorithm’s capability to produce very different strategies with similar
fitness.

Figure 5.4 – Traces for the ten best controllers (using fitness replacement after re-
evaluation)

5.1.4.0.1 Strong causality and mutation. The reasoning behind the scheme
to update σ relies on Strong Causality (Rechenberg, 1973): it only holds if small
changes in the genome lead to small changes in behaviour and big changes in
the genome to big changes in behaviour. To investigate if this property holds,
a separate set of experiments was performed. For a range of σ values, 200 mu-
tants were created from some fixed initial genome; every one of these mutants
was then tested in our arena, from 193 different starting locations (homogeneously
distributed over the environment), each with four orientations (i.e., a total of 772
tries per genome); each evaluation lasted 30 time-steps. Because such experiments
using the Player/Stage and Cortex set-up as described above would require ap-

86

5.1. On-line, On-board Evolution of Robot Controllers

prox. 3.5 years to run, we used a simplified autonomous robot simulator. Each
experiment started from one specific genome, the first experiment from the best
genome in the hall-of-fame (Fig. 5.5.(a)) and the second experiment from a ran-
domly generated genome (Fig. 5.5.(b)). In both figures, The x-axis shows σ. The
y-axis shows the range of fitness values: the sum of fitnesses for each mutant over
all 772 trials. For every value of σ, the candle bars show the minimum, maximum,
median and lower and upper quartile. Figure (c) shows a histogram of the fre-
quency of σ values over 12 runs (approximately 4,700 evaluations) of the original
experiment. The (logarithmic) x-axis shows occurring values for σ, ranging from
0.01 to 4. The count of occurrences is displayed along the y-axis.

(a) starting from one of
the best genomes (b) from a random start (c) Incidence of σ values

Figure 5.5 – Strong causality experiments

Graphs (a) and (b) show that, as σ increases, the performance of mutated in-
dividuals becomes increasingly different; it actually covers the whole domain for
medium to large values of σ. When starting from the ‘best’ genome, the average
performance decreases as the mutations move further and further away from the
original genome. From a randomly generated start point, performance changes
either way as we move away from the original genome. This shows that there is
strong causality: small changes in the genome (low σ) lead to small variations in
fitness, and big changes lead to large variations. Finally, figure 5.5.(c) shows the
density of σ values over the 12 original runs of the original experiment. The (loga-
rithmic) x-axis shows occurring values for σ, ranging from 0.01 to 4, and the count
of occurrences is displayed along the y-axis. As shown in the graph, all possible
values of σ from very small (entailing local search) to large (global search) fre-
quently occurred in the course of our experiments, with more occurences of both
the minimum value (ie. local search) and maximum value (ie. global search). This

87

Chapter 5. Growing Pains

provides a sound validation of the (1+1)-online algorithm ability to conduct both
local and global search thanks to the self-updating σ.

5.1.5 Conclusions and Further Work

This section provides a proof-of-concept for the viability of on-line, on-board evo-
lution in autonomous robots. We have presented the (1+1)-online evolutionary
algorithm to provide continuous adaptation in autonomous robots in unknown
and/or changing environments, without help from any supervisor (human or oth-
erwise). The (1+1)-online evolutionary algorithm is based on an “enclosed” evo-
lutionary algorithm approach, as explained in the introduction. It was tested on
very constrained, embedded hardware – the Cortex board we used in the exper-
iments is limited in terms of performance as well as memory (256kb, including
the operating system, complying with the robot prototype actually under con-
struction). This requires a light-weight, low-complexity algorithm such as the one
presented here, which is derived from the well known and well established (1+ 1)
evolution strategies.

One of the main contributions of the (1+1)-online evolutionary algorithm is
that, by using re-evaluation, it specifically deals with intrinsically noisy perfor-
mance evaluation in real world environments. This greatly increases the real-life
applicability of this method and constitutes an original contribution compared to
previous research into similar on-line setups. The second contribution is that of
balancing local and global search through the σ update. Walker et al. (2006) de-
scribed a similar (1+ 1)−evolution strategy inspired scheme with self-tuning σ

– however, the proposed approach updates σ through a heuristic that explicitly
tunes the local and global search.

An on-line approach such as presented here tackles problems beyond the scope
of traditional off-line evolutionary robotics , such as dealing with dynamic or un-
known environments for which the robots could not be optimised before their
deployment and it also addresses issues such as the reality gap and the lack of
fidelity in simulation (Brooks, 1991; Watson et al., 2002).

In the experiments shown here, the (1+1)-online evolutionary algorithm yield-
ed a great variety of behaviours in a limited amount of time; good performance
was typically reached in under an hour. While the task at hand is relatively simple
(obstacle avoidance and maximisation of translation speed), it should be noted

88

5.1. On-line, On-board Evolution of Robot Controllers

once again that it requires no background knowledge whatsoever about the task
and that the current algorithm can be applied in different contexts, simply by
rewriting the fitness function.
The dynamics of evolution often result in the loss of a very good genome –this

is actually desired behaviour of the algorithm as it ensures continued exploration
of new or changed regions in the search space. It could, however, be interpreted as
a complication from the engineer’s viewpoint in a production environment where
one wants to retain good genomes. This is in fact an instance of the well-known
issue of exploration vs. exploitation in reinforcement learning; in this context, the
algorithm proposed here provides the exploration. A reservoir such as the Hall-of-
Fame introduced above can keep track of the best genomes and allow them to be
re-used for exploitation.
Further research focusses on the following issues. Firstly, we consider alterna-

tive schemes to update the champion’s fitness value after re-evaluation to combine
the benefits of the ”last fitness” and the ”average fitness” approaches. This could
for instance be achieved by averaging over a sliding window or by weighting the
influence of the latest fitness estimate and previous ones. Secondly, we intend
to extend the algorithm towards a multi-robot set-up combining the embedded
and enclosed approaches (cf. Section5.1.1): adding a genome migration feature
would make it possible to spread good genomes through a population of robots
– similar to an island-based parallel evolutionary algorithm. Global search would
then still be possible on the local scale of individual robots while retaining good
genomes on the global scale of the population. The underlying hypothesis behind
this assumption is that a genome duplicated on many robots in the population
may have a good estimation of the average fitness distributed over the popula-
tion –with the estimation confidence growing with population size. Yet again, this
remains to (and will) be implemented and tested, as the trade-off between local
“enclosed” adaptation and distributed “embodied” adaptation remains an open
issue. Thirdly, we are to test on-line, on-board evolution in a group of robots
within dynamic environments.

89

Chapter 5. Growing Pains

5.2 On-line evolution of robot controllers by an encap-

sulated evolution strategy

This section describes and experimentally evaluates the viability of the (μ + 1) on-
line evolutionary algorithm for on-line adaptation of robot controllers. Secondly,
it explores the parameter space for this algorithm and identifies four important
parameters: the population size μ, the re-evaluation rate ρ, the mutation step-size
σ and the controller evaluation period τ. Subsequently, it investigates their influ-
ence on controller performance, stability of behaviour and speed of adaptation.
The results indicate that the encapsulated on-line evolutionary approach is a vi-
able one and merits further research. In agreement with existing research, the
mutation step-size σ proves to be of overriding importance to finding good solu-
tions. Specific to on-line evolution, the results show that longer evaluation times
greatly benefit the quality of controllers as well as stability of behaviour and speed
of adaptation.

5.2.1 Introduction

Evolutionary algorithms have various applications within robotics, as designers,
respectively optimisers of robot controllers, morphological or functional features
(Nolfi and Floreano, 2000). This section is concerned with optimizing robot con-
trollers. To position our approach we use a small taxonomy whose topmost junc-
tion distinguishes two cases by considering when the evolutionary algorithm is
applied, before deployment or after deployment of the controllers. The corre-
sponding terminology distinguishes off-line (development time) and on-line (run
time) evolutionary algorithm applications as outlined by Eiben et al. (2010a).

Traditionally, evolutionary robotics focusses on off-line applications of evolu-
tionary computation, where an evolutionary algorithm is used to design, respec-
tively optimise, controllers before deployment. Controllers (phenotypes) are rep-

Section 5.2 was published as:

Evert Haasdijk, A.E. Eiben and Giorgos Karafotias (2010). On-line evolution of robot
controllers by an encapsulated evolution strategy. In Proceedings of the 2010 IEEE Congress on
Evolutionary Computation, Pages 1–7, IEEE Press, Piscataway, NY.

90

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

resented by appropriate genotypes and a population of such genotypes undergoes
evaluation, selection, and variation in a computer external to the robot. This pro-
cess terminates at some point with a controller that is deployed onto real robots
that will subsequently perform their task without further adaptation (at least, with-
out further evolution). During the evolutionary process, evaluation of controllers
can be performed by testing them either in simulation or in real robots. However,
even in the latter case we have to do with off-line evolution, since the real-life tests
with robots using a given controller merely serve as fitness calculations. The re-
sults are passed back to the evolutionary algorithm running on the computer that
carries out the variation and selection operators and initiates new trials until some
termination condition is met and the best evolved controller is deployed as the end
result. Figure 5.6 illustrates this approach.

Here, by contrast, we consider the on-line application of evolutionary com-
putation to design robot controllers, where an evolutionary algorithm is used to
provide continuous adaptation as the robots perform their tasks in real life. The
major difference with off-line evolution is that in this case controllers do undergo
evaluation, selection, and variation after deployment.

Broadly speaking, there are two kinds of approach to on-line evolution of
robot controllers. One approach, distributed evolution, exemplified by Watson

Robot + its controller after
deploying “optimal” genotype

Population of genotypes
evolving on a computerp y g p g yp g p

Figure 5.6 – The classical approach to evolve robot controllers. Evolution takes place
off-line, before deployment, in an external computer. The population of controllers
undergoes selection and variation inside this computer. Fitness evaluation can be
either done in simulation (inside this computer again), or “in vivo” by sending the
controller to a real robot that uses it for a while to collect information on its quality.
The black arrow indicates the deployment of the final contoller.

91

Chapter 5. Growing Pains

Phenotype = actual
robot controllerrobot controller

O f thOne of the
genotypes
decoded for
phenotypep yp

Population of genotypes (encoding possiblePopulation of genotypes (encoding possible
robot controllers) evolving inside the robot

Figure 5.7 – The encapsulated approach to evolve robot controllers. Evolution takes
place on-line, after deployment, in an internal computer. The population of con-
trollers undergoes selection and variation inside the robot itself. Fitness evaluation
is done “in vivo” by decoding one of the genotypes into an active controller and
let the robot use it for a while to collect information on its quality. To evaluate all
genotypes some kind of time-sharing mechanism must be used.

et al.’s method 2002, has a single controller in each robot and implements se-
lection and variation (reproduction) operators through the interactions between
individual robots.The second approach encapsulates a complete evolutionary al-
gorithm with a population of controllers within each robot; the robots individu-
ally adapt through evolution without the necessity of interaction amongst them-
selves.Figure 5.7 illustrates this encapsulated approach. Of course, these two meth-
ods may be combined, yielding a system analogous to that of an island-based
parallel evolutionary algorithm with each robot running its own evolutionary al-
gorithm and the interactions between robots amounting to migration between is-
lands.

The work in this section falls in the second category with an encapsulated
population in each robot, without migration. We are investigating this approach
in the context of a running research project, symbrion, where on-line evolution is
one of the pivotal mechanisms for adaptive robot control. Inherent to this project,
and to some extent to on-line evolutionary approaches in general, are the physical
limitations:

1. Even though the robot’s evolving population contains multiple controllers,
at any time only one of them can actually control the robot. Consequently, a

92

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

time sharing system must be implemented that activates controllers one by
one.

2. The evolutionary process must be autonomous, without any human inter-
vention or central control. Hence, when a new controller is activated for
evaluation, its test period starts at the location where the previous controller
led the robot.

3. To obtain sufficient feedback on the quality of a given controller, its test pe-
riod –the time-span where it is activated and actually controls the robot–
should be sufficiently long.

5.2.2 Considerations in On-Line Evolution

The constraints listed above imply some considerations specific to on-line evolu-
tion and its analysis.

The first challenge derives from the real-time character of the evolutionary pro-
cess. Fitness evaluations need a test period with a reasonable length l (say, in
minutes) to obtain realistic performance figures. Meanwhile, the whole exper-
iment is constrained by a reasonable maximum duration L (again, in minutes).
Consequently, the total number of fitness evaluations available to the evolutionary
process is limited to L

l . Obviously, this ratio can vary depending on various practi-
cal details, but in our practice it falls in the range between 500 to 1500. In general,
it is impossible to say what the minimum number of fitness evaluations is for a
decent evolutionary progress, but one thousand is definitely a very low budget to
spend compared to what is common in evolutionary algorithms.

The second challenge is the noisy nature of the fitness evaluations. Using the
off-line evolutionary approach with human intervention it is possible to test a
given controller starting at different locations (in general: under different circum-
stances). This helps to obtain good fitness information in two ways, by producing
more data –one fitness value for each starting point– and by the ability to use
representative or otherwise well-selected locations. However, in the on-line case,
where human intervention is excluded, starting locations are arbitrary and we only
have one measurement for each activated controller. Consequently, the evaluation
of a genome is inherently very noisy because of the very dissimilar evaluation con-
ditions from one genome to another. For any given genome, this implies that the

93

Chapter 5. Growing Pains

evaluation of its fitness may be misleading, simply because of lucky or inauspi-
cious starting conditions. Given these considerations, the viability of the on-line
evolutionary approach itself is an open question.

Thirdly, actual performance matters: in contrast to typical applications of evo-
lutionary algorithms, the best performing individual is not necessarily the most
important when applying on-line adaptation. Remember that controllers evolve
as the robots go about their tasks; if a robot is continually evaluating poor con-
trollers, that robot’s actual performance will be inadequate, no matter how good
the best known individuals as archived in the population. Therefore, the evolu-
tionary algorithm must converge rapidly to a good solution (even if it is not the
best) and search prudently: it must display a more or less stable level of perfor-
mance throughout the continuing search. This leads to considerations very similar
to those concerning the trade-off between exploration and exploration in reinforce-
ment learning.

This section proposes an algorithm for encapsulated on-line evolution of robot
controllers and concerns itself with two questions. The first question is whether, in
the face of the considerations outlined above, such an algorithm can evolve good
controllers on-the-fly. Secondly, it investigates the interplay between a number of
parameters of the proposed algorithm. To this end, we implement the mechanism
in the well-known simulation platform Webotsiii and conduct a series of experi-
ments where controllers to perform a simple task must evolve from scratch. The
next section describes the algorithm in detail.

5.2.3 The (μ + 1) on-line Evolutionary Algorithm

The challenge concerning the low number of fitness evaluations mandates that the
evolutionary algorithm must converge very quickly to an acceptable level of solu-
tion quality. Therefore, we have chosen to base our method on evolution strategies
(Schwefel, 1995), because 1) the controllers we have in mind can be parameterised,
hence represented by a vector of real-valued numbers, 2) evolution strategies have
a very good reputation as evolutionary solvers of numerical optimisation problems
(Bäck, 1996). As the notation indicates, (μ + 1) on-line generates λ = 1 child per
cycle. This value is extremely low to evolution strategy standards, where the λ

μ is
usually between 4 and 8, but using λ = 1 can save on fitness evaluations.

iiihttp://www.cyberbotics.com/

94

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

Our (μ + 1) on-line evolutionary algorithm comprises an encapsulated evolu-
tionary algorithm, where a population of μ individuals is maintained within each
robot. As an encapsulated evolutionary algorithm it is similar to the algorithms
described by Haroun Mahdavi and Bentley (2006); Nehmzow (2002); Walker et al.
(2006) concerning its main design principle, but it has a number of specific novel
features. It is also different from its earlier version described in section 5.1 in that

− the present version uses fitness-based parent selection, rather than selecting
parents by a uniform distribution,

− the present version uses recombination (crossover), rather than mutation
only,

− in the present version the mutation step-sizes are either constant or self-
adaptive, while Bredeche et al. used a heuristic adaptive scheme to adjust
them on-the-fly,

− in the present version the extra information obtained by re-evaluation (see
details later) is used to update, rather than replace, old information.

Below we discuss the specific properties of our (μ + 1) on-line evolutionary
algorithm; its pseudo code is shown in Alg. 2.
To cope with the issue of inherently noisy fitness evaluations, (μ + 1) on-line

re-evaluates genomes in the population with a given probability. This means that
at every evolutionary cycle two things can happen: either a new individual is
generated and evaluated (with probability 1− ρ), or an existing individual is re-
evaluated (with probability ρ). To ensure that re-evaluation efforts are spent on
promising individuals, the individual to be re-evaluated is chosen by binary tour-
nament selection from the whole population. The fitness values from subsequent
(re-)evaluations of any given individual are combined using an exponential mov-
ing average; this emphasises newer performance measurements and so is expected
to promote adaptivity in changing environments. This is, in effect, a resampling
strategy to deal with noisy fitness evaluations as advocated by Beyer (2000).
To promote rapid convergence we diverge from the common practice of uni-

form random parent selection in evolution strategies and use binary tournament
parent selection, increasing the selective pressure. For the same reason, we use
λ = 1 and apply recombination. Thus, in each cycle, one new individual is cre-
ated from two parents, each of which is selected with a binary tournament. Se-

95

Chapter 5. Growing Pains

lective pressure is increased even further by using an plus-strategy, even though
self-adaptive mutation rates such as we have here usually call for using a comma-
strategy (Eiben and Smith, 2008).

for i = 1 to μ do
// Initialisation

population[i] = CreateRandomGenome ;

population[i].σs = σinitial;
population[i].Fitness = RunAndEvaluate(population[i]);

for ever do
// Continuous adaptation

if random() < ρ then
// Don’t create offspring, but re-evaluate selected individual

Evaluatee = BinaryTournament(population);

Recover(Evaluatee) ;

// Brief intermezzo of random movement to get out of bad

situations due to previous evaluation

Evaluatee.Fitness = (Evaluatee.Fitness +

RunAndEvaluate(Evaluatee)) / 2;

// Combine re-evaluation results through exponential moving

average

else
// Create offspring and evaluate that as challenger

ParentA = BinaryTournament(population);

ParentB = BinaryTournament(population - parentA);

Challenger = AveragingCrossover(ParentA, ParentB);

// Crossover also recombines σs
Mutate(Challenger);

// Mutation also updates σs cf. Eiben and Smith (2008, p. 76)

Recover(Challenger);

// Brief intermezzo of random movement to get out of bad

situations due to previous evaluation

Challenger.Fitness = RunAndEvaluate(Challenger);

// Replace last (i.e. worst) individual in population w.

elitism

if Challenger.Fitness > population[μ].Fitness then
population[μ] = Challenger;

population[μ].Fitness = Challenger.Fitness;

Sort(population);

Algorithm 2: The (μ + 1) on-line evolutionary algorithm.

96

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

5.2.4 Experimental Set-up

As mentioned in Section 5.2.2, we conduct a series of experiments. Firstly, to verify
that the (μ + 1) on-line algorithm is capable of producing robot controllers with
acceptable quality within acceptable time. Secondly, to investigate the effect of a
number of parameters of the (μ + 1) on-line algorithm.

(μ+ 1) on-line sports two parameters that are peculiar to the challenges posed
by on-line, on-board evolution and directly influence the speed of evolutionary
adaptation. These are:

ρ The re-evaluation rate: larger values for ρ lead to better fitness value esti-
mations, thus improving the quality of selection, meanwhile slowing down
the search. ρ’s value governs the likelihood of using an evaluation cycle for
re-evaluation of one of the current population members instead of evaluating
a newly generated controller. We tried three values for ρ: 0.2, 0.4 and 0.6;

τ The duration of controller evaluation: increasing τ increases the evaluation’s
reliability while it obviously decreases the number of evaluations per time-
unit and thus the search. Controller evaluations are measured in ticks: the
simulator invokes the controller once per tick, one tick lasting 50 millisec-
onds simulated time in our experiments. We tried two settings: 60 and 300,
corresponding to 3 and 15 seconds simulated time, respectively.

Figure 5.8 – The arena used in the experiments. The circle represents an e-puck robot
to scale.

Two further parameters that might be expected to be influential from general
evolutionary algorithm point-of-view are:

97

Chapter 5. Growing Pains

μ The population size: a larger population size reduces the danger of getting
stuck in local optima, meanwhile it slows down the search. We ran experi-
ments with μ set to 6, 10 and 14;

σ The mutation step-size. We compare two regimes that manage the mutation
step-size: the standard self-adaptation mechanism used in evolution strate-
gies (see Eiben and Smith (2008, p. 76)) and a simplistic approach using a
constant σ value. As fixed σ values, we used 0.2 and 0.8.

Note that in section 5.1, we used a σ adaptation scheme that varied the σ values
based on a heuristic in an attempt to balance exploration and exploitation. Here
we look at alternatives, but strictly speaking we cannot consider it a comparison
with the previous version of (μ + 1) on-line because many other details of the
evolutionary algorithm have changed as well.

All together, we have 54 algorithm variants to compare here: 3 values for μ,
and 3 different values for ρ, 3 different σ management mechanisms/values and
two τ values. The details of the experimental settings are shown in Table 5.1.

As a test case, we have chosen e-puck robots in an arena and a classical task
after Nolfi and Floreano (2000). The fitness function representing this task favours
robots that are fast and go straight-ahead, which, in a constrained environment,
forces a trade-off between translational speed and obstacle avoidance. Equation
5.1 describes the fitness calculation:

f =
evalTime

∑
t=0

(vt · (1− vr) · (1− d)) (5.1)

where vt and vr are the translational and the rotational speed, respectively. vt is
normalised between -1 (full speed reverse) and 1 (full speed forward), vr between
0 (movement in a straight line) and 1 (maximum rotation); d indicates the distance
to the nearest obstacle and is normalised between 0 (no obstacle in sight) and 1
(touching an obstacle)

The evolutionary algorithm governs the weights in a neural net-based robot
controller. This neural net is a perceptron with a hyperbolic tangent activation
function using 9 input nodes (8 proximity sensor inputs and a bias node), no
hidden nodes and 2 output nodes (the left and right motor values), resulting in a
total of 18 weights. To evolve these 18 weights, the evolutionary algorithm uses
the obvious representation of real-valued vectors of length 18 for the genomes.

98

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

For each single run of the experiment, the robot starts with a fresh random seed
and a population of μ randomly generated genomes.

The experiments were performed in pure simulation using the Webots simula-
tor. Each experiment has a single robot running its own autonomous instance of
(μ + 1) on-line. For each combination of parameter settings, we conducted 100
trials. The robot controller is called once every time-step, each time-step lasting 50
milliseconds simulated time.

Table 5.1 – Experiment description table for the (μ + 1) on-line tests

Experiment details

Task fast forward
Arena see Fig. 5.8
Robot group size 1
Simulation length 10,000 seconds (simulation time)
Number of repeats 100

Controller details

ANN type perceptron
Input nodes 9 (8 sensory inputs and 1 bias node)
Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome length L 18
Fitness See Eq. 5.1
Recovery time 10 time steps
Evaluation time 60 or 300 time steps
Re-evaluation rate ρ 0.2, 0.4, 0.6
Re-evaluation strategy exponential moving average
Population size μ 6, 10, 14
Mutation Gaussian N(0, σ)
Mutation rate Self-adaptive with σ0 = 0.8

or fixed at 0.2 and 0.8
Crossover averaging
Crossover rate 1.0
Parent selection binary tournament
Survivor selection replace worst in population if better

99

Chapter 5. Growing Pains

5.2.5 Results and discussion

As noted before, we are specifically interested in the actual performance of the
algorithm, i.e., the performance of the active controllers averaged over a period
of time (a number of evaluations). Clearly, this includes performance information
of controllers that evaluate poorly and are discarded after the evaluation period,
as well as controllers that survive the (re-)evaluation period and (re-)enter the
population. Another performance indicator is that of the best performance, i.e.,
the performance of the best controller in the population, regardless whether this
controller is currently active. In addition to performance we will consider two
other indicators of behavioural quality.

First, consider the stability, or rather the noisiness of the adaptive process. Even
though a run may exhibit good actual performance on average, it is preferable if
performance is more or less constant. Robots that often lapse into very poor be-
haviour as they consider candidate controllers are less desirable than robots that
operate at a consistent level. To measure this quantity, we analyse the differential
entropy (Lazo and Rathie, 1978) of the actual performance in runs of the experi-
ment.

Secondly, we are interested in the speed of adaptation, that is the rate of perfor-
mance improvement over time. In particular, we are looking for the turtle-and-hare
effect.

In the following subsections we will discuss the experimental results from the
perspective of these indicators.

Figure 5.9 – Trajectory of one of the better controllers towards the end of the run.

100

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

5.2.5.1 Performance of controllers

Our test landscape lies within a four-dimensional space, with one dimension be-
longing to each of the parameters we vary over the experiments: mutation step-
size σ, evaluation period τ, population size μ, and re-evaluation rate ρ. Intensive
inspection of the data reveals that these parameters differ greatly in their impact
on the outcomes, but showed no noticeable interactive effects, so we feel justified
to consider them independently. We do so in order of decreasing influence. The
statistics shown in this subsection have been compiled over approximately the last
8 minutes of simulated time in the experiments.

Mutation step size The most influential parameter turns out to be σ. In Fig-
ure 5.10 we present the actual and best performance observed over the last 8 min-
utes (simulated time) of each run as a function of different σ values. These plots
show the average values, taken over the complete set of experiments, that is, for all
investigated values of all other parameters, amounting to 2 · 3 · 3 · 100 = 1800 data
points behind each bar. The results show that small σ values (0.2 is about 1

40-th of
the domain of the variables xi) do not work. The high value for σ we tried (0.8 is
about 1

10-th of the domain of the variables xi) is clearly the best choice for actual
performance and finishes as a close runner-up to the self-adaptive regime in the
plot for best performance.

To interpret these results it is important to note that the self-adaptive regime
regulates 18, possibly different, step sizes for each controller: one separate σ value
for each of the real-valued object variables in the artificial genome representing a
controller. This means that in this case evolution is solving a double task: opti-
mising the 18 object variables and finding good step sizes on-the-fly, and there are
simply not enough evaluations available to pull that off.

(a) actual

0.2 0.8 SA
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

(b) best

0.2 0.8 SA
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

Figure 5.10 – Effect of σ on performance.

101

Chapter 5. Growing Pains

(a) actual

60 300
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

(b) best

60 300
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

Figure 5.11 – Effect of τ on performance.

Evaluation period Next, we consider the effect of the evaluation period τ. Fig-
ure 5.11 exhibits the actual and best performance observed over the last 8 minutes
(simulated time) of each run as a function of different τ values when using σ = 0.8.
The results clearly indicate the superiority of longer evaluation periods. τ = 300
delivers better results than τ = 60. This is significant information, as in general it
is not obvious whether more, but shorter evaluations or fewer, but longer evalu-
ations lead to better performance. In essence, this is a trade-off between quantity
(lower τ) and quality (higher τ) and our experiments support a preference for the
latter.

Population size The population size μ is the third most influential parameter
among those we consider here. The significance of this parameter is obvious,
evolutionary search through smaller populations can proceed faster, but it is also
more easily trapped in local optima. As Figure 5.12 shows μ does not have a
great effect on best performance, but as for actual performance we can articulate a
preference for the smallest value we tested, μ = 6. This is good news, considering
the hardware limitations in robots.

(a) actual

6 10 14
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

(b) best

6 10 14
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

Figure 5.12 – Effect of μ on performance.

Re-evaluation rate Finally, our experiments also shed light on the effects of
different re-evaluation rates. Somewhat to our surprise, ρ is not a very influen-

102

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

tial parameter as the results in Figure 5.13 indicate. Smaller values of ρ seem
to advance better best performance, even though the differences are not too big.
In theory, this makes sense considering that spending less time on re-evaluating
known candidate solutions allow to visit more points in the search space. Look-
ing at the data regarding actual performance we see again rather small differences
between the values considered. Having noted this we choose the middle value,
ρ = 0.4 as our favourite.

(a) actual

0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

(b) best

0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

�

P
er

fo
rm

an
ce

Figure 5.13 – Effect of ρ on performance.

5.2.5.2 Stability of actual performance

To assess the volatility of the robot’s actual performance over the course of the
experiments, we calculate the differential entropy of actual performance over the
full length of each run. For this analysis, runs with step size σ = 0.2 were excluded
as their performance was uniformly low and therefore had minimal entropy; this
muddles the analysis for more interesting values of σ. We found that only the
evaluation period τ has an appreciable influence on the level of entropy Fig. 5.14
shows the average entropy for different values of τ. All runs apart from the runs
with σ = 0.2 are included in the calculations for this graph. Lower entropy (in this
case, a longer bar as the values are negativeiv) indicates a lower level of volatility:
the runs with τ = 300 clearly lead to much more consistent behaviour.

5.2.5.3 Speed of adaptation

Fig. 5.15 shows the development of performance over time for actual and best
performance and for the two values of τ. Each graph contains three series: one
for each value of ρ. Only results from runs with σ set to the optimal value of 0.8

ivThis is not regular Shannon entropy but the differential entropy, which can be less than 0.

103

Chapter 5. Growing Pains

60 300
0

2

4

6

8

�

E
nt

ro
py

Figure 5.14 – τ against entropy of actual performance

0 1000 2000 3000
0

5

10

15

20

25

30

35

τ=
60

Actual Fitness

ρ=0.2
ρ=0.4
ρ=0.6

0 200 400 600 800
0

50

100

150

200

τ=
30

0

0 1000 2000 3000
20

25

30

35

40

45

50

55
Best Fitness

0 200 400 600 800
50

100

150

200

250

300

Figure 5.15 – Average actual and best (left and right column, respectively) performance
over time for different values of τ and ρ

are included. The influence of μ on the speed of adaptation appeared negligible,
hence μ is disregarded in these graphs: the results are taken across all values of μ.

To construct these graphs, we first calculated a moving window average to
smooth the performance curves for each individual. The resulting figures were
then averaged over all appropriate runs to yield the values plotted here.

In Subsection 5.2.5.1, we already saw that τ = 300 yields the best results, and
here we see that the performance also increases fastest for τ = 300, and again to
our surprise, ρ does little to influence the rate of performance increase.

104

5.2. On-line evolution of robot controllers by an encapsulated evolution strategy

Note, that the performance graphs have not yet leveled of at the end of the
runs, from which one may conclude that performance could increase further yet
as time progresses.

5.2.6 Conclusion

This section presented the (μ + 1) on-line evolutionary algorithm to provide the
possibility of on-line evolutionary adaptation in robotics. This algorithm was
specifically designed to address three challenges inherent in on-line adaptation:
noisy evaluations, relatively few evaluations and the primacy of actual as opposed
to best performance throughout the developmental process. While drawing on
the well-established field of evolution strategies, (μ + 1) on-line diverges from
common evolution strategy implementations to increase algorithm speed by using
λ = 1 and non-random parent selection.
Revisiting the research questions we posed in Sec 5.2.2, we can firstly conclude

that our experiments show that the (μ + 1) on-line algorithm is indeed capable of
developing acceptable controllers as the robot performs its task.
Secondly, the results show that the mutation step-size σ is the single most de-

cisive parameter when it comes to delivering good controllers. This is in line
with previous research into parameter setting for evolutionary algorithms (Nan-
nen et al., 2008). The controller evaluation period τ, specific to on-line evolution,
is the next most important parameter when it comes to quality. Moreover, it is the
deciding parameter when considering the stability of performance and speed of
adaptation. Regarding the population size μ, we have seen that having larger val-
ues does not improve the performance of even the best known controllers, while
the penalty of storing lower-quality alternative controllers manifests itself in de-
creasing actual performance. It may yet prove beneficial, however, in dynamic
environments where it can enable falling back on remembered solutions. The
(μ + 1) on-line algorithm has proved to be fairly insensitive to variations in the
re-evaluation rate ρ. While these results are promising and merit our consideration
into on-line evolution of robot controllers, they cannot be indiscriminately gener-
alised to other tasks, robots or even environments without further investigation.

105

Chapter 5. Growing Pains

5.3 Racing to Improve On-line, On-board Evolution-

ary Robotics

In evolutionary robotics, robot controllers are often evolved in a separate develop-
ment phase preceding actual deployment – we call this off-line evolution. In on-
line evolutionary robotics, by contrast, robot controllers adapt through evolution
while the robots perform their proper tasks, not in a separate preliminary phase.
In this case, individual robots can contain their own self-sufficient evolutionary
algorithm (the encapsulated approach) where individuals are typically evaluated by
means of a time sharing scheme: an individual is given the run of the robot for
some amount of time and fitness corresponds to the robot’s task performance in
that period.

Racing was originally introduced as a model selection procedure that quickly
discards clearly inferior models. We propose and experimentally validate racing
as a technique to cut short the evaluation of poor individuals before the regular
evaluation period expires. This allows an increase of the number of individu-
als evaluated per time unit, but it also increases the robot’s actual performance
by virtue of abandoning controllers that perform inadequately. Our experiments
show that racing can improve the performance of robots that adapt their controllers
by means of an on-line evolutionary algorithm significantly.

5.3.1 Introduction

The work presented in this section is inspired by a vision of autonomous, self-
sufficient robots and robot collectives that can cope with situations unforeseen
by their designers. An essential capability of such robots is the ability to adapt
their controllers in the face of challenges they encounter in a hands-free manner
(Bredeche et al., 2009), “the ability to learn control without human supervision,”

Section 5.3 was published as:

Evert Haasdijk and Arif Atta-ul-Qayyum and A.E. Eiben (2011). Racing to Improve On-line,
On-board Evolutionary Robotics. In Natalio Krasnogor et al., Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2011), Pages 187–194, ACM, NY.

106

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

as Nelson et al. (2009) put it. Crucially, the robot’s controller changes on the fly, as
it goes about its tasks: adaptation –evolution, in our case– occurs on-line.

This approach contrasts with the majority of work in the field of evolution-
ary robotics, which to date has primarily focussed on off-line evolution of robot
controllers, where the evolutionary process takes place as a separate development
stage before proper deployment of the robots and there is no subsequent adapta-
tion –at least, not through evolution– of the controllers. Evolution is orchestrated
by an overseer outside the robots themselves, typically an external computer. The
population of controllers undergoes selection and variation inside this computer
and fitness can either be evaluated in simulation (again inside this computer), or in
vivo by uploading the controller onto a real robot that uses it for a while to collect
information on controller quality. While the latter is often referred to as ‘embodied
evolution’, strictly speaking it only amounts to embodied fitness calculations: the
evolutionary operators for selection and variation are not embodied in the robots.
We investigate on-line evolution as implemented in the (μ + 1) on-line algorithm
by Haasdijk et al. (2010), where individual robots run a self-contained evolutionary
algorithm on-board.

To evaluate individuals in the on-board population, (μ + 1) on-line employs
a time-sharing mechanism where individuals are evaluated sequentially by being
given control of the robot and measuring robot performance during a pre-defined
evaluation period. Because each of the individuals actually controls the robot
for some time, the robot’s overall task performance (the actual performance) is
determined by the quality of all the genomes it considers, not only the best in the
population it has on board. Thus, for on-line evolution of robot controllers average
performance matters more than the quality of the best individual in the population
in this setting: if a robot time and again evaluates poor controllers, its actual
performance will be inadequate, no matter how good the best known individuals
as archived in the population. (μ + 1) on-line uses re-evaluation to deal with
the inherent noisiness of in vivo evaluations, exacerbated by the effects running
controllers sequentially without repositioning the robot or otherwise being able to
ensure that the system is in the same or even similar state from one evaluation to
another (Bredeche et al., 2009; Haasdijk et al., 2010).

Racing was introduced by Maron and Moore (1997) as a model selection tech-
nique that tests a set of models in parallel, quickly discards those models that are
clearly inferior and concentrates the computational effort on differentiating among

107

Chapter 5. Growing Pains

the better models. We propose to use racing as a procedure to cut short the evalu-
ation of particularly un-promising candidate controllers before the end of the full
evaluation period. When using racing, a candidate solution can be evaluated for
at most τ time steps, but the evaluation is aborted prematurely if there is strong
evidence (as defined by equations 5.2 and 5.3) that the candidate will be discarded
anyway. Obviously, this imposes two requirements on the evaluation process: it
has to be possible to calculate an intermediate fitness during the evaluation period
and these intermediate results must be comparable to the final evaluation results
of solutions that did make the cut.

In evolutionary algorithms with lengthy fitness evaluations (e.g., in constraint
satisfaction problems or data mining applications), one can similarly use racing to
abandon the evaluation of un--promising individuals —as long as one has inter-
mediate results during evaluation that compare with those of completed evalua-
tions. In any such evolutionary algorithm, racing would speed up the evolutionary
search process because more candidates can be evaluated in the same time frame.
In on-line evolution, however, it offers an additional and potentially greater benefit:
as noted above, time spent evaluating poor individuals is time spent performing
poorly at the actual task. Therefore, cutting short the evaluation of poor individu-
als not only speeds up the search for good controllers: it should also increase the
quality of actual control.

Using autonomous on-line evolution as we envisage, in situations where no
human intervention is possible, the evolutionary algorithm in the robots must be
able to optimise under unforeseen and possibly very different conditions. Unfortu-
nately, the performance of evolutionary algorithms is, in general, quite dependent
on their settings, so it requires the capability to calibrate itself on-the-fly (parame-
ter control mechanisms cf. Eiben et al. (1999b)) or parameter settings that perform
well in any circumstances. This brings us to a further reason for our interest in
racing: the evaluation period τ was shown to be an influential parameter of the
(μ + 1) on-line algorithm in Haasdijk et al. (2010). We hope that our investiga-
tions into racing may point the way to a robust control scheme for this influential
parameter, but that goal itself lies beyond the scope of this section.

Research Question The main question we ask in paper, then, is whether the ro-
bot’s actual performance does indeed increase when employing racing. Secondly,
racing has parameters of its own, and we analyse the impact of these parameters
on the algorithm’s performance. To this end, we conduct an experimental com-

108

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

parison of (μ + 1) on-line’s performance with and without racing on a number of
robot tasks.

5.3.2 Related work

As mentioned above, traditional evolutionary robotics uses a conventional evolu-
tionary algorithm to find good controllers in a fashion that can be identified as
off-line, off-board (i.e., the evolutionary algorithm does not run inside the robots
themselves), and overseen by a computer that executes the evolutionary operators
(variation and selection) centrally. If, by contrast, evolution should run on-line,
after deployment, i.e., as the robots carry out their tasks, one can recognise two
approaches:

The encapsulated evolution approach is on-line, on-board, and centralised.
Each robot has a self-sufficient evolutionary algorithm implemented on-board,
maintaining a population of genotypes inside itself. The robots run these (possibly
different) evolutionary algorithms locally and perform the fitness evaluations au-
tonomously. This is typically done in a time-sharing system, where one member
of the inner population is activated (i.e., decoded into a controller) at a time and is
used for a while to gather feedback on its quality. Here, the iterative improvement
(optimisation) of controllers is the result of the evolutionary algorithms running
in parallel on the individual robots (Walker et al., 2006; Haasdijk et al., 2010). The
(μ + 1) on-line algorithm we consider here falls into this category;

The distributed evolution approach can be described as on-line, on-board, and
distributed. Each robot has a single genotype and is controlled by the correspond-
ing phenotype. Robots can reproduce autonomously and asynchronously and cre-
ate offspring controllers by recombining and/or mutating their genotypes. Here,
the iterative improvement (optimisation) of controllers is the result of the evolu-
tionary process that emerges from the exchange of genetic information among the
robots (Watson et al., 2002).

These approaches can be combined, resulting in a set-up akin to an island
model as used in parallel genetic algorithms. In such a combined system, each
robot is an island and genetic information is exchanged through intra-island vari-
ation (i.e., within the population of the encapsulated evolutionary algorithm in one
robot) and inter-island migration (between two or more robots) (Nehmzow, 2002;

109

Chapter 5. Growing Pains

Usui and Arita, 2003; Wischmann et al., 2007; Perez et al., 2008; Elfwing et al., 2005;
Haroun Mahdavi and Bentley, 2006).

Racing Our implementation of racing to cut short some individual’s time share
is based on Yuan and Gallagher (2007)’s use of Hoeffding racing to reduce the
cost of parameter tuning: they used racing for early elimination of candidate al-
gorithms while finding out which algorithm out of a set of candidates performs
best on a particular benchmark problem, achieving a cost reduction of around 90%
with negligible loss of reliability.

Similar applications of racing have been proposed for evolutionary algorithms
in constraint satisfaction problems, e.g., by Bowen and Dozier (1995) and genetic
programming for symbolic regression or data mining by Teller and Andre (1997).

Note, that we do not propose racing as a mechanism to deal with noisy fitness
evaluations –(μ+ 1) on-line already uses re-evaluation to that end. We add racing
simply to maximise the time spent evaluating promising solutions.

5.3.3 Racing in (μ + 1) on-line

In essence, the (μ + 1) on-line algorithm is an evolution strategy (Beyer and
Schwefel, 2002) that employs standard evolutionary algorithm operators (selec-
tion, variation and recombination) on a population of size μ to develop a new
individual. That new individual –the challenger– is then evaluated by letting it
take control of the robot for τ time steps and measuring the robot’s task perfor-
mance over that period. If the challenger’s performance proves better than that of
the worst in the population, the challenger replaces the current worst and the next
iteration commences.

As mentioned above, we propose racing to abandon the evaluation of less than
promising individuals. This means that during a challenger’s evaluation, interme-
diate results are compared to the fitnesses of individuals already in the population
to estimate the likelihood that the challenger is good enough to become part of
the population. If it is fairly certain that this challenger is going to turn out worse
than the worst in the current population, further evaluation is most likely a waste
of time, especially with an elitist replacement scheme as in the (μ + 1) on-line al-
gorithm.

At intermediate time steps during a challenger’s evaluation, its intermediate fit-
ness Fchallenger is compared to a lower bound which depends on the current worst

110

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

fitness in the population Fworst. If the performance drops below this lower bound,
the evaluation is aborted and a new iteration of the algorithm commences, oth-
erwise, evaluation continues—at least until the next comparison. To estimate the
likelihood that the challenger is at least as good as the current worst in the popu-
lation, we use a modified version of the Hoeffding (1963) inequality:

Fchallenger ≥ Fworst − 2ξ(t) (5.2)

with ξ(t) calculated as follows:

ξ(t) =

√
(Fa − Fb)2log(2/α)

βt
(5.3)

with Fa and Fb the best and the worst fitness values of the population, respectively;
α is the significance level of the comparison. In Yuan and Gallagher (2007), there
is no parameter β (instead, there is a fixed value 2). We introduce β to allow
more robust tuning of the comparison’s strictness. Using formulas 5.2 and 5.3,
an individual’s evaluation has a large likelihood of continuing in the early stages
of evaluation (high values of ξ lower the bar), but the pressure increases as time
passes.

Note, that racing in this manner requires that intermediate results are avail-
able and can be compared with ‘proper’ evaluation results. Subsection 5.3.4 gives
examples of how we achieve this in our experiments.

As mentioned above, (μ + 1) on-line implements re-evaluation to combat the
effects of noisy evaluations and changes in the environment: with some probability
ρ, an evaluation slot can be assigned to an unmodified individual in the population
to refine and update its performance assessment. During re-evaluations no racing
takes place: this would prevent proper reassessment of individuals already in the
population that are no longer as good (or as bad) as they once were.

Algorithm 3 describes the result of adding racing as described to the original
(μ + 1) on-line algorithm.v

vSource code for the algorithm as well as the experiments described here is available at http:
//www.few.vu.nl/~ehaasdi/papers/MuPlusOneAndRacing

111

Chapter 5. Growing Pains

for i← 1 to μ do // Initialisation

population[i] ← CreateRandomGenome();

population[i].σ ← σinitial;
population[i].Fitness ← RunAndEvaluate(population[i]);

for ever do // Continuous adaptation

if random() < ρ then // Don’t create offspring, but re-evaluate

selected individual

Evaluatee ← BinaryTournament(population);

Evaluatee.Fitness ← (Evaluatee.Fitness +

RunAndEvaluate(Evaluatee)) / 2;

// Combine re-evaluation results through exponential moving

average

else // Create offspring and evaluate that as challenger

ParentA ← BinaryTournament(population);

ParentB ← BinaryTournament(population - parentA);

Challenger ← AveragingCrossover(ParentA, ParentB);

Mutate(Challenger);

a ← population[1].Fitness;

b ← population[μ].Fitness;
for n← 1 to τ do // Racing: monitor evaluation, abort if

challenger appears worse than worst in population
Challenger.Fitness ←
RunAndEvaluateForOneTimeStep(Challenger);

ξ ←
√

(a−b)2log(2/α)
βt ;

if Challenger.Fitness < population[μ].Fitness - 2ξ then
abort evaluation;

if Challenger.Fitness > population[μ].Fitness then // Replace last (i.e.

worst) individual in population w. elitism

population[μ] ← Challenger;

population[μ].Fitness ← Challenger.Fitness;

Sort(population);

Algorithm 3: The (μ + 1) on-line evolutionary algorithm with racing

5.3.4 Experimental comparison

We compare the performance of (μ + 1) on-line with and without racing on three
tasks that are described below.

The (μ + 1) on-line parameters μ, ρ and τ are set to the best obtained values
for each task after a modest amount of tuning. To assess the influence of racing’s

112

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

α and β parameters, we try several combinations of settings. The common settings
for all three experiments are summarised in Table 5.2.

Common experiment details

Simulation length 10,000 seconds (simulation time)
Number of repeats 20

Evolution details

Representation Real-valued vector with −4 ≤ xi ≤ 4
Fitness See task descriptions
Mutation Gaussian N(0, σ)
Mutation step-size Derandomised self-adaptive
Crossover averaging
Parent selection binary tournament
Crossover rate 1.0
Survivor selection replace worst in population if challenger is

better

Racing settings

α 0.5, 0.7, 0.9
β 0.5, 1.5, 2

Table 5.2 – Experimental set-up

(a) Fast forward (b) Patrolling (c) Balancing

Figure 5.16 – Arenas for the tasks; where applicable, the circles represent the robots to
scale.

5.3.4.0.1 Fast Forward Fast forward –moving in as straight line as possible as
fast as possible while avoiding obstacles– is maybe the most common task in evo-
lutionary robotics research. In a confined environment with obstacles this task

113

Chapter 5. Growing Pains

implies a trade-off between avoiding obstacles and maintaining speed and for-
ward movement. The fitness function we use has been adapted from (Nolfi and
Floreano, 2000); it favours robots that are fast and go straight ahead. Equation 5.4
describes the fitness calculation:

f =
τ

∑
t=0

(vtrans · (1− vrot) · (1− d)) (5.4)

where vtrans and vrot are the translational and the rotational speed, respectively.
vtrans is normalised between −1 (full speed reverse) and 1 (full speed forward), vrot
between 0 (movement in a straight line) and 1 (maximum rotation); d indicates the
distance to the nearest obstacle and is normalised between 0 (no obstacle in sight)
and 1 (touching an obstacle).

Intermediate results sum the reward from t = 0 to the current time step; they
can then be compared with complete evaluation results after simply dividing both
results by the number of time steps used to calculate them.

Although fast forward is considered a trivial task, here some extra difficulty is
added by using a complicated maze-like arena (Figure 5.16(a)) with tight corners
and narrow corridors that fit only a single robot and sometimes lead to dead
ends. This arena structure, compounded by the fact that multiple robots will be
simultaneously deployed, makes the task considerably harder than commonly seen
instances.

Experiment details

Robot group size 10

Controller details

NN type Simple perceptron
Input nodes 8 obstacle sensors + bias;
Output nodes 2 (left and right motor values)

(μ + 1) on-line settings

Chromosome length 18
Evaluation time τ 300 time steps
Re-evaluation rate ρ 0.6
Population size μ 6

Table 5.3 – Fast forward experimental set-up

114

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

5.3.4.0.2 Collective Patrolling An obvious real-world task for a group of au-
tonomous mobile robots is that of a distributed sensory network, where the robots
have to patrol an area as a group and detect events that occur periodically. It
differs from the previous tasks since it requires some level of co-ordination: the
success of the group depends not only on the efficient movement of the individ-
ual robots but also on the spread of the group across the arena to maximise the
probability of detecting events. Somehow, robots need to liaise so as not to patrol
the same areas. To this end, they are equipped with a pheromone system: robots
continuously drop pheromones (this is a fixed behaviour and not controlled by the
evolved controller) while sensors detect the local pheromone levels. The collective
patrolling task is described in (Martinoli, 1999) where controllers evolve off-line,
although in that work the approach to events is more complicated and the robots
use other sensory inputs.

The experiments for this task take place in the arena shown in Figure 5.16(b).

Every Te = 50ms with probability pe = 0.0005, an event occurs at a random
location with a duration of de = 500+N (0, 2) seconds. Thus, in one run (10, 000
seconds) approximately 100 events occur and that at any time around 5 events are
active in the whole arena.

A robot detects an event in a 360o circle whenever it comes within 0.3m of the
event, so a robot’s sensory coverage is 0.283m2. Since the arena is 25m2, a group of
10 robots can at any moment cover at most 11% of the whole arena; conversely, a
group of stationary robots should detect around 11% of the events.

Pheromones are simulated as follows: the 5m× 5m arena is divided into 500×
500 cells, each with a pheromone level between [0, 2]. Every second, each robots
drops 1 unit of pheromones at the cell the robot is currently in, and a linearly
decreasing amount in nearby cells up to a range of Rp = 0.07m. Pheromone levels
decay over time at a rate of Rc = −0.024/s in each cell.
As sensory input to the controller, 4 pheromone sensors are placed at the pe-

riphery of the circular body at π
4 ,

3π
4 ,

5π
4 and 7π

4 . Each sensor detects the accu-
mulated pheromone levels of all cells in a range of 0.05m (with detected levels
decreasing linearly with distance from the sensor). For fitness calculation only, a
similar sensor is positioned on the center of the robot.

The fitness function penalises pheromones presence (detected by the central
pheromone sensor) and proximity to obstacles:

115

Chapter 5. Growing Pains

f =
τ

∑
t=0

((1− p) · (1− d)) (5.5)

where p indicates pheromone presence between 0 (no pheromones) and 1 (strongest
pheromone level) at the current location and d indicates the distance to the nearest
obstacle and is normalised between 0 (no obstacle in sight) and 1 (touching an
obstacle).

Just as in the fast forward scenario, intermediate results sum the reward from
t = 0 to the current time step; they can then be compared with complete evaluation
results after simply dividing both results by the number of time steps used to
calculate them.

Although movement is not included explicitly, it should emerge due to the
continous dropping of pheromones and the deleterious effect of staying in a place
where the robot just dropped them.

Experiment details

Robot group size 10

Controller details

NN type Simple perceptron
Input nodes 8 distance sensors + 4 pheromone sensors +

bias
Output nodes 2 (left and right motor values)

(μ + 1) on-line settings

Chromosome length 26
Evaluation time τ 300 time steps
Re-evaluation rate ρ 0.6
Population size μ 10

Table 5.4 – Patrolling experimental set-up

5.3.4.0.3 Balancing In this experiment, a single robot finds itself on a tray which
is balanced on a thin spike as shown in Fig. 5.16(c). The centre of mass of the tray
is positioned well below the tray itself (as if a weight on a stick were attached
to the bottom), so it tilts smoothly with the distribution of weight on its surface,
which depends only on the position of the robot on the tray’s surface. Around the
edge of the tray is a barrier that prevents the robot moving off the tray. The robot’s

116

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

task is obvious: balance the tray so that it is horizontal and it is easy to see that
this equates to “stay in the centre of the tray.” The task is similar to pole balancing
or inverted pendulum, but it is much harder because the robot’s movement are in
two dimensions rather than one.

The fitness of an individual is the average angle of the tray with the z-axis
(so a horizontal tray is at 90◦) during its evaluation except when touching the
surrounding barrier. To encourage moving away from the barrier, the fitness is 0
for any time step when the robot touches the barrier.

As inputs, the controller has the values from 8 distance sensors, 3 coordinates
from a gps sensor (which returns 0, 0, 0 at the tray centre) and the compass head-
ing. For fitness evaluation only, the robot has an accelerometer sensor to measure
the tray’s tilt.

Contrary to the other two tasks, we use only a single robot in each experiment
because having multiple robots on the same tray greatly increases the task com-
plexity with an individual’s fitness depending on the aggregate behaviour of the
group rather than only its own.

Because the fitness already is averaged over the evaluation evaluation period,
no further normalisation is required to compare intermediate and final results.

Experiment details

Robot group size 1

Controller details

NN type Perceptron with 2-node hidden layer
Input nodes 8 distance sensors + 3 gps co-ordinates + compass

heading + bias
Output nodes 2 (left and right motor values)

(μ + 1) on-line settings

Chromosome length 30
Evaluation time τ 300 time steps
Re-evaluation rate ρ 0.2
Population size μ 10

Table 5.5 – Balancing experimental set-up

117

Chapter 5. Growing Pains

5.3.5 Results and Discussion

To answer this section’s main question –does the robot’s actual performance in-
crease when employing racing– figures 5.17(a) to 5.17(c) show box plots comparing
the performance (normalised between 0 and 1) for (μ + 1) on-line runs without
racing (“native”) to runs with racing with optimal settings for α and β. The com-
parisons are over 20 repeats; each box extends from the 25th to the 75th percentile
with the central mark at the median; the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually. The notches
indicate the 95% confidence interval for the median: interval endpoints are the
extremes of the notches, so if two intervals do not overlap, we may conclude that
the difference between the corresponding two medians is significant with 95% cer-
tainty.

(a) Fast forward, α=0.9, β=0.5

0

0.1

0.2

0.3

0.4

0.5

Native Racing

P
er

fo
rm

an
ce

(b) Patrolling, α=0.9, β=1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Native Racing

P
er

fo
rm

an
ce

(c) Balancing, α=0.5, β=0.5

0

0.1

0.2

0.3

0.4

0.5

Native Racing

P
er

fo
rm

an
ce

Figure 5.17 – Median performance with and without racing on the three tasks over the
last 60 minutes of simulation (approx.).

Figures 5.17(a) to 5.17(c) show that racing –with the best found settings for α

and β– improves performance significantly in all three tasks: for each task, even
the lower quartile with racing is well above the 95% confidence interval for the
median performance without racing. Improvement ranges from nearly 6% for the
patrolling task to over 27% for the balancing task.
To assess the influence of racing’s parameters α and β, figures 5.18 to 5.20 show

the performance for each α, β combination we considered in our trials. The graphs
are divided into four sections: one (leftmost) shows a box plot for the orginal
(μ + 1) on-line implementation, the three sections to the right of that –one for
each α setting– each show boxplots for the β values we considered. The horizontal

118

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

band across the graphs denotes the 95% confidence interval for the native (μ + 1)
on-line median performance.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
er

fo
rm

an
ce

N
at

iv
e

α = 0.7

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

α = 0.5

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

α = 0.9

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

Figure 5.18 – Median performance on the fast forward task over the last 60 minutes of
simulation (approx.) for all considered combinations of α and β.

0.7

0.75

0.8

0.85

0.9

0.95

1

P
er

fo
rm

an
ce

N
at

iv
e

α = 0.7

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

α = 0.5

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

α = 0.9

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

Figure 5.19 – Median performance on the patrolling task over the last 60 minutes of
simulation (approx.) for all considered combinations of α and β.

The plots show significant differences among combinations of α and β, but only
for two combinations is the performance even comparable to that of the runs with-
out racing, in all other cases it is significantly better. Also note that in all sections
for the different α values, at least one combination ranks among the highest per-
forming for that problem. This seems to indicate that, even though α is the first
parameter one thinks of considering the theoretical background of Hoeffding’s in-
equality, β actually is the prime parameter in this application: it seems that we can
safely set α to a fixed value and trust that some value of β will combine with that
setting to yield (near-)optimal performance. Looking at figure 5.21, which shows

119

Chapter 5. Growing Pains

0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

fo
rm

an
ce

N
at

iv
e

α = 0.7

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

α = 0.5

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

α = 0.9

β
=

 0
.5

β
=

 2
.0

β
=

 1
.5

Figure 5.20 – Median performance on the balancing task over the last 60 minutes of
simulation (approx.) for all considered combinations of α and β.

the development of ξ(t) as an evaluation progresses, this is borne out by the differ-
ence in influence of α and β on the curve’s progress. The ξ(t)-curves for differing
β values vary considerably more than those for various α settings and it is easy to
see that any reasonable change in α (denoting a probability, it should be between
0 and 1) can be overruled by changing β.

Figure 5.21 – Influence of α and β on ξ(t) with a = 1.0 and b = 0.8. Note the
logarithmic scale for ξ(t).

5.3.6 Conclusions

First and foremost, our experiments show that adding racing to the on-line evo-
lutionary process can improve the actual performance of the robots significantly,

120

5.3. Racing to Improve On-line, On-board Evolutionary Robotics

with the median performance improving from nearly 6% for the patrolling task to
over 27% for the balancing task.

For the balancing task in particular it must be said, however, that the robot in
no case robustly comes to grips with this task beyond staying away from the edges
of the tray, so even though racing improves performance by as much as 27%, it
doesn’t give adaptation that extra push needed to solve the balancing problem
properly. In this task, we observed a subtle dynamic that makes it extra challeng-
ing for continuous adaptation: once a robot has learned to stay in the centre of
the tray, at some point it will try a candidate that causes it to move away from
the middle, and then controllers that previously worked very well (e.g., moving
around in small circles) suddenly are no good at all and the robot has to re-learn
moving towards the centre all over again. This causes tremendous fluctuation in
performance in almost all balancing runs, but more importantly highlights an in-
herent problem for continuous evolution: the adaptive process has to remember
how it solved a problem (in this case, moving to the centre from near the edge)
even though other behaviour (here: standing still or driving in small circles) was
appropriate over a possibly large number of evaluations. This reminds the authors
of problems in dynamic fitness landscapes and we hope to find inspiration in that
field to tackle this issue.

Given our remark in the introduction that on-line, on-board evolution requires
parameter control schemes or robust settings, adding racing to (μ+ 1) on-line can
be seen as a bad thing because it means adding two parameters α and β and the
experiments’ results show that the setting for α and β do impact performance.
However, in all but two parameter combinations we tried, median performance in-
creased significantly vis-à-vis the vanilla (μ + 1) on-line implementation without
racing. Moreover, our analysis suggests that, in fact, one of racing’s parameters, α

may be set to a fixed value so that only β remains to be tuned or controlled.

Of course, our findings very likely depend on the tasks we investigated as
well as our choice of controller – as far as we know, the field of evolutionary
robotics lacks a taxonomy of robot tasks or controllers that allow for a meaningful
generalisation of our findings. Still, the results are promising and warrant further
research into racing as a method of improving performance in on-line evolutionary
robotics. As already noted introduction, a potentially greater benefit could be that
racing may help us find a robust method for control of the influential τ parameter

121

Chapter 5. Growing Pains

that sets the evaluation period. Our future work in this area focusses on this latter
aspect.

122

The most exciting phrase to hear in science, the one that her-
alds new discoveries, is not “Eureka!” (I found it!) but “That’s

funny...”

Isaac Asimov

6
The Proof of the Pudding

Analysing an Encapsulated Algorithm

6.1 Introduction

Imagine a collective of autonomous robots that find themselves in a dynamic en-
vironment that they (or rather, their designers) didn’t know to expect. Obviously,
they cannot rely on pre-defined behaviour determined by fixed controllers to cope
robustly with the unknown challenges in such a scenario. Rather, the robots have
to learn to cope with their environment and any changes in it, just as they have
to learn to react to changes in their own bodies, for instance as a result of hard-
ware failure or reconfiguration. An essential capability, therefore, of such robots

This chapter was submitted as:

Evert Haasdijk, S.K. Smit and A.E. Eiben. Exploratory Analysis of an On-line Evolutionary
Algorithm in Simulated Robots, to appear in Evolutionary Intelligence, Springer-Verlag,
Berlin/Heidelberg.

123

Chapter 6. The Proof of the Pudding

is the ability to adapt their controllers – to learn – in the face of challenges they
encounter in a hands-free manner, without supervision – human or otherwise.

Our research is inspired by the vision of robots one day being able to adapt like
this as so eloquently articulated by Nelson et al. (2009):

“Advanced autonomous robots may someday be required to negotiate envi-

ronments and situations that their designers had not anticipated. The future

designers of these robots may not have adequate expertise to provide appropri-

ate control algorithms in the case that an unforeseen situation is encountered

in a remote environment in which a robot cannot be accessed. It is not always

practical or even possible to define every aspect of an autonomous robot’s envi-

ronment, or to give a tractable dynamical systems-level description of the task

the robot is to perform. The robot must have the ability to learn control without

human supervision.”

To provide such levels of autonomous adaptivity through evolution, an evolu-
tionary algorithm must run on-board, without any external master computer to
execute evolutionary operators or evaluations. Crucially, the robots’ controllers
change on the fly, as they go about their proper tasks: adaptation occurs on-line,
during the operational period of the robots.

The overwhelming majority of evolutionary robotics research to date, how-
ever, involves off-line adaptation during the development stage prior to the oper-
ational period. Additionally, the evolutionary algorithm that develops the robot
controllers actually doesn’t run on the robots themselves at all, but it runs on a
separate computer that centrally maintains the population of robot controllers (or
rather, their genetic encodings) and performs selection and genetic operators. The
robots themselves – be it real or simulated – only come into play to evaluate candi-
date controllers. Once the controllers are deployed on the actual robots genuinely
to perform their tasks, the evolutionary process is terminated and the controllers
are modified no more – at least not through evolution. Nolfi and Floreano (2000)
provide ample illustration of this approach to evolutionary robotics. Without de-
tracting from the impressive work with this approach to controller evolution, it
cannot provide the on-line adaptive capabilities that we envisage.

Essentially, the off-line approach to evolutionary robotics is no different from
other fields of evolutionary computation as we have known them since the 1960s
— Evolution Strategies, Genetic Algorithms, Genetic Programming, Differential

124

6.1. Introduction

Evolution, to name but a few. Traditional evolutionary robotics and mainstream
evolutionary algorithms share the centralised management of evolutionary op-
erators, where would-be parents do not select mates and produce offspring in
autonomously, but are being selected by an ‘oracle’ (the outer loop of the main
evolutionary algorithm) and undergo variation operators passively.

For the on-line adaptive capabilities without supervision as we envisage, this is
not an appropriate scheme. For that, the adaptation mechanism – the evolutionary
algorithm, in our case – must operate in a decentralised, autonomous fashion. We
distinguish three ways in which the evolutionary algorithm can be implemented on
the robots themselves without recourse to some external overseer that orchestrates
evolution or assesses fitness:

Encapsulated In this case, the complete evolutionary algorithm runs within the
robot itself. In effect, the robot orchestrates its own evolution without referral
to other robots or external assessments of its performance;

Distributed In systems with multiple robots, each robots contains only a single
individual. Robots select mates from their neighbours and autonomously
exchange genetic material to generate new candidate solutions that they test
themselves;

Hybrid The two previous approaches can be combined: robots now maintain a
self-sufficient evolutionary algorithm on-board, but they also exchange ge-
netic material with their neighbours – like islands with migration in the well-
known island model of parallel evolutionary algorithms.

The subject of this study is an algorithm that embraces the first approach: the
(μ + 1) on-line algorithm (introduced in detail in Sec. 6.3) encapsulates an evo-
lutionary algorithm within each individual robot, thus enabling it to evolve its
controller on-the-fly, independently from the others.

Rather than simply testing the algorithm and reporting on the outcomes, we
adopt the scientific testing approach advocated by Hooker (1995). This approach
aims at “learning about your algorithm”, rather than “testing your algorithm” and
emphasises the analysis of robustness and parameter interactions. These different
aspects and their relevance to evolutionary robotics are discussed in Sec. 6.4. In
our analysis of (μ + 1) on-line we use an automated parameter tuning method

125

Chapter 6. The Proof of the Pudding

called Bonesa that is specifically designed for this purpose. Its basic concepts are
explained in Sec. 6.5.

Through scientific testing, we want to investigate which of (μ + 1) on-line’s
parameters have the most profound impact on the robots’ performance in a variety
of tasks, which parameter settings work well in what kind of task and which
settings (if any) work well overall.

The purpose of our tuning exercise is not simply to find the best parameter
vector for a particular task and environment, but it is to learn about the algo-
rithm’s applicability in a range of circumstances, to identify parameters that re-
quire problem-specific tuning and to gain insights into algorithm behaviour that
will allow for proper deployment in real hardware with either well-established,
tuned, parameter values or with (as yet to be developed and validated) parameter
control schemes.

Such a thorough exploration of the algorithm’s parameter space requires a very
large number – literally thousands – of experiments. For reasons of time, but also
because of expected hardware failures due to wear and tear in so many runs, it is
not possible to perform these experiments with real robots, and we have to turn to
simulated trials for our analysis. Obviously, we cannot expect the performance of
real robots to be the same as that of simulated robots (the reality gap), or even that
parameter settings found to be optimal will be the best settings when deploying
(μ + 1) on-line in real robots. However, based on our extensive experience with
evolutionary computing, we expect that such simulations do give good indications
about algorithm behaviour such as sensitivity to parameter settings and identifi-
cation of important parameters, allowing for focussed, more tractable numbers of
experiments with real robots in subsequent research.

6.2 On-line, On-board Evolutionary Robotics

In their seminal paper, Watson et al. (2002) coin the phrase Embodied Evolution
for a system where “a population of physical robots [...] autonomously repro-
duce with one another while situated in their task environment.” In other words,
the controllers evolve on-line (“in their task environment”) through the physical
robots exchanging genetic material with one another. This groundbreaking ex-
ample of the distributed approach introduces a fully autonomous scheme where
the robots broadcast (mutated) genes on local-range communication channels at

126

6.2. On-line, On-board Evolutionary Robotics

a rate proportional to their fitness (Probabilistic Gene Transfer Algorithm, PGTA).
Also, robots resist ‘infection’ with genes broadcast by other proportionally to their
fitness. Robots incorporate received genes into their own genome and so imme-
diately update the controller and continually evaluate its performance. In this
scheme, there is no central authority or global view of the population, but there
is, in fact, one item of global information: the maximum possible fitness which
is used to determine the broadcast and resistance rates. This seems to limit the
applicability of PGTA, but it would seem reasonably straightforward to propagate
at least the best achieved fitness through a gossiping-like algorithm as described
in Jelasity et al. (2005) and so avoid the need for a pre-specified maximum fitness.
Wischmann et al. (2007); Simões and Dimond (2001); Nehmzow (2002) describe
similar distributed implementations of on-line evolutionary robotics.

Before focussing on encapsulated implementations, let us first note that evolu-
tionary algorithms that embrace the encapsulated approach do not seemmaterially
different from ‘regular’ evolutionary algorithms because the whole process runs
on a single robot, just as it would run inside a single computer. There are, how-
ever, particularities of on-line evolution as we will see in Sec 6.3. One practicality
of on-line evolution (and of the encapsulated variant in particular) is time-sharing;
obviously, only a single controller can be active at any one time on a single robot.
Therefore, the encapsulated algorithm can only evaluate a single individual (which
defines a single controller) at a time. To evaluate multiple individuals – as any evo-
lutionary process must – the algorithm has to try them in sequence, one after the
other: a controller runs for a certain amount of time and the task performance over
that period determines the controller’s fitness. Then, the next controller is loaded
and gets its chance to control the robot while fitness is measured, and so on. As a
consequence, there can be no guarantee that two individuals are evaluated in the
same or even similar circumstances: a controller’s evaluation starts where the pre-
vious left off, and there is no re-initialisation, repositioning or other mechanism to
ensure similar circumstances of evaluation. As Nordin and Banzhaf (1997) note in
their description of one of the earliest implementations on-line evolution of robot
controllers:

“Each individual is thus tested against a different real-time situation leading

to a unique fitness case. This results in ‘unfair’ comparison where individuals

have to navigate in situations with very different possible outcomes. However,

our experiments show that over time averaging tendencies of this learning

127

Chapter 6. The Proof of the Pudding

method will even out the random effects of probabilistic sampling and a set of

good solutions will survive.”

Floreano et al. (2002) implement an encapsulated algorithm that evolves spiking
neural networks for obstacle avoidance. This implementation illustrates two char-
acteristics that are common to almost all encapsulated and hybrid implementations
of on-line, on-board evolutionary algorithms. Firstly, the algorithm implements
steady-state evolution: an individual is tested and possibly replaces an individual
in the current population so that parents and offspring may exist side-by-side. In
this case, the new individual replaces the worst in the population if it performs
better. Secondly, the population on a single robot (consisting of only 6 individu-
als) is tiny compared to what is common in evolutionary computation; after all, it
has to fit inside the robot’s on-board memory.

Walker et al. (2006) show that, in addition to providing hands-free adaptivity,
on-line, on-board evolution can help overcome the ‘reality gap’ where a simulator
irons out the wrinkles and warts of reality. Often, when robot controllers are de-
veloped using a simulator (which is typically cheaper and faster than using real
robots), the controllers in reality perform worse than might be expected due to in-
fidelities in the simulation and particularities of individual hardware (see Brooks,
1992). Walker et al. add a second stage to mainstream evolutionary robotics to
tackle this issue. They first employ an off-line, centralised evolutionary algorithm
to develop controllers in simulation (the ‘training phase’). They then transfer the
resulting controllers onto a real robot, and implement an on-line, on-board evo-
lutionary algorithm that further refines the controller and adapts it to a changing
environment. In their experiments, the robot has to avoid randomly placed ob-
stacles while moving towards a goal. The environment changes by moving the
obstacles and by varying the number if obstacles in the arena. The dynamics of
the environment highlight the hands-free adaptivity that on-line, on-board evolu-
tion enables. Walker et al.’s on-line algorithm has a single champion genome that
serves as parent to a challenger; the challenger replaces its parent if it proves to
perform better. To this fairly common arrangement they add a buffer memory:
a second child can replace the challenger (but not the parent directly) if it out-
performs it. Every iteration, the second child is replaced with a newly mutated
version of the parent, so the first child is the current best challenger. This two-
tiered approach was designed to overcome the problem mentioned above: as a
result of sequential evaluation, the circumstances of evaluation could differ signif-

128

6.3. The (μ + 1) on-line Evolutionary Algorithm

icantly from one individual to the next and ‘a poor chromosome could perform
uncharacteristically well and be rewarded and vice-versa.’ The population of the
on-line algorithm is – again – tiny: only three individuals are considered, in all.
Walker et al. mention that this carries the benefit of promoting rapid adaptation
to changes in the environment: ‘the smaller the population size, the faster each
generation of chromosomes is evaluated and the sooner the effects of evolution
manifest.’

Haroun Mahdavi and Bentley (2006) describe experiments involving encapsu-
lated on-line evolution in robots that use shape memory alloy actuators: metal
filaments that change shape when a small current is applied. In one set of exper-
iments, Haroun Mahdavi and Bentley use on-line evolution to let a snake-shaped
robot learn to move forward. These experiments don’t actually exhibit the level
of autonomy suggested by on-line, on-board evolution because the fitness was not
measured by the robot itself but by the experimenters (and therefore evolution
took place, at least in part, off-board), but they, nonetheless, provide a striking
example of one of the benefits of on-line adaptation: during one experiment, one
of the filaments broke while the robot was evolving a gait. Normally, this would
spell disaster and mean that the robot must be fixed and the experiment restarted.
Haroun Mahdavi and Bentley, however, realised that this was an excellent op-
portunity to see the controller adapt to the new circumstances and continued the
experiment with one broken actuator. In short order, the robot adapted its gait to
move with one less actuator, showing how on-line evolution can help robots cope
with hardware failure. Similar robustness under on-line, on-board adaptation was
reported by Christensen et al. (2010), who purposely introduced hardware faults
– for instance, failing modules in a modular robot body – during experiments
with an on-line, on-board stochastic adaptation method akin to Newton-Raphson
minimisation methods.

6.3 The (μ + 1) on-line Evolutionary Algorithm

The (μ + 1) on-line algorithm as described by Haasdijk et al. (2010) and Bredeche
et al. (2009) was devised specifically to provide autonomous adaptation through
on-line, on-board evolution. It is an encapsulated evolutionary algorithm: a ro-
bot maintains a self-sufficient evolutionary process on-board, without recourse to
other robots or to some central overseer. It is inspired by evolution strategies (Bäck,

129

Chapter 6. The Proof of the Pudding

1996; Schwefel, 1995); these provide a likely basis for (μ + 1) on-line because the
the robot controllers’ parameters in our experiments can be represented by a vec-
tor of real-valued numbers and evolution strategies have a very good reputation
as evolutionary solvers of numerical optimisation problems (Bäck, 1996). Other
encapsulated algorithms for on-line adaptation that share this basis are described
by Haroun Mahdavi and Bentley (2006); Nehmzow (2002); Walker et al. (2006).

The main features of (μ + 1) on-line algorithm are the following: 1) it relies
on a population of μ individuals that produce one child per generation, 2) it uses
a time-sharing scheme to evaluate the fitness of individuals (robot controllers),
3) it allows for re-evaluation to reduce noise, 4) it can self-adapt the mutation
parameters and the length of the evaluation period. The exact details are given in
the pseudo code in Algorithm 4. The main design decisions and the underlying
rationale are discussed in the following subsections.

6.3.1 Evolutionary operators

In typical applications of evolutionary algorithms, the overall success is deter-
mined by the best individual at termination. The quality of the other individuals
considered during evolution is of no importance as they will be discarded when
the champion is deployed. Things are very different for on-line evolution as we
envisage here: because the controllers evolve as the robots go about their tasks the
real performance of the robots is determined by the quality of all individuals (con-
trollers) they evaluate. While a robot evaluates poor controllers, that robot’s actual
performance will be inadequate, no matter how good the best known individuals
as archived in the population.

In evolution strategies, it is common to describe algorithms using a pair μ, λ
where μ indicates the size of the population and λ indicates the number of off-
spring generated at each iteration. The ‘+’ indicates that the algorithm uses an
elitist replacement strategy where new individuals are only introduced into the
population if they outperform current members of the population. Thus, (μ + 1)
on-line generates λ = 1 child per cycle, which then may replace the worst in
the population if it achieves higher fitness. Normally in evolution strategies λ

μ is
usually between 4 and 8, but the cost of evaluating poor individuals (about which
more below) is so high that we choose to set λ = 1. To promote rapid conver-
gence we diverge from the common practice of uniform random parent selection

130

6.3. The (μ + 1) on-line Evolutionary Algorithm

in evolution strategies and use binary tournament parent selection, increasing the
selective pressure. Also, we use recombination to promote convergence. Thus,
each new individual is created from two parents, each of which is selected with
a binary tournament. When the representation allows (it does in all the tests we
conducted), we apply the evolution strategy standard of gaussian mutation with
self-adaptation of the mutation step-sizes. We consider various self-adaptation
schemes as described in Sec. 6.6.

6.3.2 Re-evaluation to combat noise

In on-line evolution, fitness must be evaluated in vivo: the quality of any given
controller can only be determined by actually giving that controller the run of the
robot and see how well the robot performs its tasks. Whatever the details of the
evolutionary mechanism, different controllers will be evaluated under different cir-
cumstances: any controller’s evaluation will start wherever and in whatever state
the previous evaluation left the robot. The very dissimilar evaluation conditions
caused by one –possibly very poor– individual setting the scene for the evaluation
of another individual result in very noisy (“unfair” in the words of Nordin and
Banzhaf (1997)) fitness assessments.

To level the playing field among genomes, (μ + 1) on-line re-evaluates ge-
nomes in the population with a given probability ρ. This means that every evo-
lutionary cycle one of two things happens: either a new individual is generated
and evaluated (with probability 1 − ρ), or an existing individual is re-evaluated
(with probability ρ). To ensure that re-evaluation efforts are spent more or less on
those individuals that actually become parents, the individual to be re-evaluated
is chosen by a binary tournament from the whole population. The fitness values
from subsequent (re-)evaluations of any given individual are combined using an
exponential moving average as advocated by Bredeche et al. (2009); this empha-
sises newer performance measurements and so is expected to promote adaptivity
in changing environments. Bredeche et al. also show that using an exponential
moving average outperforms alternative averaging strategies.

Re-evaluating in this manner is similar to a resampling strategy to deal with
noisy fitness evaluations as advocated by Beyer (2000), although the moving av-
erage introduces a temporal aspect and it makes convergence to the true fitness

131

Chapter 6. The Proof of the Pudding

less likely (although, in a dynamic environment, that would be problematic in any
case).

for i← 1 to μ do // Initialisation

population[i] ← CreateRandomGenome();

population[i].σ ← σinitial;
population[i].Fitness ← RunAndEvaluate(population[i]);

Sort(population);

for ever do // Continuous adaptation

if random() < ρ then // Don’t create offspring, but re-evaluate

Evaluatee ← BinaryTournament(population);

Evaluatee.Fitness ← (Evaluatee.Fitness +

RunAndEvaluate(Evaluatee)) / 2; // Combine re-evaluation results

else // Create offspring and evaluate that as challenger

Challenger ← BinaryTournament(population);

if random() < Pc then
ParentB ← BinaryTournament(population - Challenger);

AveragingCrossover(Challenger, ParentB);

Mutate(Challenger); // Also updates σs depending on adaptation

scheme

a ← population[1].Fitness;

b ← population[μ].Fitness;
for n← 1 to τ do // Racing: monitor evaluation, abort if

challenger fails
Challenger.Fitness ←
RunAndEvaluateForOneTimeStep(Challenger);

ξ ←
√

(a−b)2log(2/α)
βt ;

if Challenger.Fitness < population[μ].Fitness - 2ξ then
abort evaluation;

if Challenger.Fitness > population[μ].Fitness then // Replace last (i.e.

worst) individual

population[μ] ← Challenger;

population[μ].Fitness ← Challenger.Fitness;

Sort(population);

Algorithm 4: The (μ + 1) on-line evolutionary algorithm.

132

6.3. The (μ + 1) on-line Evolutionary Algorithm

6.3.3 Racing to shorten fitness evaluations

An often heard criticism of stochastic search methods in general and evolutionary
algorithms in particular is that they are computationally inefficient because they
spend so much time evaluating poor candidate solutions. This is especially painful
in the context of on-line evolution, because the actual performance of the evolving
system (the robot’s controller, in this case) drops when these sub-optimal solutions
are evaluated.

To minimise the amount of time spent trying less than promising individuals,
Haasdijk et al. (2011b) suggested adding racing to (μ + 1) on-line. This entails
that during a new individual’s evaluation, intermediate results are compared to
the fitnesses of individuals already in the population to estimate the likelihood
that the challenger is good enough to beat the worst individual in the population
and replace it. If it is fairly certain that this challenger is going to turn out worse
than the worst in the current population, further evaluation is most likely a waste
of time with an elitist replacement scheme such as (μ + 1) on-line uses. What ex-
actly ‘fairly certain’ means is determined by two parameters α and β as described
below. At intermediate time steps during a challenger’s evaluation, its intermedi-
ate fitness Fchallenger is compared to a lower bound which depends on the current
worst fitness in the population Fworst. If the performance drops below this lower
bound, the evaluation is aborted and a new iteration of the algorithm commences,
otherwise, evaluation continues—at least until the next comparison. To estimate
the likelihood that the challenger is at least as good as the current worst in the
population, we use a modified version of the Hoeffding inequality (Hoeffding,
1963):

Fchallenger ≥ Fworst − 2ξ(t) (6.1)

with ξ(t) calculated as follows:

ξ(t) =

√
(Fa − Fb)2log(2/α)

βt
(6.2)

with Fa and Fb the best and the worst fitness values of the population, respectively;
α is the significance level of the comparison. The β parameter, introduced by
Haasdijk et al. (2011b), allows more robust tuning of the comparison’s strictness
than the original bounds, where it has a fixed value of 2. Using formulas 6.1 and

133

Chapter 6. The Proof of the Pudding

6.2, an individual’s evaluation has a large likelihood of continuing in the early
stages of evaluation (high values of ξ lower the bar), but the pressure increases as
time passes.

Putting all this together – and assuming real-valued vectors as genotypes repre-
senting robot controllers – we obtain an evolutionary algorithm with the following
main components and parameters:

Evolutionary Algorithm Components

Representation Real valued vectors
Mutation Adding Gaussian noise

and self-adapting σ’s
Crossover Averaging parents
Parent selection Binary tournament
Survivor selection Replace worst on improvement

Evolutionary Algorithm Parameters

Population size μ
Crossover rate pc
Evaluation period τ
Re-evaluation rate ρ
Significance level for racing α
Strictness level for racing β

Table 6.1 – Main components and parameters of (μ + 1) on-line

6.4 Scientific Testing

For many years, so called horse-race-papers (Johnson, 2002) have dominated the
field of evolutionary computing. Researchers showed how their algorithm outper-
formed some other algorithm on some test-suite. These papers shed light on the
question ‘whether a certain algorithm instance can outperform another algorithm
instance on a particular problem’. They do not, however, indicate when or why
this is the case, nor do they give an indication of an algorithm’s performance on
other problems.

Hart and Belew (1991) noted that the fact that an algorithm performs well on a
certain problem is no guarantee that it also works on a different one. Even worse,
the fact that an algorithm with a particular set of parameter values works well on

134

6.4. Scientific Testing

a certain problem gives no indication of its performance on any other function.
This is especially painful because common parameter settings – for instance, a
population size of 100 – tend to be much less robust than assumed. In practice,
parameter values are mostly selected by conventions (mutation rate should be
low), ad hoc choices (let’s use uniform crossover), and experimental comparisons
on a limited scale (testing combinations of three different crossover rates and three
different mutation rates) rather than based on solid foundations. Until recently,
there were not many workable alternatives for such manual tuning.

However, developments over the last couple of years have resulted in a number
of automated tuning methods and corresponding software packages that enable
evolutionary computation practitioners to perform a more detailed analysis of the
algorithm, and the appropriate parameter values, without much effort.

Performance is the most straightforward and most commonly used measure of
algorithm quality. Because performance varies markedly with parameter settings,
with the problem type and even with the inherent stochasticity of evolutionary
algorithms, it is often better to consider the robustness of algorithms.

There are different interpretations of the notion of robustness in the literature.
The existing (informal) definitions do have a common feature: robustness is related
to the variance of algorithm performance across some dimension, but they differ in
what this dimension is. Below, we take a closer look at different type of robustness
considered in literature.

Problem Sensitivity In the simplest case, we test an evolutionary algorithm A on a
single problem f . Then, the performance of an instance of A (with a specific
parameter vector) can be measured as the performance of A on f . It might be
the case that A is very good at solving f , however, there can be no claims or
indications regarding its performance on other problem instances. This can
be a satisfactory result if one is only interested in solving f . However, algo-
rithm designers in general, and evolutionary computing experts in particular,
are often interested in (instances of) evolutionary algorithms that work well
on many different problems. In such cases, tests need to be performed on a
test suite consisting of many different problems f1, . . . , fn.

Parameter Influence Another popular interpretation of algorithm robustness is re-
lated to performance variations caused by different parameter settings. Most
algorithms are sensitive to parameter settings, which means that the parame-

135

Chapter 6. The Proof of the Pudding

ters need to be set carefully. An ill-chosen parameter value may cause a huge
drop in performance. Such behaviour is often undesirable, especially if the
algorithm is also sensitive to changes of the problem. In that case, a lot of
effort is needed to identify the correct parameter values for each situation.
It is then important to know how sensitive the algorithm is to each of the
parameters, in order to focus the search for good settings. If, on the other
hand, the algorithm is quite robust against changes in the problem space, a
sensitivity in the parameter space may not be a big issue. The only require-
ment is that such an algorithm is carefully tuned beforehand to identify the
“sweet spot” for parameter values; these settings will then work well for a
large range of problems.

Variance across different random seeds Evolutionary algorithms are inherently sto-
chastic. Therefore, all experimental investigations should be statistically
sound, requiring a number of independent repetitions of a run with the
same setup, but with different random seeds. This yields information about
the third kind of robustness. To what extent an algorithm’s performance
varies from one instance to the next, varying only the random seed, of course
greatly influences its applicability.

6.5 Bonesa

Bonesa (Smit and Eiben, 2011) is an iterative model-based procedure to search
noisy response surfaces where evaluations can be very expensive. Like other
search methods using surrogate models (Jin, 2005; El-Beltagy et al., 1999), it is
based on an intertwined searching and learning loop. Bonesa has been developed
for automated parameter tuning of (evolutionary) algorithms, based on ideas be-
hind REVAC (Nannen and Eiben, 2007) and Sequential Parameter Optimisation
(Bartz-Beielstein et al., 2005).

The pseudo code in Algorithm 5 describes the initialization, the two loops and
their interaction. First, M random parameter vectors are generated and tested to
obtain an initial model of the landscape for each of the problems at hand. Then,
the search and learning loops start.

The search loop is a generate-and-test procedure that iteratively generates K
new parameter vectors, pre-assesses their quality using the information gained in

136

6.5. Bonesa

for i← 1 to M do // Initialisation

archive[i] ← CreateRandomParameterVectors();

archive[i].RawQualities[] ← RunAndEvaluate(archive[i], problems);

i ← M ;

while maximum budget not reached do // Intertwined Searching and Learning

i ← i + 1;

archive.PredictedQualities[] ← KernelFilterMean(archive, problems);

archive.PredictedVariances[] ← KernelFilterVariance(archive,

problems);

for j← 1 to K do // Generate Candidates

candidates[j] ← DrawFromArchiveDensity(archive) ;

candidates[j].PredictedQualities[] ←
KernelFilterMean(candidates[j], problems);

candidates[j].PredictedVariances[] ←
KernelFilterVariance(candidates[j], problems);

candidates[j].PredictedParetoRank ←
CalculateParetoRank(candidates[j], archive);

Sort(candidates, candidates.PredictedParetoRank);

archive[i] ← candidates[1] ;

archive[i].RawQualities[] ← RunAndEvaluate(archive[i], problems);

for j← 1 to i do // Create termination set

archive[j].ParetoRank ← CalculateParetoRank(archive[j], archive) ;

if archive[j].ParetoRank == 0 then
terminationset ← { terminationset, archive[j] };

Algorithm 5: The Bonesa algorithm.

the learning loop, and finally tests the most promising vector by executing a run
with these specific parameter values. In its turn, the learning loop uses the infor-
mation obtained about the quality of the tested parameter vector and all previously
tested ones to develop a model of the performance surfaces. These performance
surface models can then be used to pre-assess the K generated parameter vectors
in the next search loop. Notice the two-way interaction between the two loops:
information generated by the search loop is used to update the model, while esti-
mations based on the model direct the search.

Pre-assessing the vectors with the model rather than blindly testing them great-
ly reduces the computational costs of tuning parameters. However, establishing
the performance of the parameter vectors that do pass the model-based test is
still computationally expensive. Namely, the result of a single run is often not
representative due to the stochasticity of the evolutionary algorithm. Therefore,

137

Chapter 6. The Proof of the Pudding

several expensive runs of the evolutionary algorithm have to be executed in order
to establish the real performance of a certain parameter vector; this still causes
high tuning costs.

To reduce the noise caused by the stochasticity with the least computational
costs, Bonesa uses a kernel filter. This is a common method of reducing noise in
spatial data that does not depend on repetitive testing of the same point but uses
proximity data (Haralick and Shapiro, 1992; Branke et al., 2001) to smooth out
the noise. This allows Bonesa to test every parameter vector only once and still
produce statistically sound results.

Compared to other currently known iterative model-based search procedures,
Bonesa distinguishes itself by its multi-objective approach. Rather than optimising
an algorithm’s parameters for a single problem or on a weighted sum of perfor-
mance values (Smit and Eiben, 2010; Pedersen and et al., 2008), Bonesa uses the
Pareto-strength approach from SPEA2 by Zitzler et al. (2001) to optimise param-
eters for a whole range of problems in one go. Therefore, one is ultimately able
to select not only the best parameter vector for a single problem, but also for a
class of problems. In order to determine dominance, one important change has
been made with respect to SPEA2: since the distributions of performance need to
be compared rather than a single value, the calculation of dominance is based on
significance testing. A certain parameter vector z̄ dominates another parameter
vector ȳ if and only if its performance is significantly better (using a Welch-T test)
on at least one problem, and not significantly worse on the others. This means
that, also in case of single-problem tuning, the result is a set of ‘best’ vectors rather
than a single one.

For a more detailed description of the Bonesa algorithm and toolbox we refer
to Smit and Eiben (2011).

The most important feature of model-based tuners such as Bonesa is that rather
than delivering only the ’perfect’ parameter settings for each (set of) problem(s),
they can analyse the complete spectrum of performance, robustness and param-
eter interactions, allowing for much deeper insights into the algorithm and its
behaviour.

6.6 Experimental Set-up

We use Bonesa to optimise the following (μ + 1) on-line parameters:

138

6.6. Experimental Set-up

α The significance level of the comparison for racing (see Sec. 6.3.3). α can range
from 0 to 1, with 0 disabling racing altogether.

β The second parameter that regulates the strictness of the racing comparisons.
This can range from 0.5 to 2.0.

σ Or, rather, the choice of σ adaptation scheme. In (μ + 1) on-line, new individ-
uals are mutated using a gaussian mutation with step-size σ. We consider a
number of ways to update σ: two ‘standard’ self-adaptive schemes, where ei-
ther a single σ for the whole genome or multiple σs, one for each real-valued
gene in the genome, evolve as additional part of the genome as described by
Eiben and Smith (2008, pp. 75–77). The third scheme updates σ using the de-
randomised approach proposed by Ostermeier et al. (1994), who specifically
deem this method useful with small populations. In the result plots, these
schemes are identified as ’ss’, ’ms’ and ’dr’, respectively.

To level the playing field among genomes, (μ + 1) on-line re-evaluates ge-
nomes in the population with a given probability ρ. This means that every
evolutionary cycle one of two things happens: either a new individual is
generated and evaluated (with probability 1− ρ), or an existing individual
is re-evaluated (with probability ρ). To ensure that re-evaluation efforts are
spent more or less on those individuals that actually become parents, the
individual to be re-evaluated is chosen by a binary tournament from the
whole population.

ρ The probability that an existing individual is re-evaluated rather than that a new
individual is generated and tested. ρ can range from 0 to 0.6.

τ The length of an episode during which a controller is given the run of the robot
to evaluate it. To (re-)evaluate an individual, the genome is expressed in
the controller (the weights of the neural net are set to those specified in the
genome), which then determines the robot’s actions over a certain number – τ

– of discrete time-steps, unless evaluation is aborted by the racing procedure.
τ can range from 100 to 1200.

Pc The crossover rate. The likelihood of performing recombination of two parents
when producing a new individual. Ranges from 0 to 1.

139

Chapter 6. The Proof of the Pudding

The population size μ has been fixed at a value of 10 in these experiments.
There are two reasons not to include μ as a tunable parameter: firstly, μ cannot be
very large: in the kind of robotic hardware we consider, memory is at a premium,
so there is simply no room for large populations. Moreover, a large population
would necessitate a longer episode of testing the initial population, which is not
desirable in the kind of on-line adaptation we envisage because it would mean very
poor performance for a fairly long period with all its attendant risks. Secondly,
we have seen that, within these limitations, μ seems not to be a very influential
parameter (Haasdijk et al., 2010).

6.6.1 Four Tasks

To understand how (μ + 1) on-line behaves across a range of problems, we test it
on four tasks, all commonly found in evolutionary robotics literature: phototaxis,
fast forward (or obstacle avoidance), collective patrolling and locomotion.

Even with Bonesa’s optimisations to reduce the number of tests, this type of
tuning is not feasible with real robots: it still requires hundreds of experiments
to generate a reliable surrogate model. Therefore, we conducted our experiments
in simulation using the Webots simulatori. Note that we do not advocate tuning
as extensively as this for every deployment of an evolutionary algorithm, but we
use tuning to help us understand algorithm behaviour. This understanding will
allow for more focussed tuning for specific deployment or guide the development
of parameter control algorithms to adapt parameters on-line.

In the phototaxis, fast-forward and patrolling experiments, the robots are simu-
lated e-pucks, controlled by simple perceptron neural networks and the evolution-
ary algorithms determine the weights of the connections between the neurons. The
perceptrons use a tanh activation function and receive inputs from light, distance
and pheromone sensors (depending on the task) and have two output neurons that
drive the wheels. All inputs are normalised in the [0, 1] interval before being fed
to the neurons. The outputs governing the e-puck wheel speeds are interpreted as
fraction of the full speed for the motors. In each of these experiments, we simu-
late 10 robots in a single arena. In the phototaxis task, the robots do not interact
in any way. In the fast-forward task, they pose additional, moving, obstacles for

ihttp://www.cyberbotics.com/

140

6.6. Experimental Set-up

each other. The patrolling experiment adds communication between robots by
spreading pheromones.ii

The locomotion experiment is based on that described by Christensen et al.
(2010); it simulates 5 roombot modules that are linked to form a quadruped shape.
This task requires the most intricate level of collaboration: the modules are phys-
ically linked and have to synchronise their movements to obtain an effective gait.
In this experiment, the controller is not a neural network, but a central pattern
generator.

In all cases, a single trial runs for 10,000 seconds of simulated time; we use
time rather than number of evaluations or generations because we are interested
in the performance of the robots in real time, regardless of how that is achieved by
the evolutionary algorithm. As mentioned, τ is measured in discrete time steps;
in fact, these time steps are defined by the simulator calling the robots controller
at periodic intervals. The length of a single time step (in simulated time) is 50 ms
for the the phototaxis, fast-forward and patrolling experiments. The more intricate
physics of the locomotion simulations require a lower settings of 16 ms. Note
that the settings for τ, α and β influence the number of evaluations performed
per timespan: lower values of τ obviously increase the number of evaluations per
timespan, just as increasing the strictness of racing comparisons (by increasing α

and β). We are primarily interested in the actual performance of robots, not in the
performance of the best individual in the population at any given time.

Actual performance is measured as the average performance during a time-
span, irrespective of how many controllers may have been activate during that
time. In these experiments we measure actual performance over the last 6,000
seconds of simulated time. For the phototaxis, fast-forward and patrolling ex-
periments, this yields ten measurements for each trial (one per robot) as input for
Bonesa. For the locomotion experiment, only a single value is reported because the
distance travelled by the compound robot already combines the information for all
constituent modules. The exact fitness functions are obviously task dependent and
are described with each task, below.

Bonesa can be used for both single-problem tuning and multi-problem tun-
ing. When doing multi-problem tuning, it uses the Pareto-strength approach from
SPEA2 (Zitzler et al., 2001) to optimize on a whole range of different problems in

iiSource code for the algorithm as well as Webots configuration files for the experiments de-
scribed here is available at http://www.few.vu.nl/~ehaasdi/papers/MuPlusOne-2012

141

Chapter 6. The Proof of the Pudding

one go. Since such a method terminates with a whole set of parameter-vectors, an
experimenter can choose which of those suits his needs best. For example, certain
parameter vectors could be well-suited for solving a subset of problems, rather
than only a single problem. Most of these “silver bullets”, would not have been
found with a single-problem approach, since they are often outperformed by a
true “specialist” on the problem. Often, “silver bullets” are much more interesting
than true specialist because they lead to much more robust algorithm behaviour.
Finally, such a multi-problem approach can be used to identify similar problems.
If we assume that problems that can be solved with the same parameter-values can
be regarded as “similar”, we can try to determine if there are any characteristics
that they have in common. Such knowledge can then be reused when facing new
problems.

Phototaxis Seeking out or tracking a light source is a very straightforward task
that has been addressed by many researchers in evolutionary robotics. The task
is frequently combined with other tasks such as goal homing (Tuci et al., 2002)
and flocking (Baldassarre et al., 2002). In our comparison, we use the simplest
version of phototaxis: robots only have to move towards a stationary light source
and then remain as close to it as possible. In the phototaxis task, the robots use
eight light sensors to detect light intensity and base their behaviour on that. The
fitness function simply rewards intensity of received light:

f =
τ

∑
t=0

8
max
i=1

(lightSensori) (6.3)

where lightSensori is the normalised input from a light sensor between 0 (no light)
and 1 (brightest light).

The arena is an empty (apart from the ten robots) square with a light source
in the middle: we ignore collisions between robots in these experiments, so the
robots’ distance sensors can be ignored.

Fast Forward Moving in as straight line as possible as fast as possible while
avoiding obstacles – also known as obstacle avoidance – is maybe the most com-
monly tackled task in evolutionary robotics research. In a confined environment
with obstacles this task implies a trade-off between avoiding obstacles and main-
taining speed and forward movement. The fitness function we use is based on

142

6.6. Experimental Set-up

Experiment details

Task phototaxis
Robot group size 10
Simulation length 10,000 seconds (simulation time)

Controller details

Controller Perceptron neural net
Input nodes 8 light sensors + bias
Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome length 18

Table 6.2 – Phototaxis set-up

one described by Nolfi and Floreano (2000); it favours robots that are fast and go
straight ahead:

f =
τ

∑
t=0

(vtrans · (1− vrot) · (1− d)) (6.4)

where vtrans and vrot are the translational and the rotational speed, respectively.
vtrans is normalised between −1 (full speed reverse) and 1 (full speed forward),
vrot between 0 (movement in a straight line) and 1 (maximum rotation); d indicates
the distance to the nearest obstacle and is normalised between 0 (no obstacle in
sight) and 1 (touching an obstacle).

Intermediate results sum the reward from t = 0 to the current time step; they
can then be compared with complete evaluation results after simply dividing both
results by the number of time steps used to calculate them.

Although fast forward is considered a trivial task, we added some extra dif-
ficulty by using a complicated maze-like arena (Figure 6.1(a)) with tight corners
and narrow corridors that fit only a single robot and sometimes lead to dead ends.
This arena structure, combined with the fact that multiple robots will be simulta-
neously deployed, makes the task considerably harder than most commonly seen
instances. This additional complexity is confirmed by results of baseline trials in
this arena that Karafotias et al. (2011) reported: the baseline Braitenberg controllers
invariably get stuck after a while.

143

Chapter 6. The Proof of the Pudding

Experiment details

Task fast forward
Robot group size 10
Simulation length 10,000 seconds (simulation time)

Controller details

Controller Perceptron neural net
Input nodes 8 distance sensors + bias
Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome length 18

Table 6.3 – Fast-forward set-up

Collective Patrolling An obvious real-world task for a group of autonomous mo-
bile robots is that of a distributed sensory network, where the robots have to patrol
an area as a group and detect events that occur periodically. It differs from the pre-
vious tasks since it requires some level of co-ordination: the success of the group
depends not only on the efficient movement of the individual robots but also on
the spread of the group across the arena to maximise the probability of detecting
events. Somehow, robots need to liaise so as not to patrol the same areas. To
this end, they are equipped with a pheromone system: robots continuously drop
pheromones (this is a fixed behaviour and not controlled by the evolved controller)
while sensors detect the local pheromone levels. The collective patrolling task is
described by Martinoli (1999) where controllers evolve off-line, although in that
work the approach to events is more complicated and the robots use other sensory
inputs.

The experiments for this task take place in the arena shown in Figure 6.1(b).

Pheromones are simulated as follows: the 5m× 5m arena is divided into 500×
500 cells, each with a pheromone level between [0, 2]. Every second, each robots
drops 1 unit of pheromones at the cell the robot is currently in, and a linearly
decreasing amount in nearby cells up to a range of Rp = 0.07m. Pheromone levels
decay over time at a rate of Rc = −0.024/s in each cell.
As sensory input to the controller, 4 pheromone sensors are placed at the pe-

riphery of the circular body at π
4 ,

3π
4 ,

5π
4 and 7π

4 . Each sensor detects the accu-

144

6.6. Experimental Set-up

(a) Fast forward arena (b) Patrolling arena

Figure 6.1 – Arenas for two tasks; the circles represent the robots to scale.

mulated pheromone levels of all cells in a range of 0.05m; detected levels decrease
linearly with distance from the sensor. For fitness calculation only, a similar sensor
is positioned in the centre of the robot.

The fitness function penalises pheromones presence (detected by the central
pheromone sensor) and proximity to obstacles:

f =
τ

∑
t=0

((1− p) · (1− d)) (6.5)

where p indicates pheromone presence between 0 (no pheromones) and 1 (strong-
est pheromone level) at the current location and d indicates the distance to the
nearest obstacle and is normalised between 0 (no obstacle in sight) and 1 (touching
an obstacle).

Although movement is not explicitly rewarded, it should emerge due to the
continuous dropping of pheromones and the deleterious effect of staying in a place
where the robot just dropped them. Just as in the fast forward scenario, interme-
diate results sum the reward from t = 0 to the current time step; they can then be
compared with complete evaluation results after simply dividing both results by
the number of time steps used to calculate them.

145

Chapter 6. The Proof of the Pudding

Experiment details

Task collective patrolling
Robot group size 10
Simulation length 10,000 seconds (simulation time)

Controller details

Controller Perceptron neural net
Input nodes 8 distance sensors + 4 pheromone sensors +

bias
Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome length 26
Mutation Gaussian N(0, σ)
Crossover averaging

Table 6.4 – Patrolling set-up

Figure 6.2 – Organism for the locomotion
task. Each of the five consituent modules
consists of two spheres. Each module has
three degrees of freedom: it can rotate the
two (dark and light) halves of each sphere
and it can rotate the connection between
the spheres.

Locomotion The locomotion task dif-
fers from the preceding three: it con-
cerns individual robots that are phys-
ically linked together to form an or-
ganism that to all intents and purposes
looks like a single entity. In fact, five
Roombots robots form a four-legged
organism as shown in Fig. 6.2.

Another difference is that the con-
trollers are not neural networks but
oscillators that operate the roombots’
three degrees of freedom: rotating the
two halves of each sphere and rotat-
ing the connection between the two
spheres. Each module’s controller runs
with only local communication.

These oscillators are parameterised by a common base frequency and, for each
of the three actuators, a phase shift, amplitude and offset that determine the actual
movement: ten real values in total. Our choice for the genetic representation of

146

6.7. Results

these parameters is obvious: a vector of these ten real values. Each module runs its
own, independent, (μ + 1) on-line instance to optimise the oscillation parameters.
This implies co-evolution between the modules’ controllers: they must evolve to
some common ground to synchronise their oscillations.

The fitness function is very straightforward: it simply sums the Euclidean dis-
tance travelled per time-step. As before, intermediate results can be compared
with complete evaluation results by simply dividing both results by the number of
time steps used to obtain them.

This experiment was first described by Christensen et al. (2010), who used a
non-evolutionary stochastic approximation method, SPSA, to implement on-line
adaptation. We refer to that publication for a more detailed description of the
robots and the coupled oscillator controller.

Experiment details

Task locomotion
Robot group size 5
Simulation length 10,000 seconds (simulation time)

Controller details

Controller Central Pattern Generator
Oscillator parameters phase shift, amplitude, offset for each actua-

tor, one common base frequency

Evolution details

Representation real valued vectors with 0 ≤ xi ≤ 1
Chromosome length 10

Table 6.5 – Locomotion set-up

6.7 Results

We review the experimental results in the light of three aspects of (μ+ 1) on-line’s
parameters: how problem-specific are good parameter settings, which parameters
influence task performance most and how do the parameters interact?

147

Chapter 6. The Proof of the Pudding

0.5 0.55 0.6 0.65 0.7
4.4

4.6

4.8

5
x 10

−3

fastforward

lo
co

m
ot

io
n

0.5 0.55 0.6 0.65 0.7
0.96

0.98

1

1.02

fastforward

pa
tr

ol
lin

g

0.5 0.55 0.6 0.65 0.7
0.86

0.88

0.9

0.92

fastforward

ph
ot

ot
ax

is

4 4.2 4.4 4.6 4.8 5

x 10
−3

0.96

0.98

1

1.02

locomotion

pa
tr

ol
lin

g

4 4.2 4.4 4.6 4.8 5

x 10
−3

0.86

0.88

0.9

0.92

locomotion

ph
ot

ot
ax

is

0.95 0.96 0.97 0.98 0.99 1
0.86

0.88

0.9

0.92

patrolling

ph
ot

ot
ax

is

Figure 6.3 – 2-dimensional projections of the Pareto-front. Each plot shows the perfor-
mance of all non-dominated parameter vectors from the multi-objective run on two
tasks. The horizontal and vertical dotted lines indicate the maximum performance
reached when tuning for that specific task only. Thus, points on or above/to the
right of dotted lines indicate parameter vectors found with multi-objective tuning
that match or outperform the best parameter vector found with task-specific tuning.

6.7.1 Generalism vs Specialism

The object of this chapter is not to prove that tuning leads to good results – that has
been amply illustrated by, for instance, Eiben and Smit (2011). Nevertheless, we
do look at the performance of the tuned instances of (μ + 1) on-line to compare
the results of tuning for a specific task with those of the multi-objective approach.
This provides insight into the performance penalty of using generalist parameter
settings (the result of multi-problem tuning) as opposed to specialist settings that
result from tuning specifically for each problem.

From Fig. 6.3, we can see that for three of the four tasks – fast forward, pa-
trolling and locomotion – multi-objective tuning carries no performance penalty.
In fact, the locomotion performance of the multi-objective runs is often better than
that of tuning specifically for locomotion. For phototaxis, however, the perfor-
mance is slightly worse when tuning for all these four tasks at once. This seems
to indicate that phototaxis requires parameter settings that conflict with the other
tasks, something we will see more proof of later. We also see that parameter vec-
tors that work well for the fast forward task also work well on locomotion and/or

148

6.7. Results

patrolling, but that the converse is not necessarily true: the highest performance
for patrolling is achieved by parameter vectors with indifferent performance on
the fast forward task.

6.7.2 Parameter Tolerance

task τ σ ρ Pc α β

fastforward 0.0262110 0.0000177 0.0168660 0.0253330 0.0002089 0.0001982
phototaxis 0.0000622 0.0000010 0.0002482 0.0001162 0.0000287 0.0000371
patrolling 0.0029074 0.0000082 0.0027625 0.0000057 0.0000076 0.0000088
locomotion 0.0000463 0.0000009 0.0000069 0.0000025 0.0000025 0.0000029

Table 6.6 – The variance of the best performance across possible values for each of the
parameters. The parameter with the highest variance for each problem is shown in
bold, the second highest is underlined

An important insight from tuning exercises like these is what parameters mat-
ter most for algorithm performance; for an analysis of this parameter tolerance,
we turn to Table 6.6. It shows, per problem, the variance of the best performance
over the range of each parameter. For each of the three σ-strategies, for example,
the best performance achieved with that specific strategy is noted for each prob-
lem; the variance of these performances is divided by the difference between the
best and worst achieved performance on that problem and then listed. Numerical
parameters were binned into 100 intervals prior to this calculation. Large values
therefore indicate a parameter that causes large fluctuation in performance – that
has a large impact. Using the terminology introduced by Eiben and Smit (2011),
this is a measure for both the tunability and the tolerance of a parameter.
It is clear that τ is the most sensitive parameter, since for all of the problems it

has the highest or second-highest variance. This indicates that it needs to be set
very carefully because it has the biggest influence on the performance. ρ comes in
second place, and Pc on the third place. The σ-adaptation strategy, interestingly,
has least effect on performance, except in the case of patrolling.

6.7.3 Parameter Interaction

Figure 6.4 shows the make-up of non-dominated parameter vectors in pairs of pa-
rameter values. For single-task experiments (plots 6.4(a) to 6.4(d)), non-domination

149

Chapter 6. The Proof of the Pudding

(a) fast forward

0 0.5 10 0.1 0.20 0.02 0.04ss ms dr100 200 300

1

1.5

2

0

0.5

1

0

0.05

0.1

0.15

0.2

0

0.01

0.02

0.03

0.04

ss

ms

dr

τ

σ

ρ

α

β

Pc

(b) phototaxis

0 0.5 10 0.5 10 0.5 1ss ms dr0 1000 2000

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

0

0.5

1

τ

σ

ρ

α

β

Pc

ss

ms

dr

(c) patrolling

0 0.5 10 0.5 10 0.02 0.04ss ms dr100 200 300

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

0

0.01

0.02

0.03

0.04

τ

σ

ρ

α

β

Pc

ss

ms

dr

(d) locomotion

0 0.5 10 0.5 10 0.5 1ss ms dr0 1000 2000

0

0.5

1

1.5

2

0

0.5

1

0

0.5

1

0

0.5

1

ss

ms

dr

τ

σ

ρ

α

β

Pc

(e) multi-objective

0 0.5 10 0.5 10 0.5 1ss ms dr0 1000 2000

0

1

2

0

0.5

1

0

0.5

1

0

0.5

1

τ

σ

ρ

α

β

Pc

ss

ms

dr

Figure 6.4 – Non-dominated parameter vectors matrices. Each matrix details the non-
dominated parameter vectors for an experiment. A cell in one of the five matrices
shows two entries of each non-dominated parameter vector, for instance τ vs. ρ in
the first column, third row. Each dot indicates a combination of values that occurs
in the non-dominated set.

150

6.7. Results

is defined as not performing statistically worse (using a Welch-T test with α = 5%)
than the best parameter vector found. For the multi-objective results in Fig. 6.4(e),
Pareto dominance is used, in which “better” and “worse” is replaced with “signif-
icantly better” and “significantly worse”.

Each dot represents a pair of values in a non-dominated vector; the top-left
plot in each matrix, for instance, shows combinations of σ and τ; the dots’ vertical
position denotes the σ control scheme (single-step self-adaptive (ss), multi-step
self-adaptive (ms) or the derandomised approach (dr)), their horizontal position
shows the τ value.

As an example, consider Fig. 6.4(d). In the cell that shows combinations of
τ and σ, we see that σ = 0 is much more prevalent than other values and that
the non-dominated vectors combine that value with low values of τ. This means
that, although it hardly influences the best possible performance level that can be
reached (cf. Table 6.6), it does influence the sensitivity of the other parameters.

Fig. 6.4(d)’s plot for Pc vs α shows a rectangular region that contains the ma-
jority of dots; this indicates that no interaction between these two parameters was
found and they can therefore be set to optimal values independently. This con-
trasts with a cell like that of ρ and α in Fig. 6.4(a), which shows interaction: there,
if ρ is low, α may have any value and vice versa.

The results from the fast forward task in Fig. 6.4(a) show interaction between
ρ and the racing parameters α and β: in those vectors where racing is less strict
(low α and β), re-evaluation is all but turned off (although ρ is never very high for
this task). There are similar interactions between racing and crossover with low
values of α and β occurring only when Pc is almost zero. For this task, the strategy
for updating mutation step-size seems immaterial. Note that the values for τ are
very low: even the highest values are less than 300, while the full range extends to
1200. Within this relatively small range of τ values, there is an interesting pattern
of interaction with ρ: the triangular shape of the region containing the value pairs
seems to indicate a minimum number of new evaluations: if τ is lightly higher, ρ

is less as if to compensate and vice versa.

Phototaxis (Fig. 6.4(b)) is by far the easiest task that the robots have to learn
as borne out by the number of different non-dominated vectors: many parameter
settings lead to near-optimal behaviour. It is the only task that seems to require
– or should we say allow – lengthy evaluations (note that the scales differ from

151

Chapter 6. The Proof of the Pudding

problem to problem). Again, there is evidence of interaction between crossover
and racing: racing may be almost off (low α), but only when Pc is high.

The patrolling task (Fig. 6.4(c)) is the first to show a clear preference when
it comes to σ-adaptation schemes: the derandomised approach does not occur in
the non-dominated set. In the cases where multi-step adaptation is selected, the
crossover rate is very low. The results for this task show an interaction between τ

and ρ similar to that for fast forward: if one is high (within the small range that
occurs in the non-dominated vectors), the other is low.

The locomotion task is the hardest of the four tasks and it is hard to distinguish
any interactions from Fig. 6.4(d). It is clear, though, that τ and ρ are mostly low,
that racing is quite strict and that the preferred σ-adatation scheme is single-step
self-adaptation.

Figure 6.4(e) shows the non-dominated parameter vectors when optimising set-
tings for all four tasks at the same time. Here, we see a strong preference for strict
racing, but only if Pc is low. Although there are far fewer points with higher
crossover probabilities, there seems to be a trend to lower values for α and β as
Pc increases. All three σ-adaptation schemes occur, but the derandomised scheme
seems to require very specific settings for the remaining parameters: the dots for
dr are very closely clustered around specific values for the other parameters.

6.8 Discussion

For all tasks except the easy phototaxis task, the best parameter settings tend to-
wards low values for the re-evaluation rate ρ and evaluation length τ and towards
settings that imply strict comparisons for racing (high α and β). These settings all
indicate that it is preferable to try many points in the search space and not dwell
too much on the effects of noisy or unfair evaluations.

From all this, one might conclude that re-evaluation is not a worthwhile feature
of (μ + 1) on-line. This seems at odds with the findings presented by Bredeche
et al. (2009), where re-evaluation was shown to be beneficial in e-pucks evolving
controllers for the fast-forward task. However, the tests there were conducted with
μ = 1, so the population could not as easily recover from genomes that were
unluckily evaluated as very poor. Also, our experiments did not consider dynamic
environments where higher population diversity could be essential - which in turn
might imply a need for higher re-evaluation rates.

152

6.8. Discussion

It is possible that unfair evaluations pose less of a problem in our experiments
because the influence of an unrealistically high evaluation is limited: an individ-
ual that actually performs quite poorly may become part of the population, but
enough properly good individuals remain to make sure that sufficient good off-
spring is generated. If this ‘lucky’ individual is selected as parent, its offspring will
be cut short by racing (hence the high values for α and β) and so not even have last-
ing impact on the robot performance. This may also explain why Pc is set to low
values: crossover increases the likelihood of such a bad individual contaminating
the offspring of good individuals. Moreover, crossover acts as a macro-mutation
(Jones, 1995), so low Pc values lead to a lower population diversity as illustrated
in Fig. 6.5. This increases the likelihood that when a good individual is replaced
unfairly with a bad one, a copy or at least a very similar individual remains to
continue the bloodline.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

D
iv

er
si

ty

very high crossover rate

very low crossover rate

Figure 6.5 – Average population diversity over time for 10 runs of the fast forward
task with low and with high Pc. Although the difference is not spectacular, a high
crossover rate seems to increase diversity, suggesting macro-mutation effects.

We have seen that the phototaxis task requires parameter settings that conflict
with those for the other tasks. We can only hypothesise what makes phototaxis
so different – possibly the fact that it is so easy to solve. Be that as it may, we

153

Chapter 6. The Proof of the Pudding

can certainly conclude that there is no ‘silver bullet’ parameter vector that yields
optimal (μ + 1) on-line performance for all tasks.

Let us restate the vision that underlies our research into on-line, on-board evo-
lutionary algorithms such as (μ + 1) on-line: it is that of robots autonomously
adapting to any circumstances, particularly ones that we cannot foresee. Without
a ‘silver bullet,’ this requires robust control schemes that allow (μ + 1) on-line or
similar algorithms to change their parameters on the fly and so ensure universal
adaptability.

6.9 Conclusion

In this chapter we investigated an evolutionary algorithm for developing robot
controllers on-the-fly. Our study offered innovations in two different dimensions,
algorithmically as well as methodologically. The (μ + 1) on-line evolutionary al-
gorithm is encapsulated within each individual robot, thus enabling the robots
to evolve their controllers independently from each other. (μ + 1) on-line has a
number of essential properties: 1) it relies on a population of μ individuals that
produce one child per generation, 2) it uses a time-sharing scheme to evaluate the
fitness of individuals (robot controllers), 3) it allows for re-evaluation to reduce
noise, 4) it can self-adapt the mutation parameters and the length of the evalu-
ation period. Our experiments showed that this algorithm can make the robots
develop appropriate controllers in a number of tasks, ranging from ‘simple’ indi-
vidual tasks (obstacle avoidance) through swarm tasks with light coupling between
robots (patrolling) up to a task where robots are very strongly coupled (organism
locomotion).

Our experimental analysis of (μ + 1) on-line showed that:

− It seems preferable to try many alternative solutions and spend little effort
on refining possibly faulty assessments;

− There is no single combination of parameters that performs well on all prob-
lem instances, indicating a need for on-line parameter control schemes to
achieve robust autonomous adaptivity;

− The most influential parameter of this algorithm – and therefore the prime
candidate for a control scheme – is the evaluation length τ.

154

6.9. Conclusion

These conclusions identify issues that warrant further research: firstly, there
is an apparent need for control schemes, in particular for the very influential τ

parameter which defines the length of evaluations. Secondly, we hypothesise that
re-evaluation is not needed with even as small a population size as 10; this should
be investigated further, especially in circumstances where the environment and/or
task is dynamic. As we already noted in Section 6.1, we cannot expect the results
we find in our simulated trials to persist unaltered when (μ+ 1) on-line is applied
in real robots. In that light, our results serve as a precursor for more focussed
experiments to be conducted with real robots in subsequent research.
Methodologically, we deliberately deviated from the conventional horse-race

approach: rather than just testing the algorithm and reporting the performances
(perhaps comparing them to some benchmark), we adopted the scientific testing
approach. This approach aims at “learning about your algorithm”, rather than
“testing your algorithm” and emphasises the analysis of robustness and parameter
interactions. To this end, we used an automated parameter tuning method called
Bonesa that is specifically designed for this purpose. Through scientific testing,
we obtained valuable insights into (μ + 1) on-line: which parameters have the
most profound impact on the robots’ performance in a variety of tasks, which
parameter settings work well in what kind of task and which settings (if any)
work well overall.
Maybe the most important conclusion from this research is a methodological

one: analysing the make-up of the non-dominated parameter vectors as provided
by Bonesa yields tremendous insight into the tuned algorithm. This insight can
help us formulate new research questions and identify possibilities for improve-
ment of the algorithm. These results of tuning are much more valuable than merely
finding the best possible setting for some parameter on a particular problem or
even on a range of problems.

155

Tous pour un, un pour tous

Alexandre Dumas

7
United We Stand, Divided We Fall

Distributed and Hybrid Approaches

The previous two chapters detailed the development of the (μ + 1) on-line al-
gorithm, which embraces the encapsulated approach and runs an entire, self-
sufficient algorithm inside each individual robot without referring to any other
robots. Viewing a collective of robots from the perspective of population-based
adaptive systems introduced in chapter 3, such encapsulated evolution equates
to individual learning. The fact that adaptation occurs through an evolutionary
process is somewhat confusing, but when we view each robot as an individual
in a population of agents, it is clear that they learn only individually, in splendid
isolation.

An obvious question, then, is how such isolated adaptation compares to the
more collaborative distributed and hybrid schemes – the fact that we performed
many (μ + 1) on-line experiments with multiple robots shows that this question
was on our mind from the outset. Distributed evolution equates to social learning
in chapter 3’s framework, while the hybrid variant combines individual and social
learning (by combining distributed and encapsulated evolution).

157

Chapter 7. United We Stand, Divided We Fall

Section 7.1 is the result of our first efforts towards this end. It reports on the
implementation of a distributed algorithm, edea, experimentally evaluates edea
using a number of well-known tasks in the evolutionary robotics field to deter-
mine whether it is a viable implementation of on-line, on-board evolution. Finally,
it compares edea to (μ + 1) on-line in terms of (the stability of) task performance
and the sensitivity to parameter settings. The Experiments show that edea pro-
vides an effective method for on-line, on-board adaptation of robot controllers.
Compared to (μ + 1) on-line, there is no clear winner in terms of performance,
but in terms of sensitivity to parameter settings and stability of performance edea
seems to improve significantly on its encapsulated counterpart.
Section 7.2 investigates another distributed implementation based on EvAg, a

peer-to-peer evolutionary algorithm introduced by Laredo et al. (2010). Again,
this is experimentally compared with the (μ + 1) on-line algorithm. We find that
distributed on-line on-board evolutionary algorithms that share genomes among
robots such as our EvAg implementation effectively harness the pooled learning
capabilities, with an increasing benefit over encapsulated approaches as the num-
ber of participating robots grows.
Section 7.3 considers a hybrid adaptation of the EvAg-based algorithm intro-

duced in section 7.2. The hybrid approach implies a similarity to the island model
as found in parallel evolutionary algorithm literature, and one of the issues in that
field is that of migration policies: which individuals are exchanged between is-
lands? We experimentally compare different migration policies in the context of
hybrid on-line evolutionary robotics, and find that Araujo and Merelo’s multikulti
algorithm (2011) yields the best results by a narrow margin.
The final section of this chapter, section 7.4, takes the research in a different di-

rection from earlier experiments. It considers an open-ended variant of evolution,
reminiscent of artificial life experiments, for instance the poisonous food experi-
ments from chapter 3. There is no explicit task set for the robots: they only have
to maintain their (virtual) energy by charging regularly. They do this using the by
now well-known EvAg-based algorithm to evolve controllers that amass energy. It
is also different because it considers the aggregation of robot modules into ‘organ-
isms’ that consist of multiple robotic modules that are physically connected. The
environment of the robots is set up so that forming an organism is beneficial, but
the reward is indirect: it becomes easier to gain energy. Experiments show that
this does result in the emergence of multi-cellular robotic organisms.

158

7.1. Distributed On-line, On-board Evolutionary Robotics

7.1 Distributed On-line, On-board Evolutionary Ro-

botics

This section presents part of an endeavour towards robots and robot collectives
that can adapt their controllers autonomously and self-sufficiently and so inde-
pendently learn to cope with situations unforeseen by their designers.

We introduce the Embodied Distributed Evolutionary Algorithm (edea) for on-
line, on-board adaptation of robot controllers. We experimentally evaluate edea
using a number of well-known tasks in the evolutionary robotics field to determine
whether it is a viable implementation of on-line, on-board evolution. We compare
it to the encapsulated (μ + 1) on-line algorithm in terms of (the stability of) task
performance and the sensitivity to parameter settings.

Experiments show that edea provides an effective method for on-line, on-board
adaptation of robot controllers. Compared to (μ + 1) on-line, in terms of perfor-
mance there is no clear winner, but in terms of sensitivity to parameter settings
and stability of performance edea is significantly better than (μ + 1) on-line.

7.1.1 Introduction

Evolutionary computing techniques for optimisation and design have been used
in robotics for well over a decade(Nolfi and Floreano, 2000). An overwhelming
majority of the work in this field has focussed primarily on off-line evolution of
robot controllers, where the evolutionary process takes place as a separate devel-
opment phase before proper deployment of the robots and there is no subsequent
adaptation –at least by evolution– of the controllers. Evolution is orchestrated by
an overseer –an external computer– outside the robots themselves: the popula-
tion of controllers undergoes selection and variation inside this computer. Fitness
can either be evaluated in simulation (again inside this computer), or in vivo by
uploading the controller onto a real robot that uses it for a while to collect infor-

Section 7.1 was published as:

Giorgos Karafotias, Evert Haasdijk and A.E. Eiben (2011). An Algorithm for Distributed
On-line, On-board Evolutionary Robotics. In Natalio Krasnogor et al., Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2011), Pages 171–178, ACM, NY.

159

Chapter 7. United We Stand, Divided We Fall

mation on controller quality. While the latter is often referred to as ”embodied
evolution”, strictly speaking it only amounts to embodied fitness calculations; the
evolutionary operators for selection and variation are not embodied in the robots.
We advocate a radically different approach to evolutionary robotics with gen-

uine embodiment and on-line evolution. The essence of this approach is to im-
plement evolutionary operators (selection, mutation, crossover) on-board and to
evolve designs on the fly, as the robots go about their tasks (Eiben et al., 2010a). As
explained in (Haasdijk et al., 2011a), this approach offers the necessary adaptivity
in collective robotic systems to cope with a number of fundamental challenges:

− Unforeseen environments that are not fully known during the design period.

− Changing environments where the extent and/or type of the change make
the pre-designed solutions inadequate.

− Reality gap, that is, the phenomenon that off-line design is based on approx-
imations and simulations, necessitating that robots be fine-tuned to the real
operational conditions after deployment.

The essence of the problem we address here is producing/adapting robot con-
trollers on-the-fly, without humans in the loop. This problem is highly relevant in
the light of the global trend of increasing adaptivity and autonomy of computer
systems, including those running on mobile hardware.
Considering a swarm of robots, we can distinguish two approaches to on-line,

on-board evolution (Eiben et al., 2010a):

Encapsulated evolution Each robot autonomously runs an independent evolu-
tionary algorithm: each robot implements a centralised evolutionary algo-
rithm and maintains a population of genomes using some time- sharing
scheme to evaluate each controller;

Distributed evolution Each robot carries a single genome and uses that as its
controller. The population comprises of the collection of the controllers of
all robots and evolutionary operations take place in an autonomous and dis-
tributed manner by the robots interacting to exchange and recombine genetic
material.

Obviously, these approaches can be combined to yield a hybrid approach where
each robot runs an autonomous evolutionary algorithm and individual controllers

160

7.1. Distributed On-line, On-board Evolutionary Robotics

are transferred between robots, similar to the island model in parallel evolutionary
algorithms.

We introduce the Embodied Distributed Evolutionary Algorithm (edea), a new
algorithm that adopts the distributed approach, and experimentally compare it
with the (μ + 1) on-line algorithm as an exemplar of the encapsulated approach,
which was described in detail in (Eiben et al., 2010a,b; Haasdijk et al., 2010). The
first assessment of the new algorithm is based on task performance, using a num-
ber of well-known tasks in the evolutionary robotics field: phototaxis, obstacle
avoidance, and collective patrolling.

Furthermore, we note that the robustness required for the robots’ controllers
is also required for the evolutionary algorithm that adapts the controllers: it, too,
has to operate reliably under unforeseen and possibly very different conditions.
Unfortunately, the performance of evolutionary algorithms is, in general, quite de-
pendent on their settings (Eiben et al., 1999b). Hence, on-line evolutionary robotics
requires an evolutionary algorithm with robust parameter settings that perform
well over a wide range of problems, or an evolutionary algorithm that is capable
of calibrating itself on-the-fly. Therefore, we evaluate the two algorithms not only
in terms of performance, but also consider the number of parameters they have
and the sensitivity to settings for these parameters (tuneability).

A third consideration is the stability of performance: reliable robot control
requires consistently good or at least acceptable performance: a large variance in
performance implies that an algorithm may perform well in one instance only to
fail in another without any apparent difference in circumstances.

Summarising, the main objectives of this section are: 1) to introduce the edea
algorithm and to determine whether it is a viable implementation of on-line, on-
board evolution for producing robot controllers without humans in the loop, 2)
to compare the task performance of the distributed approach with the encapsu-
lated one (exemplified by edea and (μ + 1) on-line, respectively), 3) to compare
the robustness (i.e., parameter sensitivity) of the distributed and the encapsulated
evolutionary algorithms.

7.1.2 Related Work

In this section we examine on-line on-board evolution (Eiben et al., 2010a) in a bio-
inspired manner motivated by the vision of self-adaptive, reliable, self-organising

161

Chapter 7. United We Stand, Divided We Fall

and self-developing swarms of robots and artificial multi-robot organisms (Kern-
bach et al., 2010). Other work on on-line evolution of robot colonies is presented
in (Elfwing et al., 2005) that describes the evolution of controllers for activat-
ing hard-coded behaviours for feeding and mating. In (Bianco and Nolfi, 2004),
Bianco and Nolfi experiment with open-ended evolution for robot swarms with
self-assembling capabilities and report results indicating successful evolution of
survival methods and the emergence multi-robot individuals with co-ordinated
movement and co-adapted body shapes.

Watson et al. describe the notion of embodied evolution as the evolution taking
place within a population of real robots in a distributed and asynchronous manner
and report results on a resource gathering experiment (Watson et al., 2002). Al-
though their definition of embodied evolution is similar to our concept of on-line
distributed evolution, edea’s implementation is quite different from their proba-
bilistic gene transfer algorithm, in which single genes are broadcast by every robot
at a rate proportionate to its fitness. Experiments with on-line distributed evolu-
tion also appear in (Bianco and Nolfi, 2004). The (μ + 1) on-line algorithm –our
exemplar for the encapsulated approach– was reported on in (Haasdijk et al., 2010)
and (Eiben et al., 2010b). Floreano et al use encapsulated evolution in (Floreano
et al., 2002) to evolve spiking circuits for a fast forward task. Encapsulated on-line
evolution as a means for continuous adaptation by using genetic programming is
suggested by Nordin and Banzhaf (1997). An island model evolutionary algorithm
is used by Usui and Arita (2003) to evolve a fast forward behaviour. Hybrid ap-
proaches are also taken in (Elfwing et al., 2005) (island model) and (Nehmzow,
2002) (hall-of-fame approach) though in both cases evolved controllers merely ac-
tivate hard-coded behaviours.

The majority of the experimental work in the field of evolutionary robotics has
concentrated on the off-line evolution of robot controllers, e.g. (Harvey et al., 1996),
(Floreano and Mondada, 1996), (Nolfi, 1997). In many of these cases incremental
evolution is used to tackle complicated problems while co-evolution has also been
examined as a way to address complex tasks (Floreano et al., 2001). Collective
robotics settings have been addressed with off-line evolution as well: an extensive
framework is presented in (Martinoli, 1999) while application examples can be
found in (Baldassarre et al., 2002), (Potter et al., 2001) and (Marocco and Nolfi,
2006).

162

7.1. Distributed On-line, On-board Evolutionary Robotics

A recent extensive review of the literature in the evolutionary robotics field can
be found in (Nelson et al., 2009).

7.1.3 On-line, On-board Evolution

Any algorithm that implements on-line, on-board evolution has to take some un-
common considerations into account:

− On-board evolution implies (possibly very) limited processing power and
memory, so the evolutionary algorithm must show restraint concerning com-
putations, evaluations and population sizes;

− The best performing individual is not as important as in off-line evolution:
because controllers evolve as the robots go about their tasks, if a robot contin-
ually evaluates poor controllers, that robot’s actual performance will be in-
adequate, no matter how good the best individuals in the population. There-
fore, the evolutionary algorithm must converge rapidly to a good solution
and display a more or less stable level of performance throughout the con-
tinuing search;

− On-line evolution requires that the robots autonomously load and evaluate
controllers without human intervention or any other preparation: the evalu-
ation of a controller simply picks up the task where the previous evaluation
left off. This introduces significant noise in fitness evaluations because the
starting conditions of an evaluation obviously can have great impact on a
controller’s performance;

− Because the evolutionary algorithm has to be able to contend with unforeseen
circumstances, it must either be able to (self-) adapt its parameter values as
it operates or its parameters must be set to robust values that produce good
performance under various conditions.

Subsection 7.1.3.1 lists design choices specific to distributed evolutionary algo-
rithms for on-line, on-board evolution and introduces the edea as a implementa-
tion of a distributed evolutionary algorithm that takes all pertinent considerations
in its stride. Subsection 7.1.3.3 provides some details on the (μ + 1) on-line al-
gortihm that was designed to address these considerations with the encapsulated
approach.

163

Chapter 7. United We Stand, Divided We Fall

7.1.3.1 A Distributed Algorithm

In distributed implementations of on-line, on-board controller evolution, each ro-
bot contains a single genotype that it decodes into its controller and evaluates
during regular operation. The population of the evolutionary process is the ag-
gregate of genotypes held by all the robots together; selection and variation occur
through robot interactions. Distributed on-line evolution renders many standard
centralised evolutionary algorithm concepts inapplicable, specifically requiring a
different approach to selection and reproduction.

A centrally orchestrated algorithm would be possible, but it would limit the
robots’ autonomy, lead to scalability issues for large populations and introduce a
single point of failure into the system. Thus, the crucial distinction of our envi-
sioned distributed evolutionary algorithm is the lack of a central authority to guide
selection or recombination and the ability of the robots to decide autonomously
with whom and when to exchange genetic material, to generate new individuals
from it and to deploy them.

To mate –to exchange genetic controller encodings– autonomously, the robots
must identify potential partners, select one (disregarding the possibility of multi-
parent recombination) and, once offspring genetic material has been constructed,
embody it: actually run/evaluate the resulting controller on a robot, replacing that
robot’s current controller.

Partner identification For small populations –as in the experiments described
below– where all robots are constantly in communication range, the robots can
have a global view of all the group and contact random robots when interested in
mating. This does, however, not scale to large numbers of robots or to environ-
ments where only some of the other robots are within communication range. Alter-
natively, the robots could engage in some hard-coded mate locating behaviour ev-
ery so often as presented in (Elfwing et al., 2005). Obviously, this detracts from the
time robots actually spend tackling their proper tasks. Another approach relies on
incidental physical colocation with information being transmitted through some
communication channel with limited range as in the Probabilistic Gene Transfer
Algorithm (pgta) (Watson et al., 2002). While an elegant and scalable approach, it
does assume a group of robots that is densely deployed in space.

Although not used in the experiments here, edea can maintain a peer-to-peer
network (using wireless communication) where each individual has a small num-
ber of contacts and this overlay network is preserved through gossiping protocols

164

7.1. Distributed On-line, On-board Evolutionary Robotics

that maintain connectedness even in the face of massive node failures (Jelasity
and van Steen, 2002). Similar networks for structuring the population of an evo-
lutionary algorithm have been successfully employed in experiments presented
by Laredo et al. (2010). Note the similarity of this set-up to cellular evolutionary
algorithms (Tomassini, 2005).

Partner selection Once potential partners have been contacted, the robot has to
select one to mate with. Selection strategies need not be uniform: one role may
display eager behaviour (willing to mate with anyone) while another may hold a
‘picky’ stance (subjecting mating candidates to stricter criteria) – not unlike male
and female behaviour in nature. It has been speculated that such a split between
male and female behaviour is beneficial because males are forced to explore the
genotype space as a result of the females’ selectiveness (Darwin, 1871; Miller and
Todd, 1995). In a distributed evolutionary algorithm, there is no need to fix an
individual’s role one way or another: in pgta, for instance, every robot plays both
roles by constantly broadcasting its genes and at the same time evaluating received
genes before incorporating them into its own genome (Watson et al., 2002).

In edea, robots play both an eager and a selective role, on the one hand selec-
tively initiating the mating process using binary tournament while on the other
hand eagerly responding to any mate proposal. Once a candidate has been se-
lected, the initiating robot (which plays the selective role) compares its own fitness
with that of the prospective partner to weight a probabilistic decision whether or
not to press on with mating.

Embodiment Once a partner has been selected and a new genome created
using standard recombination and mutation operators, the resulting genome must
be deployed in a robot to be evaluated, replacing the current controller. Since there
is no global view of the population in edea, the new controller must replace one in
the direct neighbourhood (in terms of the overlay network) if it is to be deployed
immediately. In fact, edea replaces the genome (only one offspring is created per
mating interaction) of the initiating robot, justifying its fastidiousness during mate
selection.

7.1.3.2 The Embodied Distributed Evolutionary Algorithm

We introduce edea as an implementation of the distributed approach that follows
from these considerations.

165

Chapter 7. United We Stand, Divided We Fall

genome ← CreateRandomGenome; // Initialisation

initiating ← false;

myFitness ← 0;

for ever do // continuous adaptation

act();

age++;

fitness ← updateFitness();

if age > α then
offers ← P2PGetOffers(); // eagerly accept

for o ∈ offers do
P2PSend(o.sender, genome, myFitness);

if initiating then // selectively initiate

candidates ← P2PGetCandidates();

partner ← BinaryTournament(candidates);

if random() < candidate.Fitness
sc·myFitness then

genome ← Crossover(candidate, genome);

Mutate(genome); // Gaussian N(0, σ)
age ← 0;

initiating ← false;

else
initiating ← (random() < pc);

Algorithm 6: The edea evolutionary algorithm.

Algorithm 6 provides pseudo-code for edea, which has the following parame-
ters:

Maturation age α Before a genome can be considered in the mating process, it
must have been evaluated for at least some time α to make its fitness measure
reliable. The maturation age does not define a standard duration of evalua-
tion but rather a lower bound, as a controller may continue to be active after it
reaches age α. Adjusting the value of α affects speed of convergence because
α implements a trade-off between the reliability of fitness evaluations (long
evaluation times increase reliability) and the number of generations that can
be achieved in a fixed amount of time (short evaluation time increase the
number of evaluations).

Selection coefficient sc Once a potential partner has emerged as the winner of a
binary tournament from the neighbours of the initiator, it is selected based
on its fitness in comparison to the fitness of the initiator. This confirmation
is probabilistic and the selection coefficient sc defines how fastidious the re-

166

7.1. Distributed On-line, On-board Evolutionary Robotics

ceiver is: the probability of mating is calculated as:

f itnesscandidate
f itnessreceiver · sc

Thus, larger values for sc increase the selective pressure.

Preliminary experiments showed that the probability of initiating mating does
not have any appreciable impact on the evolutionary process, so it has been set to
a fixed value of 0.2. In large groups, however, it may perhaps be used to regulate
network load.
From (Haasdijk et al., 2010), we expect the mutation step size σ to have con-

siderable impact on the algorithm’s performance. We employ the derandomised
self-adaptive strategy (Ostermeier et al., 1994) to control this parameter during
edea runs: this has been shown to work well in similar settings with (μ + 1) on-
line (Eiben et al., 2010b).

7.1.3.3 An Encapsulated Algorithm

As benchmark, we consider an example of the encapsulated case: the (μ + 1) on-
line algorithm as studied in (Eiben et al., 2010a,b; Haasdijk et al., 2010). In an
encapsulated scheme, each robot contains an evolutionary algorithm to adapt its
controller without reference to other robots or any central authority, therefore, it is
not limited to situations involving groups of robots: it can be applied to a single
robot as well. Such an application of encapsulated on-line evolution to a single ro-
bot realises the basic notion of on-line on-board evolution: an evolutionary process
that continuously runs during deployment and task execution in order to provide
constant adaptation in a changing and unpredictable environment. The (μ+ 1) on-
line algorithm is an adaptation of the classic evolution strategy (Schwefel, 1995)
with a fairly small population generating only λ = 1 child per cyclei to save on
fitness evaluations. The (μ + 1) on-line algorithm employs standard evolutionary
algorithm operators (selection, variation and recombination) on a population of
size μ to develop a new individual. That new individual –the challenger– is then
evaluated by letting it take control of the robot for τ time steps and measuring the
robot’s task performance over that period. If the challenger’s performance proves
better than that of the worst in the population, the challenger replaces the current

iA value that would be considered extremely small by evolution strategy standards

167

Chapter 7. United We Stand, Divided We Fall

worst and the next iteration commences. To cope with noisy fitness evaluations,
(μ + 1) on-line re-evaluates genomes in the population with a given probability.
This means that at every evolutionary cycle, either a new individual is generated
and evaluated (with probability 1− ρ), or an existing individual is re-evaluated
(with probability ρ). The fitness values from subsequent (re-)evaluations of any
given individual are combined using an exponential moving average; this empha-
sises newer performance measurements and so is expected to promote adaptivity
in changing environments;

For a detailed description of and discussion on (μ + 1) on-line, refer to (Eiben
et al., 2010a,b; Haasdijk et al., 2010).

7.1.4 Experimental Assessment

To assess edea, we compare it to (μ + 1) on-line in a number of well-established
settings as described below. While having multiple robots around is not a require-
ment for the encapsulated algorithm, it is obviously essential in the distributed
case and to ensure equal circumstances, we have a group of 10 robots simulta-
neously tackling the problem in each instance. For the distributed approach, this
means that there is a single evolutionary process using 10 robots with a population
of 10 (one genotype per robot). In the encapsulated runs, there are 10 evolutionary
processes (one in every robot), each with a separate population of μ individuals.

To ensure a fair comparison, we perform a modest parameter sweep for each
algorithm in each task: multiple values are chosen for the most influential parame-
ters and the algorithm is run several times for all parameter value vectors per task.
We perform 20 repeats with different random seeds for each combination of task,
algorithm and parameter vector. With 10 robots in each run, this yields 200 obser-
vations of robot performance for each combination. The values in the parameter
sweep are chosen based on previous experience with the (μ+ 1) on-line (Haasdijk
et al., 2010) (Eiben et al., 2010b) and preliminary experiments with edea.

For each task, only the best parameter vector for each algorithm was used in
the final comparison of the performance of encapsulated and distributed evolution.
The variety of performance across parameter vectors can be seen as an indication
of each algorithm’s tuneability –the sensitivity to the parameter settings– the lower
the tuneability, the less effort one needs to spend to get the parameter values just
right.

168

7.1. Distributed On-line, On-board Evolutionary Robotics

In all experiments, the robots –simulated e-pucks in the Webots simulatorii– are
controlled by simple perceptron neural networks and the evolutionary algorithms
determine the weights of the connections between the neurons. The fitness func-
tions are obviously task dependent and are described with each task, below. The
perceptrons use a tanh activation function and receive inputs from light, distance,
pheromone and food sensors and camera (depending on the task) and have two or
three (depending on the task) output neurons that drive the wheels and LEDs. All
inputs are normalised in the [0, 1] interval before fed to the neurons. Equally, the
outputs are normalised to [0, 1] and interpreted as fraction of the full speed for the
motors and as an on/off value for the LEDs (values less than 0.5 turn the LEDs off
while larger values turn them on).

The experiments run for 10,000 seconds of simulated time; we use time rather
than number of evaluations or generations because we are primarily interested in
the performance of the robots in real time, regardless of how that is achieved by
the evolutionary algorithm.

As stated in Section 7.1.3, we are primarily interested in the actual performance
of robots, not in the performance of the best individual in the population at any
given time. Actual performance is measured as the average performance during
a time-span, irrespective of how many controllers may have been activate during
that time.

Because of the limited group size of the experiments, we do not use the gossip-
ing maintenance scheme described in Section 7.1.3.2, but randomly select potential
partners from the whole population.

The settings for the experiments are summarised in Table 7.1.iii

7.1.4.1 Phototaxis

Phototaxis –seeking out or tracking a light source– is a very straightforward task
that has been addressed by many ER researchers. The task is frequently combined
with other tasks such as goal homing (Tuci et al., 2002) and flocking (Baldassarre
et al., 2002). In our comparison, we use the simplest version of phototaxis: robots
only have to move towards a stationary light source and then remain as close to it
as possible. In the phototaxis task, the robots use eight light sensors to detect light

iihttp://www.cyberbotics.com/
iiiSource code for the algorithm as well as the experiments described here is available at http:

//www.few.vu.nl/~ehaasdi/papers/GECCO-EncapsvsDistr

169

Chapter 7. United We Stand, Divided We Fall

Experiment details

Task phototaxis, fast forward, collective patrolling
Robot group size 10
Simulation length 10,000 seconds (simulation time)
Number of repeats 20

Controller details

NN type Perceptron
Input nodes Phototaxis: 8 light sensors + bias;

Fast forward: 8 distance sensors + bias;
Collective patrolling: 8 distance sensors + 4
pheromone sensors + bias;

Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome length Phototaxis, Fast forward: 18;

Collective patrolling: 26

Fitness See task descriptions
Mutation Gaussian N(0, σ)
Mutation step-size Derandomised self-adaptive
Crossover averaging

edea settings

Maturation time α 300, 600, 1200, 1800 time steps
Selection coefficient sc 0.5, 0.75, 1.0
Partner location peer-to-peer network
Partner selection binary tournament and fitness-based probabilistic
Embodiment replace initiating parent

(μ + 1) on-line settings

Evaluation time τ 300, 600, 1200 time steps
Re-evaluation rate ρ 0.2, 0.4, 0.6
Re-evaluation strategy exponential moving average
Population size μ 6, 10, 14
Parent selection binary tournament
Crossover rate 1.0
Survivor selection replace worst in population if challenger is better

Table 7.1 – Experimental set-up

170

7.1. Distributed On-line, On-board Evolutionary Robotics

intensity and base their behaviour on that. The fitness function simply rewards
intensity of received light:

f =
τ

∑
t=0

8
max
i=1

(lightSensori) (7.1)

where lightSensori is the normalised input from a light sensor between 0 (no light)
and 1 (brightest light).

The arena is an empty (apart from the ten robots) square with a light source
in the middle: we ignore collisions between robots in these experiments, so we
can do without the robot’s distance sensors. For this simple experiment, we also
compare the performance of both algorithms against a Braitenberg (Braitenberg,
1984) controller as a baseline.

7.1.4.2 Fast Forward

Fast forward –moving in as straight line as possible as fast as possible while avoid-
ing obstacles– is maybe the most common task in evolutionary robotics research. In
a confined environment with obstacles this task implies a trade-off between avoid-
ing obstacles and maintaining speed and forward movement. The fitness function
we use has been adapted from (Nolfi and Floreano, 2000); it favours robots that
are fast and go straight ahead. Equation 7.2 describes the fitness calculation:

f =
τ

∑
t=0

(vtrans · (1− vrot) · (1− d)) (7.2)

where vtrans and vrot are the translational and the rotational speed, respectively.
vtrans is normalised between −1 (full speed reverse) and 1 (full speed forward), vrot
between 0 (movement in a straight line) and 1 (maximum rotation); d indicates the
distance to the nearest obstacle and is normalised between 0 (no obstacle in sight)
and 1 (touching an obstacle). As for phototaxis, we also compare the performance
against a Braitenberg controller as a baseline.

Although fast forward is considered a trivial task, here some extra difficulty is
added by using a complicated maze-like arena (Figure 7.1(a)) with tight corners
and narrow corridors that fit only a single robot and sometimes lead to dead
ends. This arena structure, compounded by the fact that multiple robots will be
simultaneously deployed, makes the task considerably harder than commonly seen

171

Chapter 7. United We Stand, Divided We Fall

instances. This additional complexity is confirmed by the results of the baseline
trials: the Braitenberg controllers invariably get stuck after a while (Section 7.1.5).

7.1.4.3 Collective Patrolling

An obvious real-world task for a group of autonomous mobile robots is that of a
distributed sensory network, where the robots have to patrol an area as a group
and detect events that occur periodically. It differs from the previous tasks since it
requires some level of co-ordination: the success of the group depends not only on
the efficient movement of the individual robots but also on the spread of the group
across the arena to maximise the probability of detecting events. Somehow, robots
need to liaise so as not to patrol the same areas. To this end, they are equipped
with a pheromone system: robots continuously drop pheromones (this is a fixed
behaviour and not controlled by the evolved controller) while sensors detect the
local pheromone levels. The collective patrolling task is described in (Martinoli,
1999) where controllers evolve off-line, although in that work the approach to
events is more complicated and the robots use other sensory inputs.

The experiments for this task take place in the arena shown in Figure 7.1(b).
Every Te = 50ms with probability pe = 0.0005, an event occurs at a random

location with a duration of de = 500+N (0, 2) seconds. Thus, in one run (10, 000
seconds) approximately 100 events occur and that at any time around 5 events are
active in the whole arena.

A robot detects an event whenever it comes within 0.3m of the event, so a
robot’s sensory coverage is 0.283m2. Since the arena is 25m2, a group of 10 robots
can at any moment cover at most 11% of the whole arena; conversely, a group of
stationary robots should detect around 11% of the events.

Pheromones are simulated as follows: the 5m× 5m arena is divided into 500×
500 cells, each with a pheromone level between [0, 2]. Every second, each robots
drops 1 unit of pheromones at the cell the robot is currently in, and a linearly
decreasing amount in nearby cells up to a range of Rp = 0.07m. Pheromone levels
decay over time at a rate of Rc = −0.024/s in each cell.
As sensory input to the controller, 4 pheromone sensors are placed at the pe-

riphery of the circular body at π
4 ,

3π
4 ,

5π
4 and 7π

4 . Each sensor detects the accu-
mulated pheromone levels of all cells in a range of 0.05m (with detected levels
decreasing linearly with distance from the sensor). For fitness calculation only, a
similar sensor is positioned on the centre of the robot.

172

7.1. Distributed On-line, On-board Evolutionary Robotics

The fitness function penalises pheromones presence (detected by the central
pheromone sensor) and proximity to obstacles:

f =
τ

∑
t=0

((1− p) · (1− d)) (7.3)

where p indicates pheromone presence between 0 (no pheromones) and 1 (strongest
pheromone level) at the current location and d indicates the distance to the nearest
obstacle and is normalised between 0 (no obstacle in sight) and 1 (touching an
obstacle).
This fitness function rewards covering behaviour and does not include the num-

ber of events detected, but we report the percentage of detected events as perfor-
mance (e.g., in Fig. 7.4) rather than on the fitness itself.
Although movement is not included explicitly, it should emerge due to the

continous dropping of pheromones and the deleterious effect of staying in a place
where the robot just dropped them.

(a) Fast forward arena (b) Patrolling arena

Figure 7.1 – Arenas for two tasks; the circles represent the robots to scale.

7.1.5 Results

Figures 7.2 to 7.4 compare the performance of the encapsulated (μ+ 1) on-line and
distributed edea algorithms on the various tasks, using the best performing pa-
rameter settings for that task. The graphs on the left present performance –

173

Chapter 7. United We Stand, Divided We Fall

averaged over all repeats and robots– versus time. In these plots, the performance
is scaled so that the theoretical optimum is 1. For the phototaxis and fast forward
tasks, we additionally plot performance for the Braitenberg vehicles as a baseline.

To assess the volatility of the robot’s actual performance over the course of
the experiments, we calculate the differential entropy of actual performance over
the last 20% of each run: lower entropy indicates a lower level of volatility. The
right-hand plots show average entropy (grey bars) with standard deviation (black
whisker lines) for the 20 runs with the best performing parameter vector over all
robots for both algorithms.

Far all comparisons, we test the significance of difference with t-tests at 95%
confidence.

(a) Performance vs. time

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Time (s)

F
itn

es
s

Enc
Dist
Bench

(b) Entropy (lower means more stable perfor-
mance)

Enc. Distr.
0

1

2

3

4

5

E
nt

ro
py

Figure 7.2 – Phototaxis results; edea is significantly better in terms of both perfor-
mance and stability.

Summarising these comparisons, edea performs significantly better in the pho-
totaxis and fast forward tasks and is more stable in the phototaxis task (while there
is no significant difference in stability for the fast forward task). However, (μ + 1)
on-line has significantly better performance in the patrolling task, although edea
is more stable there, as well.

For the phototaxis and fast forward tasks, the evolved controllers compare very
well to the Braitenberg baseline. Evolved phototaxis controllers match the be-
haviour of the benchmark while the evolved fast forward controllers outperform
the benchmark controller –which gets stuck in cul-de-sacs where left and right
sensory input are equal– by a considerable amount.

174

7.1. Distributed On-line, On-board Evolutionary Robotics

(a) Performance vs. time

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Time (s)

F
itn

es
s

Enc
Dist
Bench

(b) Entropy (lower means more stable perfor-
mance)

Enc. Distr.
0

2

4

6

8

E
nt

ro
py

Figure 7.3 – Fast forward results; edea performs better at this task, the difference in
stability cannot be shown to be significant.

(a) Performance vs. time

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Time (s)

P
er

fo
rm

an
ce

Enc
Dist

(b) Entropy (lower means more stable perfor-
mance)

Enc. Distr.
0

1

2

3

4

5

E
nt

ro
py

Figure 7.4 – Collective patrolling results; (μ + 1) on-line performs better, edea is
significantly more stable.

Table 7.2 shows the parameter vectors that lead to optimal or near optimal (not
statistically different from optimal according to 95% t-test) performance. Interest-
ingly, for all tasks there is at least one (near) optimal vector with every value of sc
tested. This seems to indicate that sc may be kept constant as there will always be
a value for α that will work well with it.

Table 7.3 compares the tuneability –the dependence on parameter settings to
achieve good performance– of the two algorithms by comparing the ratio of the
parameter vectors that result in near optimal performance out of all parameter
vectors that were considered. This shows that edea is more resilient when it comes

175

Chapter 7. United We Stand, Divided We Fall

to parameter tuning: a substantially higher ratio of vectors leads to near optimal
performance for two tasks, while for phototaxis the same ratio of vectors is near
optimal.

7.1.6 Discussion and Conclusion

On the whole, on-line, on-board evolution of robot controllers is a success: with
only very small populations and within short times, both edea and (μ + 1) on-
line are able to evolve good controllers for all three tasks, matching or even
outperforming benchmark performance. Although the tasks used are somewhat

edea (μ + 1) on-line
α sc μ ρ τ

Phototaxis 1800 0.5 10 0.4 300
1800 1 6 0.2 600
1800 0.75 6 0.4 300

6 0.6 1200
10 0.6 300
10 0.4 300
10 0.4 600

Fast forward 1200 0.75 6 0.6 300
1800 0.5 10 0.6 300
600 1 6 0.4 300
600 0.75

Patrolling 1200 0.5 10 0.6 300
1800 0.75 14 0.6 300
1800 1 14 0.4 300
1200 1 10 0.6 300
1800 0.5 10 0.4 300
1200 0.75 6 0.6 600

Table 7.2 – The best performing vectors are listed in bold; the remainder are vectors
whose performance is not significantly worse (according to 95% t-tests) than the
best. Settings in italics denote a parameter vector that is common for all tasks.

edea (μ + 1) on-line
Phototaxis 25% (3/12) 25% (7/27)
Fast forward 33% (4/12) 11% (3/27)
Patrolling 50% (6/12) 22% (6/27)

Table 7.3 – Tuneability comparison of edea and (μ + 1) on-line. Shows, for each task,
the percentage of parameter vectors that yield (near) optimal performance.

176

7.1. Distributed On-line, On-board Evolutionary Robotics

straightforward, these same tasks have been used for off-line evolutionary robotics
experiments that had superior resources available in terms of population size, gen-
erations and time. In that light, the success of on-line evolution as shown here is
noteworthy and we can conclude that edea does provide a successful implementa-
tion of the general idea. It is a matter of further investigation whether the on-line
algorithms tested here will scale up to more complex tasks and environments.

In terms of performance, the comparison of these implementations of the en-
capsulated and distributed approaches shows no clear winner: edea outperforms
(μ + 1) on-line for the (simpler) phototaxis and fast forward tasks, but (μ + 1)
on-line is better when it comes to patrolling. Of course, this comparison relies
on the parameter values of the evolutionary algorithms, which are determined by
our tuning process. Forced by computational limitations we only tested a small
number of different parameter values. Nevertheless, it seems safe to say that the
relative performance of the algorithms depends on the nature of the task, and the
results simply beg for a combined island model algorithm that may have the best
of both worlds.

In terms of sensitivity to parameter settings, edea does seem to be the clear
winner: even in the patrolling task, where (μ + 1) on-line performs better, edea
has the advantage that half of the tested parameter vectors were optimal while the
performance is not much (although significantly) worse than that of (μ + 1) on-
line. Moreover, substantially more effort was put into tuning (μ + 1) on-line than
edea (2 parameters and 12 vectors for edea versus 3 parameters and 27 vectors for
(μ + 1) on-line). Table 7.2 indicates that edea’s two parameters may be reduced
to one: for all tasks there is at least one (near) optimal vector with every value of
sc tested, so it seems that it is merely a matter of finding the appropriate setting
for α for some constant sc (possibly through on-line parameter control (e.g. based
on racing), making edea completely parameter-free).

One reason for edea’s success may lie in the fact that a distributed evolutionary
algorithm exploits the presence of multiple robots by effectively implementing
concurrent evaluation of the population, allowing evolution to progress rapidly in
real time. Meanwhile, the encapsulated approach can only evaluate its populations
sequentially, falling rapidly behind in terms of evolutionary steps taken.

On the other hand, the multiple instance nature of (μ + 1) on-line’s encapsu-
lated approach can offer an advantage when dealing with tasks or environments

177

Chapter 7. United We Stand, Divided We Fall

that involve competition or require various skills: here, the separate evolutionary
algorithms of robots can promote co-evolution, speciation and/or specialisation.
The advantage of the concurrent evaluation can be easily understood for the

tasks where edea shines, but the connection between the patrolling task, where
the encapsulated (μ + 1) on-line algorithm performs better, and the advantage
of co-evolution and/or speciation is not so straightforward. Here, performance
is based on the presence of pheromones –that all robots emit continuously– and
a robot must learn to move around efficiently while avoiding its own as well as
others’ pheromones to claim fresh locations. Robots that have the same strategy
for moving around are hamstrung in such a scenario: they always trip over each
other’s pheromones, exactly because they follow similar paths. Obviously, in the
distributed case, robots are more likely to have similar controllers (as they are
from the same population) than in the encapsulated case (where each controller
stems from a different, independently evolving population), and so are more likely
to follow a trodden path. In fact, the set-up here introduces a subtle form of
competitive co-evolution: although the task is a collective one, the robots actually
compete for sites in the arena to claim.
An obvious next step from this research is to try and have the best of both

worlds by merging the encapsulated and distributed approach into an island-like
model of autonomously evolving populations in each robot with individuals mi-
grating from one to another. Research in this direction is described in the next
sections.
Our conclusions need to be confirmed with more extensive experiments of in-

creased complexity –both in terms of task and controller structure. Work to this
end is underway.

178

7.2. A Peer-to-Peer Distributed Algorithm

7.2 A Peer-to-Peer Distributed Algorithm

Imagine autonomous, self-sufficient robot collectives that can adapt their con-
trollers autonomously and self-sufficiently to learn to cope with situations un-
foreseen by their designers. As one step towards the realisation of this vision,
we investigate on-board evolutionary algorithms that allow robot controllers to
adapt without any outside supervision and while the robots perform their proper
tasks. We propose an EvAg-based on-board evolutionary algorithm, where con-
trollers are exchanged among robots that evolve simultaneously. We compare it
with the (μ + 1) on-line algorithm, which implements evolutionary adaptation
inside a single robot. We perform simulation experiments to investigate algorithm
performance and use parameter tuning to evaluate the algorithms at their best pos-
sible parameter settings. We find that distributed on-line on-board evolutionary
algorithms that share genomes among robots such as our EvAg implementation
effectively harness the pooled learning capabilities, with an increasing benefit over
encapsulated approaches as the number of participating robots grows.

7.2.1 Introduction

The work presented in this section is inspired by a vision of autonomous, self-
sufficient robots and robot collectives that can cope with situations unforeseen by
their designers. An essential capability of such robots is the ability to adapt –
evolve, in our case– their controllers in the face of challenges they encounter in
a hands-free manner, “the ability to learn control without human supervision,”
as Nelson et al. (2009) put it . In a scenario where the designers cannot predict
the operational circumstances of the robots (e.g, an unknown environment or one
with complex dynamics), the robots need to be deployed with roughly optimised
controllers and the ability to evolve their controllers autonomously, on-line and
on-board.

Section 7.2 was published as:

Robert-Jan Huijsman, Evert Haasdijk and A.E. Eiben (2011). An On-line On-board Distributed
Algorithm for Evolutionary Robotics. In Jin-Kao Hao, et al., Artificial Evolution, 10th
International Conference, Evolution Artificielle, EA, 2011, Angers, France, October 24-26, 2011,
Pages 119–131, Springer-Verlag, Berlin / Heidelberg.

179

Chapter 7. United We Stand, Divided We Fall

This contrasts with the majority of evolutionary robotics research, which fo-
cusses on off-line evolution, where robot controllers are developed -evolved- in a
separate training stage before they are deployed to tackle their tasks in earnest.

When dealing with multiple autonomous robots, one can distinguish three op-
tions to implement on-line evolution (Haasdijk et al., 2010):

Encapsulated Each robot carries an isolated and self-sufficient evolutionary algo-
rithm, maintaining a population of genotypes inside itself;

Distributed Each robot carries a single genome and the evolutionary process takes
place by exchanging genetic material between robots;

Hybrid Which combines the above two approaches: each robot carries multiple
genomes and shares these with its peers.

We compare instances of each of these three schemes: the encapsulated (μ + 1)
on-line algorithm, the distributed Evolutionary Agents algorithm (EvAg) Laredo
et al. (2010) and a hybrid extension of EvAg.

One of EvAg’s distinguishing features is that it employs the newscast algo-
rithm (Jelasity and van Steen, 2002) to exchange genomes between peers (in our
case: robots) and to maintain an overlay network for peer-to-peer (robot-to-robot)
communication. Newscast-based EvAg has proved very effective for networks of
hundreds or even thousands of peers, but in the case of swarm robotics, network
sizes are likely to be much smaller. Therefore, it makes sense to compare the effi-
cacy of newscast-based EvAg with a panmictic variant where the overlay network
is fully connected.

It is well known that the performance of evolutionary algorithms to a large
extent depends on their parameter values (Nannen et al., 2008). To evaluate the al-
gorithms at their best possible parameter setting, we tune the algorithm parameters
with revac, an evolutionary tuning algorithm specifically designed for use with
evolutionary algorithms, introduced in Nannen and Eiben (2007).

Summarising, the main question we address in this section is: how do the three
algorithms compare in terms of performance and can we identify circumstances in
which to prefer one of the three schemes over the others? Secondly, we investigate
how EvAg’s newscast population structure influences its performance compared
to a panmictic population structure. Thirdly, we briefly consider the sensitivity of
the algorithms to parameter settings.

180

7.2. A Peer-to-Peer Distributed Algorithm

7.2.2 Related work

The concept of on-board, on-line algorithms for evolutionary robotics was dis-
cussed as early as 1995 in Nordin and Banzhaf (1995), with later research focussed
on the ‘life-long learning’ properties of such a system inWalker et al. (2006).

A distributed approach to on-line, on-board algorithms was first investigated
as ‘embodied evolution’ in Watson et al. (2002), where robots exchange single
genes at a rate proportional to their fitness with other robots that evolve in paral-
lel. Other work on on-line evolution of robot controllers is presented in Elfwing
et al. (2005) that describes the evolution of controllers for activating hard-coded
behaviours for feeding and mating. In Bianco and Nolfi (2004), Bianco and Nolfi
experiment with open-ended evolution for robot swarms with self-assembling ca-
pabilities and report results indicating successful evolution of survival methods
and the emergence of multi-robot individuals with co-ordinated movement and
co-adapted body shapes.

The (μ + 1) on-line algorithm – our exemplar for the encapsulated approach
– has been extensively described in Haasdijk et al. (2010) and Eiben et al. (2010b),
where it was shown to be capable of evolving controllers for a number of tasks
such as obstacle avoidance, phototaxis and patrolling. Floreano et al. (2002) uses
encapsulated evolution to evolve spiking circuits for a fast forward task. Encap-
sulated on-line evolution as a means for continuous adaptation by using genetic
programming is suggested in Nordin and Banzhaf (1997).

The distributed approach to on-line evolutionary robotics has a clear analogy
with the field of parallel evolutionary algorithms, in particular to the fine-grained
approach, where each individual in the population has a processor of its own.
The primary distinguishing factor among fine-grained parallel algorithms is their
population structure, with small-world graphs proving competitive with panmictic
layouts (Giacobini et al., 2006).

The hybrid scheme can be implemented as what in parallel evolutionary algo-
rithms is known as the island model: the population is split into several separately
evolving sub-populations (the islands), that occasionally exchange genomes. This
approach is used in Usui and Arita (2003) and Elfwing et al. (2005). A variant
where the robots share a common hall of fame is implemented in Nehmzow (2002).
As will become apparent, we take a slightly different approach where genome ex-
change between sub-populations is the norm.

181

Chapter 7. United We Stand, Divided We Fall

7.2.3 Algorithms

Autonomous on-line adaptation poses a number of requirements that regular evo-
lutionary algorithms don’t necessarily have to contend with. We take a closer look
at two especially relevant considerations.

To begin with, fitness must be evaluated in vivo, i.e., the quality of any given
controller must be determined by actually using that controller in a robot as it
goes about its tasks. Such real-life, real-time fitness evaluations are inevitably very
noisy because the initial conditions for the genomes under evaluation vary consid-
erably. Whatever the details of the evolutionary mechanism, different controllers
will be evaluated under different circumstances; for instance, the nth controller
will start at the final location of the (n − 1)th one. This leads to very dissimilar
evaluation conditions and ultimately to very noisy fitness evaluations. To address
this issue, the algorithms we investigate here implement re-evaluation: whenever
a new evaluation period commences, the robot can choose (with a probability ρ)
not to generate a new individual but instead re-evaluate an existing individual to
refine the fitness assessment and so combat noise.

The second issue specific to on-line evolution is that, in contrast to typical appli-
cations of evolutionary algorithms, the best performing individual is not the most
important factor when applying on-line adaptation. Remember that controllers
evolve as the robots go about their tasks; if a robot continually evaluates poor con-
trollers, that robot’s actual performance will be inadequate, no matter how good
the best known individuals as archived in the population. Therefore, the evolu-
tionary algorithm must converge rapidly to a good solution (even if it is not the
best) and search prudently: it must display a more or less stable but improving
level of performance throughout the continuing search.

7.2.4 (μ + 1) on-line

The (μ + 1) on-line algorithm is based on the classical (μ + 1) evolutionary strat-
egy (Schwefel, 1981) with modifications to handle noisy fitness evaluations and
promote rapid convergence. It maintains a population of μ individuals within
each robot and these are evaluated in a time-sharing scheme, using an individ-
ual’s phenotype as the robot’s controller for a specified number of time units. A
much more detailed description of (μ+ 1) on-line is given in Haasdijk et al. (2010).

182

7.2. A Peer-to-Peer Distributed Algorithm

7.2.5 EvAg

EvAg was originally presented in Laredo et al. (2010) as a peer-to-peer evolution-
ary algorithm for parallel tackling of computationally expensive problems, with
the ability to harness a large number of processors effectively. The analogies be-
tween parallel evolutionary algorithms and a swarm of robots adapting to their
environment and tasks in parallel make EvAg a suitable candidate for an on-board,
on-line distributed evolutionary algorithm for evolutionary robotics.

The basic structure of EvAg is straightforward and similar to a 1+ 1 evolution
strategy: each peer (robot) maintains a record of the best solution evaluated by
that peer up until that point – the champion. For every new evaluation a new
candidate is generated, using crossover and mutation; if the candidate outperforms
the current champion it replaces the champion.

The basic definition of EvAg leaves many decisions open to the implementer,
such as the choice of recombination and mutation operators and the details of
parent selection (other than that it should select from peers’ champions). Because
we are interested in the effects of the distributed nature of the algorithm rather
than those due to, say, different recombination schemes, we have chosen our evo-
lutionary operators to match the (μ + 1) on-line algorithm. As a result, the only
difference between EvAg and (μ + 1) on-line (with μ = 1) lies in the exchange of
genomes between robots and using a cache of received genomes rather than only
a locally maintained population when selecting parents.

In this light, the extension of regular EvAg to a hybrid form is a straightfor-
ward one: rather than maintaining only a single champion on-board, the robots
now maintain a population of μ individuals locally. With μ = 1, this implements
the distributed scheme, with μ > 1, it becomes a hybrid implementation. With the
cache of received genomes disabled, it boils down to (μ + 1) on-line, our encap-
sulated algorithm. The pseudo code in algorithm 7 illustrates the overlap between
these three implementations.

EvAg normally uses newscast Jelasity and van Steen (2002) to exchange so-
lutions efficiently while maintaining a low number of links between peers: each
robot locally maintains a cache of recently received genomes. Periodically, each
robot randomly takes one of the genomes in its cache and contacts the robot at
which that genome originated. These two robots then exchange the contents of
their cache. When needed, parents are selected from the union of this cache and
the local champion using binary tournament selection. Because Jelasity and van

183

Chapter 7. United We Stand, Divided We Fall

for i← 1 to μ do // Initialisation

population[i] ← CreateRandomGenome();

population[i].σ ← σinitial; // Mutation step size, updated cf. Eiben

et al. (2010b)

population[i].Fitness ← RunAndEvaluate(population[i]);

for ever do // Continuous adaptation

if random() < ρ then // Don’t create offspring, but re-evaluate

selected individual

Evaluatee ← BinaryTournament(population);

Evaluatee.Fitness ← (Evaluatee.Fitness +

RunAndEvaluate(Evaluatee)) / 2; // Combine re-evaluation results

through exponential moving average

else // Create offspring and evaluate that as challenger

ParentA ← BinaryTournament(pool of possible parents);

ParentB ← BinaryTournament(pool of possible parents - parentA);

if random() < crossoverRate then
Challenger ← AveragingCrossover(ParentA, ParentB);

else
Challenger ← ParentA;

if random() < mutationRate then
Mutate(Challenger); // Gaussian mutation from N(0, σ)

Challenger.Fitness ← RunAndEvaluate(Challenger);

if Challenger.Fitness > population[μ].Fitness then // Replace last (i.e.

worst) individual in population w. elitism

population[μ] ← Challenger;

population[μ].Fitness ← Challenger.Fitness;

Sort(population);

Algorithm 7: The on-line evolutionary algorithm. For (μ + 1) on-line, the pool
of possible parents is the on-board population of size μ; for both regular and hy-
brid EvAg, it is the union of individuals received from the robot’s peers through
newscast and the on-board population (with μ = 1 for standard EvAg).

Steen (2002) showed that with this update scheme, picking a genome randomly
from the cache of received genomes is all but equivalent to picking one randomly
from the entire population, this assures that the binary tournament takes place as
if the contestants were randomly drawn from the combined population across all
robots.

Earlier research showed very promising results for EvAg Laredo et al. (2010),
but these results were obtained using thousands of nodes, while evolutionary ro-
botics generally takes place with group sizes of no more than a few dozen robots.

184

7.2. A Peer-to-Peer Distributed Algorithm

To investigate if EvAg’s newscast overlay network remains efficient in these smaller
populations we evaluate not only the standard newscast-based EvAg, but also an
EvAg variant that uses a panmictic population structure where a robot’s choice of
genomes for the binary tournament parent selection is truly uniform random from
the entire population across all robots. This variant of EvAg requires full connec-
tivity among peers (robots) and is therefore not suitable for use in truly large-scale
applications. However, evaluation of the panmictic structure compared to that of
newscast is interesting, since it allows us to determine the performance penalty of
using of a peer-to-peer approach.

7.2.6 Experiments

To investigate the performance of the algorithms and their variants we conduct
experiments with simulated e-pucks in the roboroboiv environment. The experi-
ments have the robots running their own autonomous instance of (μ + 1) on-line,
EvAg or its hybrid extension EvAg, governing the weights of a straightforward
perceptron neural net controller with hyperbolic tangent activation function. The
neural net has 9 input nodes (8 sensors and a bias), no hidden nodes and 2 output
nodes (the left and right motor values for the differential drive), giving a total of 18
weights. To evolve these 18 weights, the evolutionary algorithm uses the obvious
representation of real-valued vectors of length 18 for the genomes.

The robots’ task is movement with obstacle avoidance: they have to learn to
move around in a constrained arena with numerous obstacles as fast as possible
while avoiding the obstacles. The robots are positioned in an arena with a small
loop and varied non-looping corridors (see Fig. 7.5). The fitness function we use
has been adapted from Nolfi and Floreano (2000); it favours robots that are fast
and go straight ahead. Fitness is calculated as follows:

f =
τ

∑
t=0

(vt · (1− vr)) (7.4)

where vt and vr are the translational and the rotational speed, respectively. vt is
normalised between −1 (full speed reverse) and 1 (full speed forward), vr between
0 (movement in a straight line) and 1 (maximum rotation). In our simulations,
whenever a robot touches an obstacle, vt = 0, so the fitness increment for time-

ivhttp://www.lri.fr/~bredeche/roborobo/

185

Chapter 7. United We Stand, Divided We Fall

steps where the robot is in collision is 0. A good controller will turn only when
necessary to avoid collisions and try to find paths that allow it to run in a straight
line for as long as possible.

Figure 7.5 – The
arena

We run our simulations with each robot in an arena of its own
so that they can’t get in each others’ way, although the robots
obviously can communicate across arena instances. The reasons
for this are twofold: firstly, eliminating physical interaction be-
tween the robots ensures that a robot’s performance is due to
its own actions rather than that of others around it; this allows
us a clearer view of the effects of genome exchange. Secondly,
it allows us to scale our simulations from a very small number
of robots to a very large number of robots while using the exact
same arenas; this guarantees that in those cases any change in
performance of the robots is due to their increased group size rather than a change
in environment.

We evaluate the EvAg variants with group sizes of 4, 16, 36 and 400 robots:
we hypothesise that differences in group size influence the performance of dis-
tributed and hybrid algorithms due to their facilities for genome exchange. Since
a larger group of robots is able to evaluate a larger number of candidate solutions
simultaneously, the odds of finding a successful genome are higher. EvAg is in-
tended to distribute these successful genomes across all robots, thus improving the
performance of the entire group.

Because the experiments were designed so that genome exchange is the only
possible interaction between robots in a group, the robots can have no physical
interaction. Without physical interaction and no genome exchange the average
performance of a group of 4 robots running (μ + 1) on-line would be identical to
that of a group of 400 robots doing the same. Since average performance is our
only metric for success and since for (μ + 1) on-line this metric is not influenced
by the number of robots in the experiment, we can perform experiments for (μ+ 1)
on-line for a group of 4 robots and use these results as a fair comparison to an
experiment with EvAg using 400 robots. We can therefore safely omit the costly
(μ+ 1) on-line simulations for the group sizes 16, 36 and 400 as their performance
would be the same as that of the group of 4.v

vSource code and scripts to repeat our experiments can be found at http://www.few.vu.nl/
~ehaasdi/papers/EA-2011-EvAg.

186

7.2. A Peer-to-Peer Distributed Algorithm

Rather than comparing the algorithms at identical (so far as possible) param-
eter settings, we compare the performance at their relative best possible parameter
settings after tuning as described in Sec 7.2.7. Note that, where applicable, values
of μ may vary from one experiment to the next: this does not imply that the num-
ber of evaluations is influenced as the robots have a fixed amount of (simulated)
wall-clock time in which to learn the task.

7.2.7 Evaluation with parameter tuning

It is a well-known fact that the performance of an evolutionary algorithm is greatly
determined by its parameter values. Despite this, many publications in the field of
evolutionary computing evaluate their algorithms using fairly arbitrary parameter
settings, based on ad hoc choices, conventions, or a limited comparison of different
parameter values. This approach can easily lead to misleading comparisons, where
method A is tested with very good settings and method B based on poor ones.
An recommendable alternative is the use of automated parameter tuning, where a
tuning algorithm is used to optimize the parameter values and one compares the
best variants of the evolutionary algorithms in question Eiben and Smit (2011).
This approach helps prevent misleading comparions.

In our experiments with 4, 16 and 36 robots we evaluate the performance of the
algorithms by performing parameter tuning for a fixed length of time and compar-
ing the results. We use the mobat toolkitvi to automate our tuning process. Mo-
bat is based on revac (Nannen and Eiben, 2007), which has been shown to be an
efficient algorithm for parameter tuning (Smit and Eiben, 2009). For every combi-
nation of robot group size and algorithm mobat evaluates 400 parameter settings;
each parameter setting is tested 25 times to allow statistically significant compar-
isons. Unless otherwise specified, performance comparisons were made with the
best-performing parameter setting that was found for each of the algorithms-group
size combinations.

Due to the computational requirements of tuning the parameters of very large
simulations it was infeasible to tune parameters for our experiments with a group
size of 400 robots. Instead, these experiments were performed at the parameter
settings found for the 36 robots.

vihttp://sourceforge.net/projects/mobat/

187

Chapter 7. United We Stand, Divided We Fall

Each algorithm variant has its own parameters that need tuning. These param-
eters and the range within which they were tuned are listed in Table 7.4.

Parameter Tunable range
τ (Evaluation time steps per candidate) 300 – 600
μ (Population size – for encapsulated and hybrid schemes) 3 – 15
σinitial (Initial mutation step size) 0.1 – 10.0
ρ (Re-evaluation rate) 0.0 – 1.0
Crossover rate 0.0 – 1.0
Mutation rate 0.0 – 1.0
Newscast item TTL (for newscast-based EvAg variants) 3 – 20
Newscast cache size (for newscast-based EvAg variants) 2 – group size

Table 7.4 – The parameters as tuned by revac.

7.2.8 Results and Discussion

Fig. 7.6 shows the results for the experiments for group sizes 4, 16, 36 and 400.
Each graph shows the results for (μ + 1) on-line (encapsulated), for EvAg (dis-
tributed) and for EvAg’s hybrid extension. The latter two have results for the pan-
mictic as well as the newscast variant. The white circles indicate the average perfor-
mance (over 25 repeats) of the best parameter vector for that particular algorithm
variant and the whiskers extend to the 95% confidence interval using a t-test. To
investigate how sensitive the algorithm variants are to the choice of parameter set-
tings, we also show the performance variation in the top 5% of parameter vectors,
indicated by the grey ovals. The results are normalised so that the highest perfor-
mance attained overall is 1. Note that because –as discussed above– we only ran
(μ + 1) on-line experiments with group size 4, the data for (μ+ 1) on-line are the
same in all four graphs.
The performances shown are always the average performance of the entire

group of robots in an experiment, not just the performance of the best robot: we
are interested in developing an algorithm that performs well for all robots, rather
than an algorithm that has a very high peak performance in one robot but does
not succeed in attaining good performance for the entire group. Performances are
compared using a t-test with α = 0.05.
In the scenario with four robots (Fig. 7.6(a)) the hybrid algorithm significantly

outperforms the encapsulated scheme, but it is not significantly better than the

188

7.2. A Peer-to-Peer Distributed Algorithm

(a) 4 robots

 encapsulated

1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

fit
n

es
s

best score, 95% confidence

top 5% scores

distributed hybrid

p
an

m
ic

ti
c

p
an

m
ic

ti
c

n
ew

sc
as

t

n
ew

sc
as

t

(b) 16 robots

encapsulated

1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

fit
n

es
s

distributed hybrid

p
an

m
ic

ti
c

p
an

m
ic

ti
c

n
ew

sc
as

t

n
ew

sc
as

t

(c) 32 robots

 encapsulated

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

fit
n

es
s

distributed hybrid

p
an

m
ic

ti
c

p
an

m
ic

ti
c

n
ew

sc
as

t

n
ew

sc
as

t

(d) 400 robots

encapsulated

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

fit
n

es
s

distributed hybrid

p
an

m
ic

ti
c

p
an

m
ic

ti
c

n
ew

sc
as

t

n
ew

sc
as

t

Figure 7.6 – Performance plots for various group sizes: performance is averaged over
25 repeats. Note that there was no tuning for group size 400 and hence no top 5%
parameter vectors.

distributed scheme. The differences between the distributed and the encapsulated
scheme are not significant. The same goes for the differences between the pan-
mictic and the newscast variants. All four EvAg variants show a relatively large
variation in the top-5% performances, indicating that they are more sensitive to
the quality of parameter settings than is (μ + 1) on-line.

It is surprising that the distributed scheme matches (even improves, although
not significantly) performance with the encapsulated scheme when we consider
that four robots running EvAg have access to only four (shared) genotypes, com-
pared to the 12 (isolated) genotypes that are stored by each of the robots running
(μ + 1) on-line (with μ tuned to 12).

With group size 16 (Fig. 7.6(b)), EvAg starts to come into its own: both the
distributed and the hybrid schemes outperform (μ + 1) on-line significantly, al-
though the differences among the EvAg variants are not significant at 95%. More-

189

Chapter 7. United We Stand, Divided We Fall

over, the distributed variants now perform almost as consistently as their encap-
sulated counterpart: both variation in scores for a single parameter setting and the
variation of scores in the top-5% are at the level of (μ + 1) on-line, indicating that
the distributed algorithm becomes less sensitive to sub-optimal parameter settings
as the number of robots participating in the evolution grows.

With the increase in group size from 16 to 36 (Fig. 7.6(c)) EvAg again shows
a significant performance increase and the confidence intervals and range of top-
5% values are further reduced. For the first time we see a significant difference
between the EvAg variants, with the panmictic hybrid approach performing sig-
nificantly better than the alternatives.

Finally, Fig. 7.6(d) shows the results for 400 robots. The computational re-
quirements of so large a simulation make parameter tuning infeasible; instead
we investigate the performance of the algorithms at the best parameter settings
found for the 36-robot scenario. The plot shows a large jump in performance for
the panmictic variants, a respectable increase for the hybrid newscast variant, but
little difference for the distributed newscast implementation. For all EvAg vari-
ants the confidence interval of the scores has shrunk considerably, indicating that
EvAg continues to become more reliable as the robot group size increases.

The results show that, as the group size increases, there is an increasing ben-
efit to using an algorithm such as (the hybrid extension of) EvAg rather than a
purely encapsulated algorithm such as (μ + 1) on-line. In particular, the hybrid
scheme consistently reaches the highest performance (although the difference with
the distributed scheme is rarely shown to be significant at 95%). EvAg’s panmic-
tic variants perform consistently better than its newscast-based version, but the
difference is only significant at the largest group sizes we consider. In truly large-
scale environments it would be infeasible to have a panmictic population struc-
ture; unfortunately it is especially in the large-scale 400-robot scenario that the
newscast-based EvAg lags behind its panmictic counterpart.

One possible explanation for the lower performance of the newscast-based
EvAg is that it has two extra parameters to tune (newscast cache size and the
news items’ TTL), making it more difficult for revac to find optimal parameter
settings within the 400 attempts that we allowed it. However, this does not explain
the large performance gap in the 400-robot scenario, where the same parameter
settings as in the 36-robot scenario were used. One suspect is the ‘newscast cache
size’ parameter, of which an interesting trend can be seen when looking at the

190

7.2. A Peer-to-Peer Distributed Algorithm

progression of the value across the different scenarios: as the number of robots
grows, so does the value of the cache size parameter. Earlier research on newscast
suggests that a cache size of 10 should be sufficient for very large-scale applica-
tions Jelasity and van Steen (2002), but nevertheless revac favours higher numbers,
approximately in the range of 34th of the number of robots. To see if the setting of
a cache size of 27 is sub-optimal for the 400-robot scenario we have investigated
if increasing the cache size to 300 leads to an improved performance; this turned
out not to be the case, with both cache sizes performing at the same level. This
indicates that a lack of cache space is not to blame for the gap in performance
between newscast-based EvAg and its panmictic counterpart and its exact cause
remains unknown.

7.2.9 Conclusion

In this section, we have compared the (μ+ 1) on-line on-board encapsulated algo-
rithm to a distributed and a hybrid implementation of EvAg for on-line, on-board
evolution of robot controllers. We have performed simulation experiments to in-
vestigate the performance of these algorithms, using automated parameter tuning
to evaluate each algorithm at its best possible parameter setting.

Comparing the algorithms in terms of performance, EvAg performs consis-
tently better than (μ + 1) on-line, with the effect being especially prominent when
the number of robots participating in the scenario is large. Even at the smallest
group size we considered, the distributed scheme is competitive, despite having a
population of only four individuals.

To estimate the sensitivity to sub-optimal parameter settings we have observed
the variation in performance in the top-5% of parameter vectors. We have seen that
(μ + 1) on-line is quite stable, with the top-5% close to the best performance. In
both the distributed and the hybrid variant, EvAg’s performance is quite unstable
when the group of robots is small, but becomes increasingly reliable as the group
size increases.

For large numbers of robots, the newscast population structure has a small
negative effect on the performance of the EvAg variants when compared to a pan-
mictic population structure. However, in a large-scale scenario it may be infea-
sible to maintain a panmictic population structure. In those scenarios the small
performance loss when using a newscast-based population structure may well be

191

Chapter 7. United We Stand, Divided We Fall

outweighed by the practical advantages of being able to implement the algorithm
at all.
Although we have only performed experiments with a single and quite straight-

forward task, we conclude that both the distributed and hybrid approaches to
on-board on-line evolutionary algorithms in evolutionary robotics are feasible and
provide a promising direction for research in this field.
The hybrid scheme can be preferred over the encapsulated and the distributed

case because it efficiently harnesses the opportunities of parallelising the adapta-
tion process over multiple robots while performing well even for small numbers of
robots. Although the panmictic variant does outperform the newscast-based im-
plementation for very large numbers of robots, we do not know if or how tuning
specifically for 400 robots would have influenced the apparent performance differ-
ence between newscast and panmixia. We would still prefer the former because of
its inherent scalability and robustness.
Future research should confirm our findings in different scenarios. Addition-

ally, there is research to be done regarding the study of which parameters are
influential and why certain parameter settings are more effective than others.

192

7.3. Migration Policies for Hybrid On-line Evolution of Robot Controllers

7.3 Migration Policies for Hybrid On-line Evolution

of Robot Controllers

We investigate on-line on-board evolution of robot controllers based on the so-
called hybrid approach (island-based). Inherently to this approach each robot
hosts a population (island) of evolving controllers and exchanges controllers with
other robots at certain times. We compare different exchange (migration) policies
in order to optimize this evolutionary system and compare the best hybrid setup
with the encapsulated and distributed alternatives. We conclude that adding a
difference-based migrant selection scheme increases the performance.

7.3.1 Introduction

Evolutionary robotics concerns itself with evolutionary algorithms to optimise ro-
bot controllers (Nolfi and Floreano, 2000). Traditionally, robot controllers evolve in
an off-line fashion, through an evolutionary algorithm running on some computer
searching through the space of controllers and only calling on the actual robots
when a fitness evaluation is required. To distinguish various options regarding
the evolutionary system Eiben et al. proposed a naming scheme based on when,
where and how this evolution occurs (Eiben et al., 2010a). The resulting taxonomy
distinguishes between design time and run-time evolution (off-line vs. on-line)
as well as between evolution inside or outside the robots themselves (on-board
vs. off-board). In a system comprising of multiple robots, there are three options
regarding the ‘how’:

Encapsulated: A population of genotypes encoding controllers evolves inside
each robot independently, without communication with other robots.

Section 7.3 was published as:

P. Garćıa-Sánchez, A. E. Eiben, E. Haasdijk, B. Weel and J.J. Merelo (2012). Testing
diversity-enhancing migration policies for hybrid on-line evolution of robot controllers. In Di
Chio et al., Proceedings of EvoApplications 2012: Applications of Evolutionary Computation,
Pages 52–62, Springer-Verlag, Berlin/Heidelberg.

193

Chapter 7. United We Stand, Divided We Fall

Distributed: Each robot carries a single genotype and reproduction requires
the exchange of genotypes with other robots. The evolving population is formed
by the combined genotypes of all the robots.
Hybrid: Each robot has its own locally evolving population and there is ex-

change of genotypes between robots. In terms of parallel evolutionary algorithms,
this can be seen as an island-model evolutionary algorithm with migration.
In this section we investigate aspects of the hybrid approach: we test the effects

of the migration policy (migration of the best, random, or most different individual),
the admission policy (always accept the migrant, or accept only after re-evaluation)
and the island topology (ring vs. fully connected). Furthermore, we look into these
effects for different numbers of robots (4, 16 or 36).
Specifically, our research questions are:

− Using the hybrid approach (island model), which is the best combination of
migration policy, admission policy, and island topology?

− Is this combination better than the encapsulated and distributed alternatives?

The rest of the work is structured as follows: after the state of the art, we
present the developed algorithms and experimental setting. Then, the results of the
experiments are shown (Section 7.3.4), followed by conclusions and suggestions for
future work.

7.3.2 State of the art

Migration among otherwise reproductively isolated populations has been proven
to leverage the inherent parallelism in evolutionary algorithms, not only by obtain-
ing speed-ups, but also by increasing the quality of results, since the reproduction
restrictions inherent in the division of the population into islands is a good mecha-
nism to preserve population diversity, as shown in, for instance, Cantú-Paz (2001).
To improve population diversity in an island model evolutionary algorithm, the

MultiKulti algorithm (Araujo and Merelo, 2011) takes the genotypic differences of
individuals when selecting migrants into account. It is based in the idea that the
inflow of migrants that differ from the rest of an island’s population increases
diversity and thus improves performance. An island requests a migrant from one
of its neighbours by sending a genotype that represents the population. This can
either be the the best individual (based in the assumption that when a population

194

7.3. Migration Policies for Hybrid On-line Evolution of Robot Controllers

tends to converge after a few generations, the best is a fair representation of the
whole population) or a consensus sequence (the most frequent allele in each position
of the genotype using binary genomes). In answer, an island selects the most
different genotype in either its whole population or the top individuals (the elite).
In their experiments, the islands were connected in a ring topology, with migration
taking place asynchronously. Results of the experiments performed in Araujo and
Merelo (2011) show that MultiKulti policies outperform classic migration policies
(send the best or random individuals from the population), especially with a low
number of individuals but larger number of islands. It is shown to be better to send
the consensus as a representation and that sending the most different of a well-
chosen elite (those with the best fitness) is better than sending the most different
overall.

On-line evolutionary robotics has been studied in works like Nordin and Banz-
haf (1997), where genetic programming was used to evolve a robot in real time,
and Watson et al. (2002), where several robots evolve at the same time, exchanging
parts of their genotypes when within communication range. Huijsman et al. (2011)
compare an encapsulated and a distributed version; the latter is implemented as
a variant of EvAg (Laredo et al., 2010), where each robot has one active solution
(genotype) a cache of genotypes that are active in neighbouring robots. Parents are
selected through a binary tournament in each robot’s cache. If the new solution
(candidate) is better than the active, it replaces the active solution. The work com-
pares this algorithm with a panmictic version, where parents are selected (again
using binary tournament) from the combined active solutions of all robots.

One of the peculiarities of evolutionary robotics, particularly on-line, is that
the fitness evaluations are very noisy (Haasdijk et al., 2010). The conclusions in
Araujo and Merelo (2011), however, are based on experiments with noiseless fit-
ness functions, so we cannot take these conclusions for granted in on-line evo-
lutionary robotics and we have to test the MultiKulti algorithm in our particular
setting.

7.3.3 Algorithms and Experimental Setup

We carried out our experiments with e-puck like robots simulated in the RoboRobo
simulatorvii. The robot is controlled by an artificial neural net with 9 inputs (cor-

viihttp://www.lri.fr/~bredeche/roborobo/

195

Chapter 7. United We Stand, Divided We Fall

responding to the robot’s distance sensors and a bias node), 2 outputs (wheel
speeds). Genetically, this was represented as a vector coding the network’s 18
weights. All algorithms were evaluated using the Fast Forward task and next fit-
ness function:

f =
τ

∑
t=0

(vt · (1− vr)) (7.5)

where vt and vr are the translational and the rotational speed, respectively. vt is
normalised between −1 (full speed reverse) and 1 (full speed forward), vr between
0 (movement in a straight line) and 1 (maximum rotation). Whenever a robot
touches an obstacle, vt = 0, so the fitness increment during collisions is 0. There
is more information about this function in Huijsman et al. (2011). This fitness is
noisy: a controller configuration can produce different fitness values depending
on the robot’s position in the arena when evaluation starts. The robots are placed
in a small maze-like arena (Fig. 7.8). To ensure a fair comparison across different
numbers of robots, each robot is placed in a separate instance of the arena to
avoid physical interaction between robots. Robots can communicate across arenas
instances.

In our experiments, we compare three algorithms:

Encapsulated evolutionary algorithm The encapsulated algorithm we use is
the μ + 1 on-line algorithm presented in Haasdijk et al. (2010). Here, each robot
runs a stand-alone evolutionary algorithm with a local population of μ individuals.
In each cycle, one new solution (controller) is created and evaluated. This solution
replaces the worst individual of the population if it has higher fitness. To combat
the effects of noisy evaluations, an existing solution can be re-evaluated, instead of
generating and testing a new one, depending on the re-evaluation rate ρ.

Distributed evolutionary algorithm As a benchmark distributed algorithm we
use the panmictic algorithm presented in Huijsman et al. (2011). Here, a single con-
troller is present in each robot. New controllers are created using the controllers
of two robots as parents. In each iteration, a robot randomly selects two others to
create a new chromosome by crossover and mutation. If the new chromosome is
better, it replaces the actual one.

Hybrid evolutionary algorithm This algorithm is an adaptation of the μ + 1
on-line algorithm that includes a migration mechanism to exchange genotypes
among robots (every robot is an island) as shown in Fig. 7.7. We test two migrant
acceptance mechanisms: a migrant can be added to the local population either

196

7.3. Migration Policies for Hybrid On-line Evolution of Robot Controllers

Figure 7.7 – Migration mechanism: each robot has a local population and in each
migration cycle request a different type individual from others robots’ populations.
If MultiKulti is used, then a message is sent (gray genotype) to receive the most
different (black genotype).

regardless of its fitness (to give it a chance to be selected) or only if it is better than
the worst.viii

Each experiment lasts for 50,000 evaluation steps.

In on-line evolution, the robots train on the job: this means that the robot’s
performance is not (only) determined by the best individual it stores at any one
time, but by the joint performance of all the candidate controllers it considers over
a period. Therefore, we assess the algorithms’ performance using the average of
the last 10% evaluations over all robots.

viiiSource code of the presented algorithms is available in http://atc.ugr.es/~pgarcia, under
a GNU/GPL license.

197

Chapter 7. United We Stand, Divided We Fall

As stated in Smit and Eiben (2009), an algorithm’s parameters should be tuned
to obtain (approximately) the best possible parameter settings and so ensure a fair
comparison between the best possible instances of the algorithms. We used Bonesa
(Smit and Eiben, 2011) to tune the parameters for the algorithms we investigate in
the following configurations:

− Number of robots: executions with 4, 16 and 36 robots have been performed.

− Migrant selection: select the Best, random or most different (MultiKulti) indi-
vidual as a migrant.

− Admission policy: when a new migrant arrives, it is evaluated and accepted
only if is better than the worst (no-replacement) or accepted regardless, always
replacing the worst of the population (replacement).

− Topology: migration can move between neighbours and the islands are ar-
ranged in a ring or in a random topology, which is rewired after every evalu-
ation.

Figure 7.8 –
Arena used
in the experi-
ments.

We conducted Bonesa runs for each possible combination of
these configurations to tune the settings for canonical parame-
ters (e.g., mutation step size, crossover rate) and the following
more specific parameters:

Along the canonical GA parameters (like mutation or
crossover rate) the MultiKulti parameters to study are the next:

− Migration rate: likelihood of migration occurring per eval-
uation cycle.

− Best rate: probability of representing the population with
the best individual or with a consensus sequence (average
of genes). This parameter applies only for MultiKulti in-
stances.

− Elite percentage: the size of the elite group to select the
migrant from (if 1, receive the most different of all the
population). This parameter applies only for MultiKulti
instances.

198

7.3. Migration Policies for Hybrid On-line Evolution of Robot Controllers

Population size μ was fixed to 10 individuals to isolate the interactions between
the other parameters. Figure 7.5 lists all tuned parameters and their ranges. For
the final analysis, we ran 50 iterations of each configuration with the parameters
set to those reported as optimal by Bonesa.

7.3.4 Results and Analysis

7.3.4.1 Comparing Migration Configurations

Parameter Name Range

Evaluation steps 300-600

Mutation step size 0.1-10

μ 10

Re-evaluation rate 0-1

Crossover rate 0-1

mutation rate 0-1

migration rate 0-1

elite percentage 0-1

best Rate 0-1

Table 7.5 – Parameters to tune.

The first question we asked ourselves was
“which is the best combination of migration
policy, admission policy, and island topology?”
To answer this question, we analyse the results
as reported by Bonesa for each of the configu-
rations we considered. Table 7.6 shows the best
parameters obtained for all configurations with
4, 16 and 36 robots. We discuss the results in the
following four paragraphs, each discussing the
results for one combination of admission policy
and island topology.

Replacement Admission Policy and Panmic-

tic Topology In all cases, the re-evaluation,
crossover, mutation and migration rates are

very high. Also, EliteSize is almost 1 everywhere: the migrant is selected from
almost the whole population. It also turns out that is better to send a consen-
sus sequence rather than the best individual as a representative of the population
(bestRate has low values). There is no clear trend for migration rate.

Replacement Admission Policy and Ring Topology Changing the island topol-
ogy to a ring arrangement, three settings change materially: as can be see in Table
7.6 for MultiKulti with 4 and 16 robots, the migration rate is much lower, but for
36 robots it remains very high. Also, but only for 4 robots, BestRate is higher (send
the best individual as representative, not the consensus sequence).

199

Chapter 7. United We Stand, Divided We Fall

Replacement admission policy and panmictic topology
4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST
evolutionSteps 345 310 312 310 306 425 538 561 584
stepSize 9.038 9.874 5.38 8.804 8.786 9.199 4.842 8.096 9.684

reEvaluation 0.868 0.72 0.739 0.619 0.812 0.949 0.964 0.751 0.777
Crossover 0.926 0.816 0.929 0.017 0.879 0.917 0.963 0.915 0.941
Mutation 0.943 0.977 0.936 0.98 0.839 0.909 0.937 0.923 0.938
Migration 0.809 0.989 0.958 0.987 0.499 0.993 0.956 0.988 0.567
EliteSize 0.849 - - 0.988 - - 0.995 -
BestRate 0.04 - - 0.192 - - 0.181 -

Replacement admission policy and ring topology
4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST
evolutionSteps 304 319 312 304 311 372 554 589 573
stepSize 9.29 8.149 8.769 7.008 7.37 9.953 9.465 9.307 9.94

reEvaluation 0.868 0.749 0.792 0.953 0.721 0.861 0.935 0.705 0.939
Crossover 0.999 0.983 0.96 0.83 0.955 0.455 0.996 0.848 0.991
Mutation 0.986 0.952 0.691 0.914 0.809 0.889 0.971 0.777 0.98
Migration 0.597 0.892 0.974 0.559 0.624 0.996 0.988 0.816 0.955
EliteSize 0.49 - - 0.93 - - 0.827 -
BestRate 0.862 - - 0.172 - - 0.145 -

No-replacement admission policy and panmictic topology
4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST
evolutionSteps 305 304 308 302 304 306 567 362 516
stepSize 9.895 4.04 9.547 9.731 9.146 9.8 8.832 7.526 9.988

reEvaluation 0.385 0.039 0.489 0.449 0.291 0.692 0.048 0.344 0.528
Crossover 0.828 1 0.934 0.847 0.945 0.671 0.31 0.822 0.963
Mutation 0.976 0.927 0.899 0.849 0.958 0.969 0.921 0.986 0.879
Migration 0.577 0.788 0.72 0.658 0.757 0.577 0.835 0.753 0.7
EliteSize 0.279 - - 0.716 - - 0.911 - -
BestRate 0.198 - - 0.703 - - 0.013 - -

No-replacement admission policy and ring topology
4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST
evolutionSteps 325 302 323 314 303 306 600 375 581
stepSize 9.821 9.726 9.731 9.925 8.44 9.329 9.661 9.686 9.493

reEvaluation 0.045 0.007 0.53 0.044 0.332 0.505 0.752 0.317 0.396
Crossover 0.311 0.51 0.933 0.286 0.986 0.867 0.963 0.992 0.952
Mutation 0.983 0.805 0.873 0.751 0.964 0.889 0.93 0.869 0.913
Migration 0.533 0.517 0.554 0.662 0.706 0.685 0.59 0.71 0.698
EliteSize 0.772 - - 0.952 - - 0.413 - -
BestRate 0.018 - - 0.624 - - 0.061 - -

Table 7.6 – Parameters obtained with Bonesa for all admission policies and topology
configurations.

No-replacement Admission Policy and Panmictic Topology When changing the
replacement policy a remarkable decrease can be seen in the migration rate and,

200

7.3. Migration Policies for Hybrid On-line Evolution of Robot Controllers

more importantly, the re-evaluation rate across the board. For 4 robots, EliteSize is
much lower than in all three other combinations of admission policy and topology.

No-replacement Admission Policy and Ring Topology Apart from lower mi-
gration rates for most of the policies and a drop in EliteSize for 16 robots, Bonesa
reports similar values for this combination of admission policy and topology and
the previous one. For 4 robots, EliteSize again has a high value.

7.3.4.2 Comparing Performance

Figures 7.9(a), 7.9(b) and 7.9(c) show box plots summarising 50 repeats of each
configuration, grouped by number of robots.

Although in terms of performance levels there is no clear trend it is clear
that the admission policy does have an appreciable impact: choosing the no-
replacement admission policy always leads to a marked decrease in performance
variation, with an increase of minimum performance. So we can conclude that
evaluating an immigrant and only admitting it if it outperforms the worst individ-
ual in the population leads to more consistent performance with fewer very poor
results.

Combined with the no-replacement admission policy, MultiKulti is either the
best or at a par with the best migrant selection scheme, especially as the number
of robots increases.

Finally, the ring topology shows a slight, but not always significant, drop in
performance. This may be explained by the fact that in a ring topology, good solu-
tions spread over the islands at a much slower rate than in a randomly connected
topology.

Selecting migrants randomly seems always to lead to a smaller spread in perfor-
mance than either selecting the best or the most different. Vis a vis the MultiKulti
algorithm at least, this makes sense because this specifically aims at increasing
population diversity, so a larger variation in performance is to be expected.

To conclude, we select a configuration with no-replacement admission policy,
MultiKulti migrant selection and a random island topology to compare with the
encapsulated and distributed algorithms.

201

Chapter 7. United We Stand, Divided We Fall

4 ROBOTS 16 ROBOTS 36 ROBOTS
μ+1 Distr MK μ+1 Distr MK μ+1 Distr MK

evolutionSteps 308 303 305 308 301 302 308 583 567
stepSize 9.615 4.306 9.895 9.615 5.621 9.731 9.615 8.197 8.832

reEvaluation 0.091 0.647 0.385 0.091 0.558 0.449 0.091 0.002 0.048
Crossosver 0.19 0.399 0.828 0.19 0.122 0.847 0.19 0.1 0.31
Mutation 0.978 0.908 0.976 0.978 0.86 0.849 0.978 0.606 0.921
Migration - - 0.577 - - 0.658 - - 0.835
EliteSize - - 0.279 - - 0.716 - - 0.911
BestRate - - 0.198 - - 0.703 - - 0.013

Table 7.7 – Parameters obtained with Bonesa for the encapsulated, distributed and
hybrid algorithms.

7.3.4.3 Comparing Encapsulated, Distributed and Hybrid On-line Evolution

The second question we asked ourselves is whether the optimal hybrid instance
we selected in the previous section outperforms its encapsulated and distributed
counterparts. Table 7.7 shows the settings that Bonesa reported as optimal for the
three algorithms that we compare for groups of 4, 16 and 36 robots. Note that the
optimal parameters for μ + 1 have only been calculated once: since there is no in-
teraction between robots, μ + 1’s performance and settings are independent of the
number of robots. Running 50 repeats with these settings resulted in performances
as reported in Figure 7.9(d).

Even for as small a number of robots as 4, the distributed and hybrid algorithms
both significantly outperform the encapsulated algorithm. The difference between
the algorithms that share the population across robots is only significant for 36
robots, but even there not material. The difference with the encapsulated algorithm
may lie in the exploitation of evolution’s inherent parallelism, but we think this is
also due to the increased diversity that stems from dividing the total population
across islands. This would explain the large benefit of communication even for
small numbers of robots, where the distributed algorithm actually has a smaller
total population than the individual robots with μ + 1.

Set to the best found parameters, the hybrid algorithm causes much less com-
munication overhead than the distributed algorithm: the latter shares genotypes
among all robots at every evaluation, while the hybrid algorithm has compara-
tively low migration rates (0.577, 0.658 and 0.835). This reduction of communica-
tion cost comes at no significant loss of performance, and even a significant gain
for 36 robots.

202

7.3. Migration Policies for Hybrid On-line Evolution of Robot Controllers

(a) Box plot of all hybrid configurations with
4 robots.

(b) Box plot of all hybrid configurations with
16 robots.

(c) Box plot of all hybrid configurations with
36 robots.

(d) Box plot comparing μ+ 1, distributed and
multikulti migration with replacement for 4,
16 and 36 robots.

Figure 7.9 – Box plots of executing each algorithm with the best parameters obtained
with Bonesa 50 times.

203

Chapter 7. United We Stand, Divided We Fall

7.3.5 Conclusions and future work

In this section, we compared combinations of migrant selection schemes, migrant
admission policies and island topologies in a hybrid algorithm for on-line, on-
board Evolutionary Robotics. Results show that the migrant admission policy
–which determines when a migrant is admitted into the population– is more im-
portant in performance than migrant selection or the island topology. But the most
important finding is that adding migration between robots significantly and ma-
terially increases performance. We have demonstrated that adding a difference-
based migrant selection scheme (MultiKulti) leads to optimal or at least near-
optimal performance compared to another migration mechanisms. This migra-
tion mechanism can compete with the on-line distributed algorithm, where only
an individual per robot exist, even with a lower number of data transmissions.
Our aim is to continue exploring other techniques, like a self-adaptative migration
mechanism to ask for new migrants when the population stagnates and perform
new tests for new tasks other than the Fast-Forward. New experiments with dif-
ferent number of individuals in the local population also will be carried out. Also,
further investigation will be performed in swarming and cooperation techniques
among robots, with different communication mechanisms.

204

7.4. The Emergence of Multi-Robot Organisms using On-line On-board Evolution

7.4 The Emergence of Multi-Robot Organisms using

On-line On-board Evolution

We investigate whether a swarm of robots can evolve controllers that cause aggre-
gation into ‘multi-cellular’ robot organisms without a specific reward to do so. To
this end, we create a world where aggregated robots receive more energy than in-
dividual ones and enable robots to evolve their controllers on-the-fly, during their
lifetime. We perform experiments in six different implementations of the basic
idea distinguished by the system of energy distribution and the level of advantage
aggregated robots have over individual ones. The results show that ‘multi-cellular’
robot organisms emerge in all of these cases.

7.4.1 Introduction

Swarm-robot systems and (self-)reconfigurable modular robot systems paradigms
have been invented to facilitate multi-purpose robot design. Swarm-robot systems
use large numbers of autonomous robots which cooperate to perform a task (Mon-
dada et al., 2004). Similarly, self-reconfigurable modular robot systems use many
modules to form a larger, reconfigurable, robot that can tailor its shape to suit a
particular task (Yim et al., 2007a). These two subjects have largely been studied
separately, with swarm robotics focusing on cooperating robots which do not as-
semble into an organism. Research in reconfigurable modular robotics focuses on
creating actual modules, finding suitable morphologies for a task, and reconfigur-
ing from one morphology to another.

Recently, a new kind of self-reconfigurable robots has been proposed based on
modules that are also capable of autonomous locomotion (Kernbach et al., 2009a).
In such a system, the modules can form a swarm of autonomous units as well as
a ‘multi-cellular’ robot organism consisting of several physically aggregated units.

Section 7.4 was published as:

Berend Weel and Evert Haasdijk and A.E. Eiben (2012). The Emergence of Multi-Robot
Organisms using On-line On-board Evolution. In Di Chio et al., Proceedings of EvoApplications
2012: Applications of Evolutionary Computation, Pages 124–134, Springer-Verlag,
Berlin/Heidelberg.

205

Chapter 7. United We Stand, Divided We Fall

To date, there has been very little research on self-assembly – the transition from
swarm to organism – as emergent, not pre-programmed, behaviour.

The main subject of this section is emergent self-assembly through evolution.
We are interested in the emergence of robot organisms from swarms as a response
to environmental circumstances. To this end, we design environments where or-
ganisms have an advantage over individual modules and make the robots evolv-
able. In particular, we implement an on-line and on-board evolutionary mecha-
nism where robot controllers undergo evolution on-the-fly: selection and repro-
duction of controllers is not performed by an outer entity in an off-line fashion
(e.g. a genetic algorithm running on an external computer), but by the robots
themselves (Haasdijk et al., 2010). One of the premises of our study is that we
do not include a specific fitness measure to favour organisms. Rather, we build a
system with an implicit environmental pressure towards aggregation by awarding
more energy to robots in an aggregated state. The environmental advantage is
scalable and we compare the effects of low, medium and high values.

The research questions we seek to answer are the following:

1. Will organisms evolve purely because the environment favours modules that
are part of an organism? Or, does the system need a specific user defined
fitness to promote aggregation?

2. How does system behavior depend on the level of environmental benefit?
Will organisms evolve even if the extra advantage is low?

3. What are the characteristics of the evolved organisms? How large and how
old do organisms become?

7.4.2 Related Work

7.4.2.1 Swarm Robotics

As mentioned, our work is situated between swarm robotics and self-reconfig-
urable modular robot systems. Swarm Robotics (Mondada et al., 2004) is a field
that stems from Swarm Intelligence (Bonabeau et al., 1999), where swarm-robots
often have the ability for physical self-assembly. Swarm-bots were created in or-
der to provide a system which was robust towards hardware failures, versatile in
performing different tasks, and navigating different environments.

206

7.4. The Emergence of Multi-Robot Organisms using On-line On-board Evolution

Şahin (2005) categorizes tasks for which to use swarm robots as: tasks that
cover a region, tasks that are too dangerous, tasks that scale up or down in time,
and tasks that require redundancy. In Mondada et al. (2004), the self-assembly of
s-bots allows for the navigation of crevices and objects too large for a single robot,
as well as the transport of objects which are too heavy to be transported by a single
robot.

7.4.2.2 Self-reconfigurable modular robot systems

Self-reconfigurable modular robot systems (SMRSs) were designed with three key
motivations: versatility, robustness and low cost. The first two are identical to
motivations for swarm-robots, while low cost can be achieved through economy
of scales and mass production as these systems use many identical modules. The
main advantage advocated is the adaptability of these systems to different tasks,
however most of the research in this field is still exploring the basics: module
design, locomotion and reconfiguration.

Yim et al. (2007a) gives an overview of self-reconfigurable modular robot sys-
tems, the research is mainly on creation of modules in hardware and showcasing
their abilities to reconfigure and lift other modules. Most of these self-reconfig-
urable modular robot systems are incapable of locomotion as independent mod-
ules. In recent years however, a number of SMRSs were developed that incorporate
independent mobility as a feature, for instance Wei et al. (2010); Kutzer et al. (2010);
Kernbach et al. (2009a).

The symbrion project, of which this research is part, develops its own SMRS,
exploring two alternatives for hardware, as presented by Kernbach et al. (2009a).
Both versions are independently mobile and so can operate as a swarm, both also
have a mechanical docking mechanism allowing the modules to form and control
a multi-robot organism.

7.4.2.3 Self-Assembly

The task of multiple robots connecting autonomously is usually called self-assem-
bly, and has been demonstrated in several cases: Groß et al. (2006); Yim et al.
(2007b); O’Grady et al. (2008); Wei et al. (2010). Most of these however, are limited
to pre-programmed control sequences without any evolution. In self-reconfig-

207

Chapter 7. United We Stand, Divided We Fall

urable robots, self-assembly is restricted to the docking of two modules as demon-
strated in Wei et al. (2010); Kutzer et al. (2010).

The work in this section is most closely related to that of Groß, Nolfi, Dorigo,
and Tuci: Bianco and Nolfi (2004) and Groß et al. (2006), Groß and Dorigo (2008), in
which they explore self-assembly of swarm robots. They evolved Recurrent Neural
Networks for the control of s-bots to be capable of Self-Assembly in simulation,
they then took the best controllers evolved in this manner and tested them in
real s-bots. This research shows it is possible to evolve controllers which create
organisms. As it is difficult to evolve controllers in a situation where either robot
can grip the other, they use a target robot in most of their research. This target
robot, also called a seed, bootstraps the problem of who grips who, by showing
which robot should be gripped by the other robot. Furthermore they assign fitness
to the s-bots based on whether they succeeded in forming an organism, or if failed
the distance between the robots.

7.4.2.4 On-line On-board Evolutionary Algorithms

We use an evolutionary algorithm (EA) as a heuristic optimiser for our robot con-
troller, as do many robotics projects. The field of evolutionary robotics in general
is described by Nolfi and Floreano (2000). Eiben et al. (2010a) describe a classi-
fication system for evolutionary algorithms used in evolutionary robotics. They
distinguish evolution based on when evolution takes place: off-line or design time
vs. on-line or run time. Where evolution takes place: on-board or intrinsic vs. off-
board or extrinsic. And how evolution takes place: encapsulated or centralised vs.
distributed.

Whereas most evolutionary robotics research uses offline and extrinsic ap-
proaches to evolving controllers. We use an on-line on-board (or intrinsic) hybrid
approach, based on EvAg (Laredo et al., 2010) and (μ+ 1) on-line (Haasdijk et al.,
2010). It is described in detail in Huijsman et al. (2011). Each robot maintains a
population of μ individuals locally, and performs cross-over and mutation to pro-
duce offspring. These individuals can be exchanged between robots as part of the
parent selection mechanism. The offspring is then instantiated as the controller for
evaluation.

We do not include a task in our system other than gathering energy. Nor do we
include any type of morphology engineering, or purposeful reconfiguration of an

208

7.4. The Emergence of Multi-Robot Organisms using On-line On-board Evolution

organism. Our goal is to investigate only the very first step: forming an organism
under environmental pressure.

7.4.3 System Description & Experiments

7.4.3.1 Simulator

We conduct our experiments with simulated e-puck robots in a simple 2D simula-
tor: RoboRoboix. The robots can steer by setting their desired left and right wheel
speeds. Each robot has 8 sensors to detect obstacles (static obstacles as well as
other robots), indicated by the lines protruding from their circular bodies in Fig.
7.10. While a such a simple 2D simulation ignores a lot of the intricacies of robots
in the real world, it is still complex enough that creating intentional, meaning-
ful, and effective organisms is not trivial and serves our purpose of investigating
organism creation under environmental pressure.

7.4.3.2 Connections

Figure 7.10 – 10 robots in an arena
with a feeding ground which is
also a scale, the scale regularly
changes position

In our experiments robots can create new or-
ganisms, join an already existing organism, and
two existing organisms can merge into a larger
organism. When working with real robots, cre-
ating a physical connection between two robots
can be challenging, and movements of joints are
noisy because of actuator idiosyncrasies, flexi-
bility of materials used, and sensor noise. We
choose to disregard these issues and create a
very simple connection mechanism which is
rigid the moment a connection is made. The
connection is modelled as a magnetic slip-ring, which a robot can set to ‘positive’,
‘negative’ or ‘neutral’. When robots are close enough, they automatically create a
rigid connection if neither of them has the slip-ring on ‘negative’ and at least one
of them has it on the ‘positive’ setting. The connection remains in place as long as
these conditions hold (i.e., neither sets its slip-ring to ‘negative’ and at least one is
set to ‘positive’).

ixhttp://www.lri.fr/~bredeche/roborobo/

209

Chapter 7. United We Stand, Divided We Fall

7.4.3.3 Environment

The robots start each evaluation cycle with a fixed amount of energy and lose
energy at regular intervals to simulate power consumption by actuators. When a
robots energy reaches 0 it is deactivated, and is unable to move for the rest of the
evaluation cycle. The environment provides energy through a ‘feeding ground’
from which robots can gather energy by standing on top. The amount of energy
gathered during evaluation is the fitness measure for on-line evolution.
There are two ways in which the environment provides an advantage to organ-

isms over single robots. The first is that the amount of energy awarded depends
on whether or not the robots are part of an organism as described below. The sec-
ond advantage is that organisms can move faster, by driving in the same direction,
although manoeuvring is slightly more complicated. It is important to note that
there is no direct reward for being part of an organism; the benefit is indirectly
defined by the environment. We have implemented the advantages for organisms
in two different scenarios: one based on a scale metaphor, and one on a riverbed.
We compare these with a separate baseline experiment, where organisms have no
benefit.

Table 7.8 – Power gain formulas for power scale and riverbed scenarios

Power Scale Riverbed
Logarithmic log (|O|+ 1) ∗ 2 log

(P
W ∗ 2 ∗ |O|

)
Linear (|O|+ 1) ∗ 2 P

W ∗ 2 ∗ |O|
Exponential exp (|O|+ 1) ∗ 2 exp

(P
W ∗ 2 ∗ |O|

)

Power Scale In a rectangular arena without stationary obstacles, there is a single
feeding ground (the circle in Fig. 7.10); the environment awards energy to robots
in this feeding ground. This feeding ground acts as a scale: the environment
supplies more energy to modules belonging to an organism. For each organism
on the scale, the gain in awarded energy increases with the organism’s size |O|.
This gain can depend linearly, logarithmically or exponentially on |O| as shown
in Table 7.8. Robots on the scale but not part of the organism do not affect the
amount of energy received by the organism.

Riverbed In this scenario the arena is analogous to a river which pushes the
robots downstream. Again, there are no obstacles. Now, the entire arena is a

210

7.4. The Emergence of Multi-Robot Organisms using On-line On-board Evolution

feeding ground, but there is an upstream gradient: the amount of energy awarded
increases as a robot finds itself more upstream. To counteract the current that
pushes robots down the energy gradient, robots can aggregate into an organism:
together they are faster and able to move or stay upriver, and so receive more
energy. Again, this gain can increase linearly, logarithmically or exponentially as
shown in Table 7.8. In the formulas used W is the width of the arena and P the
position of the centre of the organism.

Baseline As a baseline, we use an experiment in which being part of an organism
holds no benefit. We set up an empty environment where the robots receive a fixed
amount of energy at every time-step, regardless of their position in the arena or
whether they were part of an organism. There is no current driving the organisms
anywhere, and organisms are not able to move faster either. The baseline can be
viewed as an extension of either experiment: the power scale the scale now extends
to the entire arena and no longer takes the number of robots on it into account.
For the riverbed scenario, the current is reduced to 0 and the feeding ground has
no gradient.

Table 7.9 – Neural Network inputs (left) and outputs (right)

inputs outputs
8 Distance sensors Vote for Random Walk
1 Size of the organism Vote for Wall Avoidance
1 Angle to nearest feeding ground Vote for Go to feeding ground
1 Distance to nearest feeding ground Vote for Create organism
1 Energy Level Magnetic ring setting
1 Bias node

7.4.3.4 Controller

The controller consists of a feed-forward artificial neural network that selects one
of 4 pre-programmed strategies based on sensory inputs. The neural net has 13
inputs (cf. Table 7.9), 5 outputs and no hidden nodes. It uses a tanh activation
function.

The inputs are normalised: Distance sensors, Organism Size, Distance to near-
est feeding ground, and Energy level are normalised between 0 and 1, angle to
nearest feeding ground is normalised between -1 and 1.

211

Chapter 7. United We Stand, Divided We Fall

The output of the neural network, as described in Table 7.9, is interpreted as
follows: the first four outputs each vote for an action, the action with the highest
activation level is selected. The fifth output governs the magnetic ring setting:
‘negative’ if the output is smaller than −0.33, ‘positive’ if it is bigger than 0.33 and
‘neutral’ otherwise.

7.4.3.5 Evolutionary Algorithm & Runs

We use a genome which directly encodes the weights of the neural net using a
real-valued vector. It also includes N mutation step sizes for N genes.

Each controller is evaluated for 800 time steps, followed by a ‘free’ phase of 200
time steps to allow it to get out of bad situations. Each 1000 time steps therefore
constitutes 1 generation. At the end of the evaluation cycle the active controller is
compared to the local population, and added if it is better than the worst one. A
new controller is created using either mutation or crossover.

Mutation is a Gaussian perturbation using self-adaptation. The algorithm uses
averaging crossover and parents are selected using a binary tournament on the
entire population across all robots (panmictic layout) as described in Huijsman
et al. (2011).

At the start of the new generation, control is switched to the new controller,
which potentially has a completely different setting for the magnet than the pre-
vious one, potentially destroying an organism. We ran the experiments with dif-
ferent reward functions described above using 10 robots. We used this number of
robots as we expect to have a similar number of real robots to repeat the experiment
with available from the project this research is part of. To ensure good parameter
settings, we used the BONESA toolboxx (Smit and Eiben, 2011) to optimise settings
for crossover rate, mutation rate, initial mutation step size, re-evaluation rate, and
population size. Using the best parameters found, as shown in Table 7.10, we
repeated each experiment 40 times, each run lasting 1000 generations.

7.4.4 Results & Analysis

The results we obtained are shown in Figs. 7.11 and 7.12. They show that ran-
dom interactions already lead to some organisms, however, under influence of

xhttp://sourceforge.net/projects/tuning/

212

7.4. The Emergence of Multi-Robot Organisms using On-line On-board Evolution

environmental pressure the organisms become much larger and older than with-
out. The amount of pressure did not result in large differences in either organism
size or longevity. Even a small amount of environmental advantage suffices to
cause significantly bigger and older organisms – the logarithmic reward function
that implements the least pressure in our comparison may not even represent the
minimum amount of pressure needed.

Comparing results for the two scenarios, the riverbed scenario leads to bigger
and older organisms than the power scale scenario – a markedly larger difference
than that between logarithmic, linear and exponential benefit. This indicates that
the environmental pressure is determined by more than only the reward functions
we tested: since there is no quantitative difference between the reward functions
in each scenario, the difference in organism longevity and size can only be caused
by other, qualitative, differences between the scenarios. This shows that the design
of the environment itself can be more important than the specific function that
determines the environmental benefit of being in an organism.

7.4.4.1 Organism size

Figure 7.11 shows the mean organism size of a generation averaged over 40 runs
for the power scale experiment on the left and the riverbed experiment on the
right. The x-axis is the time measured in generations. The y-axis displays the
mean number of robots in an organism. The raw data is plotted as a grey line for
each fitness scaling, for each we also show a second order exponential trend line.
The bottom line is that of the baseline experiment.

The baseline experiment results in organisms that are not very large, on av-
erage approximately 2.3. The other experiments produce much larger organisms:

Table 7.10 – Parameters of the EA for the Riverbed (R.B.) and Power Scale (P.S.) exper-
iments

scaling re-evaluation rate crossover rate population size mutation rate

R
.B
. logarithmic 0.62385 0.03602 3 0.57369

linear 0.44908 0.04369 4 0.00509
exponential 0.40806 0.03411 3 0.21407

P.
S.

logarithmic 0.50294 0.93562 3 0.07154
linear 0.54149 0.46759 3 0.06662

exponential 0.56736 0.99323 3 0.05807
baseline 0.62385 0.03602 3 0.57369

213

Chapter 7. United We Stand, Divided We Fall

(a) Power scale

(b) Riverbed

Figure 7.11 – Sizes of organisms against time (in generations) for both scenarios. The
vertical bars indicate a 99% confidence interval based on a beta distribution.

214

7.4. The Emergence of Multi-Robot Organisms using On-line On-board Evolution

averages between 7 and 9 for power scale, between 8 and 10 for riverbed. These
are significantly higher than the baseline, at 99% confidence, as seen by the dis-
joint confidence intervals between the baseline and other plots. The difference
in averages between the logarithmic, linear and exponential experiments are not
significant at 99% confidence (overlapping confidence intervals).

In both experiments, environmental benefit positively influences the emergence
of organisms, but the level of influence does not seem to differ between the tested
reward functions. With logarithmic being the lowest reward tested we can con-
clude that the minimum pressure lies somewhere between no advantage and loga-
rithmic. Note that in both scenarios the linear reward leads to the highest average.
This suggests that there is a sweet-spot somewhere between logarithmic and ex-
ponential scaling.

7.4.4.2 Organism Age

Figure 7.12 shows the mean organism age for each generation averaged over 40
runs for the power scale experiment on the left and the riverbed experiment on
the right. The x-axis is the time measured in generations. The y-axis displays the
mean age of an organism in number of 105 ticks. The raw data is plotted as a grey
line for each fitness scaling, for each we also show a trend line based on the fifth
Fourier series. The baseline experiment’s results are included in both graphs.

The lines for the three reward functions rise rapidly to values significantly
higher than the baseline in both scenarios. In the power scale scenario, the average
organism age reaches more than 400.000 ticks, or 400 generations. In the riverbed
scenario this goes up to almost 700.000 ticks, or 700 generations for the linear
reward.

The lines are rising rapidly and almost monotonously, suggesting that the or-
ganisms do not ’die’ between generations. The age values in the riverbed scenario
are higher than those in the power scale scenario, notable is also that the incline of
the plots for riverbed are steeper than the ones for power scale.

These graphs support our earlier conclusion that the reward positively influ-
ences the size, and the age of organisms. The steeper and higher graphs of the
riverbed scenario lead us to conclude that the environmental pressure is deter-
mined by more than just the reward function. It also shows that the reward has
a different impact on the size of organisms than it does on the age of organisms.

215

Chapter 7. United We Stand, Divided We Fall

Overall we conclude that, when designing experiments, more effort should go into
creating an appropriate environment than into designing the reward.

We also observe that organisms do not disintegrate when switching from one
controller to another, from which we can conclude that the evolutionary algorithm
converges very quickly (within 50 generations) to values for a positive ring setting.

7.4.5 Conclusion & Further Research

We have shown that large organisms emerge in an environment which favours
modules that are part of an organism, without the need for a specific fitness func-
tion to promote aggregation. Organisms emerge even without environmental pres-
sure by chance, but these are significantly smaller and have a significantly shorter
life span.

We tested three reward functions in two separate scenarios. The amount of
pressure from the reward functions did not result in large differences. Even the
lowest amount of pressure, – logarithmic with respect to organism size – leads
to significantly bigger and older organisms. We notice a trend: the linear reward
performs slightly better than both logarithmic and exponential, suggesting an op-
timal setting between logarithmic and exponential. The differences between the
scenarios did result in different sizes and organisms. In other words, the environ-
mental pressure is more than just a reward function: our results also show that the
design of the environment is more important when designing an experiment than
the reward function.

We only used 10 robots for the experiments, this raises the question whether
the same results would be obtained when using more robots. More robots would
also imply a larger arena, so care should be taken to correctly scale the experi-
ments. Furthermore, we used a controller which had pre-programmed parts that
were very solution specific. To alleviate this specificity, further experiments can
be executed in which the control is at a lower level, and hence the problem more
difficult. Here the use of different controllers, which are more powerful, can be
investigated. We observed evidence that the reward function may have an opti-
mum, this could be further investigated to answer questions like: where is the
optimum? Is it the same in different scenarios? Does finding the optimum lead to
significantly bigger or longer lasting organisms?

216

7.4. The Emergence of Multi-Robot Organisms using On-line On-board Evolution

We noted evidence that differences in qualitative environmental pressure may
be more important than differences in quantitative pressure in their influence on
the emergence of organisms, and therefore should be investigated. This research
could be part of the upcoming discipline of complexity-engineering: harnessing
emergent phenomena to create interesting or useful characteristics in complex sys-
tems. Lastly we would like to investigate the ‘unlearning’ of organism forming be-
haviour by letting controllers evolve in a changing environment which first favours
organisms and over time puts organisms at a disadvantage.

217

Chapter 7. United We Stand, Divided We Fall

(a) Power scale

(b) Riverbed

Figure 7.12 – Ages of organisms against time for both scenarios. The vertical bars
indicate a 99% confidence interval based on a beta distribution.

218

Prediction is very difficult, especially about the future

Niels Bohr

8
It’s Life, But Not As We Know It

Embodied Artificial Evolution

Evolution is one of the major omnipresent powers in the universe that has been
studied for about two centuries. Recent scientific and technical developments
make it possible to make the transition from passively understanding to actively
using evolutionary processes. Today this is possible in digital spaces, in Evolu-
tionary Computing, where human experimenters can design and manipulate all
components of evolutionary processes. We argue that in the near future it will
be possible to implement artificial evolutionary processes outside such imaginary
spaces and make them physically embodied. In other words, we envision the
“Evolution of Things”, rather than just the evolution of digital objects, leading to a
new field of Embodied Artificial Evolution. The main objective of this chapter is to

This chapter has been accepted for publication as:

A.E. Eiben, S. Kernbach and Evert Haasdijk (2012). Embodied Artificial Evolution – Artificial
Evolutionary Systems in the 21st Century. To appear in Evolutionary Intelligence, Springer
Verlag, Heidelberg/Berlin.

219

Chapter 8. It’s Life, But Not As We Know It

present a unifying vision in order to aid the development of this high potential re-
search area. To this end, we introduce the notion of Embodied Artificial Evolution,
discuss a few examples and applications, and elaborate on the expected benefits
as well as the grand challenges this developing field will have to address.

8.1 Introduction

This chapter states our position on what we call embodied artificial evolution.
Perhaps the best way to introduce this vision is to follow a historical perspective
concerning the notion of evolution.

In the 19th century the theory of evolution was put forward to explain the emer-
gence of Life on Earth. Thus, originally, evolution was a passive notion that helped
us understand things. In the 20th century the invention of the computer made it
possible to create worlds where we could actively engineer evolutionary processes.
The resulting field, called Evolutionary Computing, was groundbreaking in that it
converted evolution from a passive explanatory theory to clarify a past process into
an active tool to create a new process. Of course, such an evolutionary computing
process takes place in an imaginary space, while natural evolution takes place in
the biosphere on Earth. And thus, the birth of Evolutionary Computing represents
another major transition, that of transporting evolution from biological spaces to
digital spaces.

Evolutionary Computing has radically changed the way we think about evo-
lution and it has enabled us to play around with it. We have constructed various
forms of evolvable digital objects. We have invented and tested various selec-
tion and variation mechanisms, including ones that do not exist in Nature, e.g.,
crossover mechanisms between more than two parents (Eiben, 2002). And we have
designed numerous evolutionary algorithms inspired by natural mechanisms, but
not limited by constraints of physical or biological reality. All in all, we have
learned a lot about how to set up and to control evolutionary processes and have
developed the know-how to use them for solving optimisation, design, and mod-
elling problems (De Jong, 2006; Eiben and Smith, 2008).

To date, the one space where we can design, implement, and execute all com-
ponents of an evolutionary process is inside computers, in digital space.i There-

iMany biologists consider these processes too simplistic compared with real evolution. We
agree, but note that this issue is not relevant for our main argument.

220

8.2. What is Embodied Artificial Evolution?

fore, the only type of evolution that we fully master is inherently disembodied.
However, in some cases the result of such a digital evolutionary process can be
constructed physically. Hence we have two principal kinds of applications. In the
first kind, the evolutionary process and the result are both digital. Well known
areas in this category are evolutionary optimisation, evolutionary data modelling
and evolutionary simulations in artificial life, evolutionary economy, etc. (Ashlock,
2006; Epstein and Axtell, 1996; Langton, 1995). In the second kind, the evolution-
ary process is digital, but the result of evolution (e.g., the blueprint of a chair or
an antenna) is made physical by an extra construction step afterwards. This is
known as evolutionary design with evolutionary art as a special sub-area (Bent-
ley and Corne, 2002; Bentley, 1999). Recent advances in rapid prototyping (3D
printing), material science, soft robotics, molecular engineering, synthetic biology,
combinatorial chemistry, programmable matter, etc. now open the door to create
evolvable objects and to implement evolutionary operators in physical space. This
enables artificial evolution of the third kind, where the evolutionary process and
the result are both physical. The resulting system means a radically new use of
evolution as a tool in a physical medium. From the historical perspective, this will be
the 21st century variant defined by two essential features: It is fully embodied –
similar to biological evolution– and artificially engineered –similar to evolutionary
computing. Hence the name Embodied Artificial Evolution (EAE).
We argue that EAE forms a high potential research and application area that of-

fers great opportunities and poses great challenges. However, to realise the vision,
very diverse and presently segregated fields need to interact and cross-fertilise
each other. This necessitates a unifying view, corresponding terminology, and vi-
sion to catalyse developments in this direction. This is exactly the main objective
of this chapter.

8.2 What is Embodied Artificial Evolution?

The general concept of embodied artificial evolution (EAE) as assumed here is
independent from the specific form of embodiment. One can think of cell-like
structures in a liquid solvent, a population of robots exploring another planet, or
anything else, as long as the given system satisfies the following properties:

1. It involves physical units instead of just a group of virtual individuals in a
computer.

221

Chapter 8. It’s Life, But Not As We Know It

2. It has real ‘birth’ and ‘death’, where reproduction creates new (physical)
objects, and survivor selection effectively eliminates them.

3. Evolution is driven by environmental selection or a combination of environ-
mental fitness and a user defined task-based fitness.

4. In contrast to mainstream evolutionary computing, reproduction and sur-
vivor selection are not coupled. They are not executed through a centrally
orchestrated main loop, but in a distributed manner, controlled by the indi-
viduals who ‘decide’ themselves when and with whom to mate.

Observe that in terms of evolutionary computing these properties concern rep-
resentation, variation, selection, and population management. Furthermore, it can
be noted that it is properties 1 through 3 that represent the physical embodiment.
The fourth feature smoothly fits this set of properties and it is literally more natu-
ral than centrally controlled population management. However, in a strictly formal
sense, it is not necessary for being embodied.

To aid further elaboration, we consider a number of concrete examples and
tasks and use these to illuminate some important properties of EAE systems.

1. The evolutionary design of a robot controller for a given robot body and
some task(s) in a certain environment. Here, the objects to be evolved are
digital, but are inherently part of a (mechatronic) physical entity. To solve
this design problem one could port all evolutionary operators to the robot
and execute on-the-fly evolution of controllers. Birth and death, i.e., repro-
duction and survivor selection, is restricted to the digital space of all possible
controllers, on the robot’s processors. However, fitness evaluation happens in
vivo here as the reproductive probabilities of any given controller are deter-
mined by the real-world performance of the robot driven by that controller.

2. The evolutionary design of a robot body for some task(s) in a certain envi-
ronment.ii Here, the objects to be evolved are physical. Thus, one could solve
this problem by truly embodied evolution, with physical birth and death. In
such a system all evolutionary operators work in vivo, including reproduc-
tion that creates new robots and survivor selection that effectively eliminates

iiFor the sake of simplicity, let us disregard the design of the corresponding robot controller.

222

8.2. What is Embodied Artificial Evolution?

them. The main challenge here is obviously formed by the reproduction op-
erators crossover and mutation: how to engineer a system where robots can
be born (and die)?

3. The evolutionary design of a bacterium for some medical or chemical

task(s) in a certain environment. Here again, the objects to be evolved are
physical. However, while (re)production of mechatronic bodies is a huge
challenge, bacteria reproduce by themselves. Thus, that part of the evolution-
ary machinery is for free in this context. The challenge here is to implement
fitness evaluation and the selection operators suited to the given application
objectives. Furthermore, one could implement special reproduction opera-
tors (mutation and/or crossover) that do not exist in nature, but are useful
to solve the given problem.

We can note a couple of things about these examples that help understand some
essential aspects of EAE. To begin with, observe that Example 1 is different from
Examples 2 and 3 in that it is not truly embodied. To be specific, Examples 2 and
3 illustrate applications where the objects to be evolved are physical. In contrast,
the objects to be evolved in Example 1 are digital, only embodied in the sense that
they are hosted by a physical robot. Ironically, the term embodied evolution has
been introduced for systems like the one in Example 1, cf. Watson et al. (2002). If
needed, we can make a distinction by calling this type of systems weakly embodied
and using the term strongly embodied for the ones in Examples 2 and 3.

Furthermore, let us note that in case of a robotic application it is possible to
separate the body, i.e., the physical robot with its wheels, sensors, etc. and the
mind, i.e., the controller regulating the behavior of the robot. Consequently, the
task of designing them also can be split in two (and combined, if needed). For
the task of designing bacteria, this is not possible, because the regulatory and
control mechanisms in bio-chemical organisms are not separated so clearly from
the bodies to be regulated.

Yet another difference between a robotic application and a bio-chemical one is
the fact that a robotic object is more controllable for the experimenter. Robot bod-
ies are built and robot controllers are programmed by the human experimenters.
Even if we consider evolutionary development of robot bodies and controllers, the
process is driven by human designed operators. These operators are usually sim-
ple; complexity emerges by their interactions. This is not the case for bio-chemical

223

Chapter 8. It’s Life, But Not As We Know It

organisms, where the operators are those invented by nature. These are often very
complex to understand and to manipulate. For instance, replacing one mutation
operator by another one can be easy in an evolutionary robotics application, but
switching off one molecular interaction and switching on another one in a cell can
be (nearly) impossible.

8.3 Motivations, Expected Benefits

A straightforward motivation to use a technology is that it is . . . useful. Consid-
ering breeding livestock or plants as EAE systems (technically: artificial selection
and natural reproduction in an embodied setting) we can argue that their useful-
ness has already been proven. As for the new kind of EAE systems we advocate
here, there are multiple reasons to investigate them.

Firstly, EAE can lead to solving new design and engineering problems, and
solving existing ones in new ways. In fact, EAE technology can be the basis of a
paradigm change in how design tasks are solved. Traditionally, the design process
of some artefact ends with manufacturing it. Using embodied artificial evolution,
design and manufacturing become an intertwined, continuous, on-line activity,
propelled by the evolutionary operators (see Figure 8.1 and the example applica-
tion in Section 8.5.3). In the long term, the basic design-and-manufacture loop of
the production industry may be transformed from the present off-line type with
a critical role for the human designer to a more on-line process. In this process
new designs arise though evolutionary variations (are ‘born’), tested immediately
in vivo, and reproduce to seed new designs, if successful. While this is clearly not
an appropriate workflow for all production industries, there are several potential
application areas ranging from fashion items to bio-medical nano-robots.

Secondly, there is much evidence in traditional evolutionary computing that
evolution can solve problems not solvable otherwise and that evolution can gener-
ate unexpected solutions. (Which, then, can be analysed and reverse-engineered,
and thus lead to new insights and better understanding of the problem.) Well-
known examples of evolution outperforming human experts or surprising re-
searchers range from Keane and Brown’s experiments in satellite boom design
(Keane and Brown, 1996) to Koza et al.’s 2000 inventory of human-competitive
genetic programming results . Once we equip certain groups of artefacts with the

224

8.3. Motivations, Expected Benefits

Figure 8.1 – Two circles showing the analogies between the biological circle of re-
production (a) and the new kind of in vivo evolutionary design (b). The effective
lifetime is captured by the light gray arrow labeled “Evaluation, Selection” and
“Testing”, respectively.

ability to evolve, we create the possibility that some of the evolved designs may be
truly original, stepping out of the box with respect to human thinking.

Thirdly, EAE systems can provide a basis for a new experimentalism in biology,
where evolution can be studied in a radically new way in a new medium. To this
end it is worth noting that mankind has thousands of years of experience with
artificial selection, for instance to breed livestock or plants. As mentioned above,
technically speaking this amounts to artificial selection and natural reproduction
applied to natural bodies and it has been a valuable tool in using as well as un-
derstanding biology and evolution. The new kind of EAE systems we envision
extend this in two important ways: artificial evolvable objects (bodies) and artifi-
cial reproduction operators (mutation and recombination). The resulting artificial
evolutionary systems offer tools to perform real-world evolutionary experiments
that are controllable, repeatable, and (relatively) fast, challenging current thinking
about the evolutionary process per se. This will enable a deeper understanding of
evolution in general, not restricted to or constrained by evolution-as-we-know-it
based on our only example, life on Earth. Mastering all components of the system
enables us, for instance, to investigate the minimum requirements of evolution, to

225

Chapter 8. It’s Life, But Not As We Know It

estimate how (un)likely evolution is, to distinguish different types of evolution,
etc. In the long term, this will lead to new scientific insights regarding evolution
and the origins of life.

Finally, EAE systems represent a great challenge from the perspective of algo-
rithm design. The 20th century science/art of designing and analysing (evolution-
ary) algorithms needs to be reinvented, once we change the medium from purely
digital to embodied, physical. The fundamental problem lies in the inevitable
physical restrictions concerning the representation, the algorithmic operators, and
the limited options a user has in controlling the algorithm as a whole. Simply put,
in evolutionary computing experimenters have great freedom in choosing any data
type to represent candidate solutions and defining suitable mutation/crossover op-
erators (De Jong, 2006; Eiben and Smith, 2008). However, in an EAE system the
bodies to be evolved and the reproduction operators must be physically viable.
Further to operator design, we also face the problem of process control. Just to
mention one thing, population size management is trivial in a genetic algorithm,
but keeping an evolving population of robots or bacteria from extinction as well as
from explosion can be a hard nut to crack (Wickramasinghe et al., 2007). Further-
more, EAEs mean a great paradigm shift from evolving digital objects to evolving
things in the real world. This implies that the environment where evolution takes
place becomes orders of magnitude more complex with inherent randomness (“
the noise and the physics are for free”) and a dynamics never encountered in tra-
ditional evolutionary computation. In fact, we can say that adopting this new
technology, digital algorithm design will become physical process design, where
the convenient distinction of algorithm components (representation, variation op-
erators, selection operators, population management) may not be applicable at all.
All in all, Embodied Artificial Evolution represents a new angle for Evolutionary
Algorithms for three main reasons: 1) the design of the evolvable objects (repre-
sentation) and the evolutionary operators is constrained by physical restrictions, 2)
process control is much harder as we are not the superusers or omnipotent system
administrators in real life, 3) the dynamics, noise etc. of the real world is much
more complex than in digital spaces.

226

8.4. Relevant Research Areas

8.4 Relevant Research Areas

We distinguish four possible scenarios for realisation of embodied artificial evolu-
tion: micro-/nano- mechatronic, top-down bio-synthetic, bottom-up chemo-synthetic and
hybrid ones. In this section, we briefly describe the current state-of-the-art research
for each of these areas.

8.4.1 Micro- and Nano- Mechatronic Systems, Evolvable Hard-

ware

Mechatronic systems are attributed to different areas of robotics (Kernbach, 2011),
(Siciliano and Khatib, 2008). In the context of EAE, the embodiment (Pfeifer and
Bongard, 2006) of robotic systems (using specific properties of materials to achieve
a desired functionality, e.g. locomotion for small jumping robots (Kovac et al.,
2008) or embodied sensor-actor coupling (Kernbach et al., 2009b)) has a decisive
role. Modern robotics utilises different fields of material science, e.g. Gong et al.
(2005), which vary from modifications of surface properties up to composite ma-
terials with specific mechanical features; miniaturisation of micro-systems (Nelson
et al., 2008) and structuring of material by micro-/nano- manipulation (Fatikow,
2008; Nelson et al., 2008). To underline these research areas, we denote this
scenario as micro- and nano- mechatronics. The relevance to EAE lies in three
approaches: using stand-alone robots for exploring situated evolution, creating
a programmable mechatronic matter through guided self-assembling and non-
biological self-reproduction.

In the literature various references can be found to work related to EAE in a
population of stand-alone robots for exploring evolutionary properties of such sys-
tems (Floreano et al., 2008). Watson et al. (2002) (also Ficici et al. (1999)) envisioned
embodied evolution: a “large number of robots freely interact with each other in
a shared environment, attempting to perform some task”. In this sense, a pop-
ulation of individuals (in this case, robots) evolves in a completely autonomous
manner, i.e. evaluation, reproduction and selection operators are carried out by
and between individuals themselves. As in natural evolutionary systems, adaptive
mechanisms are asynchronous, decentralised and distributed. Schut et al. (2009)
present a related concept called situated evolution, where reproduction creates new

227

Chapter 8. It’s Life, But Not As We Know It

minds that become active in a pre-existing robot body, replacing an old one.iii Usui
and Arita (2003) address embodied evolution as in Watson et al. (2002): robots
evolve based on interactions with the environment and other robots. Nakai and
Arita (2010) extend this framework by introducing a pre-evaluation mechanism,
intended to restrain robot behaviours that are estimated to be have a low fitness
contribution. Following then same argumentation, Elfwing et al. (2005) also make
use of a subpopulation of virtual agents for each (physical) robot in order to over-
come the restriction on population size.
Another state of the art approach applies evolutionary operators not only to the

robot controllers but to the robots themselves. In this case the body of the robot
has a modular structure and is created through self-assembling process guided
by evolution. Multiple research projects, such as HYDRA (Jorgensen et al., 2004),
Molecubes (Zykov et al., 2007), Polypod (Yim et al., 2003), M-TRAN (Kamimura
et al., 2005), SuperBot (Shen et al., 2006), symbrion (Levi and Kernbach, 2010)
develop heterogeneous reconfigurable platforms. A number of publications are
devoted to application of evolutionary approaches (Stradner et al., 2009) or guided
self-assembling (Kernbach et al., 2011) to create a body of modular robots. Not
just the evolution of robot’s body, but also the co-evolution of body and mind is an
important aspect of such research (Pollack et al., 2001). The general technological
trend here is to switch from current mini-scale modules to micro- and potentially
to nano-scale elements (Scholz et al., 2011). In the context of body-mind evolu-
tion, the concept of evolvable hardware (Gordon and Bentley, 2002) needs to be
mentioned. Flexibility and a developmental plasticity of such devices allow deriv-
ing an advanced computational functionality in hardware (Haddow and Tyrrell,
2011), which is used in robotics, image processing and other technological areas.
Several open issues in the development of evolvable hardware are in discussion,
e.g. Djupdal and Haddow (2007).
Finally, self-reproduction of micro- and nano-mechatronic systems is of inter-

est for EAE. One of the oldest ideas is Von Neumann’s kinematic self-reproduc-
tion (von Neumann, 1966). There are multiple attempts to create macroscopic
self-reproduction, e.g. by NASA (Freitas and Gilbreath, 1982) or in the context
of modular robotics (Zykov et al., 2007). They argue that mechanical self-repro-
duction is possible and not unique to biology. Recent works attribute capabilities

iiiAlthough it may be an oversimplification to view a human body (including the brain) as hard-
ware and the mind as software, we find this distinction helpful when considering the parallel
development of bodies and their controllers.

228

8.4. Relevant Research Areas

of self-reproduction to nano-technological systems (Lee and Chirikjian, 2007), to
additive plastic moulding (Sells et al., 2009) (see also RepRap.org), or to advanced
3D prototyping technology (Rieffel and Sayles, 2010). However, none of these tech-
nologies is capable of reproducing complex functional elements, see Section 8.6.2.

8.4.2 Top-down Bio-Synthetic Systems

Biological systems have an advantage over mechatronic devices because biological
properties, such as reproduction, can be taken for granted: a biological system is
naturally equipped to carry out evolutionary processes. Reproduction, self-preser-
vation, but also selection and adaptation are inherent capabilities of the system.
However, an important challenge is how one can manipulate the system to obtain
the behaviour one is looking for. Programming cells does not aim to substitute
silicon computing, but seeks access to the numerous functionalities and properties
on those cells in a predictable, reliable way.

Advances in the area of synthetic biology have allowed some interesting recent
results. For instance, Tamsir et al. (2011) show how logic gates can be built in Es-
cherichia coli cells and how complex computations can be produced by “rewiring”
communication between cells. Works in this area are related e.g. to a development
of bacterial systems (Martel et al., 2009), genome engineering (Carr and Church,
2009), or molecular synthesis of polymers (Pasparakis et al., 2010). Intensive re-
search is also devoted to biologically engineering multi-cellular systems (Basu
et al., 2005); see more about general fields and challenges of synthetic biology
in Alterovitz et al. (2009).

In biological computing, natural processes can be often described in terms of
networks of simple computational components, or biobricks (Amos, 2009). The
main objective is to use the power of natural processes for the purpose of compu-
tation. Because natural processes are intrinsically random, changing functionalities
of a cell, as well as adding new desired behaviours is not a trivial exercise. Using
an alternative approach, Regot et al. (2011) describe how to implement complex
Boolean logic computations, which reduces wiring constraints. This is obtained
through a redundant distribution of the desired output among the engineered
cells. Following the idea of biobricks, a number of cells can be combined into
more complex circuits.

229

Chapter 8. It’s Life, But Not As We Know It

8.4.3 Bottom-up Chemo-Synthetic Systems

The bio-synthetic systems utilise existing biological cellular systems with their
very complex metabolism. The approach from bottom-up chemistry uses another
methodology: creating elementary basic cellular (so-called vesicles) and multi-
cellular structures “from scratch”. Advantages of this approach are multiple de-
grees of freedom in designing metabolic networks (in simple cases – autocatalytic
reactions) and different internal and external interaction mechanisms (McCaskill
et al., 2007).

Examples of bottom-up chemical systems can be found in artificial chemis-
tries (Dittrich et al., 2001), self-replicating systems (Hutton, 2009), using bio-chem-
ical mechanisms for, for example, cognition (Dale and Husbands, 2010). This ap-
proach is also denoted as swarm chemistry (Sayama, 2009). Researchers hope
that such systems will answer questions related to developmental models (Astor
and Adami, 2000), chemical computation (Berry and Boudol, 1992), self-assembly,
self-replication, and simple chemistry-based ecologies (Breyer et al., 1997) or that
they will yield technological capabilities for creating large-scale functional pat-
terns (Yin et al., 2008). Several approaches consider meso- and nano-objects, such
as particles with functionalised surfaces (Schmid, 2004), colloidal systems (Fujita
and Yamaguchi, 2009), or molecular networks (Nitschke, 2009); a system of ele-
mentary autonomous agents, which possess rudimentary capabilities of sensing
and actuation. Information processing and collective actuation are performed col-
lectively as, for example, stochastic behavioural rules. Several phenomena, such
as meso-scale self-assembling or diverse self-organising processes (Davies et al.,
2009), make these type of systems attractive in applications. L. Cronin et al.’s work
with polyoxometalate clusters provides an example of chemical synthesis of ad-
vanced functional materials on both the molecular level and the nano/microscale
(Cooper et al., 2011; Cronin, 2011).

For the design of EAE in molecular, colloidal and particle systems, large-scale
interaction patterns for whole systems (Kumar, 2006) can be used. Projects such
as ECCell (Chemnitz et al., 2008), BACTOCOM (ni Moreno and Amos, 2010),
MATCHIT (Maurer et al., 2011) or “Behavior-Based Molecular Robotics” (Lund
et al., 2010) are addressing the questions of programmable chemo-ICT interfaces.
Essential attention is paid to a self-replication of chemo-synthetic systems (Feller-
mann and Rasmussen, 2011; Fernando et al., 2007). Research in collective nanoro-

230

8.5. Applications

botics is also focused on the technological capabilities of creating such large-scale
patterns in molecular systems, e.g., Yin et al. (2008).

8.4.4 Hybrid Mechatronic and Biochemical Systems

Hybrid mechatronic and biochemical systems combine advantages of both types
of technologies and are of essential interest for EAE. There are several reasons for
this: sufficient computational properties, high developmental plasticity, utilisation
of natural self-reproduction processes. Examples of hybrid systems are bacterial
cellular sensors (Wood, 1999), development of bio-hybrid materials (Ruiz-Hitzky
et al., 2010), molecular synthesis of biofuels (Alper and Stephanopoulos, 2009).
Another example of hybrid technologies are attempts to interact with biological
populations by means of technological artifacts: managing the grazing of cattle
over large areas (Schwager et al., 2008), (Correll et al., 2008), controlling mixed
societies of robot and insects (Caprari et al., 2005), or a social communication be-
tween robots and chickens (Gribovskiy and Mondada, 2009). A similar approach
is related to the integration of different robot technologies into human societies,
for example the management of urban hygiene based on a network of autonomous
and cooperating robots (Mazzolai et al., 2008).

One of the interesting approaches in the area of hybrid technologies is a combi-
nation of cultured (living) neurons and robots (Novellino et al., 2007) to investigate
the dynamical and adaptive properties of neural systems (Reger et al., 2000). This
work is also related to understanding of how information is encoded (Cozzi et al.,
2006) and processed within a living neural network (DeMarse et al., 2001). The
hybrid technology can be used for neuro-robotic interfaces, different applications
of in vitro neural networks (Miranda et al., 2009) or for bidirectional interaction be-
tween the brain and the external environment in the EAE system. Several research
projects, e.g. NeuroBit, already addressed the problem of controlling autonomous
robots by living neurons (Martinoia et al., 2004).

8.5 Applications

The proof of the pudding is in the eating: new technology is largely justified by
useful applications. In the present embryonic stage of the EAE field, it is impos-
sible to predict what the best applications will be. To this end, we see an analogy

231

Chapter 8. It’s Life, But Not As We Know It

with the first decade(s) of the computer industry in the 1950s. This was when
when an IBM executive foresaw a world market for perhaps 5 computers all to-
gether. Half a century later, there are more computing devices than human beings
and countless applications that one could not imagine in the early years of the
technology.

As for EAE, we are at the down of the technology, and we dare not predict
specific applications. Hence, in the rest of this section we just briefly discuss some
potential application areas. In general, EAE systems are suitable for the design
and production of artefacts under complex circumstances, for instance in case of
(i) changing environments, (ii) unforeseen environments, (iii) ill-defined (implicit)
objectives, or (iv) multiple objectives with complex interactions (possibly conflict-
ing). Furthermore, we can distinguish between artefacts that are passive, e.g.,
jewellery, and those that are active, e.g., micro-robots. These two types differ sub-
stantially in that active objects need an inner controller to govern their behaviour,
while passive ones do not. With a biological analogy we may say that passive
object need a only a body, while active ones need a body and a mind.

8.5.1 Evolving Robots

One could imagine whole ecosystems of robots on different scales of size. On a
very small scale we could have medical nano-robots to be deployed in a human
body. For example, they could be used as “personal virus scanners”, evolving to
the metabolism of the host and adapting to fight any new threat be it a germ of
cancer. On a larger scale, evolving robot populations for planetary exploration
could be interesting. These could be sent to other (unknown) planets with just a
rough initial design but with the ability to evolve to the given circumstances. This
will enable them to perform exploration and maybe even build a base station from
the locally available resources. Still on the large scale, we can conceive evolving
robot companions in domestic and industrial environments. Regarding their bod-
ies, these could range from cat and dog size up to human comparable sizes. As
for their mental features, they should be human-friendly and intelligent. From
a functional point of view they should perform specific tasks and in a domestic
setting they could provide more generic ‘emotional’ services (keeping company,
being good listeners, acting as partners in simple conversations) (Wilks, 2010).

232

8.5. Applications

8.5.2 Functional Organisms

April 2010 saw the largest oil spill in US history: the equivalent of around 4million
barrels of oil flowed into the Gulf of Mexico, with numerous ecological implica-
tions. Analysis on the site, a couple of weeks after the disaster, showed that many
groups of bacteria were helping to clean up the waters. These bacteria were able
to break down the chemicals found in crude oil and, in fact, responded quite
effectively to the incident. In general, there are many possible applications of bac-
teria, or some other type of organism, that are synthetically designed for a specific
functionality. Such artificially developed organisms can be used, for instance, to
provide environmental services, create building material or biofuel, to store data,
or to stop desertification. An evolutionary approach is literally natural in this
application area. At this moment, this line of research – positioned in synthetic
biology– is perhaps the closest to a breakthrough, cf. Section 8.4.2.

8.5.3 Evolutionary Personal Fabrication

Imagine a world in which anything can be produced with just a few clicks. Cus-
tomised products are at the reach of your hand, ranging from a child’s toy to
a meal. (Vilbrandt et al., 2008) introduce the idea of universal desktop fabrication
(UDF) that can produce essentially any complete, finished, and functional object.
Fab@Home (www.fabathome.org) is a desktop rapid prototyper (3D-printer) and a
first step towards UDF. Such personal fabricators can build a great variety of ob-
jects from different materials and thus enable a large group of people to produce
stuff to fit their needs locally. The range of applications is not restricted to solid
objects, such as personalised fashion items (jewels, sunglasses, smartphone cases),
but may also include consumables, like food: “You can imagine a 3-D printer
making homemade apple pie without the need for farming the apples, fertilising,
transporting, refrigerating, packaging, fabricating, cooking, serving and the need
for all of the materials in these processes like cars, trucks, pans, coolers, etc,”iv.
Embodied evolutionary technology is expected to play an important role in the
development of such fabricators, cf. Rieffel (2006) and Rieffel and Sayles (2010) :
“Ultimately, the evolution of form and formation become fully intertwined when
the language of assembly itself becomes subject to evolution [. . .]. Through this

ivHomaro Cantu states in the BBC News article “The printed future of Christmas dinner”: http:
//www.bbc.co.uk/news/technology-12069495

233

Chapter 8. It’s Life, But Not As We Know It

co-evolution of form and formation, Evolutionary Fabrication discovers both how
to build objects and what to build them out of.”

In general, evolutionary technology can be used on local and global level. Lo-
cally, a limited set of users (one person, a family, or a small firm) would represent
the fitness function governing evolution. The system could adapt to their prefer-
ences advancing customisation. On a global scale, such personal fabricators could
be networked to yield an evolutionary system involving billions of users, evolu-
tionary app stores, and almost incomprehensible dynamics.

8.6 Grand Challenges

At this moment it is impossible to foresee how this field will develop. However,
we are able to identify some of the grand challenges that certainly will have to be
addressed.

8.6.1 Body Types

The essence of embodied evolution is the body. To this end, we can distinguish
hardware in the broad sense (mechatronic-robotic systems, new materials, etc)
and wetware (bio-chemical systems) that may also be hybridised. Regarding wet-
ware, there are two options again: bottom-up, relying on chemistry, or top-down,
based on biology. Recent developments in microfluidics, functional fluids, or pro-
grammable matter also seem very promising. The first grand challenge is thus
to find body types suited for (self-)reproduction. In essence, this means that we
need to inject dead matter with a human requested functionality. This question is
also known in other formulations, e.g., “programmability of synthetic systems”, or
“open-ended embodied evolution”, and is one of the key points in understanding
principles of synthetic life. It is also addressed by the European bio-ICT initiative
and several research projects, e.g. PACE (PACE, 2008) and e-FLUX (e Flux, 2011),
to name but a few.

Summarising, one of the principal challenges of EAE is to find physical con-
structs that are suited to be the evolvable objects forming the population. Techni-
cally this requires that they can be produced and reproduced. This is akin to one
of the main problems in Evolutionary Computing: how to find a suitable repre-

234

8.6. Grand Challenges

sentation, that is, a data structure that can be used for the individuals representing
candidate solutions (Rothlauf, 2006).

8.6.2 How to Start – Reproduction of Functional Elements

The implementation of birth (reproduction operators) for human engineered phys-
ical artifacts is a critical prerequisite for EAE. These operators must also realise
some form of inheritance. The approaches based on mechatronics, chemistry, or
biology differ greatly in this respect. (Self-)reproducing mechatronic and chemical
units are far from being trivial, whereas it comes for free in biological systems.

As mentioned in Section 8.4.1, in current micro- and nano-mechatronic systems
there are two concepts that are crucial for EAE: self-assembling and self-replica-
tion. Self-assembling is a process which creates complex systems from basic el-
ements, whereas self-replication means a reproduction of these basic elements.
Robots are able to make functional copies of artificial organisms from basic build-
ing blocks provided there exists an essential reserve of such basic modules. How-
ever, the self-replication of basic modules obstructed by functional elements, such
as motors, gears or generally silicon-based microelectronics. Due to their high
technological complexity, the self-replication of these functional elements remain
so far unsolved.

8.6.3 How to Stop – Kill Switch

A serious concern regarding EAE is the possibility of runaway evolution. By this
term we do not mean the Fisherian notion of sexual selection reinforcing useless
traits (Fisher, 1930). Runaway evolution as we use it here stands for the process
of uncontrolled population growth. Such a growth might also be accompanied by
the emergence of new, unwanted features in the population. Obviously, it would
be highly irresponsible to expose ourselves to such a risk. To reduce this risk, all
such experiments could be carried out in highly secured isolated environments,
not unlike current research into certain germs, bacteria, viruses, etc. involving
bio-hazard. However, this might disable the whole application in cases where the
evolving population is inherently free, acting ‘out in the wild’ (robot companions,
waste-eating organisms, medical nano-robots in the human body, etc.). In such
cases a ‘kill switch’ is required to guarantee that human supervisors are able to
shut down the system, if and when they deem necessary.

235

Chapter 8. It’s Life, But Not As We Know It

As of today, the kill switch problem has been already recognised within syn-
thetic biology. There are various approaches to obtain a solution, such as for in-
stance suicide genes, programmed cell death (PCD) and apoptosis (Callura et al.,
2010; Carmona-Gutierrez et al., 2010; Engelberg-Kulka et al., 2006; Khalil and
Collins, 2010), just to name a few. A particular challenge stemming from the inher-
ent use of evolution is possibility that an evolutionary systems will find solutions
that are well ‘outside the box’ for the human designers of these systems (cf. the
originality argument in Section 8.3). It is therefore essential that great care be taken
when designing kill switches to ensure that evolution will not be able to circum-
vent them. In common parlance, we need to prevent the ‘Jurassic Park problem’.

8.6.4 Evolvability and Rate of Evolution

It is well-known in biology as well as in evolutionary computing that evolution
is a relatively slow form of adaptation. To put it simply, it can take many gen-
erations to achieve a decent level of development. Obviously, ‘slow’, ‘many’, and
‘decent’ depend on the application context. For instance, medical nano-robots put
to work in a human body should adapt within a few hours to their environment
(the patient’s body). In case of sending evolving robot explorers with a rough ini-
tial design to Mars, one can wait months for appropriate designs to emerge. In
general, we can say that useful EAE systems must exhibit a high degree of evolv-
ability and a high rate of evolution (Hu and Banzhaf, 2010). In practice, they must
make good progress in real time: have short reproduction cycles and/or large im-
provements per generation. The main factors here are the application dependent
time requirements and quality criteria that define how progress is measured, and
the speed of progress determined by the evolutionary operators.

Building fast evolutionary systems is a nontrivial challenge on its own. Failing
to meet this challenge would imply that the real time performance of EAE systems
is too low. Ultimately, this could even disqualify the whole approach – at least, for
certain applications. In general, the speed of evolution should be used as one of
the essential assessment criteria for judging the feasibility of potential applications.

8.6.5 Process Control and Methodology

A radical change caused by EAE technology is that design and manufacturing be-
come an intertwined, continuous activity. This poses an unprecedented challenge

236

8.6. Grand Challenges

for maintaining human control during the process. In Evolutionary Computing,
on-line control of an evolutionary algorithm is exercised through changing its pa-
rameter values on-the-fly (Eiben et al., 1999b). Such control is directed to improv-
ing the working of the given algorithm, e.g., increasing its speed or recovering
from local optima. In the EAE systems we envision, there is additional challenge:
we need to combine open-ended and directed evolution on-the-fly. This means
that human users should be able to perform on-line monitoring and steering in
line with the given user preferences. This could be perhaps realised by directed
selection (akin to breeding) and/or directed reproduction (as in genetic manip-
ulation). On a conceptual level, this requires a new kind of methodology that
must contain the traditional elements, such as specification, validation, and tuning
(Eiben and Smit, 2011). Meanwhile, we have to address the novel aspects, such as
the combination of free evolution and specific design objectives. Part of this chal-
lenge is the ‘freeze switch’, that is, the ability to recognise if/when the evolving
objects have obtained the required properties and stop further evolution without
killing the system.

8.6.6 Body-mind Coevolution and Lifetime Learning

As explained in the introduction of Section 8.5, in general we can distinguish pas-
sive and active artefacts. Obviously, an active artefact needs an entity governing its
activities. In some life forms, e.g., bacteria, the control and regulatory mechanisms
form a unity with the body. In higher life forms, such control mechanisms are
augmented with a designated control entity, the mind (the ‘software’), carried by
a separate part of the body, the brain (the ‘hardware’).v Similarly, in EAE systems
active artefacts can have a dual structure with a body and a mind (controller) that
must fit the given body. This implies that bodies and minds have to coevolve, they
will be subject to reproduction and inheritance. Obviously, we do not know how
the reproduction and inheritance mechanisms for bodies will be related to those
concerning the minds in any specific EAE system. However, in general it cannot be
assumed that the inherited mind will perfectly match the inherited body. There-
fore, the system must include the possibility that a newborn object undergoes a
lifetime learning process – not unlike baby animals have to learn walking, seeing,
etc. soon after birth. Depending on the given EAE system at hand, it may be

vThis dualist view is in fact an oversimplification that could be debated. Nevertheless, we find
it a helpful distinction that reflects the current robotics and computer technology.

237

Chapter 8. It’s Life, But Not As We Know It

possible to make individually learned skills inheritable, i.e. to make the system
Lamarckian. The ‘Artificial’ in EAE offers a possibly large degree of technical free-
dom, and experimenters of such systems could make their systems Lamarckian,
even though biological evolution is not.

8.7 Final Remarks

We have presented the concept of Embodied Artificial Evolution or the Evolution
of Things. The systems we envision are embodied because evolutionary operators
(reproduction, selection, fitness evaluation) are implemented in/by the physical
objects that undergo evolution. Furthermore, they are artificial because (i) the
evolvable objects and the population as a whole are being fabricated and/or pro-
grammed to fulfil a certain human purpose, to execute a certain task,vi and (ii) the
evolutionary operators (reproduction and selection) and their particular combina-
tion into one working system are human engineered.
We believe that Embodied Artificial Evolution offers a high potential research

and application area with exciting scientific and technological challenges. This
field is in an embryonic stage, where relevant developments take place within
different scientific communities and technological areas that do not naturally in-
teract with each other. At the moment we see three main streams of research to-
wards building EAE systems: top-down, biology-based, bottom-up working from
chemistry and ‘head-on’ engineering based on robotics and material science. Fur-
thermore, Evolutionary Computing can play an important role as the field that
collected a large body of knowledge about designing, implementing, and execut-
ing all components of an evolutionary process. We hope that by introducing a
unifying vision we can bring all stakeholders together raising awareness of the
shared research issues and possible solutions.
Last, but not least, let us mention a particular issue all approaches must ad-

dress: the related ethical questions. In this respect, several problems have already
been noticed in Life Sciences (Cho and Relman, 2010). However, EAE systems
based on non living mediums could lead to very similar challenges, be it in dif-
ferent forms. For instance, bio-hazard can turn into robo-hazard. The ethical
questions therefore form a clearly horizontal issue, cross-cutting over different
disciplines and technical approaches to EAE. One of the main goals of this chapter

viThis does not exclude open-ended evolution to take place in parallel.

238

8.7. Final Remarks

is to create an overarching vision, which in turn could contribute to help research
communities and institutions develop a solid system of checks and balances thus
making such research a safe enterprise.

239

We have not succeeded in answering all our problems – indeed
we sometimes feel we have not completely answered any of them.

The answers we have found have only served to raise a whole set

of new questions. In some ways we feel that we are as confused
as ever, but we think we are confused on a higher level and about

more important things.

Earl C. Kelley

9
Discussion

In the introduction of this thesis, we stated that the goal of our research would
be to develop novel evolutionary algorithms that meet the challenges of on-line,
on-board evolutionary robotics, and we posed three research questions related to
this goal.

We introduced a classification of on-line evolutionary robotics into encapsu-
lated, distributed and hybrid variants. The encapsulated case simply runs a self-
sufficient evolutionary algorithm in each robot, the distributed approach relies on
the exchange of genetic information between multiple robots and the hybrid vari-
ant combines these two approaches. We have successfully developed and exper-
imentally validated algorithms for on-line evolutionary robotics in each of these
classes, in particular the encapsulated (μ + 1) on-line algorithm and distributed
and hybrid variants of EvAg-based algorithms.

We have seen that these algorithms are capable of developing controllers for
a number of tasks in an on-line fashion, and in doing so allow robots to adapt
continuously while performing their regular tasks. This answers the first of the
three research questions: on-line evolution is capable of providing the ability to
learn as required and provide consistent task performance. At least, it can in

241

Chapter 9. Discussion

the experiments that we have performed. To what extent we may generalise this
conclusion to other, more complex tasks and other controller architectures than
the ones we considered is a matter for further investigation, but the signs are
promising.

The second question we asked was how we can tackle the particular demands
that on-line evolution poses.

In section 5.1, we introduced the notion of re-evaluating individuals to tackle
the issue of ‘unfair’ comparisons between candidate controllers. Subsequent re-
search showed that re-evaluating individuals may not be needed, maybe because
of redundant copies of good individuals when the population size is larger than
1. In fact, the results of chapter 6 indicate that on-line evolution should focus on
trying many individuals rather than on the accuracy of the assessments: the rate
of re-evaluation was best set to a low value, and the individuals should be tested
over short timespans.

This is an interesting result: in more general terms, it indicates that evolu-
tionary algorithms produce better results when sampling many solutions approxi-
mately than when they sample fewer solutions with more exactitude. Particularly
in applications where the wall-clock time in which a solution is reached matters,
using fast fitness approximations instead of slow exact assessments could improve
the quality. Examples of such applications can be found in real-time systems for
data mining or constraint satisfaction. More generically, this would make the case
for surrogate models as fast approximators of a solution’s performance. It is a
matter of further research to what extent this finding applies to such cases.

We have seen that on-line evolution can work well with small, in the distributed
and hybrid case even very small, populations.

The results in section 5.2.5.2 showed that good overall or actual performance
requires different parameter settings than does optimising only the performance of
the best individual in the population. In general, we have evaluated the algorithms
in terms of actual performance without considering the best individuals separately.

We have seen that we can do away with the need for an external overseer of con-
troller evolution by either encapsulating the whole evolutionary algorithm within
each robot or by distributing it across the robots, with the possibility of hybridising
these variants. In chapter 7, we saw that the distributed and hybrid variants scale
up with the number of robots: the more robots, the better the performance. This is
an obvious effect of the fact that the distributed and hybrid models concurrently

242

evaluate individuals in all robots; more robots simply means a larger population.
Distributed on-line evolution scales down to a surprising extent: even with as few
as 4 robots, it produces good results. Obviously, a pure encapsulated approach
cannot benefit from multiple robots: there is no scaling effect. On the other hand,
it also works if there is only a single robot. The hybrid approach combines the best
of both worlds as it maintains a population in each robot, allowing autonomous
evolution even when there is only a single robot. The exchange of individuals
between robots allows hybrid algorithms to profit from the increased potential for
evaluation that multiple robots offer. The results in section 7.1 indicate, however,
that encapsulated evolution may be preferable to distributed or hybrid evolution
in cases where the task introduces ‘subtle forms of competitive co-evolution’: in
such cases, the less diverse behaviour resulting from a shared pool of genomes
may be detrimental. Further research into this issue is needed.

As expected, we saw substantial differences in performance of our algorithms
depending on the parameter settings. This is the reason that we turned to the
automated parameter tuning toolbox revac and its successor Bonesa to ensure fair
comparisons between algorithms after equal tuning effort. What we also noted,
particularly in chapter 6 is that there is no ‘silver bullet’ set of parameter values that
allow an algorithm like (μ + 1) on-line to operate near optimally in any task, so
we will need to employ on-line parameter control schemes to adapt the algorithm
parameters to the circumstances. In section 5.2, we found the proposed distributed
(edea) algorithm much less sensitive to parameter settings than its encapsulated
counterpart ((μ+ 1) on-line). The results in section 7.2 indicate that this sensitivity
depends on the number of robots over which evolution is distributed. Chapter 6
provides a methodological contribution when it comes to investigating parameter
sensitivity: by analysing the results of Bonesa runs, we learn which parameters
influence the performance of an algorithm and how the parameter values interact.

The last question we put to ourselves in the introduction was which parameters
of the algorithms we investigate have the most influence on the quality of robot be-
haviour. We already noted that there is no single setting of parameter values that
works well in all cases. This means that we have to use and possibly develop con-
trol schemes for the parameters that we find to have the most profound influence
on algorithm performance. Chapter 6 already considers three control schemes for
the important mutation step-size parameter σ in (μ + 1) on-line.

243

Chapter 9. Discussion

A parameter that is particular to (on-line) evolutionary robotics is the evalua-
tion length τ: it determines how long an individual is given control of the robot
to evaluate that individual. This is a very important parameter, having the largest
impact on performance in the experiments in chapter 6. Section 5.3 moves towards
a control scheme through the racing technique that cuts short unpromising evalua-
tions. These are only first steps, though, and further research is actually underway
to develop a robust control scheme.

The exchange of genomes in distributed and hybrid evolution raises the issues
of selecting genomes to exchange and selecting partners to exchange them with.
We investigated this matter in section 7.3, finding evidence of a slight benefit of
a selective admission policy (i.e., only accepting incoming genomes that after re-
evaluation prove better than the worst in the current population). We also saw
that submitting the most different candidate solution for migration (Araujo and
Merelo’s MultiKulti algorithm 2011) was a good policy: where it didn’t yield the
best performance, it was not significantly worse than the alternative. The results of
these experiments confirm our earlier findings that, at least for the task of learning
to move fast while avoiding obstacles, distributed and hybrid algorithms outper-
form the encapsulated (μ + 1) on-line algorithm, even with a small number of
robots.

Comparing the results of sections 7.2 and 7.3, we note a striking difference in
the performance trend when increasing the number of robots. In 7.2, we clearly
see the performance of the EvAg-based algorithms increase with the number of
robots, but in section 7.3, performance drops dramatically from 16 to 36 robots!
After detailed analysis it turned out that only for these runs, the evaluation period
τ was set to very large values as a result of the tuning process in section 7.3’s
experiments, while the other experiments ran with a very low τ value. this resulted
in far fewer evaluations in the experiments with 36 robots, which may account for
the difference. It remains to be seen why this difference occurred, but it does
highlight a potential pitfall of using (automated) tuning to compare instances of
an algorithm: if tuning results in sub-optimal values (because the tuner got it
wrong, or because the circumstances of tuning instances varied in some way), the
results can be just as misleading as results achieved without tuning. It shows that
merely comparing performance, even after tuning (chapter 6’s horse-racing papers)
tells only half the story. To get a complete picture, we must also analyse the

244

9.1. The Scheme of Things

parameter values that were found so that we may understand, not merely notice,
the difference in outcome.

Section 7.4 describes an experiment where the robots have no specific task: on-
line evolution is used to learn to amass energy which is needed to survive. We can
see this section as a precursor to an open-ended approach as discussed below. Our
experiments showed that in such cases, the environment can cause robots form
organisms without the robots being specifically rewarded for that. We saw that
the indirect reward, the benefit of being in an organism, doesn’t need to be large:
robots will consistently form organisms even if the reward scaled logarithmically
with the size of the organisms. This research indicates a shift in focus in our
research towards organism-centric and more open-ended evolutionary robotics –
the next phase of the symbrion effort.

9.1 The Scheme of Things

Chapter 8 presents a view of where artificial evolution may go in the coming
decade. We distinguish two substrates to achieve embodied artificial evolution
in robots: one is based on 3D printing, the other on self-reconfiguring, modular
robots. To see how on-line evolution of controllers as we investigated here suits
the modular robotics approach, consider the following scenario:

Imagine a collective of robotic organisms in a pit where they perform a min-

ing task. Each organism consists of several robot modules, and each has its

own distinctive shape. These organisms move; some aptly, some are only just

starting to learn how to use their limbs. The shapes and controllers of the or-

ganisms adapt to suit the environment and tasks: some organisms have shapes

and controller so that they can easily pry chunks of ore from the walls, oth-

ers are shaped to carry the ore to carts for further transport. Under the hood,

the organisms carry genomes that encode their shape. To reproduce, organisms

need to find an ‘egg’: an individual stationary robot module, perhaps a remnant

of an old organism, that they can fertilise with their genome. An egg that has

been fertilised by a number of organisms can select from the received genomes

for recombination and/or mutation. The resulting new genotype is the basis

for a new organism that will be born through a process of morphogenesis that

the egg initiates. The egg recruits available modules in a complicated dance,

245

Chapter 9. Discussion

where more and more of them dock together to form the required shape; when

this dance stops after a while, a new organism is born. This new organisms

body is modified from that of its parent(s), so it has to learn how to articulate

this body through lifetime learning, just as a newborn calf has to learn to stand

up and walk. Thus, the newborn organism starts moving in a clumsy way. It

takes a while until its ‘mind’ learns to control its ‘body’, but after some time its

movements become smooth, just in time to walk to the nearest charging station

and replenish its batteries. By now, the ‘baby’ has grown up and is now of au-

tonomous navigation and feeding in a manner suited to the environment and

its own body shape. It can live its life rambling around and trying to propagate

its genes. All of a sudden our organism changes its free-wheeling attitude. A

human user defined a task that is now imposed on this organism (activated by

a time stamp or communicated by an external message). Performing the task

well provides special rewards that the organism is keen to collect. Again, its

learning abilities come in handy, and over time it is getting better and better,

collecting more and more rewards. This does not go unnoticed with the eggs

that have a basic instinct to prefer the ‘rich’. Meanwhile, an existing organism

– maybe one of the parents of this new organism – has come to the end of its

life: now it is time to disassemble. It lies down and its individual modules

detach; some of them drive away in search of a forming organism that they will

become part of, others drive away a small distance, spreading themselves out

to become eggs to be fertilised.

Considering a scenario as sketched above in terms of the Population-based
Adaptive Systems framework presented in chapter 3, we see that evolution takes
place at the level of organisms: the procreate by spreading their genome to the
eggs. The algorithms we presented in this thesis, e.g. (μ + 1) on-line, provide
the capability of lifetime learning, although it may be confusing that they employ
evolutionary techniques to achieve it. In this light, encapsulated evolutionary al-
gorithms implement individual learning; their impact is limited to a single module
per instance. Distributed and hybrid evolutionary algorithms can be seen as pro-
viding social learning, but there is an issue in this particular scenario: the exchange
of information takes place not between organisms (the evolving entities), but be-
tween robot modules that may or may not be part of different organisms. To what
extent this straddling of aggregation levels invalidates the findings in chapter 3
remains to be seen.

246

9.2. Current and Future Research

In chapter 3, we saw that lifetime learning, in particular individual learning,
may hinder evolution when the decision to mate is in the remit of the adapting
controller. Casting on-line evolution as providing lifetime learning means that this
should be taken into account and that some form of redress, for instance a specific
reward for mating (the word ‘orgasm’ comes to mind) may be required.

The work in this thesis was largely undertaken as part of the symbrion effort;
on-line evolution as described here has been adopted by the project partners to
provide the robots with continuous and autonomous adaptation, and it has been
validated in hardware, although at a limited scale because reliable hardware is
only now becoming available. The evolutionary computing effort in symbrion is
culminating in a scenario similar to that described above, with on-line evolution
implementing lifetime learning.

9.2 Current and Future Research

As mentioned earlier, it is difficult to ascertain to what extent our conclusions can
be generalised to tasks, environments and control architectures that we did not
consider. Therefore, an obvious track for further research is to extend the exper-
iments described in this paper so that we can determine which findings do and
which ones do not hold in general. In part, this is current work in the symbrion
project: there are now, for instance, trials with (μ+ 1) on-line adapting controllers
based on the artificial homeostatic hormone system described by Hamann et al.
(2012).

One aspect of the original vision that we haven’t, to date, paid much attention
to is that of on-line evolution in dynamic environments. We are now running ex-
periments that do introduce dynamism, in particular to investigate the possibilities
of on-line parameter control.

On the topic of parameter control, it is worth mentioning a recent paper by Bim
et al. (2012) in which we introduce fate agents that perform the various selection
and reproductive tasks in situated evolution. Because the fate agents themselves
evolve as well, this amounts to a scheme with adaptive operators. It also provides
a possible avenue of solving the ‘kill switch’ issue from section 8.6.3 without sac-
rificing scalability: should evolution run out of control and need to be curtailed,
eliminating the fate agents will bring evolution to a halt. Because there would be

247

Chapter 9. Discussion

much fewer fate agents than regular agents (robots, in our case), eliminating them
may be feasible.
A direction of research that gains increasing popularity in evolutionary robotics

and that we already briefly mentioned considers objective-free or open-ended evo-
lution: it considers no task beyond survival. Open-ended evolution, for instance
described by Bianco and Nolfi (2004) and Bredeche et al. (2012) is inherently on-
line, because the robots have no real task other than surviving to spread their
genetic material – just as in real life. Most of the research described here, with the
notable exception of section 7.4, focusses on more traditional task-driven evolution:
in most experiments, the robots must learn to perform a well-defined task and an
explicit fitness function determines rewards based on how well a robot performs
the task at hand. In fact, the work described here can be seen as a precursor to
the open-ended evolutionary scenario described above, and our current research
investigates how to combine open-ended and task-driven adaptation robustly, for
instance using the reward exchange rate sketched in the scenario.

248

References

Acerbi, A., Marocco, D., and Vogt, P. (2008). Social learning in embodied agents.
Connection Science, 20(2):69–72.

Acerbi, A. and Nolfi, S. (2007). Social learning and cultural evolution in embodied
and situated agents. In Proceedings of the First IEEE Symposium on Artificial Life,
Piscataway, NJ. IEEE Press.

Alba, E. and Dorronsoro, B. (2008). Cellular Genetic Algorithms. Springer.

Alba, E. and Tomassini, M. (2002). Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443 –462.

Alper, H. and Stephanopoulos, G. (2009). Engineering for biofuels: exploiting
innate microbial capacity or importing biosynthetic potential? Nature Reviews

Microbiology, 7(10):715–723.

Alterovitz, G., Muso, T., and Ramoni, M. F. (2009). The challenges of informatics in
synthetic biology: from biomolecular networks to artificial organisms. Briefings
in bioinformatics, 11(1):80–95.

Amos, M. (2009). Bacterial computing. In Meyers, R. A., editor, Encyclopedia of
Complexity and Systems Science, pages 417–426. Springer New York.

Araujo, L. and Merelo, J. (2011). Diversity through multiculturality: Assessing
migrant choice policies in an island model. IEEE Transactions on Evolutionary
Computation, 15(4):456 – 469.

Ashlock, D. (2006). Evolutionary Computation for Modeling and Optimization.
Springer.

249

References

Astor, J. C. and Adami, C. (2000). A developmental model for the evolution of
artificial neural networks. Artificial Life, 6(3):189–218.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University
Press, Oxford, UK.

Baldassarre, G., Nolfi, S., and Parisi, D. (2002). Evolving mobile robots able to
display collective behaviours. Artificial Life, 9:255–267.

Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M., Honavar, V., Jakiela, M., and
Smith, R., editors (1999). Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999). Morgan Kaufmann, San Francisco.

Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential parameter
optimization. In IEEE Congress on Evolutionary Computation, volume 1, pages
773–780 Vol.1. IEEE.

Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss, R. (2005).
A synthetic multicellular system for programmed pattern formation. Nature,
434(7037):1130–1134.

Belew, R., McInerney, J., and Schraudolph, N. (1990). Evolving networks: Using the
genetic algorithm with connectionist learning. In et al., C. L., editor, Proceedings
of the Second Conference on Artificial Life, pages 511–547, Reading, MA. Addison-
Wesley.

Belew, R. and Mitchell, M. (1996). Adaptive Individuals in Evolving Populations: Mod-
els and Algorithms. Addison-Wesley.

Bentley, P., editor (1999). Evolutionary Design by Computers. Morgan Kaufmann,
San Francisco.

Bentley, P. and Corne, D., editors (2002). Creative Evolutionary Systems. Morgan
Kaufmann, San Francisco.

Berry, G. and Boudol, G. (1992). The chemical abstract machine. In Selected papers
of the Second Workshop on Concurrency and compositionality, pages 217–248, Essex,
UK. Elsevier Science Publishers Ltd.

Best, M. (1999). How Culture Can Guide Evolution: An Inquiry into Gene/Meme
Enhancement and Opposition. Adaptive Behavior, 7(3-4):289.

250

References

Beyer, H.-G. (2000). Evolutionary algorithms in noisy environments: theoretical
issues and guidelines for practice. Computer Methods in Applied Mechanics and
Engineering, 186(2-4):239 – 267.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies – A comprehensive
introduction. Natural Computing, 1:3–52.

Bianco, R. and Nolfi, S. (2004). Toward open-ended evolutionary robotics: evolving
elementary robotic units able to self-assemble and self-reproduce. Connection
Science, 4:227–248.

Bim, J., Karafotias, G., Smit, S. K., Eiben, A. E., and Haasdijk, E. (2012). It’s fate:
A self-organising evolutionary algorithm. In Coello, C. C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., and Pavone, M., editors, The 12th International Conference
on Parallel Problem Solving from Nature – PPSN XII. Accepted for publication, to
appear.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natu-
ral to Artificial Systems. Oxford University Press.

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient Machines Through Contin-
uous Self-Modeling. Science, 314(5802):1118–1121.

Bosman, P. A. N., Yu, T., and Ekárt, A., editors (2007). GECCO ’07: Proceedings
of the 2007 GECCO conference on Genetic and evolutionary computation, New York,
NY, USA. ACM.

Bowen, J. and Dozier, G. V. (1995). Solving constraint satisfaction problems using
a genetic/systematic search hybrid that realizes when to quit. In Eshelman, L.,
editor, Proceedings of the 6th International Conference on Genetic Algorithms, pages
122–129. Morgan Kaufmann, San Francisco.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press.

Branke, J., Schmidt, C., and Schmec, H. (2001). Efficient fitness estimation in noisy
environments. In Proceedings of Genetic and Evolutionary Computation, pages 243–
250.

Bredeche, N., Haasdijk, E., and Eiben, A. (2009). On-line, on-board evolution of
robot controllers. In Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., and

251

References

Lutton, E., editors, Artificial Evolution, Lecture Notes in Computer Science, pages
110–121. Springer.

Bredeche, N., Montanier, J.-M., Liu, W., and Winfield, A. F. (2012). Environment-
driven distributed evolutionary adaptation in a population of autonomous
robotic agents. Mathematical and Computer Modelling of Dynamical Systems,
18(1):101–129.

Breyer, J., Ackermann, J., and McCaskill, J. (1997). Evolving reaction-diffusion
ecosystems with self-assembling structures in thin films. Artificial Life, 4(1):25–
40.

Brooks, R. A. (1991). Intelligence without reason. In Myopoulos, J. and Reiter, R.,
editors, Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI-91), pages 569–595, Sydney, Australia. Morgan Kaufmann.

Brooks, R. A. (1992). Artificial life and real robots. In Varela, F. and Bourgine, P.,
editors, Toward a Practice of Autonomous Systems: Proceedings of the 1st European
Conference on Artificial Life, pages 3–10, Cambridge, MA, USA. MIT Press.

Bull, L., Studley, M., Bagnall, A., and Whitley, I. (2007). Learning Classifier System
Ensembles With Rule-Sharing. IEEE Transactions on Evolutionary Computation,
11(4):496–502.

Buresch, T., Eiben, A. E., Nitschke, G., and Schut, M. (2005). Effects of evolutionary
and lifetime learning on minds and bodies in an artifical society. In Corne, D.,
Michalewicz, Z., McKay, B., Eiben, A. E., Fogel, D., Fonseca, C., Greenwood, G.,
Raidl, G., Tan, K., and Zalzala, A., editors, Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2005), pages 1448–1454. IEEE Press.

Callura, J. M., Dwyer, D. J., Isaacs, F. J., Cantor, C. R., and Collins, J. J. (2010).
Tracking, tuning, and terminating microbial physiology using synthetic riboreg-
ulators. PNAS, 107(36):15898–15903.

Cangelosi, A. and Parisi, D. (1998). The emergence of “language” in an evolving
population of neural networks. Connection Science, 10:83–93.

Cantú-Paz, E. (2001). Migration policies, selection pressure, and parallel evolution-
ary algorithms. Journal of heuristics, 7(4):311–334.

252

References

Caprari, G., Colot, A., Siegwart, R., Halloy, J., and Deneubourg, J.-L. (2005). Build-
ing mixed societies of animals and robots. IEEE Robotics & Automation Magazine,
12(2):58– 65.

Carmona-Gutierrez, D., Eisenberg, T., Büttner, S., Meisinger, C., Kroemer, G., and
Madeo, F. (2010). Apoptosis in yeast: triggers, pathways, subroutines. Cell Death
and Differentiation, 17:763–773.

Carr, P. A. and Church, G. M. (2009). Genome engineering. Nature biotechnology,
27(12):1151–1162.

Chemnitz, S., Tangen, U., Wagler, P., Maeke, T., and McCaskill, J. (2008). Electron-
ically programmable membranes for improved biomolecule handling in micro-
compartments on-chip. Chemical Engineering Journal, 135, Supplement 1(0):S276
– S279.

Cho, M. K. and Relman, D. A. (2010). Synthetic “life,” ethics, national security, and
public discourse. Science, 329:38–39.

Christensen, D. J., Spröwitz, A., and Ijspeert, A. J. (2010). Distributed online learn-
ing of central pattern generators in modular robots. In Doncieux, S., Girard,
B., Guillot, A., Hallam, J., Meyer, J.-A., and Mouret, J.-B., editors, From Animals
to Animats 11, volume 6226 of Lecture Notes in Computer Science, pages 402–412.
Springer Berlin / Heidelberg.

Cooper, G. J. T., Boulay, A. G., Kitson, P. J., Ritchie, C., Richmond, C. J., Thiel, J.,
Gabb, D., Eadie, R., Long, D.-L., and Cronin, L. (2011). Osmotically driven crys-
tal morphogenesis: A general approach to the fabrication of micrometer-scale
tubular architectures based on polyoxometalates. J. Am. Chem. Soc., 133:5947–
5954.

Correll, N., Schager, M., and Rus, D. (2008). Social control of herd animals by
integration of artificially controlled congeners. In Proc. of the 10th International
Conference on Simulation of Adaptive Behavior (SAB). Springer Lecture Notes in Arti-

ficial Intelligence LNAI 5040, pages 437–447, Osaka, Japan.

Cozzi, L., D’Angelo, P., and Sanguineti, V. (2006). Encoding of time-varying stimuli
in populations of cultured neurons. Biol. Cybern., 94(5):335–349.

253

References

Cronin, L. (2011). Defining new architectural design principles with ’living’ inor-
ganic materials. Archit. Design, pages 34–43.

Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of appli-
cation. Swarm Robotics, pages 10–20.

Curran, D. and O’Riordan, C. (2006). Increasing population diversity through
cultural learning. Adaptive Behavior, 14(4):315–338.

Dale, K. and Husbands, P. (2010). The evolution of reaction-diffusion controllers
for minimally cognitive agents. Artif. Life, 16(1):1–19.

Darwin, C. (1871). The Descent of Man. John Murray, London.

Dautenhahn, K. and Nehaniv, C. L. (2002). The agent-based perspective on imi-
tation. In Dautenhahn, K. and Nehaniv, C. L., editors, Imitation in animals and
artifacts, pages 1–40. MIT Press, Cambridge, MA, USA.

Davies, R. P. W., Aggeli, A., Boden, N., McLeish, T. C. B., Nyrkova, I. A., and
Semenov, A. N. (2009). Mechanisms and Principles of 1D Self-Assembly of Peptides
into ?-Sheet Tapes, volume 35 of Advances in Chemical Engineering, pages 11–43.
Elsevier.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press, Oxford, UK.

De Jong, K. (2006). Evolutionary Computation: A Unified Approach. The MIT Press.

De Jong, K. and Sarma, J. (1995). On decentralizing selection algorithms. In Es-
helman, L., editor, Proceedings of the Sixth International Conference on Genetic Algo-
rithms, pages 17–23, San Francisco, CA. Morgan Kaufmann.

DeMarse, T. B., Wagenaar, D. A., Blau, A. W., and Potter, S. M. (2001). The neurally
controlled animat: Biological brains acting with simulated bodies. Auton. Robots,
11(3):305–310.

Denaro, D. and Parisi, D. (1996). Cultural evolution in a population of neural
networks. In Proceedings of the 8th Italian Workshop on Neural Nets, pages 100–111.
Springer.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial chemistries—a review.
Artif. Life, 7(3):225–275.

254

References

Djupdal, A. and Haddow, P. C. (2007). Evolving redundant structures for reliable
circuits – lessons learned. In Adaptive Hardware and Systems (AHS), pages 455–
462.

e Flux (2011). Evolutionary microfluidix.

Eiben, A. E. (2002). Multiparent recombination in evolutionary computing. In
Ghosh, A. and Tsutsui, S., editors, Advances in Evolutionary Computing, Natural
Computing Series, pages 175–192. Springer.

Eiben, A. E., Bäck, T., Schoenauer, M., and Schwefel, H.-P., editors (1998). Proceed-
ings of the 5th Conference on Parallel Problem Solving from Nature, number 1498 in
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, New York.

Eiben, A. E., Elia, D., and van Hemert, J. I. (1999a). Population dynamics and
emerging mental features in AEGIS. In Banzhaf et al. (1999), pages 1257–1264.

Eiben, A. E., Haasdijk, E., and Bredeche, N. (2010a). Embodied, on-line, on-board
evolution for autonomous robotics. In Levi, P. and Kernbach, S., editors, Symbi-
otic Multi-Robot Organisms: Reliability, Adaptability, Evolution, chapter 5.2, pages
361–382. Springer.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999b). Parameter Control
in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation,
3(2):124–141.

Eiben, A. E., Karafotias, G., and Haasdijk, E. (2010b). Self-adaptive mutation in on-
line, on-board evolutionary robotics. In 2010 Fourth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshop (SASOW 2010), pages 147–
152. IEEE Press, Piscataway, NJ.

Eiben, A. E., Kernbach, S., and Haasdijk, E. (2012). Embodied artificial evolution
– artificial evolutionary systems in the 21st century. Evolutionary Intelligence, to
appear.

Eiben, A. E., Schoenauer, M., Laredo, J. L. J., Castillo, P. A., Mora, A. M., and
Merelo, J. J. (2007). Exploring selection mechanisms for an agent-based dis-
tributed evolutionary algorithm. In Bosman et al. (2007), pages 2801–2808.

255

References

Eiben, A. E. and Smit, S. (2011). Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31.

Eiben, A. E. and Smith, J. E. (2008). Introduction to Evolutionary Computing (Natural
Computing Series). Springer.

Eklund, S. E. (2004). A massively parallel architecture for distributed genetic algo-
rithms. Parallel Computing, 30(5 – 6):647 – 676.

El-Beltagy, M., Nair, P., and Keane, A. (1999). Metamodeling techniques for evo-
lutionary optimization of computationally expensive problems: Promises and
limitations. In Banzhaf et al. (1999), pages 196–203.

Elfwing, S., Uchibe, E., Doya, K., and Christensen, H. (2005). Biologically inspired
embodied evolution of survival. In Proceedings of the 2005 IEEE Congress on Evolu-
tionary Computation IEEE Congress on Evolutionary Computation, volume 3, pages
2210–2216, Edinburgh, UK. IEEE Press.

Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I., and Hazan, R. (2006). Bacterial
programmed cell death and multicellular behavior in bacteria. PLoS Genetics,
2(10):1518–1526.

Epstein, J. and Axtell, R. (1996). Growing Artificial Societies: Social Sciences from
Bottom Up. Brooking Institution Press and The MIT Press.

Fatikow, S. (2008). Automated Nanohandling by Microrobots. Springer-Verlag, Lon-
don.

Fellermann, H. and Rasmussen, S. (2011). On the growth rate of non-enzymatic
molecular replicators. Entropy, 13(10):1882–1903.

Fernando, C., Von Kiedrowski, G., and Szathmáry, E. (2007). A stochastic model of
nonenzymatic nucleic acid replication: “elongators” sequester replicators. Jour-
nal of Molecular Evolution, 64:572–585.

Fialho, A., Costa, L., Schoenauer, M., and Sebag, M. (2008). Extreme value based
adaptive operator selection. In Rudolph et al. (2008), pages 175–184.

Ficici, S., Watson, R., and Pollack, J. (1999). Embodied evolution: A response
to challenges in evolutionary robotics. In Wyatt, J. L. and Demiris, J., editors,
Proceedings of the Eighth European Workshop on Learning Robots, pages 14–22.

256

References

Fisher, R. (1930). The Genetical Theory of Natural Selection. Oxford University Press,
Oxford, UK.

Floreano, D., Husbands, P., and Nolfi, S. (2008). Evolutionary Robotics. InHandbook
of Robotics. Springer Verlag, Berlin.

Floreano, D. and Mondada, F. (1996). Evolution of homing navigation in a real
mobile robot. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26:396–
407.

Floreano, D., Nolfi, S., and Mondada, F. (2001). Co-Evolution and Ontogenetic
Change in Competing Robots. In Advances in the Evolutionary Synthesis of Intelli-
gent Agents. MIT Press.

Floreano, D., Schoeni, N., Caprari, G., and Blynel, J. (2002). Evolutionary
bits’n’spikes. In Standish, R. K., Bedau, M. A., and Abbass, H. A., editors,
Artificial Life VIII : Proceedings of the eighth International Conference on Artificial Life,
pages 335–344, Cambridge, MA, USA. MIT Press.

Freitas, R. and Gilbreath, W. P., editors (1982). Advanced Automation for Space Mis-
sions. NASA Conference Publication CP-2255 (N83-15348), Illinois.

Fujita, M. and Yamaguchi, Y. (2009). Mesoscale modeling for self-organization of
colloidal systems. Current Opinion in Colloid & Interface Science.

Garcı́a-Sánchez, P., Eiben, A., Haasdijk, E., Weel, B., and Merelo-Guervós, J.-J.
(2012). Testing diversity-enhancing migration policies for hybrid on-line evolu-
tion of robot controllers. In Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C.,
Fernandez de Vega, F., Di Caro, G., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.,
Farooq, M., Langdon, W., Merelo-Guervós, J.-J., Preuss, M., Richter, H., Silva,
S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A., Togelius, J., Urquhart,
N., Uyar, A., and Yannakakis, G., editors, Proceedings of EvoApplications 2012:
Applications of Evolutionary Computation, pages 52–62.

Giacobini, M., Preuss, M., and Tomassini, M. (2006). Effects of scale-free and small-
world topologies on binary coded self-adaptive CEA. In Gottlieb, J. and Raidl,
G. R., editors, Evolutionary Computation in Combinatorial Optimization – EvoCOP
2006, volume 3906 of LNCS, pages 85–96, Budapest. Springer Verlag.

257

References

Gilbert, N., den Besten, M., Bontovics, A., Craenen, B., Divina, F., Eiben, A. E.,
Griffioen, A. R., Hévézi, G., Lörincz, A., Paechter, B., Schuster, S., Schut, M.,
Tzolov, C., Vogt, P., and Yang, L. (2006). Emerging artificial societies through
learning. Journal of Artificial Societies and Social Simulation, 9(2).

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Gong, J., Wan, L., Yuan, Q., Bai, C., Jude, H., and Stang, P. (2005). Mesoscopic self-
organization of a self-assembled supramolecular rectangle on highly oriented
pyrolytic graphite and au(111) surfaces. PNAS, 102(4):971–974.

Gordon, T. and Bentley, P. (2002). On evolvable hardware. In Ovaska, S. and
Sytandera, L., editors, Soft Computing in Industrial Electronics, pages 279–323.
Physica-Verlag, Heidelberg, Germany.

Gorges–Schleuter, M. (1998). A comparative study of global and local selection in
evolution strategies. In Eiben et al. (1998), pages 367–377.

Gribovskiy, A. and Mondada, F. (2009). Real-Time Audio-Visual Calls Detection
System for a Chicken Robot. In Proceedings of the 4th International Conference on
Advanced Robotics, pages 1–6. IEEE Press.

Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2006). Autonomous self-
assembly in swarm-bots. IEEE Transactions on Robotics, 22:1115–1130.

Groß, R. and Dorigo, M. (2008). Evolution of solitary and group transport be-
haviors for autonomous robots capable of self-assembling. Adaptive Behavior,
16(5):285.

Haasdijk, E., Eiben, A., and Winfield, A. F. (2011a). Individual, social and evo-
lutionary adaptation in collective systems. In Kernbach, S., editor, Handbook of
Collective Robotics - Fundamentals and Challenges, chapter 13. Pan Stanford, Singa-
pore.

Haasdijk, E., Eiben, A. E., and Karafotias, G. (2010). On-line evolution of robot
controllers by an encapsulated evolution strategy. In Proceedings of the 2010 IEEE
Congress on Evolutionary Computation, pages 1–7, Barcelona, Spain. IEEE Compu-
tational Intelligence Society, IEEE Press.

258

References

Haasdijk, E., ul Qayyum, A. A., and Eiben, A. (2011b). Racing to improve on-line,
on-board evolutionary robotics. In Krasnogor et al. (2011), pages 187–194.

Haddow, P. C. and Tyrrell, A. M. (2011). Challenges of evolvable hardware: past,
present and the path to a promising future. Genetic Programming and Evolvable
Machines, 12(3):183–215.

Hamann, H., Schmickl, T., and Crailsheim, K. (2012). A hormone-based controller
for evaluation – minimal evolution in decentrally controlled systems. Artificial
Life, 18(2):165–198.

Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., and Schoenauer, M.,
editors (2011). Artificial Evolution, 10th International Conference, Evolution Artifi-
cielle, EA 2011, Angers, France, October 24-26, 2011, Lecture Notes in Computer
Science. Springer.

Haralick, R. and Shapiro, L. (1992). Computer and Robot Vision, volume 1, chapter 7.
Addison-Wesley Publishing Company.

Haroun Mahdavi, S. and Bentley, P. J. (2006). Innately adaptive robotics through
embodied evolution. Autonomous Robots, 20(2):149–163.

Hart, W. and Belew, R. (1991). Optimizing an arbitrary function is hard for the
genetic algorithm. In Belew, R. K. and Booker, L. B., editors, Proceedings of the-
FourthInternational Conference on Genetic Algorithms(ICGA ’91), pages 190–195, San
Mateo CA. Morgan Kaufmann Publishers, Inc.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N. (1996). Evolution-
ary robotics: the sussex approach. Robotics and Autonomous Systems, 20:205–224.

Hinton, G. and Nowlan, S. (1996). How learning can guide evolution. Santa Fe
Institute Studies In The Sciences Of Complexity, pages 447–454.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30.

Hooker, J. (1995). Testing heuristics: We have it all wrong. Journal of Heuristics,
1:33–42.

259

References

Hu, T. and Banzhaf, W. (2010). Evolvability and speed of evolutionary algorithms
in light of recent developments in biology. Journal of Artificial Evolution and Ap-
plications.

Huijsman, R.-J., Haasdijk, E., and Eiben, A. E. (2011). An on-line on-board dis-
tributed algorithm for evolutionary robotics. In Hao et al. (2011), pages 119–131.

Hutter, M. (2002). Fitness uniform selection to preserve genetic diversity. In 2002
Congress on Evolutionary Computation (CEC’2002), pages 783–788. IEEE Press, Pis-
cataway, NJ.

Hutton, T. J. (2009). The organic builder: A public experiment in artificial
chemistries and self-replication. Artificial Life, 15(1):21–28.

Ijspeert, A., Hallam, J., and Willshaw, D. (1998). From lampreys to salamanders:
evolving neural controllers for swimming and walking. In Pfeifer, R., Blumberg,
B., Meyer, J.-A., and Wilson, S., editors, From Animals to Animats, Proceedings of
the Fifth International Conference on Simulation of Adaptive Behavior, pages 390–399,
Cambridge, MA, USA. MIT Press.

Jelasity, M., Montresor, A., and Babaoglu, O. (2005). Gossip-based aggregation in
large dynamic networks. ACM Trans. Comput. Syst., 23:219–252.

Jelasity, M. and van Steen, M. (2002). Large-scale newscast computing on the
internet. Technical report, Vrije Universiteit Amsterdam.

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing, 9(1):3–12.

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of al-
gorithms. In Goldwasser, M. H., Johnson, D. S., and McGeoch, C. C., editors,
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS

Implementation Challenges, pages 215–250. American Mathematical Society, Prov-
idence.

Jones, T. (1995). Crossover, macromutation, and population-based search. In Eshel-
man, L., editor, Proceedings of the 6th International Conference on Genetic Algorithms,
pages 73–80. Morgan Kaufmann, San Francisco.

260

References

Jorgensen, M. W., Ostergaard, E. H., and Lund, H. H. (2004). Modular atron:
Modules for a self-reconfigurable robot. In Proc. of 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan.

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement learning: A sur-
vey. Journal of Artificial Intelligence Research, 4:237–285.

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., and Kokaji, S.
(2005). Automatic locomotion design and experiments for a modular robotic
system. Mechatronics, IEEE/ASME Transactions on, 10(3):314–325.

Karafotias, G., Haasdijk, E., and Eiben, A. (2011). An algorithm for distributed on-
line, on-board evolutionary robotics. In Krasnogor et al. (2011), pages 171–178.

Keane, A. J. and Brown, S. M. (1996). The design of a satellite boom with enhanced
vibration performance using genetic algorithm techniques. In Parmee, I. C.,
editor, Proceedings of the Conference on Adaptive Computing in Engineering Design
and Control 96, pages 107–113, Plymouth. PEDC.

Kendall, G. and Su, Y. (2007). Imperfect evolutionary systems. IEEE Transactions
on Evolutionary Computation, 11(3):294 –307.

Kernbach, S., editor (2011). Handbook of Collective Robotics: Fundamentals and Chal-
lenges. Pan Stanford Publishing, Singapore.

Kernbach, S., Girault, B., and Kernbach, O. (2011). On self-optimized self-
assembling of heterogeneous multi-robot organisms. In Meng, Y. and Jin, Y.,
editors, Bio-Inspired Self-Organizing Robotic Systems, volume 355 of Studies in Com-
putational Intelligence, pages 123–141. Springer Berlin / Heidelberg.

Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Rico, L., Jemai, J.,
Havlik, J., and Liu, W. (2009a). Evolutionary robotics: The next-generation-
platform for on-line and on-board artificial evolution. 2009 IEEE Congress on
Evolutionary Computation, pages 1079–1086.

Kernbach, S., Scholz, O., Harada, K., Popesku, S., Liedke, J., Raja, H., Liu, W.,
Caparrelli, F., Jemai, J., Havlik, J., Meister, E., and Levi, P. (2010). Multi-robot
organisms: State of the art. In 2010 IEEE International Conference on Robotics and
Automation workshop, pages 1 – 10. IEEE Press.

261

References

Kernbach, S., Thenius, R., Kernbach, O., and Schmickl, T. (2009b). Re-embodiment
of honeybee aggregation behavior in artificial micro-robotic system. Adaptive
Behavior, 17(3):237–259.

Khalil, A. S. and Collins, J. J. (2010). Synthetic biology: applications come of age.
Nature Reviews Genetics, 11:367–379.

Kovac, M., Fuchs, M., Guignard, A., Zufferey, J.-C., and Floreano, D. (2008). A
miniature 7g jumping robot. In Hutchinson, S., editor, Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA’2008), pages 373 – 378.

Koza, J. (1992). Genetic Programming. MIT Press, Cambridge, MA.

Koza, J. R., Keane, M. A., Yu, J., Bennett, F. H., andMydlowec, W. (2000). Automatic
creation of human-competitive programs and controllers by means of genetic
programming. Genetic Programming and Evolvable Machines, 1:121–164.

Kramer, O. (2010). Evolutionary self-adaptation: a survey of operators and strategy
parameters. Evolutionary Intelligence, 3(2):51–65.

Krasnogor, N. (2002). Studies on the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England. Supervisor: Dr. J.E. Smith.

Krasnogor, N., Lanzi, P. L., Engelbrecht, A., Pelta, D., Gershenson, C., Squillero, G.,
Freitas, A., Ritchie, M., Preuss, M., Gagne, C., Ong, Y. S., Raidl, G., Gallager, M.,
Lozano, J., Coello-Coello, C., Silva, D. L., Hansen, N., Meyer-Nieberg, S., Smith,
J., Eiben, A. E., Bernado-Mansilla, E., Browne, W., Spector, L., Yu, T., Clune,
J., Hornby, G., Wong, M.-L., Collet, P., Gustafson, S., Watson, J.-P., Sipper, M.,
Poulding, S., Ochoa, G., Schoenauer, M., Witt, C., and Auger, A., editors (2011).
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2011),
Dublin, Ireland. ACM.

Kumar, S. (2006). Self-organization of disc-like molecules: chemical aspects. Chem-
ical Society Reviews, 35(1):83–109.

Kutzer, M. D. M., Moses, M. S., Brown, C. Y., Scheidt, D. H., Chirikjian, G. S., and
Armand, M. (2010). Design of a new independently-mobile reconfigurable mod-
ular robot. In Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 2758–2764. IEEE.

262

References

Lamarck, J. B. (1809). Philosophie zoologique, ou Exposition des considérations relatives
à l’histoire naturelle des animaux. H.R. Engelmann.

Langton, C., editor (1995). Artificial Life: an Overview. MIT Press, Cambridge, MA.

Laredo, J. L. J., Eiben, A. E., van Steen, M., and Guervós, J. J. M. (2010). EvAg: a
scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable
Machines, 11(2):227–246.

Lazo, A. and Rathie, P. (1978). On the entropy of continuous probability distribu-
tions. IEEE Transactions on Information Theory, 24(1):120–122.

Lee, K. and Chirikjian, G. (2007). Robotic self-replication. Robotics Automation
Magazine, IEEE, 14(4).

Levi, P. and Kernbach, S., editors (2010). Symbiotic Multi-Robot Organisms: Reliabil-
ity, Adaptability, Evolution. Springer Verlag.

Lobo, F., Lima, C., and Michalewicz, Z., editors (2007). Parameter Setting in Evolu-
tionary Algorithms. Springer.

Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J.,
Taylor, S., Pei, R., Stojanovic, M. N., Walter, N. G., Winfree, E., and Yan, H. (2010).
Molecular robots guided by prescriptive landscapes. Nature, 465(7295):206–210.

Marocco, D. and Nolfi, S. (2006). Origins of communication in evolving robots.
In From Animals to Animats 9: Proceedings of the Eighth International Conference on
Simulation of Adaptive Behavior, Lecture Notes in Computer Science, pages 789–
803. Springer, Berlin.

Maron, O. and Moore, A. W. (1997). The racing algorithm: Model selection for
lazy learners. Artificial Intelligence Review, 11:193–225.

Martel, S., André, W., Mohammadi, M., Lu, Z., and Felfoul, O. (2009). Towards
swarms of communication-enabled and intelligent sensotaxis-based bacterial mi-
crorobots capable of collective tasks in an aqueous medium. 2009 IEEE Interna-
tional Conference on Robotics and Automation, pages 2617–2622.

Martinoia, S., Sanguineti, V., Cozzi, L., Berdondini, L., van Pelt, J., Tomas, J., Mas-
son, G. L., and Davide, F. (2004). Towards an embodied in vitro electrophysiol-
ogy: the NeuroBIT project. Neucomputing, 58-60:1065–1072.

263

References

Martinoli, A. (1999). Swarm Intelligence in Autonomous Collective Robotics from Tools
to the Analysis and Synthesis of Distributed Control Strategies. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne.

Maturana, J., Lardeux, F., and Saubion, F. (2010). Autonomous operator manage-
ment for evolutionary algorithms. Journal of Heuristics, 16:881–909.

Maurer, S. E., DeClue, M. S., Albertsen, A. N., Dörr, M., Kuiper, D. S., Ziock, H.,
Rasmussen, S., Boncella, J. M., and Monnard, P.-A. (2011). Interactions between
catalysts and amphiphilic structures and their implications for a protocell model.
ChemPhysChem, 12(4):828–835.

Mayley, G. (1996). Landscapes, learning costs, and genetic assimilation: Modeling
the evolution of motivation. Evolutionary Computation, 4(3):213–234.

Mazzolai, B., Mattoli, V., Laschi, C., Salvini, P., Ferri, G., Ciaravella, G., and Dario,
P. (2008). Networked and cooperating robots for urban hygiene: the eu funded
dustbot project. In The 5th International Conference on Ubiquitous Robots and Am-
bient Intelligence (URAI 2008).

McCaskill, J. S., Packard, N., Rasmussen, S., and Bedau, M. A. (2007). Evolutionary
self-organization in complex fluids. Philosophical Transactions of the Royal Society
of London - Series B: Biological Sciences, 362(1486):1763–1779.

Menczer, F. and Belew, R. (1996). From complex environments to complex behav-
iors. Adaptive Behavior, 4(3–4):317–363.

Miller, G. F. and Todd, P. M. (1995). The role of mate choice in biocomputation: Sex-
ual selection as a process of search, optimization and diversification. In Evolution
and Biocomputation, Computational Models of Evolution, pages 169–204. Springer-
Verlag.

Miranda, E. R., Bull, L., Gueguen, F., and Uroukov, I. S. (2009). Computer music
meets unconventional computing: Towards sound synthesis with in vitro neu-
ronal networks. Comput. Music J., 33(1):9–18.

Mitchell, M. and Forrest, S. (1994). Genetic algorithms and artificial life. Artificial
Life, 1(3):267–289.

264

References

Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. W., Floreano, D.,
Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., and Dorigo, M. (2004). Swarm-
bot: A new distributed robotic concept. Autonomous Robots, 17(2/3):193–221.

Montero, E. and Riff, M.-C. (2011). On-the-fly calibrating strategies for evolution-
ary algorithms. Inf. Sci., 181:552–566.

Moscato, P. (1999). A gentle introduction to memetic algorithms. In Corne,
D., Glover, F., and Dorigo, M., editors, New Ideas in Optimisation, chapter 14.
McGraw-Hill.

Munroe, S. and Cangelosi, A. (2002). Learning and the evolution of language: the
role of cultural variation and learning costs in the baldwin effect. Artificial Life,
8(4):311–339.

Nakai, J. and Arita, T. (2010). A framework for embodied evolution with pre-
evaluation applied to a biped robot. Artificial Life and Robotics, 15(2):156–160.

Nannen, V. and Eiben, A. E. (2007). Relevance estimation and value calibration of
evolutionary algorithm parameters. In Proceedings of the 20th international joint
conference on Artifical intelligence, IJCAI’07, pages 975–980, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Nannen, V., Smit, S. K., and Eiben, A. E. (2008). Costs and benefits of tuning
parameters of evolutionary algorithms. In Rudolph et al. (2008), pages 528–538.

Nehmzow, U. (2002). Physically embedded genetic algorithm learning in multi-
robot scenarios: The pega algorithm. In Prince, C., Demiris, Y., Marom, Y.,
Kozima, H., and Balkenius, C., editors, Proceedings of The Second International
Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Sys-

tems, number 94 in Lund University Cognitive Studies, Edinburgh, UK. LUCS.

Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fitness functions in evo-
lutionary robotics: A survey and analysis. Robotics and Autonomous Systems,
57(4):345–370.

Nelson, B., Dong, L., and Arai, F. (2008). Micro/nanorobotics. In Bruno Siciliano,
O. K., editor, Springer Handbook of Robotics, pages 411–450. Springer.

265

References

ni Moreno, A. G. and Amos, M. (2010). Engineered microbial communication
for population-level behaviour. In Fellermann, H., Dorr, M., Hanczyc, M. M.,
Laursen, L. L., Maurer, S., Merkle, D., Monnard, P.-A., Stoy, K., and Rasmussen,
S., editors, Artificial Life XII: Proceedings of the Twelfth International Conference on
the Synthesis and Simulation of Living Systems, pages 184–185. MIT Press.

Nitschke, J. R. (2009). Systems chemistry: Molecular networks come of age. Nature,
462(7274):736–738.

Nolfi, S. (1997). Evolving non-trivial behaviors on real robots: A garbage collecting
robot. Robotics and Autonomous Systems, 22(3-4):187–198.

Nolfi, S. and Floreano, D. (1999). Learning and evolution. Autonomous Robots,
7(1):89–113.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. MIT Press, Cambridge, MA.

Nolfi, S. and Parisi, D. (1993). Auto-teaching: networks that develop their
own teaching input. In J.L.Deneubourg, H.Bersini, S.Goss, G.Nicolis, and
R.Dagonnie, editors, Proceedings of the Second European Conference on Artificial Life,
pages 845–862, Brussels. MIT Press.

Nolfi, S. and Parisi, D. (1995). Learning to adapt to changing environments in
evolving neural networks. Technical Report 95-15, Institute of Psychology, Na-
tional Research Council, Rome, Italy.

Nolfi, S., Parisi, D., and Elman, J. L. (1994). Learning and evolution in neural
networks. Adaptive Behavior, 3(1):5–28.

Nordin, P. and Banzhaf, W. (1995). Genetic programming controlling a miniature
robot. In Working Notes for the AAAI Symposium on Genetic Programming, pages
61–67. AAAI.

Nordin, P. and Banzhaf, W. (1997). An on-line method to evolve behavior and
to control a miniature robot in real time with genetic programming. Adaptive
Behavior, 5(2):107–140.

Novellino, A., D’Angelo, P., Cozzi, L., Chiappalone, M., Sanguineti, V., and Marti-
noia, S. (2007). Connecting neurons to a mobile robot: an in vitro bidirectional
neural interface. Intell. Neuroscience, 2007:2–2.

266

References

O’Grady, R., Christensen, A., and Dorigo, M. (2008). Autonomous reconfigura-
tion in a self-assembling multi-robot system. Ant Colony Optimization and Swarm
Intelligence, pages 259–266.

Ostermeier, A., Gawelczyk, A., and Hansen, N. (1994). A derandomized approach
to self adaptation of evolution strategies. Evolutionary Computation, 2(4):369–380.

PACE (2004-2008). PACE: Programmable Artificial Cell Evolution, FP6. European
Communities, Project reference: 002035.

Pasparakis, G., Krasnogor, N., Cronin, L., Davis, B. G., and Alexander, C.
(2010). Controlled polymer synthesis-from biomimicry towards synthetic bi-
ology. Chemical Society Reviews, 39(1):286–300.

Pedersen, M. E. H. and et al. (2008). Parameter tuning versus adaptation: proof of
principle study on differential evolution. Technical report, Hvass Laboratories.

Perez, A. L. F., Bittencourt, G., and Roisenberg, M. (2008). Embodied evolution
with a new genetic programming variation algorithm. International Conference on
Autonomic and Autonomous Systems, 0:118–123.

Pfeifer, R. and Bongard, J. C. (2006). How the Body Shapes the Way We Think: A New
View of Intelligence (Bradford Books). The MIT Press.

Pollack, J., Lipson, H., Hornby, G., and Funes, P. (2001). Three generations of
automatically designed robots. Artificial Life, 7(3):215–223.

Potter, M. A., Meeden, L. A., and Schultz, A. C. (2001). Heterogeneity in the
coevolved behaviors of mobile robots: The emergence of specialists. In Proceed-
ings of the Seventeenth International Joint Conference on Artificial Intelligence, pages
1337–1343. Morgan Kaufmann.

Ratle, A. (1998). Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In Eiben et al. (1998), pages 87–96.

Rechenberg, I. (1973). Evolutionstrategie: Optimierung Technisher Systeme nach

Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart.

Reger, B. D., Fleming, K. M., Sanguineti, V., Alford, S., and Mussa-Ivaldi, F. A.
(2000). Connecting brains to robots: an artificial body for studying the compu-
tational properties of neural tissues. Artificial Life, 6(4):307–324.

267

References

Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann, S.,
de Nadal, E., Posas, F., and Sole, R. (2011). Distributed biological computation
with multicellular engineered networks. Nature, 469(7329):207–211.

Reynolds, R. G. (1994). An introduction to cultural algorithms. In Proceedings of
the Third Annual Conference on Evolutionary Programming, pages 131–139. World
Scientific Press.

Reynolds, R. G. (1999). Cultural algorithms: Theory and applications. In Corne,
D., Dorigo, M., and Glover, F., editors, New Ideas in Optimization, pages 367–377.
McGraw-Hill, London.

Richerson, P. and Boyd, R. (2005). Not By Genes Alone: How Culture Transformed
Human Evolution. University of Chicago Press, Chicago, IL.

Rieffel, J. (2006). Evolutionary Fabrication: The Co-Evolution of Form and Formation.
PhD thesis, Brandeis University.

Rieffel, J. and Sayles, D. (2010). Evofab: a fully embodied evolutionary fabricator.
In Proc. of the Ninth International Conference on Evolvable Systems, LNCS 6274,
pages 372–380.

Rothlauf, F. (2006). Representations for genetic and evolutionary algorithms. Springer-
Verlag, 2nd edition.

Rudolph, G., Jansen, T., Lucas, S. M., Poloni, C., and Beume, N., editors (2008).
Parallel Problem Solving from Nature - PPSN X, 10th International Conference Dort-
mund, Germany, September 13-17, 2008, Proceedings, volume 5199 of Lecture Notes
in Computer Science. Springer.

Ruiz-Hitzky, E., Darder, M., Aranda, P., and Ariga, K. (2010). Advances in
biomimetic and nanostructured biohybrid materials. Adv Mater, 22(3):323–36.

Ruppin, E. (2002). Evolutionary autonomous agents: A neuroscience perspective.
Nature Reviews Neuroscience, 3:132–141.

Sayama, H. (2009). Swarm chemistry. Artificial Life, 15(1):105–114.

Schmid, G. (2004). Nanoparticles. Wiley-VCH Verlag, Weinheim.

268

References

Scholz, O., Dieguez, A., and Corradi, P. (2011). Minimalistic large-scale micro-
robotic systems. In Kernbach, S., editor, Handbook of Collective Robotics: Funda-
mentals and Challenges, pages 517–541. Pan Stanford Publishing, Singapore.

Schut, M., Haasdijk, E., and Eiben, A. E. (2009). What is situated evolution? In
Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pages 3277–
3284, Trondheim. IEEE Press.

Schwager, M., Detweiler, C., Vasilescu, I., Anderson, D. M., and Rus, D. (2008).
Data-driven identification of group dynamics for motion prediction and control.
Journal of Field Robotics, 25(6-7):305–324.

Schwarzer, C. (2008). Investigation of evolutionary reproduction in a robot swarm.
Master’s thesis, Institute of Parallel and Distributed Systems, University of
Stuttgart.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John Wiley &
Sons, Inc., New York, NY, USA.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley, New York.

Sells, E., Smith, Z., Bailard, S., Bowyer, A., and Olliver, V. (2009). RepRap: the
replicating rapid prototyper-maximizing customizability by breeding the means
of production. Handbook of Research in Mass Customization and Personalization,
1:568–580.

Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., and Venkatesh,
J. (2006). Multimode locomotion for reconfigurable robots. Autonomous Robots,
20(2):165–177.

Siciliano, B. and Khatib, O., editors (2008). Springer Handbook of Robotics. Springer.

Simões, E. D. V. and Dimond, K. R. (2001). Embedding a distributed evolutionary
system into population of autonomous mobile robots. In Proceedings of the 2001
IEEE Systems, Man, and Cybernetics Conference.

Smit, S. K. and Eiben, A. E. (2009). Comparing parameter tuning methods for
evolutionary algorithms. In Proceedings of the Eleventh conference on Congress on
Evolutionary Computation, CEC’09, pages 399–406, Piscataway, NJ, USA. IEEE
Press.

269

References

Smit, S. K. and Eiben, A. E. (2010). Parameter tuning of evolutionary algorithms:
Generalist vs. specialist. In et al., C. D. C., editor, Applications of Evolutionary
Computation, volume 6024 of Lecture Notes in Computer Science, pages 542–551.
Springer.

Smit, S. K. and Eiben, A. E. (2011). Multi-problem parameter tuning using Bonesa.
In Hao et al. (2011), pages 222–233.

Smith, R. E., Bonacina, C., Kearney, P., and Merlat, W. (2000). Embodiment of Evo-
lutionary Computation in General Agents. Evolutionary Computation, 8(4):475–
493.

Stradner, J., Hamann, H., Schmickl, T., Thenius, R., and Crailsheim, K. (2009).
Evolving a novel bio-inspired controller in reconfigurable robots. In ECAL (1),
pages 132–139.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011). Robust multicellular computing us-
ing genetically encoded nor gates and chemical /‘wires/’. Nature, 469(7329):212–
215.

Teller, A. and Andre, D. (1997). Automatically choosing the number of fitness
cases: The rational allocation of trials. In Koza, J., Deb, K., Dorigo, M., Fogel,
D., Garzon, M., Iba, H., and Riolo, R., editors, Proceedings of the 2nd Annual
Conference on Genetic Programming, pages 321–328. MIT Press, Cambridge, MA.

Todd, P. M. and Miller, G. F. (1990). Exploring adaptive agency ii: simulating the
evolution of associative learning. In Proceedings of the first international conference
on simulation of adaptive behavior on From animals to animats, pages 306–315.

Tomassini, M. (2005). Spatially Structured Evolutionary Algorithms: Artificial Evolu-
tion in Space and Time (Natural Computing Series). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Tuci, E., Quinn, M., and Harvey, I. (2002). Evolving fixed-weight networks for
learning robots. In CEC ’02: Proceedings of the Evolutionary Computation on 2002.
CEC ’02. Proceedings of the 2002 Congress, pages 1970–1975. IEEE Computer Soci-
ety.

270

References

Turney, P., Whitley, D., and (eds.), R. A. (1996). Evolution, learning, and instinct:
100 years of the baldwin effect. Special Issue of Evolutionary Computation, 4(3):iv–
viii.

Urzelai, J. and Floreano, D. (2001). Evolution of adaptive synapses: Robots with
fast adaptive behavior in new environments. Evolutionary Computation, 9(4):495–
524.

Usui, Y. and Arita, T. (2003). Situated and embodied evolution in collective evolu-
tionary robotics. In Proceedings of the 8th International Symposium on Artificial Life
and Robotics, pages 212–215.

Vilbrandt, T., Malone, E., Lipson, H., and Pasko, A. (2008). Universal desktop
fabrication. In Pasko, A., Adzhiev, V., and Comninos, P., editors, Heterogeneous
objects modelling and applications, volume 4889 of LNCS, pages 259–284.

Vogt, P. and Haasdijk, E. (2010). Modelling social learning of language and skills.
Artificial Life, 16(4):289–309.

von Neumann, J. (1966). Theory of Self-Reproducing Automata. University of Illinois
Press, Edited and completed by A. W. Burks, Illinois.

Walker, J. H., Garrett, S. M., and Wilson, M. S. (2006). The balance between initial
training and lifelong adaptation in evolving robot controllers. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 36(2):423–432.

Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002). Embodied evolution: Distribut-
ing an evolutionary algorithm in a population of robots. Robotics and Autonomous
Systems, 39(1):1–18.

Weel, B., Haasdijk, E., and Eiben, A. (2012). The emergence of multi-robot organ-
isms using on-line on-board evolution. In Di Chio, C., Agapitos, A., Cagnoni, S.,
Cotta, C., Fernandez de Vega, F., Di Caro, G., Drechsler, R., Ekárt, A., Esparcia-
Alcázar, A., Farooq, M., Langdon, W., Merelo-Guervós, J.-J., Preuss, M., Richter,
H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A., Togelius,
J., Urquhart, N., Uyar, A., and Yannakakis, G., editors, Proceedings of EvoAppli-
cations 2012: Applications of Evolutionary Computation, pages 124–134. Winner of
the best paper award for EvoCOMPLEX 2012.

271

References

Wei, H., Cai, Y., Li, H., Li, D., and Wang, T. (2010). Sambot: A self-assembly
modular robot for swarm robot. In 2010 IEEE International Conference on Robotics
and Automation (ICRA), pages 66–71. IEEE.

Wickramasinghe, W. R. M. U. K., van Steen, M., and Eiben., A. E. (2007). Peer-to-
peer evolutionary algorithms with adaptive autonomous selection. In Bosman
et al. (2007), pages 1460–1467.

Wilks, Y. (2010). Close engagements with artificial companions: key social, psychologi-
cal, ethical and design issues. Natural language processing. John Benjamins Pub.
Company.

Wischmann, S., Stamm, K., and Wörgötter, F. (2007). Embodied evolution and
learning: The neglected timing of maturation. In Almeida e Costa, F., editor,
Advances in Artificial Life: 9th European Conference on Artificial Life, volume 4648
of Lecture Notes in Artificial Intelligence, pages 284–293. Springer-Verlag, Lisbon,
Portugal.

Wood, J. M. (1999). Osmosensing by Bacteria: Signals and Membrane-Based Sen-
sors. Microbiol. Mol. Biol. Rev., 63(1):230–262.

Yang, S., Ong, Y.-S., and Jin, Y. (2007). Evolutionary Computation in Dynamic and Un-
certain Environments, volume 51 of Studies in Computational Intelligence. Springer,
Berlin / Heidelberg.

Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., and
Chirikjian, G. S. (2007a). Modular self-reconfigurable robot systems [grand chal-
lenges of robotics]. Robotics & Automation Magazine, IEEE, 14(1):43–52.

Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., and Taylor, C.
(2007b). Towards robotic self-reassembly after explosion. In 2007 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 2767–2772. IEEE.

Yim, M., Zhang, Y., Roufas, K., Duff, D., and Eldershaw, C. (2003). Connecting and
disconnecting for chain self-reconfiguration with polybot. IEEE/ASME Transac-
tions on mechatronics, special issue on Information Technology in Mechatronics.

Yin, P., Choi, H. M. T., Calvert, C. R., and Pierce, N. A. (2008). Programming
biomolecular self-assembly pathways. Nature, 451(7176):318–322.

272

References

Yuan, B. and Gallagher, M. (2007). Combining Meta-EAs and Racing for Difficult
EA Parameter Tuning Tasks. In Parameter Setting in Evolutionary Algorithms,
number 54 in Studies in Computational Intelligence, pages 121–142. Springer,
Berlin Heidelberg.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength
pareto evolutionary algorithm. Technical Report 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zürich,
Gloriastrasse 35, CH-8092 Zürich, Switzerland.

Zykov, V., Mytilinaios, E., Desnoyer, M., and Lipson, H. (2007). Evolved and
designed self-reproducing modular robotics. IEEE Transactions on Robotics,
23(2):308–319.

273

Nooit Te Oud Om Te Leren

Online Evolutie van Controllers in Swarm- en Modulaire Robotica

Dit proefschrift beschrijft onderzoek dat is gebaseerd op een visie van autonome
robots die hun gedrag, misschien zelfs hun vorm, zelfstandig kunnen aanpassen
aan nieuwe taken en omstandigheden: robots, die leren om hun taken uit te voeren
zonder tussenkomst van (al dan niet menselijk) toezicht.

Zulke flexibiliteit is de meeste robots niet gegeven; ze zijn ontworpen om spec-
ifieke taken (“las de carrosserie aan het chassis”) uit te voeren in duidelijk vast-
gelegde omstandigheden. Om te kunnen omgaan met onverwachte omstandighe-
den en nieuwe taken moeten robots kunnen leren: ze moeten hun gedrag en/of
hun vorm kunnen aanpassen op het moment dat ze met nieuwe omstandigheden
en taken geconfronteerd worden. Ons onderzoek richt zich op het vermogen van
robots om autonoom te leren, om zich aan te passen zonder extern toezicht.

We kunnen robots zo programmeren dat ze individueel hun eigen gedrag aan-
passen zonder ruggespraak of toezicht. Maar als meerdere robots (een swarm)
dezelfde taak moeten uitvoeren kunnen ze ook van elkaar leren door kennis uit
te wisselen. Robots kunnen hun kennis delen door evolutie (evolutionaire aan-
passing) of ze kunnen kennis uitwisselen in ‘gesprekken’ (sociaal leren) om hun
individuele leerproces te versterken. Er zijn dus drie manieren waarop een verza-
meling robots kan leren: individueel, sociaal en evolutionair.

Het onderzoek in dit proefschrift is grotendeels uitgevoerd als onderdeel van
het symbrion project, dat zich richt op groepen van tientallen robots die zich aan
elkaar kunnen vastmaken om zo een groter ‘organisme’ te maken (als een soort
bewegende legosteentjes), maar die ook individueel aan de slag kunnen in ‘swarm
mode’. De robots moeten kunnen leren, zowel gezamenlijk als individueel, om
zo verschillende taken uit te kunnen voeren in allerlei omgevingen: ze moeten de
adaptiviteit hebben die gewone hedendaagse robots ontberen.

275

We hebben vooral veel aandacht besteed aan het individueel aanleren van
gedrag. Daarbij was een fundamentele keuze die van evolutie als de belangrijk-
ste manier om adaptiviteit te realiseren. We implementeren dus ook individueel
leren door middel van een evolutionair algoritme, waarbij we een verzameling
van evoluerende controllers in elke individuele robot inkapselen (encapsulated evo-
lution). Dit is misschien wat verwarrend omdat dit geen evolutionair leren op het
niveau van een groep robots betekent: de robots wisselen immers geen kennis uit
en ze leren onafhankelijk van elkaar. Als we evolutie wel door middel van zo’n
uitwisseling van kennis zouden implementeren zou dat wel ‘echte’ evolutie op
het niveau van de groep robots zijn, waarbij de evolutie verdeeld wordt over alle
robots (distributed evolution). We kunnen ook deze beide mechanismen combineren
om zo tot een vorm van sociaal leren te komen.

We hebben aan de hand van vele experimenten de encapsulated aanpak verge-
leken met algoritmes die evolutie verdelen over meerdere robots in een collectief en
met algoritmes die deze beide aanpakken combineren tot een soort sociaal leren.

We proberen daarmee de volgende vragen te beantwoorden:

− Kunnen we überhaupt evolutionaire algoritmes ontwikkelen waarmee robots
autonoom kunnen leren eenvoudige taken aan te pakken?

− Welke aanpak werkt het beste: encapsulated, distributed of een combinatie
van die twee?

− Hoe beı̈nvloeden de instellingen van parameters de kwaliteit van onze algo-
ritmes?

We hebben een encapsulated algoritme genaamd (μ + 1) on-line ontwikkeld
waarmee robots individueel kunnen leren. We hebben gezien dat robots met dit
algoritme robots eenvoudige taken kunnen leren zoals zonder botsen rondrijden
en patrouilleren. Daarmee kunnen robots dus zulke taken leren uitvoeren zonder
dat extern toezicht nodig is.

We hebben ook gedistribueerde en hybride alternatieven voor (μ + 1) on-line
getest en we hebben vastgesteld dat het in het algemeen beter is om gezamenlijk
te leren, maar dat men moet oppassen als de taak impliciet tot en wedloop tussen
de individuele robots leidt.

Zoals verwacht hebben uitgebreide experimenten aangetoond dat de kwaliteit
van de gevonden oplossingen sterk afhangt van de instellingen van de algoritmes.

We hebben ook gezien dat er geen Haarlemmerolie is: er zijn geen instellingen
die in alle gevallen goed uitpakken. Daaruit concluderen we dat verder onderzoek
nodig is naar de mogelijkheid om de instellingen van de algoritmes automatisch,
dus terwijl de robots doorwerken, in te stellen al naar gelang de omstandigheden
en de taak.

SIKS Dissertation Series
2009
2009-01 Rasa Jurgelenaite (RUN)

Symmetric Causal Independence
Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment
Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based
Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of
Organisational Policy Making using
Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for
Knowledge Intensive Tasks – Based on
Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery
and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy
Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of
Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for
knowledge-intensive interactive
applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the
Semantic Web

2009-12 Peter Massuthe (TUE,
Humboldt-Universitaet zu Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to
service-enabled ontologies (making
ontologies work in e-science with
ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation – Design
Patterns and Ontologies that Make
Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database
System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic
Reasoning and Collaboration in
Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controlling
Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond
direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing
Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training
Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management
through Relational Mapping

2009-26 Fernando Koch (UU)
An Agent-Based Model for the
Development of Intelligent Mobile
Services

2009-27 Christian Glahn (OU)
Contextual Support of social
Engagement and Reflection on the
Web

2009-28 Sander Evers (UT)
Sensor Data Management with
Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of
Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution
with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations
from Text

2009-32 Rik Farenhorst (VU) and Remco de
Boer (VU)
Architectural Knowledge
Management: Supporting Architects
and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect
Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product
Management: An Incremental Method
Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over
geautomatiseerde normatieve
informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in
Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in
Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata
ecology for learning resources in a
multilingual context

2009-39 Christian Stahl (TUE,
Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral
Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning:
Investigations into the Geometry of
Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social
Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in
Computer Networks using Heuristic
Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in
Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and
Recursion

2010
2010-01 Matthijs van Leeuwen (UU)

Patterns that Matter
2010-02 Ingo Wassink (UT)

Work flows in Life Science
2010-03 Joost Geurts (CWI)

A Document Engineering Model and
Processing Framework for Multimedia
Documents

2010-04 Olga Kulyk (UT)
Do You Know What I Know?
Situational Awareness of Co-located
Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries
and Retrieval Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory
Framework of Free Software.
Protecting user freedoms in a world of
software communities and
eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en
Privacy, Naar een effectieve
waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and
Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP:
Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime
analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using
Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service
Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in
Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed
Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked
Resources: Algorithms, Infrastructure,
Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating
Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous
and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How
Improv Informs Agency and
Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by
means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to
Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient
Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for
Ambient Agents: A Human
Mindreading
Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query
Processing on Heterogeneous XQuery
Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI)
Database Cracking: Towards
Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History –
Discoveries in data cleaning,
structuring, and retrieval

2010-31 Victor de Boer (UVA)
Ontology Enrichment from
Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented
Architecture: Automatically solving
Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty
in Concept-Based Multimedia
Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service
Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based
Biomedical Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning;
Facilitating competence development
through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their
composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in
virtual agents

2010-40 Mark van Assem (VU)
Converting and Integrating
Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a
multi-supplier setting – the
computational e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to
Content-Based Retrieval of Folk Song
Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards
Context-sensitive and User-adapted
Access to Heterogeneous Data
Sources, Illustrated in the Television
Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution
of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring
Inter-Organizational Business-ICT
Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants:
Challenges, Techniques, Examples

2010-48 Milan Lovric (EUR)
Behavioral Finance and Agent-Based
Artificial Markets

2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions

2010-50 Bouke Huurnink (UVA)
Search in Audiovisual Broadcast
Archives

2010-51 Alia Khairia Amin (CWI)
Understanding and supporting
information seeking tasks in multiple
sources

2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for
Human-Computer Teams: Exploring
the Use of Cognitive Models of Trust
and Attention

2010-53 Edgar Meij (UVA)
Combining Concepts and Language
Models for Information Access

2011
2011-01 Botond Cseke (RUN)

Variational Algorithms for Bayesian
Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier(UU)
Organizing Agent Organizations.
Syntax and Operational Semantics of
an Organization-Oriented
Programming Language

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification
of Component-Based Information
Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning;
Formal analysis and empirical
evaluation of temporal-difference
learning algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of
Age – Increasing the Performance of
an Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced
Recommendations in Cultural
Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation
for High Load Human Computer
Interaction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust
Task-Oriented Dialogues

2011-09 Tim de Jong (OU)
Contextualised Mobile Media for
Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness: An
Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed
Process Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent
Scheduling for Airport Ground
Handling

2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based
Artificial Markets

2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value
of Link Evidence for Information
Retrieval

2011-16 Maarten Schadd (UM)
Selective Search in Games of Different
Complexity

2011-17 Jiyin He (UVA)
Exploring Topic Structure: Coherence,
Diversity and Relatedness

2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex
games

2011-19 Ellen Rusman (OU)
The Mind’s Eye on Personal Profiles

2011-20 Qing Gu (VU)
Guiding service-oriented software
engineering – A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of
Service-Oriented Systems

2011-22 Junte Zhang (UVA)
System Evaluation of Archival
Description and Access

2011-23 Wouter Weerkamp (UVA)
Finding People and their Utterances in
Social Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for Interpersonal
Coordination with Virtual Humans On
Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for
Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human
Communication – Emotion Regulation
and Involvement-Distance Trade-Offs
in Embodied Conversational Agents
and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization
through autonomous management of
design patterns

2011-28 Rianne Kaptein (UVA)
Effective Focused Retrieval by
Exploiting Query Context and
Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP):
Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic
Approaches for Modeling Bounded
Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in
Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in
Interdependence: Logical and
Game-theoretical Investigations

2011-35 Maaike Harbers (UU)
Explaining Agent Behavior in Virtual
Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a
cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data,
Applications for Preference Learning
and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents
in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge
Management in Global Software
Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced
Distributed Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through Mental
State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through
Software Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for
Alternative Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information
Delivery: A Rule-based Architecture
for the Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU)
Exploring Computational Models for
Intelligent Support of Persons with
Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking
for a Sensitive Artificial Listening
Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for
task-oriented spoken dialogues:
design aspects influencing interaction
quality

2012
2012-01 Terry Kakeeto (UvT)

Relationship Marketing for SMEs in
Uganda

2012-02 Muhammad Umair(VU)
Adaptivity, emotion, and Rationality
in Human and Ambient Agent Models

2012-03 Adam Vanya (VU)
Supporting Architecture Evolution by
Mining Software Repositories

2012-04 Jurriaan Souer (UU)
Development of Content Management
System-based Web Applications

2012-05 Marijn Plomp (UU)
Maturing Interorganisational
Information Systems

2012-06 Wolfgang Reinhardt (OU)
Awareness Support for Knowledge
Workers in Research Networks

2012-07 Rianne van Lambalgen (VU)
When the Going Gets Tough:
Exploring Agent-based Models of
Human Performance under
Demanding Conditions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management
Support for Context-Aware Service
Platforms

2012-10 David Smits (TUE)
Towards a Generic Distributed
Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large:
Preprocessing, Discovery, and
Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data
Integration in Semantic Web
Information Systems

2012-13 Suleman Shahid (UvT)
Fun and Face: Exploring non-verbal
expressions of emotion during playful
interactions

2012-14 Evgeny Knutov (TUE)
Generic Adaptation Framework for
Unifying Adaptive Web-based
Systems

2012-15 Natalie van der Wal (VU)
Social Agents. Agent-Based Modelling
of Integrated Internal and Social
Dynamics of Cognitive and Affective
Processes

2012-16 Fiemke Both (VU)
Helping people by understanding
them – Ambient Agents supporting
task execution and depression
treatment

2012-17 Amal Elgammal (UvT)
Towards a Comprehensive Framework
for Business Process Compliance

2012-18 Eltjo Poort (VU)
Improving Solution Architecting
Practices

2012-19 Helen Schonenberg (TUE)
What’s Next? Operational Support for
Business Process Execution

2012-20 Ali Bahramisharif (RUN)
Covert Visual Spatial Attention, a
Robust Paradigm for Brain-Computer
Interfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for
Information Retrieval

2012-22 Thijs Vis (UvT)
Intelligence, politie en
veiligheidsdienst: verenigbare
grootheden?

2012-23 Christian Muehl (UT)
Toward Affective Brain-Computer
Interfaces: Exploring the
Neurophysiology of Affect during
Human Media Interaction

2012-24 Laurens van der Werff (UT)
Evaluation of Noisy Transcripts for
Spoken Document Retrieval

2012-25 Silja Eckartz (UT)
Managing the Business Case
Development in Inter-Organizational
IT Projects: A Methodology and its
Application

2012-26 Emile de Maat (UVA)
Making Sense of Legal Text

2012-27 Hayrettin Görkük (UT)
Mind the Sheep! User Experience
Evaluation & Brain-Computer
Interface Games

2012-28 Nancy Pascall (UvT)
Engendering Technology Empowering
Women

2012-29 Almer Tigelaar (UT)
Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)
Designing Human-Centered Systems
for Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)
A Learning by Construction Approach
for Higher Order Cognitive Skills
Improvement, Building Capacity and
Infrastructure

2012-32 Wietske Visser (TUD)
Qualitative multi-criteria preference
representation and reasoning

2012-33 Rory Sie (OU)
Coalitions in Cooperation Networks
(COCOON)

2012-34 Pavol Jancura (RUN)
Evolutionary analysis in PPI networks
and applications

2012-35 Evert Haasdijk (VU)
Never Too Old To Learn – On-line
Evolution of Controllers in Swarm-
and Modular Robotics

