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Abstract

We develop a new simultaneous time series model for volatility and dependence with
long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new
multivariate model accounts for typical empirical features in financial time series while
being robust to outliers or jumps in the data. In the empirical study for four Dow
Jones equities, we find that the degree of memory in the volatilities of the equity
return series is similar, while the degree of memory in correlations between the series
varies significantly. The forecasts from our model are compared with high-frequency
realised volatility and dependence measures. The forecast accuracy is overall higher
compared to those from some well-known competing benchmark models.

JEL classification: C10; C22; C32; C51.
Some keywords: fractional integration; correlation; Student’s t copula; time-varying
dependence; multivariate volatility.

∗Lucas acknowledges the financial support of the Dutch Science Foundation (NWO). Corresponding
author: Andre Lucas, Department of Finance, VU University Amsterdam, De Boelelaan 1105, NL-1081 HV
Amsterdam, The Netherlands. Email: a.lucas@vu.nl.

1



1 Introduction

We propose a new dynamic modeling framework for the simultaneous analysis of volatility

and dependence in time series of financial returns. In many studies multivariate extensions

of the generalized autoregressive conditional heteroskedasticity (GARCH) model are consid-

ered for this purpose such as reviewed by, for example, Bauwens, Laurent, and Rombouts

(2006) and Silvennoinen and Teräsvirta (2009). When volatility possibly has long memory

features, the class of fractionally integrated processes is often considered; see, for example,

Robinson (1991), Baillie, Bollerslev, and Mikkelsen (1996), Bollerslev and Mikkelsen (1996),

and Tse (1998) for the univariate context, or Teyssière (1997), Brunetti and Gilbert (2000),

Pafka and Mátyás (2001), and Conrad, Karanasos, and Zeng (2011) for the multivariate set-

ting. Teyssière (1997) and Brunetti and Gilbert (2000) consider bivariate models where the

variance of each series is fractionally integrated, whereas the covariances are time-varying

and fractionally integrated only due to their dependence on the volatilities. Pafka and

Mátyás (2001) extend Teyssière (1997) by considering a trivariate model with the same frac-

tional integration coefficient for each of the elements of the covariance matrix. Also Conrad,

Karanasos, and Zeng (2011) estimate bivariate and trivariate fractionally integrated volatil-

ity models under the assumption of constant conditional correlations. Most of the results

reported in these studies have indicated that the order of (fractional) integration is similar

across the volatilities of different series. There is no evidence that similar results hold for

the covariances and/or correlations.

Our contribution in this paper is to develop a new multivariate fractionally integrated

model for volatilities and dependence by extending the model of Creal, Koopman, and Lucas

(2011) to allow for long memory dynamics in both volatilities and correlations. Our new
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model overcomes at least three drawbacks of the models proposed in the literature. First, the

time-varying conditional covariance matrix implied by available fractionally integrated mod-

els for time-varying volatility and dependence cannot be subjected to analytical restrictions

that ensure positive definiteness of the resulting covariance matrix; see Teyssière (1997).

Each period, positive definiteness has to be validated and, if needed, restored. The latter is

typically done in an ad hoc manner. To circumvent problems with positive definiteness of the

covariance matrix, most authors impose constant correlations. The hypothesis of constant

correlations is typically rejected for financial time series; see Engle (2002). We therefore

allow the correlations to be time-varying with possibly long memory dynamics.

Second, most available models are directed towards modeling volatilities or variances.

This requires constraints on the parameter space to ensure that the estimated variances

are positive at all times. Such restrictions on the parameter space may lead to difficulties

at the estimation stage. We circumvent this problem by modeling log-volatilities rather

than volatilities themselves. This is close in spirit to the exponential GARCH specification

(EGARCH) of Nelson (1992) and it leads to positive variance estimates by construction.

Third, most models integrate the dynamic behaviour of marginal distributions with that

of the dependence structure. For example, Conrad et al. (2011) stress the need for heavy-

tailed densities, but they use the same tail shape for each of the marginals. Bollerslev (1987)

was amongst the first to show that the tail properties can be very different for different

financial time series. To allow for different tail shapes, we model the marginals and the

dependence structure separately using a dynamic copula approach as in Joe and Xu (1996).

The copula framework enables us to have different long memory properties for the volatilities

vis-à-vis the dependence measures.
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Our final model consists of time-varying conditional marginal Student’s t densities with

time-varying fractionally integrated volatilities and possibly different degrees of freedom. In

addition, the dependence between the marginals is captured by a time-varying Student’s t

copula function with long memory dynamics for the correlation parameter. Time-varying

copulas have been introduced by Patton (2002, 2006) and applied and extended by Dias and

Embrechts (2004, 2010), Jondeau and Rockinger (2006), Bartram, Taylor, and Wang (2007)

and Ausin and Lopes (2010). In most studies, the dynamics of the copula are estimated

as highly persistent processes; see, for example, Jondeau and Rockinger (2006, Table 6).

Hafner and Manner (2010) even report that some dynamic copulas exhibit behavior close to

a random walk. Our model, however, is the first to introduce fractional integration in the

copula setting and to implement this in estimation and forecasting.

The key challenge is to define a fractionally integrated process for the dynamic copula

parameter from the Student’s t copula. In particular, we need to construct functions of past

data that drive the dynamic correlation process in some appropriate way. The functions used

in Engle (2002) or Patton (2006) do not account for the particular shape of the observation

density. We find a solution in the generalized autoregressive score (GAS) mechanism of

Creal, Koopman, and Lucas (2011). They argue that an appropriate function can be based

on the scaled score of the conditional density. We adopt their approach in our current

setting with Student’s t marginals and Student’s t copula functions. The resulting function

has (conditional) zero mean by construction and facilitates the use of the infinite moving

average expansion in the fractionally integrated setting. An additional advantage of this

approach is that the resulting model automatically downweights possible outliers and thus

limits their impact on volatility and correlation dynamics. The robustness property is crucial
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for long memory models where the impact of innovations on future values dissipates at a

slow hyperbolic rate.

We conduct both a Monte Carlo study and an empirical study to illustrate the merits

of the new model. In the Monte Carlo study, we show that our new fractionally integrated

model outperforms short memory alternatives in terms of accuracy when the copula dynamics

exhibit a slow rate of decay. In the empirical study, we analyze high-frequency tick-by-tick

data from the Trade and Quote (TAQ) database over a long period from January 1993 to

May 2010. We construct realised measures as benchmarks for evaluating the forecast quality

of different dynamic copula models at a daily frequency. In accordance with earlier studies

we find evidence of long memory in the volatility of these series. Long memory features also

appear important for the dynamic Student’s t copula. However, whereas the long memory

properties are comparable across the volatilities of the different series, the degree of long

memory for the correlations differs substantially between different pairs of equities. Also,

the long memory properties of the correlations and volatilities are substantially different.

These findings underline the need for a flexible modeling framework that accounts for these

empirical features.

The remainder of the paper is organized as follows. In Section 2 we introduce our long

memory model for volatility and dependence. In Section 3 we conduct a Monte Carlo study to

examine the performance of competing models for time-varying dependence under a variety

of correlation dynamics. In Section 4 we present the results of our empirical study. Section

5 concludes.
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2 Conditional volatility and dependence

2.1 Modeling returns and volatility

Let y∗t denote a daily log return series for time t = 1, . . . , n. The unconditional mean E[y∗t ]

can be consistently estimated by the sample average ȳ∗. We define the demeaned series

yt = y∗t − ȳ∗ for t = 1, . . . , n, as our main quantity of interest. We assume that yt can be

conditionally modeled as a Student’s t distributed white noise series. The density of yt is

given by

p(yt|σ2
t ; ν) =

Γ(ν+1
2

)

Γ(ν
2
)
√

(ν − 2)πσ2
t

[
1 +

y2
t

(ν − 2)σ2
t

]−(ν+1)/2

, (2.1)

with time-varying variance σ2
t > 0, degrees of freedom parameter ν > 2, Γ(·) denoting the

gamma function. The Gaussian distribution is obtained as a special case for ν−1 → 0.

To enforce the volatility process to be positive, we model log volatility ht = log σ2
t rather

than σ2
t itself. The evolution of ht over time is typically stationary and we can, for example,

consider a first-order autoregressive process

ht+1 = δ(h) + β(h)ht + α(h)ηt, t = 1, . . . , n, (2.2)

where δ(h) is an unknown constant, β(h) is the autoregressive coefficient, α(h) is a scaling

constant, and ηt is an innovation term with mean zero. The superscript (h) indicates that

coefficients correspond to the time-varying volatility process ht. For a stationary process

ht, the unconditional mean is then given by µ(h) = δ(h)/(1 − β(h)). Equation (2.2) can be

rewritten as

ht+1 − µ(h) = β(h)(ht − µ(h)) + α(h)ηt, t = 1, . . . , n. (2.3)
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The nature of the innovation term determines the class of the model. When we take ηt =

y2
t / σ

2
t −1, the model is directly related to the GARCH model of Engle (1982) and Bollerslev

(1986) and has several features in common with the exponential GARCH model of Nelson

(1992). We base our choice for ηt on Creal et al. (2011) for which the details are given below.

To account for the high-persistence of ht typically found in empirical work, stationary

long memory processes have been proposed for modeling volatility, in particular fractionally

integrated processes; see Robinson (1991), Baillie, Bollerslev, and Mikkelsen (1996), Boller-

slev and Mikkelsen (1996) and Tse (1998). The fractionally integrated model can be written

as

(1− L)d
(h)

(ht+1 − µ(h)) = β(h)(1− L)d
(h)

(ht − µ(h)) + α(h)ηt, t = 1, . . . , n, (2.4)

where L is the lag operator (with Lht = ht−1) and where the fractional difference operator

(1− L)d
(h)

is defined by the binomial expansion

(1− L)d
(h)

= 1− d(h)L+
d(h)(d(h) − 1)

2!
L2 − d(h)(d(h) − 1)(d(h) − 2)

3!
L3 + . . . , (2.5)

for any real order of fractional integration d(h) > −1. To enforce stationarity, one can

impose d(h) < 1/2. For most financial time series positive values for d(h) are found. The

time series process (2.4) for ht is a special case of the autoregressive fractionally integrated

moving average (ARFIMA) model as introduced by Granger and Joyeaux (1980) and Hosking

(1981). The statistical properties for the ARFIMA process are also applicable to (2.4). For

example, if |β(h)| < 1, d(h) < 1/2, and ηt is a martingale difference sequence with finite and

time-invariant variance, a covariance stationary and invertible solution exists for (2.4); see
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Palma (2007, Section 3.2).

The ARFIMA process substantially extends the range of autocovariance functions implied

by short memory processes such as (2.2). The memory properties of ht depend on both β(h)

and d(h). For d(h) < 0 the process has intermediate memory and all autocovariances (except

for lag 0) are negative and decay hyperbolically to zero. For d(h) = 0, the autocovariance

function decays exponentially and the process is said to have short memory. For 0 < d(h) <

1/2, the process is persistent and has long memory with an autocovariance function that

decays at a slow hyperbolic rate. The innovation ηt then has a long-lasting effect on future

values of ht. Finally, for 1/2 ≤ d(h) < 1 the process is not covariance stationary, but still

mean-reverting; see Baillie (1996, p.22). For d(h) = 1 the log variance follows a unit root

process.

The specification in (2.4) can be further generalized by including a leverage effect. An

indicator function for ht with a different response to positive and negative values of yt can

be considered as in Glosten, Jagannathan, and Runkle (1993). We adopt this generalization

in our empirical application of Section 4.

The volatility innovation ηt in (2.2) or (2.4) is set equal to the scaled score function of the

predictive logdensity of observation yt with respect to ht; see Creal, Koopman, and Lucas

(2011). In this framework, the log variance ht becomes a function of yt−1, yt−2, . . .. The score

function is scaled by the inverse of its asymptotic variance which under standard regularity

conditions equals the expected information matrix. In the limiting case of a normal density

function for yt in (2.1), we recover a standard GARCH type model. Creal et al. (2011)

show that a range of other conditional dynamic models used in financial econometrics can

be obtained from the current set-up when considering other densities and parameterizations.
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The martingale difference property of the score makes it a convenient choice for ηt in (2.2) or

(2.4). A similar model was developed by Harvey and Chakravarty (2008) and is referred to

as the Beta-t-EGARCH model. Here we extend the original GAS model with a fractionally

integrated volatility (and later also correlation) process.

For the Student’s t density in (2.1) with σ2
t = exp(ht), we can express the logdensity as

a function of ht,

log p(yt|ht; ν) = a(ν)− 1

2
ht −

ν + 1

2
log[1 + (ν − 2)−1 exp(−ht)y2

t ], (2.6)

where

a(ν) = log
(
Γ((ν + 1)/2)

)
− log

(
Γ(ν/2)

)
− 1

2
log(ν − 2)− 1

2
logπ,

is a function with ν as its only argument. We differentiate (2.6) with respect to ht and obtain

∇(h)
t =

∂ log p(yt|ht; ν)

∂ht
=

1

2

[
ωtσ

−2
t y2

t − 1
]
, (2.7)

where the weight ωt is given by

ωt =
ν + 1

(ν − 2) + σ−2
t y2

t

≥ 0. (2.8)

For given values of yt and σ2
t , the weight ωt converges to unity for the limiting Gaussian

case of ν−1 → 0. For given values of ν and σ2
t , the weight ωt is decreasing in σ−2

t y2
t . Hence

relatively large observations (in absolute terms) are downweighted and have less impact on

future volatilities. This is a consequence of the heavy tails of the Student’s t distribution.
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The Fisher information is given by

I(h)
t = Et−1

(
∇(h) 2
t

)
=

1

2

ν

ν + 3
, (2.9)

where Et−1 is expectation with respect to density p(yt|ht; ν). We notice that ht is a function

of yt−1, yt−2, . . . in our framework. For the limiting Gaussian case, we have It = 1
2
. We

finally define the innovation ηt for the log volatility process ht in (2.2) or (2.4) as

ηt =
[
I(h)
t

]− 1
2 ∇(h)

t . (2.10)

The initial value h1 can be set to the unconditional mean of the actual process ht. Here

we scale the score by the square root of the inverse of the Fisher information. Creal et al.

(2011) consider different scaling variables for ∇t. Since the information matrix is constant

here, the scaling is less relevant.

An attractive feature of the current model is the explicit link between the density of

yt and the dynamics of the log volatility process ht. The expression of the weight ωt in

(2.7) is a result of the Student’s t distribution for yt. The robustness property due to

ωt distinguishes our modeling framework from existing fractionally integrated models for

volatility, in particular from the fractionally integrated GARCH and EGARCH models of

Baillie, Bollerslev, and Mikkelsen (1996) and Bollerslev and Mikkelsen (1996). A volatility

model that is robust to large positive or negative log returns is particularly important when

log volatility is modeled as a long memory process: large values of ηt then have a long-

lasting effect on many future values of ht due to the slow hyperbolic decay rate of the

autocorrelation function. Aberrant values of yt may then corrupt our volatility estimates
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for a substantial number of periods. Robustifying the impact of influential values of yt may

thus be particularly useful to improve the fit of long-memory models. We provide empirical

illustrations in Section 4.

2.2 Modeling dependence

Our treatment of the cross-sectional dependence between series is based on copula functions

and Sklar’s theorem. We assume that for a k-dimensional time series the joint distribution

function can be decomposed into (i) k marginal distributions and (ii) a copula function for the

dependence structure. We consider the bivariate Student’s t copula that enable us to capture

the dependence between extreme events; see the discussion in Demarta and McNeil (2005).

Since the modeling stages of the marginals and the dependence structure are separated, the

degrees of freedom parameters for the marginal Student’s t distributions can be different. In

addition, these degrees of freedom parameters can be different from the degrees of freedom

parameter of the Student’s t copula that ties the marginals together. Hence the clustering

of large absolute returns and of dependence in tail events are modeled separately.

Let zit = σ−1
it yit denote the ith standardized observation at time t, with i = 1, . . . , k, and

t = 1, . . . , n. The probability integral transform of zit is given by

uit =

∫ zit

−∞
pit(x) dx,

where pit(·) is the marginal density of zit. It follows that uit is uniformly distributed,

uit ∼ U(0, 1). The copula function is then defined as a distribution function on a k-

dimensional hypercube with uniform marginals. We denote the copula as C(u1t, . . . , ukt)
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and the copula density as c(u1t, . . . , ukt). The bivariate Student’s t copula density with

time-varying correlation parameter ρt and degrees of freedom parameter κ is given by

c(u1t, u2t|ρt;κ) = γ(κ)(1−ρ2
t )
−1/2

[
1 + κ−1(1− ρ2

t )
−1
(
x2

1t + x2
2t − 2ρtx1tx2t

)]−(κ+2)/2

[(1 + x2
1t/κ)(1 + x2

2t/κ)]
−(κ+1)/2

, (2.11)

where

γ(κ) = Γ

(
κ+ 2

2

)
Γ
(κ

2

)
Γ−2

(
κ+ 1

2

)
, xit = T−1

κ (uit), i = 1, 2,

with correlation coefficient ρt ∈ (−1, 1), and T−1
κ (·) the inverse cumulative distribution func-

tion of the univariate Student’s t distribution with κ > 0 degrees of freedom. The Gaussian

copula density is obtained as the limiting case κ → ∞. The resulting joint distribution of

the bivariate data is only elliptical if ν1 = ν2 = κ such that it corresponds to the bivariate

Student’s t distribution.

The correlation coefficient ρt and degrees of freedom parameter κ together determine the

dependence between the two components of yt. We treat κ as an unknown fixed coefficient

but we allow the correlation parameter ρt to be time-varying. To enforce that the correlation

always lies in the interval (−1, 1), we define the variable gt as

gt = log
1 + ρt
1− ρt

⇔ ρt =
exp(gt) + 1

exp(gt)− 1
. (2.12)

We let gt evolve over time by the process

(gt+1 − µ(g)) = β(g)(gt − µ(g)) + α(g)εt, t = 1, . . . , n, (2.13)
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where µ(g), β(g), and α(g) are unknown coefficients that need to be estimated. The superscript

(g) indicates that coefficients correspond to the time-varying dependence parameter gt. The

innovation term εt has mean zero. Similar to the log-volatility process ht, the dependence

parameter gt can also be modeled as a fractionally integrated process

(1− L)d
(g)

(gt+1 − µ(g)) = β(g)(1− L)d
(g)

(gt − µ(g)) + α(g)εt, t = 1, . . . , n, (2.14)

for any real order of fractional integration d(g) > −1 with stationarity condition d(g) < 1/2.

The discussions related to the processes (2.2) and (2.4) and its coefficients also apply to

the dynamic processes for dependence. The dependence innovation εt in (2.13) or (2.14) is

defined by the scaled score of the observation density with respect to gt. For the case of our

Student’s t copula density, we obtain

∇(g)
t =

∂ log c(u1t, u2t|gt;κ)

∂gt

=
ρ̇t

(1− ρ2
t )

2

[
(1 + ρ2

t )
(
πtx1tx2t − ρt

)
− ρt

(
πtx

2
1t + πtx

2
2t − 2

)]
, (2.15)

with ρ̇t = ∂ρt/∂gt,

πt = (κ+ 2)/(κ+mt) ≥ 0,

mt =
1

1− ρ2
t

(x2
1t + x2

2t − 2ρtx1tx2t) ≥ 0,

where πt is a weight and mt is the squared Mahalanobis distance of the vector xt = (x1t, x2t)
′
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to zero with respect to the correlation matrix

Rt =

 1 ρt

ρt 1

 .

The weight πt can be interpreted in a similar way as the weight ωt for the log variance

equation (2.7). For a finite κ, extreme observations x1t and/or x2t leading to a large distance

mt will, as the result of downweighting via πt, have less impact on the correlation dynamics

because they are partly attributed to the heavy-tailed nature of the copula rather than to

local increases in the correlation. The degree of robustness increases with a decreasing κ. In

the limiting case of κ→∞, we recover the Gaussian copula density with πt = 1.

We obtain the expected information as

I(g)
t =

ρ̇t
2

(1− ρ2
t )

2

(
1 + ρ2

t −
2ρ2

t

κ+ 2

)
κ+ 2

κ+ 4
, (2.16)

see for example Lange, Little, and Taylor (1989) for a detailed derivation. The innovation

εt in (2.13) or (2.14) is then given by

εt =
[
I(g)
t

]−1/2

∇(g)
t . (2.17)

Other scaling terms for ∇(g)
t are also possible as in Creal et al. (2011). From an (unreported)

preliminary Monte Carlo study, however, we concluded that scaling as in (2.17) is slightly

preferred, as it produces numerically the most stable results. Also, scaling as in (2.17) implies

that εt has zero mean and constant unit variance.
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2.3 Estimation

Parameter estimation is carried out by the method of maximum likelihood. All static model

parameters, including the order of fractional integration, are collected in a parameter vector

ψ. We maximize the loglikelihood with respect to ψ. The standard errors are computed

by means of the square root of the inverse Hessian of the log-likelihood evaluated at the

maximum.

Since our modeling framework is based on the copula function, we can estimate the

parameters in two steps. First, we consider the marginal models for all series separately and

rely on the univariate volatility specification as discussed in Section 2.1. Here we include a

subscript i to denote the parameters and marginal densities of the ith series. For example,

the log volatility ht for the ith series is denoted by hit. The ith marginal loglikelihood

function is based on the log density (2.6) and is given by

L(h)
i =

n∑
t=1

log p(yit|hit; νi)

= n · a(νi)−
1

2

n∑
t=1

hit −
νi + 1

2

n∑
t=1

log
[
1 + (νi − 2)−1 exp(−hit)y2

it

]
, (2.18)

where the function a(ν) is given below equation (2.6). For each i, the parameter estimates

related to hit are obtained by maximizing (2.18).

Second, the dependence parameters are estimated as follows. For each series i, we com-

pute ĥit using the appropriate updating equations for hit given by (2.2) or (2.4) with pa-

rameters replaced by their corresponding estimates. We compute the probability integral
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transform for each observation by

ûit = Tν̂i

[
exp(−1

2
ĥit) yit

]
,

where Tν(·) is the cumulative distribution function of the univariate Student’s t distribution

with ν degrees of freedom. The likelihood for the (bivariate) copula is given by

L(g) =
n∑
t=1

log c(û1t, û2t|ρt;κ)

= n · γ(κ) +
κ+ 1

2

n∑
t=1

2∑
i=1

log
(
1 + x2

it/κ
)

− 1

2

n∑
t=1

log(1− ρ2
t )−

κ+ 2

2

n∑
t=1

log

(
1 +

(
x2

1t + x2
2t − 2ρtx1tx2t

)
κ(1− ρ2

t )

)
, (2.19)

where γ(κ) is defined below equation (2.11),

xit = T−1
κ (ûit),

and ρt is a function of gt as given by (2.12).

For the evaluation of ht and gt, it is convenient to express the model in its infinite moving

average form. For example, the updating equation (2.4) for ht can also be given by

ht+1 = µ(h) + (1− β(h)L)−1(1− L)−d
(h)

α(h)ηt. (2.20)

Maximum likelihood estimation in fractionally integrated models requires the truncation

of the infinite distributed lags polynomial (1 − L)−d
(h)

. We follow Baillie, Bollerslev, and

Mikkelsen (1996) and Bollerslev and Mikkelsen (1996) and use a fixed truncation lag of
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1000. For the initialization of the volatility and correlation recursions, we follow Bollerslev

and Mikkelsen (1996) who argue that initialization has a negligible effect on parameter

estimation when the sample size is sufficiently large. In particular, we set the innovation

term of the volatility and correlation recursions to zero for all pre-sample values. Similarly,

we set h1 and g1 equal to their respective unconditional means.

3 Monte Carlo study

In this section we report the results of a Monte Carlo study to compare the performance of

competing models. We concentrate on the newest feature of the model proposed in Section

2, namely the fractionally integrated correlation dynamics under fat-tailed distributions.

3.1 Monte-Carlo design

The design of the current experiment is similar to the studies in Engle (2002) and Hafner and

Manner (2010). We simulate series of n = 5, 000 observations from the bivariate Student’s

t copula with κ ∈ {2, 5, 15} degrees of freedom. The correlation dynamics are generated by

updating ρt directly or by updating gt and using the transformation (2.12) to obtain ρt. The
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following eight updating equations for the correlation process are considered:

1. Constant: ρt = 0.9;

2. Sine: ρt = 0.5 + 0.4cos(2πt/1000);

3. Fast Sine: ρt = 0.5 + 0.4cos(2πt/100);

4. Step: ρt = 0.9− 0.5(t > 2500);

5. Ramp: ρt = mod(t/1000);

6. ARMA: (1− 0.99L)gt = 0.01 + 0.05ξt;

7. ARFIMA: (1− 0.90L)(1− L)0.45(gt − 1) = 0.05ξt;

8. Random Walk: (1− L)gt = 0.025ξt;

where L is the lag operator and ξt is Gaussian white noise with mean zero and unity variance.

Graphs of the deterministic processes 1 to 5 can be found in Engle (2002). We simulate

M = 1, 000 (bivariate) series (of length n = 5, 000) for each correlation process and then

estimate the parameters for five dynamic model specifications:

(a) GAS : the autoregressive process (2.13) with εt as the scaled score;

(b) IGAS : random walk process (2.14) with β(g) = 0 and d(g) = 1;

(c) FIGAS : long memory process (2.14);

(d) Fisher : benchmark model of Dias and Embrechts (2010);

(e) FIBase : benchmark model of Patton (2002, 2006).

The benchmark model (d) is given by

gt+1 = δ∗(g) + β∗(g)gt + α∗(g) sgn(x1t x2t)|x1t x2t|1/2, (3.1)
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with coefficients δ∗(g), β∗(g) and α∗(g), where sgn(·) is the sign function and where xit is

defined below (2.11) for i = 1, 2. The use of the square root of the product |x1t x2t| dampens

the impact of extreme observations on the correlation dynamics. Dias and Embrechts (2010)

refer to (3.1) as the Fisher(1, 1) dynamic model and they report that it outperforms a set of

competing models.

The benchmark model (e) is a long memory extension of Patton (2002, 2006) for the

Student’s t copula,

(1−L)d
†(g)

(gt+1−µ†(g)) = β†(g)(1−L)d
†(g)

(gt−µ†(g))+α†(g)H−1

H∑
j=1

(x1t−j+1x2t−j+1−ρt), (3.2)

with coefficients d†(g), µ†(g), β†(g) and α†(g), where H is a smoothing parameter and where

ρt is a function of gt as in (2.12). We set H = 10. The updating equation weights all

observations equally and does not exploit the robust features of the Student’s t density. We

refer to equation (3.2) as the FIBase(1, 1) model.

The coefficients for each model are estimated by the method of maximum likelihood as

discussed in Section 2.3. In our study we focus on the accuracy of models which is measured

by the mean absolute error (MAE) and the mean squared error (MSE) as given by

MAE =
1

n

n∑
t=1

|ρt − ρ̂t|, MSE =
1

n

n∑
t=1

(ρt − ρ̂t)2,

where ρ̂t denotes the correlation estimate for each of the five statistical models considered.

Both statistics are reported as averages over the M = 1, 000 simulations. These statistics

measure effectively the accuracy of a model in its ability to fit the underlying correlation

pattern ρt. None of the five statistical models is embedded in any of the eight correlation
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data generating processes and, therefore, none of the statistical models is a priori put at an

advantage.

3.2 Results

Table 1 presents the main findings. For each combination of the model (row-wise), the

correlation process (column-wise) and the degrees of freedom parameter κ (panels), the

MAE and MSE statistics are reported relative to their smallest value across the five statistical

models considered. Hence the best performing model is normalized to one and printed in

bold. For example, for κ = 2 and the Step correlation process, the GAS model performs

best in terms of MAE as well as MSE.

For κ = 5, the Student’s t distribution has moderately heavy tails. The FIGAS specifi-

cation produces the best results in half of the cases whereas the GAS model performs best

in the other half of the cases. Particularly, if the correlation process has long memory or is

smoothly varying (processes Sine, Fast Sine and ARFIMA), the performance of the FIGAS

model is excellent. The GAS model produces better results for correlation processes Step,

Ramp, ARMA and Random Walk. Overall, the GAS and FIGAS models display good and

stable results. The Fisher and FIBase benchmark models perform considerably worse. The

deteriorations in terms of MAE and MSE in relation to the GAS and FIGAS models can be

as large as 90% for MAE and 150% for MSE.

These findings are amplified if we move to κ = 2 where the tails of the Student’s t are

more extreme. The GAS, IGAS and FIGAS models display stable results; their perfor-

mances and rankings are comparable to the κ = 5 case. However, the performance of the

benchmark models has deteriorated substantially with efficiency losses of more than 600% in
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Table 1: Simulation results

Constant Sine Fast Sine Step Ramp ARMA ARFIMA Rand Walk
κ = 2

MAE
GAS 1.119 1.044 1.008 1.000 1.001 1.000 1.004 1.000
IGAS 1.000 1.058 1.117 1.098 1.000 1.064 1.049 1.032

FIGAS 1.080 1.000 1.000 1.143 1.014 1.006 1.000 1.015
Fisher 1.355 1.741 1.326 2.258 1.322 1.109 1.112 1.240
FIBase 1.944 2.842 1.949 3.351 2.004 1.360 1.500 2.437

MSE
GAS 1.000 1.078 1.010 1.000 1.000 1.000 1.009 1.000
IGAS 1.100 1.115 1.317 1.090 1.076 1.119 1.096 1.110

FIGAS 1.108 1.000 1.000 1.118 1.030 1.011 1.000 1.079
Fisher 1.849 3.299 1.675 4.563 1.710 1.249 1.217 1.586
FIBase 4.489 6.541 3.553 7.460 3.549 3.613 2.456 5.037

κ = 5
MAE
GAS 1.130 1.033 1.008 1.000 1.000 1.000 1.004 1.000
IGAS 1.311 1.073 1.137 1.113 1.006 1.079 1.053 1.038

FIGAS 1.000 1.000 1.000 1.125 1.008 1.011 1.000 1.032
Fisher 1.289 1.442 1.221 1.735 1.157 1.083 1.092 1.209
FIBase 1.723 1.576 1.429 1.904 1.239 1.141 1.144 1.264

MSE
GAS 1.174 1.049 1.006 1.000 1.000 1.000 1.006 1.000
IGAS 1.265 1.144 1.367 1.111 1.078 1.166 1.112 1.136

FIGAS 1.000 1.000 1.000 1.102 1.026 1.022 1.000 1.127
Fisher 1.427 1.897 1.355 2.367 1.292 1.164 1.171 1.493
FIBase 2.097 2.149 1.708 2.546 1.418 1.287 1.279 1.586

κ = 15
MAE
GAS 1.341 1.031 1.009 1.000 1.000 1.000 1.005 1.000
IGAS 1.119 1.075 1.134 1.121 1.000 1.084 1.058 1.045

FIGAS 1.000 1.000 1.000 1.127 1.012 1.005 1.000 1.033
Fisher 1.047 1.433 1.231 1.749 1.148 1.086 1.094 1.215
FIBase 1.309 1.514 1.215 1.860 1.243 1.123 1.135 1.279

MSE
GAS 1.360 1.043 1.005 1.000 1.000 1.000 1.009 1.000
IGAS 1.150 1.147 1.371 1.127 1.062 1.182 1.128 1.152

FIGAS 1.000 1.000 1.000 1.115 1.036 1.012 1.000 1.133
Fisher 1.089 1.874 1.341 2.457 1.344 1.169 1.178 1.529
FIBase 1.377 1.997 1.378 2.464 1.442 1.249 1.259 1.619

specific cases. The case of κ = 15 represents tail properties close to those for the Gaussian

distribution. The performances of the Fisher and FIBase models become relatively better

for κ = 15. The GAS and FIGAS specifications still produce more accurate results when

compared to the benchmark models.

We conclude that the GAS and FIGAS specifications present an attractive robustness
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feature. Heavy tails for the observation distribution appear to distort the dynamic correla-

tions in a minor way compared to the other models. The models produce good fits to the

data under a variety of data generating processes, and in particular produce good results

under thin-tailed as well as fat-tailed data distributions.

4 Long memory in equity return dependence measures

In the empirical study we illustrate our modeling framework for an equity data set. Earlier

contributions have primarily concentrated on the long memory properties of volatility and

have found that these properties are comparable across equities. We consider the long

memory properties of both volatility and dependence. Our main conclusion is that the

memory properties of dependence measures such as correlations are more diverse across

different pairs of stocks.

4.1 Data and proxies for the latent processes

We analyze four different stocks from the Dow Jones Industrial Average index: American

Express (NYSE ticker symbol is AXP), General Electric (GE), Coca-Cola (KO), and Procter

& Gamble (PG). The stocks represent different industries.

In contrast to the simulation experiment in Section 3, we clearly do not observe the

volatility σ2
t and correlation ρt processes. This creates a complication in assessing the per-

formance of our different statistical models. To solve this problem, we compare the model

implied estimates with non-parametric estimates of volatility and correlation. In particular,

we follow Andersen and Bollerslev (1998) and use realised (co)variance measures based on

high-frequency intra-day data as proxies for their true, unobserved counterparts.
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The intra-day tick data we use consists of consolidated trades extracted from the Trade

and Quote (TAQ) database downloaded through the Wharton Research Data Services sys-

tem. The data is taken from the NYSE core trading session between 9:30am and 4:00pm,

Eastern Time. The sample period runs from January 4, 1993, to May 28, 2010. This yields

a total of n = 4, 385 trading days for all four equities. We clean the raw trade data by apply-

ing the methodology discussed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009).

All data is put to calendar time sampling using the previous tick method and aggregating

records with the same time-stamp (in seconds) into one observation using the median price;

see Hansen and Lunde (2006).

The statistical models from Section 2 are used to analyze daily return data which are

defined as the difference between the logarithm of the close and the open price. The realised

(co)variance measures are computed as logarithmic price increments sampled at 5 minute

intervals. At this sampling frequency the impact of microstructure noise is benign and can

be ignored for all practical purposes. The overnight returns are skipped in the computations.

To account for the possible presence of jumps, we use the threshold realised volatility

estimator proposed by Mancini (2009) and defined as

TRV k
N =

N∑
i=1

(∆Xk
ti

)21{(∆Xk
ti

)2≤rN}, ∆Xk
ti

= Xk
ti
−Xk

ti−1
, (4.1)

where 1A is the indicator function for event A, rN is a threshold value and Xk
ti

is the log price

of asset k at time ti, for i = 0, . . . , N with N = 78 as the number of intraday returns sampled

at the 5 minute frequency. The threshold value is set as rN = N−0.99; see Mancini (2009).

The threshold estimator (4.1) is based on the statistical properties of the Brownian motion
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whose variation is proportional to the time step N−1. A price increment whose variation is

larger than the regular Brownian variation might contain a jump component. The use of the

threshold function rN mitigates the influence of jumps on estimated volatility.

The threshold realised correlation between assets k and l is given by

TRCorrk,lN =

∑N
i=1 ∆Xk

ti
1{(∆Xk

ti
)2≤rN}∆X

l
ti
1{(∆Xl

ti
)2≤rN}√∑N

i=1(∆Xk
ti)

21{(∆Xk
ti

)2≤rN}
∑N

i=1(∆X l
ti)

21{(∆Xl
ti

)2≤rN}

; (4.2)

see Mancini and Gobbi (2010). It serves as our benchmark for the model implied estimates of

correlation. As in (4.1), the threshold estimator in (4.2) measures the correlation attributable

to the continuous parts of the price processes. Classical realised volatility (RV ) and realised

correlation (RCorr) measures can be retrieved in the usual way as described by Andersen,

Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002). We

compute the realised measures for each day in our sample.

4.2 Conditional volatility of equity returns

In Table 2 we report the maximum likelihood estimates of parameters for four different

models. The equity return series yt is modeled by

yt = σtzt, zt ∼ Student’s t(ν), t = 1, . . . , n,

such that the density for yt is given by (2.1). The unconditional mean of equity return is

denoted as θ. We consider the following four updating processes for transformations of σt :
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1. fractionally integrated GARCH (FIGARCH):

(1− β(h)L)σ2
t+1 = µ(h)(1− βh) +

[
1− β(h)L− (1− α(h)L)(1− L)d

(h)]
y2
t+1.

2. fractionally integrated EGARCH (FIEGARCH):

(1− β(h)L)(ht+1 − µ(h)) = (1− L)−d
(h)

f(zt), ht = log σ2
t ,

where

f(zt) = γ(h)zt + α(h) (|zt| − E|zt|) , E|zt| =
√
ν − 2Γ((ν + 1)/2)

(ν − 1)
√
πΓ(ν/2)

.

3. FIGAS : equations (2.4), (2.7), (2.9) and (2.10) with ht = log σ2
t .

4. FIGAS with leverage effect (FIGAS+L) : as FIGAS with α(h)ηt replaced by

(
α(h) + γ(h)1yt<0

)
ηt,

where 1A is the indicator function for event A.

We have also considered short memory processes for transformations of σt which are obtained

from the above models by setting the fractional order of integration to zero; these results

are available in the online appendix accompanying this paper.

The estimates of the fractional order of integration d(h) for the threshold realised volatility

are computed using the log-periodogram regression method GPH of Geweke and Porter-

Hudak (1983); for the details, see Maynard and Phillips (2001). The resulting estimates

are all between 0 and 1, and they are similar across equities. It provides clear evidence of
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Table 2: Maximum likelihood estimates for four conditional volatility models

Equity d
(h)
TRV Model θ α(h) γ(h) β(h) ν d(h) AIC MAETRV

AXP 0.543 FIGARCH 0.046 0.250 - 0.748 10.338 0.595 16996.78 1.021
(0.020) (0.034) (0.043) (1.224) (0.056)

FIEGARCH 0.049 0.187 -0.067 0.333 9.411 0.692 16945.88 0.955
(0.017) (0.030) (0.015) (0.133) (1.169) (0.031)

FIGAS 0.042 0.097 - 0.390 9.536 0.699 16965.03 0.978
(0.020) (0.017) (0.141) (1.213) (0.034)

FIGAS+L 0.047 0.056 0.088 0.297 9.640 0.703 16941.17 0.945
(0.018) (0.015) (0.024) (0.159) (1.237) (0.032)

GE 0.507 FIGARCH 0.006 0.313 - 0.743 11.419 0.544 15158.66 1.048
(0.017) (0.037) (0.039) (1.382) (0.048)

FIEGARCH 0.006 0.216 -0.074 0.121 11.930 0.708 15077.14 0.978
(0.014) (0.033) (0.016) (0.157) (1.794) (0.037)

FIGAS 0.003 0.111 - 0.074 11.751 0.743 15103.16 0.969
(0.017) (0.017) (0.168) (1.722) (0.039)

FIGAS+L 0.007 0.075 0.068 0.144 12.373 0.713 15093.18 0.956
(0.016) (0.016) (0.021) (0.157) (1.883) (0.040)

KO 0.527 FIGARCH 0.046 0.304 - 0.785 8.219 0.509 13835.42 0.997
(0.015) (0.037) (0.038) (0.753) (0.047)

FIEGARCH 0.040 0.151 -0.038 0.343 7.651 0.696 13817.07 0.975
(0.014) (0.033) (0.013) (0.177) (0.786) (0.046)

FIGAS 0.043 0.073 - 0.428 7.858 0.705 13829.63 0.982
(0.015) (0.019) (0.199) (0.834) (0.052)

FIGAS+L 0.036 0.036 0.086 0.324 8.275 0.700 13805.18 0.957
(0.013) (0.013) (0.024) (0.179) (0.922) (0.043)

PG 0.510 FIGARCH 0.084 0.400 - 0.712 8.368 0.439 13856.10 1.052
(0.014) (0.031) (0.032) (0.738) (0.029)

FIEGARCH 0.090 0.192 -0.047 0.406 7.923 0.612 13781.02 0.948
(0.014) (0.034) (0.015) (0.148) (0.823) (0.044)

FIGAS 0.096 0.105 - 0.371 8.135 0.637 13790.22 0.952
(0.015) (0.021) (0.175) (0.870) (0.047)

FIGAS+L 0.089 0.079 0.065 0.346 8.225 0.632 13780.84 0.932
(0.015) (0.017) (0.023) (0.159) (0.895) (0.047)

The first column gives the NYSE ticker symbol of an equity. The second column is for d
(h)
TRV and denotes the estimate of the

fractional difference parameter for the threshold realised volatility (TRV) series as defined in (4.1). The d
(h)
TRV is estimated

based on the log-periodogram regression method of Geweke and Porter-Hudak (1983) and implemented as in Maynard and
Phillips (2001). The third column indicates the process for σt as detailed in the text. The penultimate column is for the Akaike
Information Criterion (AIC). The final column is for MAETRV and denotes mean absolute error between the model-based
volatility process and the TRV series. We do not report the estimates of µ(h) because it is not identified when d(h) ≥ 1/2.
We report the estimates with their associated standard errors in parentheses below.
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long range dependence in volatility; see Maasoumi and McAleer (2008) for more discussion.

The persistence of the volatility processes can also be inferred from the estimates of the

autoregressive coefficient that are all larger than 0.99 for the short memory formulations.

The estimates of d(h) for the different models and different series are between 0.43 and 0.75;

they are statistically different from zero and from unity based on conventional significance

levels. This finding implies that innovations have a long-term effect on future volatility

levels. The AIC criterion suggests that in most cases the volatility is best described by

the non-stationary but mean-reverting fractionally integrated process. Confirmation of this

finding is given by the reported MAE values in the last column of Table 2. It shows that

the FIGAS+L model is most precise for all four equities. This finding is also consistent

with earlier studies in which a similar degree of long memory in volatility is found for these

equities. In addition, we find convincing evidence for a leverage effect; the estimates of γ

are statistically significant for all equities. The degrees of freedom parameter ν is estimated

in the range between 7.5 and 12.5; the tail shapes of the equity series are quite similar.

In Figure 1 we present the model-based volatility estimate of σt together with TRV
1/2
t .

The realised measure is more jagged than the model-based volatilities but similar patterns

can be detected. The time series are subject to volatile and tranquil periods with the average

annualized volatility (right-hand scale) of around 25%. The other panels in Figure 1 present

scatter plots of the four volatility estimates with long memory properties. A clear difference

is apparent between FIGAS+L and FIGARCH volatility estimates; the estimates from the

FIGAS+L, FIGAS and FIEGARCH models are similar. Noteworthy differences remain,

however. To highlight these differences, we zoom in on some particular event days.
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Figure 1: Conditional volatility estimates of Procter & Gamble equity returns
The upper-left panel presents a time series plot for Procter & Gamble (PG) equity returns of model implied
volatilities plotted along with the threshold realised volatility estimator. The other panels contain FIGAS+L
volatility estimates plotted against FIGARCH (upper-right), FIGAS (lower-left), and FIEGARCH (lower-
right) volatility estimates.
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Figure 2: Case study for Procter & Gamble (PG) equity returns
The upper-left panel consists of a top panel containing the daily equity returns, and a bottom panel containing
the weights ωt of the FIGAS model. The upper-right panel contains the intraday time series plot of the price
level. The lower-left panel presents the time series of the realised variance together with the model implied
volatility estimates. The lower-right panel plots the intraday 5 minute returns.
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In the upper-left panel of Figure 2 we present daily PG equity returns in the summer

of 2004 together with the weights ωt of (2.8) which are used for computing the score ∇(h)
t

in (2.7). The aberrant observation of July 23, 2004 is clearly visible and takes the value of

approximately−6.5% : it is caused by the opening price of 55.97$ and a closing price of 52.49$

as depicted in the upper-right panel. This daily price increment was much larger (in absolute

terms) than in adjacent days. From the high-frequency intraday data we observe that after

the first trade, the remaining transactions over this day were relatively stable at a price level

of around 52.50$-53.00$. Consequently, the first intraday return as well as the daily return

are large. In the lower-left panel of Figure 2 we show the noticeable influence of this event on

the volatility estimate. The substantial divergence between the standard realised variance

measure (RV) and TRV on this day is noticeable. Also the model-based volatility estimates

increase instantly and it takes some time before they return to their previous level or to

TRV . However, the effect is more pronounced in the FIGARCH estimate than in its FIGAS

counterpart. The FIGAS updating scheme downweights the extreme observation through the

weight ωt. The resulting volatility estimate is more robust. The volatility dynamics in the

FIGAS+L specification are designed to respond relatively more to negative shocks compared

to the FIGAS specification. We therefore notice a higher impact of the large return on the

FIGAS+L compared to the FIGAS specification. However, the FIGAS+L volatility remains

more robust than its FIGARCH and FIEGARCH counterparts.

4.3 Conditional dependence between returns on equities

Next we study the dynamic behavior of the dependence structure in pairs of equities. We

compute standardized returns using the volatility estimates of a particular model and trans-
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form the returns into uniform variables using the probability integral function of the Stu-

dent’s t density. Then a set of competing models are considered for pairs of such transformed

series. We report estimation results for three pairs only: AXP/GE, GE/KO and KO/PG.

Results for other pairs are available in the online appendix. Table 3 presents the parameter

estimates and associated standard errors for four models that are introduced in Section 3.1:

Fisher, GAS, FIBase and FIGAS. For each model, we consider Gaussian (G) and Student’s

t (t) copula functions.

In a preliminary analysis, we compute the GPH estimates of the fractional order of inte-

gration d(g) of the threshold realised correlation TRCorr. The GPH estimates are reported

in the second column of Table 3 and they have values in the range from 0.35 to 0.50 which

indicates long memory features in the correlation processes. However, the GPH estimates for

realised correlations are smaller than those for realised volatilities. Within the model-based

framework, the persistence of the correlation processes can be inferred from the estimates

of the autoregressive coefficients β(g) that are in the range 0.970− 0.997 for the Fisher and

GAS models. The lower bound of this range is smaller than the β(h) estimates for volatili-

ties. It suggests that the degree of memory for the correlation processes may be different. In

general, we find that the correlation series are persistent. The empirical results of Dias and

Embrechts (2010) also indicate that high persistence of dependence processes for dynamic

copulas is a common feature for financial returns of different sampling frequencies. Hafner

and Manner (2010) report that copula dependence exhibits ‘nearly integrated’ behaviour.

The last two columns of Table 3 report the AIC and MAE criteria which may be used

to select the ‘best’ model. From these criteria we conclude that the FIGAS-t specification

is always best or second best for the three equity pairs. This finding also applies to the
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Table 3: Maximum likelihood estimates for conditional dependence models

Pair dTRCorr Model δ(g)/µ(g) α(g) β(g) d(g) κ AIC MAETRCorr

AXP/GE 0.497 Fisher-G 0.007 0.049 0.980 - - -1220.05 1.000
(0.003) (0.012) (0.005)

GAS-G 0.004 0.036 0.996 - - -1217.33 0.965
(0.003) (0.008) (0.002)

FIBase-G 1.026 0.031 0.588 0.546 - -1224.87 0.967
(0.152) (0.043) (0.537) (0.073)

FIGAS-G 0.950 0.045 0.408 0.714 - -1221.64 0.941
(0.196) (0.027) (0.384) (0.077)

Fisher-t 0.005 0.045 0.982 - 9.942 -1253.73 0.990
(0.003) (0.011) (0.005) (1.890)

GAS-t 0.003 0.038 0.997 - 9.890 -1248.64 0.951
(0.003) (0.009) (0.002) (1.912)

FIBase-t 1.059 0.037 0.556 0.586 8.495 -1231.26 0.946
(0.145) (0.042) (0.559) (0.072) (1.27)

FIGAS-t 0.955 0.074 0.251 0.711 9.969 -1252.60 0.934
(0.209) (0.030) (0.334) (0.074) (1.938)

GE/KO 0.462 Fisher-G 0.005 0.034 0.985 - - -753.75 1.000
(0.002) (0.009) (0.004)

GAS-G 0.003 0.023 0.996 - - -755.65 0.991
(0.002) (0.005) (0.002)

FIBase-G 1.204 0.215 0.220 0.318 - -722.27 1.004
(0.116) (0.121) (0.398) (0.096)

FIGAS-G 0.817 0.057 0.351 0.653 - -747.06 0.989
(0.140) (0.027) (0.356) (0.085)

Fisher-t 0.005 0.031 0.985 - 8.174 -799.50 1.001
(0.002) (0.009) (0.005) (1.361)

GAS-t 0.003 0.027 0.996 - 8.184 -802.58 0.985
(0.002) (0.008) (0.003) (1.352)

FIBase-t 0.947 0.203 0.055 0.298 7.960 -772.76 1.066
(0.068) (0.097) (0.474) (0.090) (1.243)

FIGAS-t 0.804 0.062 0.405 0.652 8.084 -797.67 0.984
(0.163) (0.033) (0.379) (0.098) (1.309)

KO/PG 0.394 Fisher-G 0.011 0.041 0.979 - - -897.53 1.000
(0.006) (0.014) (0.008)

GAS-G 0.024 0.049 0.978 - - -906.37 1.001
(0.009) (0.011) (0.008)

FIBase-G 1.402 0.150 0.408 0.291 - -872.77 0.993
(0.126) (0.129) (0.502) (0.082)

FIGAS-G 1.090 0.043 0.969 0.078 - -905.64 1.005
(0.065) (0.018) (0.029) (0.232)

Fisher-t 0.014 0.048 0.975 - 7.106 -957.83 0.994
(0.007) (0.015) (0.010) (1.051)

GAS-t 0.030 0.066 0.971 - 7.500 -961.99 0.992
(0.012) (0.015) (0.011) (1.166)

FIBase-t 1.237 0.044 0.997 0.055 7.650 -955.85 1.079
(0.105) (0.023) (0.002) (0.096) (1.142)

FIGAS-t 1.074 0.052 0.945 0.173 7.484 -961.45 0.990
(0.079) (0.018) (0.045) (0.207) (1.156)

Note: dTRCorr denotes the estimate of the fractional difference parameter for the TRCorr measure based on log-periodogram
regression method of Geweke and Porter-Hudak (1983). AIC stands for Akaike Information Criterion. MAETRCorr stands
for the mean of the absolute errors between the model-based correlation process and threshold realised correlation. Suffixes
G and t stand for Gaussian and t copula, respectively. The Fisher and FIBase models are discussed in Section 3.1. The
(FI)GAS model for dependence is presented in Section 2.2.

(unreported) other three pairs. The estimates of d(g) for the FIGAS specification have

values in the range from −0.01 to 0.72 for all six pairs. For the three reported pairs we find
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significant estimates of d(g) for the pairs AXP/GE and GE/KO. Such findings also hold for

the FIBase model. For the AXP/GE pair, the d(g) estimate is even statistically different

from 0.5; it suggests that the dependence measure is mean-reverting but is not covariance-

stationary. These results also provide empirical evidence that the restriction adopted in

Pafka and Mátyás (2001), i.e., imposing a common degree of long memory across volatilities

and covariances, may be too restrictive.
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Figure 3: Conditional dependence between returns on GE and KO equities
The figure contains realised and model implied correlation measures. The dotted horizontal line is the
estimate of ρ in the static bivariate t copula.

Figure 3 presents the time-varying correlations together with the threshold realised cor-

relation (TRCorr) for the equity pair GE/KO. The realised correlation is much noisier than

the model-based correlations. The GE/KO dependence oscilattes around the value obtained

from the static copula (long-run mean) without any significant breaks over time. The Stu-
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dent’s t copula density generalizes the Gaussian copula density by allowing for non-zero

dependence in the tails of the distribution. The correlation ρt and the degrees of freedom κ

determine the tail dependence for the Student’s t copula. This copula density is symmetric:

the upper and lower tail dependence are equal and are given by

λL,t = λU,t = 2Tκ+1

(
−
√
κ+ 1

√
1− ρt√
1 + ρt

)
∈ [0, 1]. (4.3)

The lower-right panel of Figure 3 presents the implied time-varying tail dependence. It

appears that the highest dependence between extreme events for this pair of equities was

around 1997-1998.

GE daily returns, September−November 2004 
KO daily returns 

−5.0

−2.5

0.0

2.5 i−a)

Sep. 08, 2004

GE daily returns, September−November 2004 
KO daily returns 

2004−09−07 2004−09−08 2004−09−09 2004−09−10
33.00

33.25

33.50

33.75

34.00 ii)   GE intraday price level Sep. 07−09, 2004

9:30:00 16:00:00

TRCorr 
Gas_G 

RCorr 
Gas_t 

Fisher_G 
Figas_G 

Fisher_t 
Figas_t 

2004−8−158−22 9−5 9−19 10−3 10−17 10−31 11−14 11−28

0.00

0.25

0.50

0.75

iii)  Correlations,  September−November 2004

TRCorr 
Gas_G 

RCorr 
Gas_t 

Fisher_G 
Figas_G 

Fisher_t 
Figas_t 

2004−09−07 2004−09−08 2004−09−09 2004−09−10

43

44

45

46
iv)   KO intraday price level Sep. 07−09, 2004

9:30:00 16:00:00

2004−8−158−22 9−5 9−19 10−3 10−17 10−31 11−14 11−28

0.5

1.0

1.5
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Figure 4: Case study for the GE/KO equities
The upper-left panel contains the daily equity returns for GE and KO (upper half), and the weights πt of the
FIGAS-t model (lower half). The upper-right and lower-right panels contains the intraday price dynamics
for GE and KO, respectively. The lower-left panel presents the time series of the realised correlation together
with the model implied correlation estimates.
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The model-based correlations in Figure 3 look very similar. However, the correlations of

different models can behave rather differently when extreme observations occur in the sam-

ple. An example is given by Figure 4 for GE/KO. The daily return of GE for September 8,

2004 was positive while the return for KO was substantially negative, approximately −4.5%.

The upper and lower right-hand panels in the graph present the 5 minute prices of GE and

KO over three consecutive days. During September 8, 2004, the two equity prices clearly

moved in opposite directions while this is not the case for the surrounding days. The isolated

patterns for this particular day has a large effect on model-based correlations as we observe

in the lower-left panel of Figure 4. The correlations drop sharply downwards and slowly

return to their previous levels afterwards. Given the long memory features of the models,

the mean reversion is very gradual. The lower half of the upper-left panel presents the

weights πt based on the GAS and FIGAS models with the Student’s t copula specification.

The aberrant pattern on Sep 8, 2004 receives a smaller weight for both Student’s t mod-

els. Consequently, these correlation estimates are more robust compared to their Gaussian

counterparts. The values of the GAS-G and FIGAS-G specifications appear to be heavily

affected by the occurrence of the isolated extreme return realizations. The FIGAS-t is much

more robust.

5 Summary and conclusions

We have proposed a new observation driven fractionally integrated model for time-varying

volatility and dependence in data with heavy tailed and long memory features. The new

model extends the literature in several ways. First, correlations rather than covariances

are modeled as time-varying processes. In contrast to Teyssière (1997) and Brunetti and
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Gilbert (2000), our model lets covariances vary over time due to changes in both variances

and correlations. Second, the correlation processes are modeled in a copula framework and

the volatilities are modeled by means of marginal distributions. This approach enabled us to

allow for different degrees of fractional integration in volatilities and in correlations. Third,

by employing the generalized autoregressive score (GAS) framework of Creal, Koopman,

and Lucas (2011), we have shown that the correlation and volatility estimates are more

robust to incidental extreme observations when considering Student’s t copula and marginal

density functions, respectively. The GAS updating scheme introduces a weighting scheme

that mitigates the effects of aberrant observations on correlation and volatility estimates.

The robustness is particularly relevant in the context of a fractionally integrated process:

each shock has a long-lasting impact due to its long memory dynamic property.

In a Monte Carlo study we have shown that the new model outperforms a number of

recently proposed benchmark models for a variety of correlation processes. In an empirical

study we have shown that the robustness property of the new model is a key distinguishing

feature. All model-based volatility estimates have been benchmarked against non-parametric

threshold realised variance and correlation estimates based on high-frequency returns. From

the perspective of our dynamic copula approach, we have found that the degree of long

memory in the individual volatilities is similar across equities. We have also found that

the degree of long memory in correlations across equity pairs can be substantially different.

These findings stress the need for flexible time series models that allow for cross-sectional

differences in the dynamic behavior and persistence of correlations and volatilities.
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