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Lennart Hoogerheide e,f , and Herman K. van Dijk c,e,f

a(posthumous) Booth School of Business, University of Chicago, USA.
bGraduate School of Business Administration, Keio University, Japan.

cEconometric Institute, Erasmus University Rotterdam, The Netherlands
dThe Rimini Centre for Economic Analysis, Rimini, Italy

eVrije Universiteit Amsterdam, The Netherlands
fTinbergen Institute, The Netherlands

September 27, 2011

Abstract

A Direct Monte Carlo (DMC) approach is introduced for posterior simulation in the
Instrumental Variables (IV) model with one possibly endogenous regressor, multiple
instruments and Gaussian errors under a flat prior. This DMC method can also be
applied in an IV model (with one or multiple instruments) under an informative
prior for the endogenous regressor’s effect. This DMC approach can not be applied
to more complex IV models or Simultaneous Equations Models with multiple en-
dogenous regressors. An Approximate DMC (ADMC) approach is introduced that
makes use of the proposed Hybrid Mixture Sampling (HMS) method, which facil-
itates Metropolis-Hastings (MH) or Importance Sampling from a proper marginal
posterior density with highly non-elliptical shapes that tend to infinity for a point
of singularity. After one has simulated from the irregularly shaped marginal distri-
bution using the HMS method, one easily samples the other parameters from their
conditional Student-t and Inverse-Wishart posteriors. An example illustrates the
close approximation and high MH acceptance rate. While using a simple candidate
distribution such as the Student-t may lead to an infinite variance of Importance
Sampling weights. The choice between the IV model and a simple linear model un-
der the restriction of exogeneity may be based on predictive likelihoods, for which
the efficient simulation of all model parameters may be quite useful. In future work
the ADMC approach may be extended to more extensive IV models such as IV with
non-Gaussian errors, panel IV, or probit/logit IV.

1 This paper started through intense, lively discussions between Arnold Zellner and
Herman K. van Dijk in April 2010 when the latter was visiting Chicago.
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1 Introduction

In many areas of economics and other sciences, sets of variables are often jointly
generated with instantaneous feedback effects present. For instance, a fundamental
feature of markets is that prices and quantities are jointly determined. The Simulta-
neous Equations Model (SEM), that incorporates instantaneous feedback relation-
ships, was systematically analyzed in the nineteen forties and early nineteen fifties
and documented in the well known Cowles Commission Monographs (Koopmans,
1950; Hood and Koopmans, 1950) and has been widely employed to analyze the be-
havior of markets, economies and other multivariate systems. For a survey, see e.g.
Aliprantis, Barnett, Cornet, and Durlauf (2007) and the references given therein.

Full system analysis of the SEM is rather involved, see e.g. Bauwens and Van Dijk
(1990); Van Dijk (2003). Instead, Zellner, Bauwens, and Van Dijk (1988) proceeded
with a single equation analysis of the SEM that can be linked to the Instrumental
Variable Regression (IV) analysis. A substantial literature on the issue of endo-
geneity, another expression for the immediate feedback mechanism, in IV models
exists (see e.g. Angrist and Krueger (1991)). In this paper we make a connection
between SEMs, the basic IV model and a simple errors-in-variables model (EV).
These models focus on, respectively: immediate feedback mechanisms (SEM), on
weak and strong instrumental variables (IV) and on correlation between errors in
variables (EV). They possess a common statistical structure and they create there-
fore a common problem for inference: possible strong correlation between a right
hand side variable in an equation and the disturbance of that equation. This may
create nontrivial problems for simulation based Bayesian inference.

As workhorse model we take the IV model with one possibly endogenous regressor
under a flat prior, and we make a distinction between the case of exact identifica-
tion (a single instrumental variable) and the case of over-identification (more than
one instrumental variables). We discuss the theoretical existence conditions for joint,
conditional and marginal posterior distributions for the parameters of this model us-
ing a flat prior. The most relevant condition for empirical analysis is the well-known
condition of non-singularity of the parameter matrix of instrumental variables. We
emphasize that in the frequentist literature, parameters are constant and this con-
dition refers to the fixed rank condition of a matrix. In the Bayesian approach the
rank of this matrix is a random variable. For the case of exact identification or one
instrumental variable and for the case of over-identification or many instruments,
we analyze the existence of the joint posterior distribution. For the exactly iden-
tified model, application of any MC method is erroneous, because the posterior is
improper. However, conditional distributions of each parameter exist and, if one is
not aware of the non-existence of the joint posterior, one may apply Gibbs sampling
erroneously.

A very attractive Monte Carlo method is Direct Monte Carlo (DMC) where one sim-
ulates directly from the posterior distributions. If this is possible, DMC is straight-
forward to apply and has as attractive property that the generated random drawings
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are independent, which greatly helps convergence and is convenient in case one aims
to compute numerical standard errors or predictive likelihoods. The important issue
is to determine whether the posterior or predictive distribution studied allows for
DMC. In this paper we discuss that DMC is possible in the IV model with one
possibly endogenous regressor, multiple instruments, and Gaussian errors under a
flat prior.

In empirical econometrics there exist, however, many situations where the data in-
formation is weak in the sense of weak identifiability or weak instrumental variables,
and strong endogeneity and to the lack of many available instruments. In these situ-
ations, it is common that the parameters have substantial mass of the likelihood, or
the posterior under flat priors near the boundary of the parameter region. Examples
of such data include nearly non-stationary processes or nearly non-identified pro-
cesses such as inflation, interest rates, GDP processes or IV regression models with
possibly weak instruments (De Pooter, Ravazzolo, Segers, and Van Dijk, 2008)).
The important issue is the following: given that much data information may exist
at or near the boundary of singularity, an empirical researcher may not want to ex-
clude this information by a strong informative prior that focuses on the center of the
parameter space and seriously down-weights or truncates relevant information near
the boundary. In such a situation one faces a most important problem for empirical
research, that is, the appearance of highly non-elliptical shapes of the posterior and
predictive distributions. The Gibbs sampling method may then be very inefficient.

Although we show that a DMC method is possible in the IV model with one possibly
endogenous regressor, multiple instruments and Gaussian errors, for more general
models with multiple possibly endogenous regressors (such as the general SEM)
this is not possible. We also present an Approximate DMC (ADMC) method to
simulate from a marginal posterior density that exhibits both a an elliptical part
and a singularity where the density tends to infinity. Extended or adapted versions
of this ADMH approach may be useful for posterior simulation in IV models with
multiple possibly regressors, in cointegration models or factor models.

For illustrative purposes, we present posterior shapes for a simulated data set and
for an Incomplete Simultaneous Equations Model for Fulton fish market data.

The remainder of this paper is organized as follows. Section 2 presents the general
SEM. Section 3 shows the connection between SEM, EV and IV models. Section 4
summarizes properties of the posterior densities of the IV model under flat priors.
Section 5 presents the Direct Monte Carlo (DMC) method, its applicability and
its limitations. Section 5 introduces the Approximate DMC (ADMC) method, and
illustrates its flexility in a simple example. Section 7 presents a predictive likelihood
approach to assess the degree of endogeneity in IV models, an application in which
the efficient simulation of all parameters in the IV model may be quite useful.
Section 8 presents an illustration using empirical data. Section 9 concludes.
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2 Simultaneous Equations Model

We first review the results in Zellner, Bauwens, and Van Dijk (1988). Consider the
following m equation SEM:

Y B = XΓ + U, (1)

where Y = (y1, ..., ym) is a T ×m matrix of observations on m endogenous variables,
the m×m nonsingular matrix B is a matrix coefficient for the endogenous variables,
X = (x1, . . . , xp) is a T ×p matrix of observations on the p predetermined variables,
the p × m matrix Γ is the coefficient matrix for the predetermined variables, and
U = (u1, . . . , um) is the T × m matrix of disturbances. Equation (1) shows the
direct feedback mechanism between variables in the model. We assume that enough
restrictions on B and Γ are made to have the model in (1) identified. Multiplying
both sides of (1) by B−1, the restricted reduced form equations are

Y = XΠr + Vr, (2)

where Πr = ΓB−1 is a p × m restricted reduced form coefficient matrix, and
Vr = UB−1 = (v1, ..., vm) is the restricted reduced form disturbance matrix. The
corresponding unrestricted reduced form for the model in (1) is a multivariate re-
gression model of the form Y = XΠ+V with no restrictions on matrix Π. The T rows
of V , vi (i = 1, ..., T ), are assumed to be independently drawn from a multivariate
normal distribution with zero mean vector and m×m pds covariance matrix.

The problem is how to estimate the unknown parameters in the restricted model.
Full-information analysis of this model is rather involved (Kleibergen and Van Dijk,
1998) and is outside the scope of this paper. A single identified equation of a SEM
(involving possibly endogenous regressor(s) Y1 and included instruments X1, a subset
of the instruments X) and the unrestricted reduced form equation for Y1 are:

y1 = Y1β1 + X1δ1 + u1, (3)

Y1 = XΠ1 + V1, (4)

where vec(u1, V1) ∼ N(0, Ω ⊗ IT ) and Ω =
(

ω11 ω′12
ω21 Ω22

)
is a pds matrix, IT is the

identity matrix of size T and parameter Π1 is unrestricted. Noting that the m-
multivariate normal density of (u1i, v1i)

′, the ith row of (u1, V1), can be expressed as
a conditional normal density of u1i given a value of v1i and a marginal multivariate
normal density of v1i, Zellner, Bauwens, and Van Dijk (1988) derived u1i|v1i ∼
N(v′1iη1, ω11 − ω′12Ω

−1
22 ω21) with η1 = Ω−1

22 ω11 and v1i ∼ N(0, Ω22). One can obtain
the orthogonal structural form:

y1 = Y1β1 + X1δ1 + V1η1 + ε1, (5)

Y1 = XΠ1 + V1, (6)

where X = (X1, X0) are the exogenous variables in (1) and (ε1i, v
′
i)
′ i = 1, ..., T are

independent random drawings from a multivariate normal distribution with mean
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zero and covariance matrix

Σ =




σ11 0′

0 Σ22


 =




ω11 − ω′12Ω
−1
22 ω21 0′

0 Ω22


 .

The likelihood function is

L(Y |β1, δ1, η1, Π1, σ11, Σ22, X) ∝ |Σ22|−T
2 exp

[
−1

2
tr

{
Σ−1

1 V ′
1V1

}]
× σ

−T
2

11 exp

{
− ε′1ε1

2σ11

}

with Y = (y1, Y1).

Zellner, Bauwens, and Van Dijk (1988) used the following flat prior for the param-
eters, namely,

p(β1, δ1, Π1, Ω) ∝ |Ω|−m+2+ν0
2 , (7)

and the corresponding flat prior density for the parameters, {β1, δ1, Π1, η1, σ11, Σ22}
is

p(β1, δ1, Π1, η1, σ11, Σ22) ∝ |Σ22|−
m+ν0

2 × σ
−m+2+ν0

2
11 .

This flat prior is similar to those employed in Kleibergen and Van Dijk (1998), and
Kleibergen and Zivot (2003).

3 Basic EV and IV model structures

Relevant issues in the SEM can be illustrated with less complex models such as a
basic IV model or an EV model. For a discussion we refer to Anderson (1976). We
explore the issue of identification and non-regular posteriors in the simple model
structure of an IV model and an EV model.

Consider a basic IV model with the following structural form:

yi = xiβ + ui, (8)

xi = π + vi, (9)

for i = 1, . . . , T , with an exact identification and a constant instrument. For con-
venience, we changed the notation compared to (3) and (4): in (8) and (9) the
(possibly) endogenous regressor is x (instead of Y1). The zero-mean disturbances ui

and vi are assumed to be independent and to have a bivariate normal distribution
with a positive definite symmetric (pds) covariance matrix: (ui, vi)

′ ∼ NID(0, Ω).
Unless Ω is a diagonal matrix, ui and vi are correlated and xi is correlated with ui.
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Inserting (9) into (8), the so-called restricted reduced form (RRF) for the IV model
is:

yi = πβ + ε̃i, (10)

xi = π + vi, (11)

with (ε̃i, vi)
′ ∼ NID(0, ( 1 β

0 1 )Ω( 1 0
β 1 )). From the RRF representation in (10) and

(11), it is clear that parameter β is not identified for π = 0, as β then disappears
from the model. The issue of non-identification is the issue of weak instruments
in IV estimation, where the strength of the instruments is based on the extent to
which instruments can explain the endogenous variable. The extreme case, where
the instruments are irrelevant corresponds to the non-identification, π = 0. See
Van Dijk (2003) for the connection of these two concepts, and Kleibergen and Zivot
(2003) for a summary of the problems associated with weak instruments.

The orthogonal structural form (OSF) for the IV model is obtained by decomposing
ui in (8) into two independent components ui = viη + εi:

yi = xiβ + viη + εi, (12)

xi = ziπ + vi, (13)

where η = ω12/ω22, (εi, vi)
′ ∼ NID(0, Σ), Σ =

(
σ11 0
0 σ22

)
, σ11 = ω11 − ω2

12/ω22 and

σ22 = ω22. By definition, (η, β, π) ∈ R3, (σ11, σ22) ∈ R2
+. We note that the OSF for

this simplified IV model is similar to the decomposition in general SEM shown in
(5) and (6). The issue of nonidentification can be seen from (12). For π = 0 we have
vi = xi, so that the right hand side of (12) becomes xi(β +η)+ εi, hence parameters
β and η are not jointly identified. Note that the IV model considered in (8) and (9)
is a simple case of the SEM. The identification issue occurs in the general case of
n-equation SEM model as well.

Furthermore, from the IV representation in (10) and (11), we obtain a simplified
EV model by defining η̃ = βπ:

yi = η̃ + εi, −∞ < η̃ < ∞, (14)

xi = π + vi, −∞ < π < ∞, (15)

where (εi, vi)
′ ∼ NID

(
0,

(
1 β
0 1

)
Ω

(
1 0
β 1

))
.

Note that a usual EV model is more general than the model in (14) and (15). The
restriction η̃ = βπ may not necessarily hold in the general EV model, and the
unobserved components are allowed to differ across observations, with parameters
η̃ and π replaced by η̃i and δi, respectively. In this general case, a model has to be
specified for these unobserved components. For expository purpose we take constant
values for η̃ and π.

The EV model with the restriction η̃ = βπ can be interpreted as a model that de-
scribes the permanent income hypothesis (see e.g. Friedman (1957); Attfield (1976)
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among others). Let yi and xi be measured consumption and income; η̃ and π be un-
observed permanent components of consumption and income; and the disturbances
in (14) and (15) be the transitionary components in income and consumption, re-
spectively. Then β = η̃/π is the ratio of permanent consumption to permanent
income.

In the next section, we summarize and illustrate the issue of non-regular posteriors
resulting from the identification problem in these models. For illustrative purposes,
we consider the basic IV model as the example model.

4 Properties of posterior distributions for the IV model under flat priors

We discuss the local non-identification problem of the IV model under uninformative
priors. Suppose a flat prior is proposed for the structural form parameters in (8) and
(9):

p (β, π, Ω) ∝ |Ω|−h/2 with h > 0, (16)

where the choice of the value of h may differ (see e.g. Drèze (1976) and Zellner
(1971)). We choose the specification h = 3 that leads to a marginal posterior of
(β, π) that is equal to the concentrated likelihood function for (β, π) (Bauwens and
Van Dijk, 1990).

This flat prior on the structural form coefficients in (16) is not invariant to the
change of variables leading to the RRF model in (10) and (11). Jeffreys’ principle
gives a prior for (β, π, Ω) that is proportional to |π|. Lancaster (2004) interprets
this as a prior that assigns 0 probability density to the troublesome ridge π = 0,
and argues that a possible objection to the use of Jeffreys’ prior is that in many
econometric applications an instrumental variable that has no regression on the
included endogenous variable is all too probable, and to rule it out, dogmatically, a
priori, may be unwise. Throughout this paper, we focus on the flat prior. However,
we note that alternative priors such as the Jeffreys prior, can also be suitable for IV
models, and for SEMs in general.

Define y = (y1, . . . , yT )′, x = (x1, . . . , xT )′ and ι is a T × 1 vector of ones. The
likelihood of the model in (8) and (9) is:

p(y, x | β, π, Ω) ∝ |Ω|−T/2 exp
{
−1

2
tr

((
y − xβ, x− ιπ

)′ (
y − xβ, x− ιπ

)
Ω−1

)}
.

(17)

We are interested in the shape of the likelihood in (17) in the parameter space, and
the shapes of the posteriors under flat priors.
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4.1 Improperness of the posterior densities under flat priors

Combining the prior in (16) and the likelihood in (17) with h = 3, a kernel of the
joint posterior is:

p(β, π, Ω | y, x) ∝ |Ω|−(T+3)/2 exp
{
−1

2
tr

((
y − xβ, x− ιπ

)′ (
y − xβ, x− ιπ

)
Ω−1

)}
.

(18)

The posterior density in (18) is improper for the IV model with exact identification,
that is, with k = 1 instrument (see the Appendix for a discussion). For convenience,
we illustrate the improperness of this density focusing on the marginal posterior
p(β, π). If T ≥ 2 and given that (y − xβ, x− ιπ)′(y − xβ, x− ιπ) is a pds matrix
for all values of (β, π) in the parameter space, a kernel for the marginal posterior
density of (β, π) is (Zellner, 1971):

p(β, π | y, x) ∝
∣∣∣∣
(
y − xβ, x− ιπ

)′ (
y − xβ, x− ιπ

)∣∣∣∣
−T/2

. (19)

The marginal posterior density in (19) has a ridge along the line π = 0, since the
right-hand-side of (19) is constant with value (x′xy′Mxy)−T/2:

p(β, π | y, x, π = 0) ∝
∣∣∣∣
(
y − xβ, x

)′ (
y − xβ, x

)∣∣∣∣
−T/2

= (x′xy′Mxy)−T/2, (20)

where we use the determinant decomposition rule, and Mα is the projection matrix
outside the span of α.

For the exactly identified IV model summarized in this section, it can be shown that
this ridge of the posterior leads to an improper posterior density. For over-identified
models, however, the joint posterior is a proper density despite this ridge. This issue
will become more clear in the following subsections.

We finally note that also for the exactly identified case with k = 1 instrument the
conditional densities of β, π, Ω are proper densities for the whole parameter space
(β, π) ∈ R2. The improperness of the joint posterior is shown in the Appendix. See
also De Pooter, Ravazzolo, Segers, and Van Dijk (2008) for a simple illustration of
the improperness of this posterior and Hobert and Casella (1998) for an illustration
of how the Gibbs sampler can be employed erroneously on models with proper
conditionals and improper joint posterior.
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4.2 Marginal posterior densities of β and π

For the basic IV model in (10) and (11) using the prior in (16) with h = 3, the
marginal density kernel of β is:

p (β | y, x) ∝
(

(y − xβ)′ (y − xβ)

(ỹ − x̃β)′ (ỹ − x̃β)

)−(T−1)/2 (
(ỹ − x̃β)′ (ỹ − x̃β)

)−1/2
, (21)

where ỹ and x̃ are demeaned data y and x, respectively. This kernel does not corre-
spond to a proper density, since the tails are too fat due to the second factor that
decreases at the too slow rate |β|−1 as |β| increases.

For our basic IV model, the marginal density of π is:

p (π | y, x) ∝
[
(x− ιπ)′ (x− ιπ)

]−(T−1)/2
/ |π| , (22)

where ι is the T × 1 vector of ones. Due to the factor |π|−1, the marginal density in
(22) has a non-integrable asymptote at π = 0, so that the kernel does not correspond
to a proper density. These results hold for the IV model with a single instrument,
regardless of the strength of the instrument and the level of endogeneity in the data.

For the IV model with k instruments zi (in T × k matrix z)

yi = xiβ + ui, (23)

xi = ziπ + vi, (24)

the marginal posterior density of β is given in Drèze (1976) and Drèze (1977) as

p (β | y, x, z) ∝
(

(y − xβ)′ (y − xβ)

(y − xβ)′ Mz (y − xβ)

)−(T−1)/2 (
(y − xβ)′ Mz (y − xβ)

)−k/2
,

(25)

also see the Appendix. For k ≥ 2 this kernel corresponds to a proper density, since
the second factor (a kernel of a t-density with k−1 degrees of freedom) decreases at
the fast enough rate |β|−k as |β| increases (whereas the first factor is smaller than
1). That is, the tails of the marginal posterior of β become thinner for larger number
k of instruments, regardless of the explanatory power of the instruments.

Kleibergen and Van Dijk (1994, 1998) derive the marginal density for this IV model
(see Hoogerheide et al. (2007) for an expository analysis of this issue):

p (π | y, x, z) ∝ ((x− zπ)′(x− zπ))
−T−1

2 (π′z′Mxzπ)
− 1

2

(
π′z′Mxzπ

π′z′M(y x)zπ

)T−1
2

. (26)

For k ≥ 2 this kernel corresponds to a proper density. In the appendix it is discussed
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that the integrability of (26) amounts to the integrability of

∫

{π∗|π∗′π∗≤1}
(π∗

′
π∗)−1/2dπ∗. (27)

For k = 2 we have

∫

{π∗|π∗′π∗≤1}
(π∗

′
π∗)−1/2dπ∗ = π+

∫ ∞

1
π

1

f 2
df = π+

[
−π

1

f

]∞

1

= π+(0− (−π)) = 2π,

(28)
with π = 3.14159 . . . (as opposed to the k×1 vector of coefficients at the instruments
throughout the text) on the right hand side. Here we used that the volume under
the graph of f = (π∗

′
π∗)−1/2 at {π∗|π∗′π∗ ≤ 1} can be computed by integrating

the surfaces π 1
f2 of circles with radius 1

f
for 1 ≤ f < ∞ and the surfaces π of

circles with radius 1 for 0 ≤ f < 1. Figure 1 illustrates this: for each function value
f = (π∗

′
π∗)−1/2 with f ≥ 1 the horizontal ‘slice’ through the graph is a circle with

radius 1/f . For k ≥ 3 a similar derivation involving an integral over k-dimensional
balls yields a different finite value.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

π
1
*π

2
*

f(
 π

1* , π
2*  )

Figure 1. f(π∗1, π
∗
2) =

(
(π∗1)

2 + (π∗2)
2
)−1/2

at {π∗|π∗′π∗ ≤ 1}.

We note that a special case in the above models is the case of exogeneity, that is,
when Ω is diagonal. The local non-identification problem for π = 0 disappears if we
a priori impose this exogeneity assumption. The analysis of exogeneity is discussed
in Section 7.
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5 Direct Monte Carlo: applicability and limitations

In this paper we aim to simulate from our IV model by a Direct Monte Carlo (DMC)
method. Obvious advantages of DMC are that the method is straightforward and
that the drawings are independent, which helps quick convergence and is convenient
in case one desires to compute Numerical Standard Errors (NSEs) or predictive
likelihoods. Furthermore, even if one desires to make use of an alternative method
such as the Gibbs sampler, the use of both (fundamentally different) methods is
arguably one of the best ways to check the results – and thereby the derivations,
code and convergence of both simulation methods. First of all, we assume that we
have k ≥ 2 instruments, since for k = 1 instrument the improperness of the posterior
implies that any simulation method necessarily provides erroneous results (if any).

The orthogonal structural form (OSF) for the IV model is:

yi = xiβ + viη + εi, (29)

xi = ziπ + vi, (30)

where η = ω12/ω22, (εi, vi)
′ ∼ NID(0, Σ), Σ =

(
σ11 0
0 σ22

)
, σ11 = ω11 − ω2

12/ω22 and
σ22 = ω22. From the OSF it may seem as if we can decompose the posterior

p(β, η, π, σ11, σ22 | y, x, z) =p1(β, η | π, σ11, y, x, z)× p2(σ11|π, y, x, z)

× p3(π|σ22, y, x, z)× p4(σ22|y, x, z), (31)

where p1(β, η|σ11, π, y, x, z) and p3(π|σ22, y, x, z) are multivariate normal densities,
and p2(σ11|π, y, x, z) and p4(σ22|y, x, z) are inverted gamma and Inverse-Wishart
densities, respectively. However, one must note that (given the data x,z) the term
vi = xi − ziπ in (29) is a function of π. Therefore, the marginal posterior of π in
(29)-(30) is not simply the marginal Student-t posterior (or conditional normal pos-
terior) in the model (30), as already stressed in the previous sections. Therefore it
is not possible to obtain posterior drawings using a Direct Monte Carlo (DMC) ap-
proach by simulating from ‘standard’ marginal and conditional distributions p1 to p4.

However, in this simple IV model with one possibly endogenous regressor xi it is
possible to obtain posterior drawings by a different DMC approach. For the marginal
posterior of β is a 1-dimensional distribution from which one can directly simulate
using a (numerical) inverse CDF method. Therefore, one can apply the following
approach:

DMC approach in IV model (23)-(24) under flat prior with k ≥ 2 instru-
ments:

Step 1: Draw β from its marginal posterior, using the numerical inverse CDF method in
two sub-steps. First, use the numerical inverse CDF method to simulate β∗ = Ψ(β)

11



where Ψ is the CDF (with pdf ψ) of the Student-t distribution with mode the
2SLS estimator β̂2SLS, with scale the variance of β̂2SLS times a multiplication
factor (e.g. 4), and lower degrees of freedom than the marginal posterior of β in
(25). For example, k−2 degrees of freedom for k ≥ 3 instruments, and 1/2 degree
of freedom for k = 2 instruments. The pdf of β∗ is

p (β∗ | y, x, z)∝ (y − xΨ−1(β∗))′ (y − xΨ−1(β∗))−(T−1)/2

(y − xΨ−1(β∗))′ Mz (y − xΨ−1(β∗))−(T−k−1)/2
×

1

ψ (Ψ−1(β∗))
, (32)

with β∗ in [0,1], so that the use of a very fine grid on [0,1] yields drawings from
the distribution of β∗. 1 Second, transform β = Ψ−1 (β∗).

Step 2: Draw π conditionally on β from its conditional posterior, a k-dimensional Student-
t distribution with mode π̂ = (z′Muz)−1z′Mux, scale matrix s2

π̂ (z′Muz)−1 and
T − k degrees of freedom, with u = y − xβ, (T − k)s2

π̂ = (x− zπ)′Mu(x− zπ).

Step 3: Draw Ω conditionally on (β, π) from its conditional posterior, an Inverse-Wishart
distribution with parameters (u v)′(u v) and T degrees of freedom, where u =
y − xβ, v = x− zπ. That is, take the inverse of a draw from a Wishart distribu-

tion with mean
[

1
T
(u v)′(u v)

]−1
and T degrees of freedom.

If one is only interested in β, then one can obviously merely use step 1, or use a
deterministic integration (quadrature) method like like the extrapolated or adaptive
Simpson’s method or Gaussian quadrature. However, one may often be interested
in the strength of the instruments (given by π), the uncertainty on y (or x) for
individual observations (given by Ω), or one may wish to investigate whether there
is evidence of endogeneity (inspecting Ω, typically ρ ≡ ω12/

√
ω11 ω22).

It should be noted that the DMC method can also be used if one specifies a different
prior of the form

p(β, π, Ω) ∝ p(β)× Ωh/2 with h = 3, (33)

for example with a normal pdf p(β). The only difference is that (32) must be multi-
plied by the factor p(β) = p(Ψ−1(β∗)). If one specifies an informative normal prior
p(β) or a uniform prior p(β) at a bounded interval, the posterior is also proper for
k = 1, so that DMC is then applicable for any number of instruments k ≥ 1.

Further, the DMC method can also be applied if there are included instruments or

1 The exact distribution Ψ is not important, it only matters that (i) the range [0, 1] of
β∗ is finite, so that we do not need to truncate the range when choosing a grid for the
numerical inverse CDF method; (ii) the pdf of β does not tend to ∞ for β tending to 0 or
1. For the latter it is required that ψ is a more ‘wide’ distribution with fatter tails than
the marginal posterior of β.

12



control variables w (known as X1 in the aforementioned INSEM) in both equations.
First, x,y and z are transformed to become residuals after regression on w: Mwx,Mwy
and Mwz. This is equivalent with integrating out the coefficients at w under a
flat prior. Second, one applies the DMC method. Third, if one is interested in the
coefficients at w, then one simulates these by making use of the matricvariate normal
conditional posterior of the coefficients in the model with regressands (Mwy−Mwxβ)
and (Mwx−Mwzπ), regressors w for both regressands, and (known) error covariance
matrix Ω.

Finally, note that this DMC method is not applicable in an IV model with multiple
possibly endogenous regressors (nor in the general SEM model), since we require a
1-dimensional β for the inverse CDF method.

6 Approximate Direct Monte Carlo: applicability and limitations

The posterior of (β, π, Ω) can be decomposed as

p(β, π, Ω | y, x, z) = p(π | y, x, z)× p(β | π, y, x, z)× p(Ω | β, π, y, x, z), (34)

where p(π | y, x, z) is given by the non-standard distribution in (26), p(β | π, y, x, z)
is a Student-t distribution with mode β̂ = (x′Mvx)−1(x′Mvy), scale s2

β̂
(x′Mvx)−1

and (T −1) degrees of freedom, where v = x− zπ, (T −1)s2
β̂

= (y−xβ̂)′Mv(y−xβ̂);

p(Ω | β, π, y, x, z) is an Inverse-Wishart distribution with parameters (u v)′(u v) and
T degrees of freedom, where u = y−xβ, v = x−zπ. Hence, if one can simulate from
p(π | y, x, z), then draws from β and Ω are easily simulated from their conditional
posteriors.

One may think that one can simulate from p(π | y, x, z) by Importance Sampling (IS)
– or the independence chain Metropolis-Hastings (MH) algorithm – with candidate
density q(π) equal to the Student-t posterior of π in the first stage regression (24).
However, in this case the variance of the IS weights W = p(π | x, y, z)/q(π) may not
be finite. For the case with k = 2 instruments we have

E[W 2] =
∫ (p(π | x, y, z))2

q(π)
dπ = ∞,

since for π → 0 the numerator (p(π | x, y, z))2 tends to ∞ too quickly (due to the
factor (π′zMxzπ)−1), whereas the denominator q(π) is bounded from above. This is
easily seen from the fact that for π∗ ≡ (zMxz)1/2π we have

∫

{π∗|π∗′π∗≤1}
(π∗

′
π∗)−1dπ∗ = π+

∫ ∞

1
π

1

f
df = π+[π log f ]∞1 = π+(∞−0) = ∞, (35)

with π = 3.14159 . . . (as opposed to the k × 1 vector of coefficients at the instru-
ments throughout the text), where we used that the volume under the graph of
f = (π∗

′
π∗)−1 at {π∗|π∗′π∗ ≤ 1} can be computed by integrating the surfaces π 1

f
of
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circles with radius 1√
f

for 1 ≤ f < ∞ and the surfaces π of circles with radius 1 for

0 ≤ f < 1. This means that for any candidate density q(π) that does not tend to ∞
for π → 0 — also the mixture of Student-t densities of Hoogerheide et al. (2007) or
Hoogerheide et al. (2011) — the IS weights have infinite variance.

Therefore we propose the following candidate pdf q(π) for approximating the shapes
of p(π | y, x, z), a hybrid mixture of two components, a tk0,1−k density and a Student-t
density:

q(π) = wtk
0,1−k

ptk
0,1−k

(π|A) + (1− wtk
0,1−k

) pt(π | µ, Σ, ν)

with mixing weight wtk
0,1−k

in [0, 1], Student-t pdf

pt(θ|µ, Σ, ν) ∝ |Σ|−1/2

(
1 +

(θ − µ)
′
Σ−1(θ − µ)

ν

)−(k+ν)/2

(36)

with positive definite symmetric (pds) Σ, ν ≥ 1; and with the density of the k-
dimensional tk0,1−k distribution defined as

ptk
0,1−k

(θ|A) ≡





|A|−1/2

(
k

k−1
πk/2

Γ( k
2
+1)

)−1

(θ′A−1θ)−1/2 for (θ′ A−1 θ)1/2 ≤ 1

0 for (θ′ A−1 θ)1/2 > 1

. (37)

That is, the tk0,1−k distribution has one parameter A, a positive definite symmetric
(pds) k × k matrix. We denote this distribution the tk0,1−k distribution, since it is

obtained by letting ν ↓ 0 in (θ−µ)
′
Σ−1(θ−µ)
ν

and substituting ν = 1 − k into the
exponent −(k + ν)/2 in the pdf (36) of the k-dimensional Student-t distribution
(and by taking µ = 0, which can be relaxed to allow for an asymptote around a
different value than θ = 0). For k = 1 the kernel in (37) would correspond to an
(improper) density kernel of a Student-t distribution with 0 degrees of freedom. 2

Simulating θ from (37) is done by simulating θ̃ from (37) with A = Ik and taking θ =
A1/2θ̃. For simulating θ̃ we first sample F = (θ̃′θ̃)−1/2 with cumulative distribution
function

CDFF (x) = Pr[F ≤ x] = 1− Pr[F ≥ x] = 1− F−(k−1)

for x ≥ 1; 0 else. So, we simulate U ∼ UNIF (0, 1) and compute

F = (1− U)−1/(k−1).

Second, we simulate θ̃ uniformly from the set {θ̃|(θ̃′θ̃)1/2 = 1/F}. This is done by
simulating θ∗ ∼ N(0, I2) and taking θ̃ = θ∗(θ∗

′
θ∗)−1/2 (1/F ). For k = 2 we have

1/F = (1− U) so that the norm of θ̃ is simulated uniformly between 0 and 1.

2 Proofs of the scaling constant and moments of the pdf of θ, and of the CDF of (θ′θ)−1/2,
are easily derived making use of the k-volume Vk of the k-dimensional ball with radius 1,
Vk = πk/2

Γ( k
2
+1)

.
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The mean and covariance matrix of θ with pdf in (37) are given by:

E[θ] =




0

0


 , cov(θ) =

k − 1

k(k + 1)
A.

For k = 2 and A = I2 the graph of the tk0,1−k pdf is proportional to the graph of

f(π∗1, π
∗
2) =

(
(π∗1)

2 + (π∗2)
2
)−1/2

at {π∗| π∗′π∗ ≤ 1} in Figure 1.

We propose the following approach for posterior simulation from p(π | y, x, z):

Hybrid Mixture Sampling (HMS) for posterior simulation from
p(π | y, x, z) in IV model (23)-(24) under flat prior with k ≥ 2 instruments:

Step 1: Our initial choices for the candidate’s parameters are as follows:

· µ = π̂OLS = (z′z)−1z′x and Σ = cov(π̂OLS) = s2(z′z)−1 with s2 = e′e/(T − k),
e = x− zπ̂OLS. The OLS estimator in (24) and its covariance matrix provide a
logical first approximation of the location and scale of the ‘regular part’ of the
posterior distribution (as opposed to the ‘asymptote part’ for π ≈ 0);

· ν = 4; i.e., low degrees of freedom to ensure that no relevant parts of the pa-
rameter space are missed;

· wtk0,1−k
= 0.1. As a first approximation we assume that the main part of the pos-

terior is the ‘regular part’. Otherwise the instruments may have so little power
that it is arguably unwise to use the IV model in the first space;

· A = c z′Mxz with scalar c > 0 chosen such that the minimum π∗min of p(π |
y, x, z) on the line between π = 0 (the vertical asymptote) and π̂OLS (typically
near a regular mode) satisfies π∗

′
min A−1 π∗min = 1. Intuitively stated, the tk0,1−k

distribution aims at approximating the asymptote around π = 0, covering the
region with π ≈ 0 where the factor (π′z′Mxzπ)−1/2 is ‘more important’ than the
other factors in p(π | y, x, z).

Step 2: We use this initial candidate distribution in an independence chain Metropolis-
Hastings method, which we use to adapt the candidate distribution:

· µ and Σ are the mean and covariance matrix of MH draws π for which (π′A−1π)1/2 >
1. ν is chosen to match the maximum kurtosis of the k elements of the π draws
for which (π′A−1π)1/2 > 1, if this maximum kurtosis is larger than 3. Otherwise
ν is set to a rather large value, e.g. 30;

· wtk
0,1−k

is the fraction of MH draws for which (π′A−1π)1/2 ≤ 1. In case of strong
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instruments this fraction may be 0 (based on a finite number of draws); in that
case we set wtk

0,1−k
= 0.01;

· A is k(k+1)
k−1

times the covariance matrix of the MH draws with (π′A−1π)1/2 ≤ 1.

Step 3: Use the adapted candidate in the independence chain Metropolis-Hastings method
or Importance Sampling to simulate efficiently from p(π | y, x, z).

After one has simulated draws π from p(π | y, x, z) using the HMS method, one
easily samples draws from β and Ω from their conditional Student-t and Inverse-
Wishart posteriors. We name this approach the Approximate Direct Monte Carlo
(ADMC) method.

The application of (extended or adapted versions of) ADMC to more extensive IV
models (e.g., IV with multiple possibly endogenous regressors, IV with non-Gaussian
errors, panel IV, probit/logit IV) is outside the scope of this paper, and left as a
topic for further research. In any case, a relevant lesson is that one should always be
careful to use a candidate distribution that can cope with the shapes of the posterior.
Otherwise IS weights may have infinite variance; MH may have an absorbing state
or different convergence problems.

Another topic for further research is the inclusion of the tk0,1−k distribution within
the Mixture of t by Importance Sampling and Expectation Maximization (MitISEM)
approach of Hoogerheide et al. (2011). This may improve the robustness, flexibility
and applicability of MitISEM even further.

6.1 Approximate Direct Monte Carlo (ADMC): an example for simulated data

We simulate T = 1000 data from model (23)-(24) with

β = 0.1, π = (0.025, 0.025)′, Ω =




1 0.5

0.5 1


 .

For illustrative purposes, we choose rather weak instruments z. However, they do
have a significant effect on x in the frequentist sense. The multiple F-test in (24)
has a p-value of 0.0311.

Figure 2 gives the posterior kernel p(π | y, x, z), which we approximate using the
Hybrid Mixture Sampling (HMS) approach. Note that the vertical axis is restricted
to the interval [0, 1] (where the values of the posterior kernel p(π | y, x, z) are
scaled to have maximum 1 over the graph’s set of grid points), whereas p(π | y, x, z)
obviously tends to∞ for π → 0. Figure 3 shows the posterior kernel p(π1, π2 | y, x, z)
on the line between π = 0 and π = π̂OLS = (z′z)−1z′x. Note that the horizontal
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axis refers to π1, but also π2 varies over the points. The minimum on the line
between π = 0 and π = π̂OLS is located at π∗min = (0.0101, 0.0106). The first
hybrid mixture approximation of the posterior in the Hybrid Mixture Sampling
(HMS) approach is in Figure 4. The adapted candidate density q(π), a mixture with
weights wtk

0,1−k
= 0.0463 and 1 − wtk

0,1−k
= 0.9537, is in Figure 5. Note the close

approximation of the posterior shapes.

This whole procedure, yielding 10000 MH draws, takes merely 2.4 s on a Intel

CentrinoTM Dual Core processor. The MH acceptance rate is very high: 91.1%.
The first order serial correlation of the MH draws is very low: 0.1123 for π1 and
0.0979 for π2. The coefficient of variation of the IS weights is also very low: 0.192.

After one has simulated draws π from p(π | y, x, z) using this HMS method, one
can easily sample draws from β and Ω from their conditional Student-t and Inverse-
Wishart posteriors. Given the close approximation and high MH acceptance rate,
one can truly name this approach the Approximate Direct Monte Carlo (ADMC)
method.

Finally, note that we discuss the application of ADMC to posterior simulation in
this simple IV model only for illustrative purposes, since here one can simply use
our DMC method.
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Figure 2. Example of Approximate Direct Monte Carlo (ADMC): contour plot and graph of
posterior density kernel p(π | y, x, z). Note that the vertical axis of the 3d-graph is restricted
to the interval [0, 1] (where the values of the posterior kernel p(π | y, x, z) are scaled to
have maximum 1 over the graph’s set of grid points), whereas p(π | y, x, z) obviously tends
to ∞ for π → 0.

7 Model comparison and testing exogeneity

One of the important aspects of the model structure is the existence of the simul-
taneous relationship or endogeneity problem in the first place. If the exogeneity
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Figure 3. Example of Approximate Direct Monte Carlo (ADMC): posterior density kernel
p(π1, π2 | y, x, z) on line between π = 0 and π = π̂OLS = (z′z)−1z′x. Note: the horizontal
axis refers to π1, but also π2 varies over the points.
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Figure 4. Example of Approximate Direct Monte Carlo (ADMC): contour plot and graph
of first hybrid mixture approximation of the posterior p(π | y, x, z).
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Figure 5. Example of Approximate Direct Monte Carlo (ADMC): contour plot and graph
of adapted hybrid mixture approximation q(π) of the posterior p(π | y, x, z).
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restriction ρ = ω12/(ω11ω22)
1/2 = 0 is set beforehand, we obtain a proper marginal

density of π for any k ≥ 1. In our simple EV model, the posterior density for (β, π)
after integrating out the remaining variance terms ω11, ω22 is (see Zellner (1971)):

p (β, π | y, x) ∝
[
(y − xβ)′ (y − xβ)

]−T/2 [
(x− ιπ)′ (x− ιπ)

]−T/2
(38)

∝ p (β | y, x) p (π | y, x) , (39)

i.e. the conditional and marginal distributions β and π are two independent student-t
densities.

In the Bayesian context, the exogeneity test corresponds to a simple model com-
parison. Let M0 denote the model with the exogeneity restriction for which ρ =
ω12/(ω11ω22)

1/2 = 0 in (8) and (9), and M1 denote the unrestricted model. The pos-
terior odds ratio, K01 for M0 is the product of the Bayes factor and the prior odds
ratio:

K01 =
p (y | M0)

p (y | M1)
× p (M0)

p (M1)
, (40)

where in this section we disregard the conditioning on x, z for simplicity; that is, y
contains all the observed data (previously denoted by {y, x, z}), and the prior model
probabilities are (p (M1) , p (M0)) ∈ (0, 1)× (0, 1) and p (M1) + p (M0) = 1.

For the IV model and SEMs in general, calculation of the marginal likelihood is
non-trivial. Several methods are proposed to approximate the above integrals (see
e.g. Chib (1995); Frühwirth-Schnatter and Wagner (2008); Ardia et al. (2010)).
A straightforward method is to use the Savage-Dickey Density Ratio (SDDR) to
calculate model probabilities (Dickey, 1971). In this case the Bayes factor can be
calculated using a single model if the alternative models are nested and the prior
densities satisfy the condition that the prior for θ−ρ in the restricted model M0 equals
the conditional prior for θ−ρ given ρ = 0 in the model M1, i.e. p1 (θ−ρ | ρ = 0) =
p0 (θ−ρ)

3 . In this case, (40) becomes:

K01 =
p(ρ = 0 | y, M1)

p(ρ = 0 | M1)
× p (M0)

p (M1)
, (41)

where p(ρ | y,M1) =
∫

p(ρ, θ−ρ | y,M1)dθ−ρ.
4

One important consideration in model comparison is the effect of relatively non-
informative priors. Choosing a prior p(ρ, θ−ρ) flat enough compared to p(θ−ρ), the
posterior odds ratio in (40) becomes larger independent of the data. Hence if we
consider non-informative priors, the most restrictive model will typically be favored.

3 Notice that the condition for SDDR holds if we define the prior for θ−ρ in the restricted
model equal to the conditional prior of θ−ρ given ρ = 0 in the unrestricted model.
4 As a generalization, Verdinelli and Wasserman (1995) show that K01 is equal to the
Savage-Dickey density ratio in (41) times a correction factor when the prior condition
fails.
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This phenomenon is called Bartlett’s paradox (Bartlett, 1957). Specifically, the prior
p (ρ | θ−ρ) must be proper for the Bayes factor to be well defined.

In particular for the flat prior we consider, a model comparison relying on the
marginal likelihood under these priors is erroneous. Especially in the time series
context, it is shown that model comparison in these cases can be based on pre-
dictive likelihoods (Laud and Ibrahim, 1995; Eklund and Karlsson, 2007). Here we
summarize a predictive likelihoods approach to testing exogeneity.

A predictive likelihood for the model M1 is computed by splitting the data y =
(y1, . . . , yT ) into a training sample y∗ = (y1, . . . , ym) and a hold-out sample ỹ =
(ym+1, . . . , yT ). Then the predictive likelihood is given by:

p(ỹ | y∗,M1) =
∫

p(ỹ | θ1, y
∗,M1)p(θ1 | y∗,M1)dθ1, (42)

where θ1 are the model parameters for model M1. Notice that equation (42) cor-
responds to the marginal posterior likelihood for the training sample ỹ and the
exact posterior density after observing y∗ as the prior. The exact posterior density
p(θ1 | y∗,M1) is obtained by Bayes’ rule:

p(θ1 | y∗,M1) ∝p(y∗ | θ1,M1)p(θ1 | M1)

p(y∗ | M1)
=

p(y∗ | θ1, M1)p(θ1 | M1)∫
p(y∗ | θ1,M1)p(θ1 | M1)dθ1

. (43)

Substituting (43) into (42) leads to:

p(ỹ | y∗,M1) =

∫
p(ỹ | θ1, y

∗,M1)p(y∗ | θ1,M1)p(θ1 | M1)dθ1∫
p(y∗ | θ1,M1)p(θ1 | M1)dθ1

=

∫
p(y | θ1,M1)p(θ1 | M1)dθ1∫
p(y∗ | θ1,M1)p(θ1 | M1)dθ1

.

(44)

In case of predictive likelihoods, model probabilities are again calculated from the
posterior odds ratio:

p(M0 | y)

p(M1 | y)
=

p(ỹ | y∗,M0)

p(ỹ | y∗,M1)

p(M0)

p(M1)
. (45)

Combining the predictive likelihood formula in (45) and SDDR in (41), the posterior
odds ratio becomes:

K01 =
p (M0 | ỹ, y∗)
p (M1 | ỹ, y∗)

=
p(ρ = 0 | ỹ, y∗,M1)

p(ρ = 0 | y∗,M1)
× p (M0)

p (M1)
,

where p(ρ | ỹ, y∗) =
∫

p(ρ, θ−ρ | ỹ, y∗)dθ−ρ and p(ρ | y∗) =
∫

p(ρ, θ−ρ | y∗)dθ−ρ are
the exact marginal posterior densities using the full data, and the training sample,
respectively.
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A final point concerning the calculation of predictive likelihoods is the size of the
training sample. More stable results may be achieved as the training sample size
decreases, but the training sample should be large enough to provide a proper den-
sity given the originally flat/uninformative prior of parameters. Different training
sample sizes have been proposed in the literature (see Gelfand and Dey (1994) for
an overview of the forms of predictive likelihood under different training sample
choices).

This analysis of the possible validity of the exogeneity restriction is an example of
an application in which one is not only interested in the IV model’s posterior of
β. Efficient simulation from the posterior of Ω may be quite useful here; e.g., when
one computes kernel estimates of p(ρ = 0 | ỹ, y∗,M1) and p(ρ = 0 | y∗,M1) based
on draws of ρ = ω12/(ω11ω22)

1/2. One may also apply a Rao-Blackwellization step,
averaging the conditional posterior of ρ at ρ = 0 for each draw of (β, π, ω11, ω12), for
which again draws of β, π and Ω are required.

8 Empirical example with k = 2 instruments: Fulton fish market data

We next illustrate the issue of irregular posterior shapes in a simple analysis of the
demand for fish. The data provide the price and quantity of fresh whiting sold in
the Fulton fish market over the five month period from December 2, 1991 to May
8, 1992, and are collected from a single dealer (Graddy, 1995; Chernozhukov and
Hansen, 2008). The price is measured as the average daily price and the quantity is
measured as the total amount of fish sold. The number of observations, namely, the
number of days the market was open over the sample period, is T = 111. Figure 6
provides a plot of the data.

Following Chernozhukov and Hansen (2008), we consider the following Incomplete
Simultaneous Equations Model (INSEM) or overidentified IV model:

log Qt = αq + β log Pt + εt,

(46)

log Pt = αp + π1Z1t + π2Z2t + vt,

where Z1t and Z2t are two different instruments that capture weather conditions at
sea. Z1t is a dummy variable, Stormy, which indicates wave height greater than 4.5 ft
and wind speed greater than 18 knots. Z2t is also a dummy variable, Mixed, indicating
wave height greater than 3.8 ft and wind speed greater than 13 knots. Chernozhukov
and Hansen (2008) explain that these variables are plausible instruments for price in
the demand equation, since weather conditions at sea should influence the amount
of fish on the market but should not influence demand for fish.

The constant terms αq and αp are simply integrated out under a flat prior by taking
all variables in deviation from their sample means. In the model with data in de-
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Figure 6. Demand for fish data. The data contain observations on price and quantity of
fresh whiting sold in the Fulton fish market in New York City over the five month period
from December 2, 1991 to May 8, 1992. The price is measured as the average daily price
and the quantity as the total amount of fish sold that day. In total, the sample consists of
111 observations for the days in which the market was open over the sample period. The
bottom graph shows the relationship between price and quantity.

viation from their sample means we have π̂OLS = (z′z)−1z′x = (0.437, 0.236)′ with
standard errors 0.078, 0.077 (implying t-values 5.599, 3.078). The multiple F-test in
the first stage regression has F = 15.981 with p-value 0.000. Figure 7 shows the
shapes of the marginal posterior of (π1, π2). Here the instruments are stronger than
in the aforementioned example for simulated data. The volume of the asymptote
around π = 0 (showing up only as a point in the contour plot or a needle in the 3d-
graph) is negligible, as compared to the ‘regular’, bell-shaped part of the posterior
near π̂OLS = (z′z)−1z′x. For a finite set of draws, the Approximate DMC method
may work well even if only a Student-t candidate distribution is used to simulate
from the marginal posterior of π. However, the fact that the theoretical variance
of the Importance Sampling weights is infinite, implies that occasional draws near
π = 0 may cause problems. For this reason, the HMS candidate distribution with a
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very small weight for the tk0,1−k distribution around π = 0 may still be preferred as
a ‘safer’ alternative. Finally, again note that we discuss the application of ADMC
to posterior simulation in this simple IV model only for illustrative purposes, since
here one can simply use our DMC method.
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Figure 7. Fulton fish market: posterior density kernel p(π1, π2 | y, x, z). Note that the
vertical axis of the 3d-graph is restricted to the interval [0, 1] (where the values of the
posterior kernel p(π | y, x, z) are scaled to have maximum 1 over the graph’s set of grid
points), whereas p(π | y, x, z) obviously tends to ∞ for π → 0. The volume of the asymptote
around π = 0 (showing up only as a point in the contour plot or a needle in the 3d-graph)
is negligible, as compared to the ‘regular’, bell-shaped part of the posterior.

9 Conclusions and Future Work

A Direct Monte Carlo (DMC) approach is introduced for posterior simulation in the
Instrumental Variables (IV) model with one possibly endogenous regressor, multiple
instruments and Gaussian errors under a flat prior. This DMC method can also be
applied in an IV model (with one or multiple instruments) under an informative
prior for the possibly endogenous regressor’s effect. This DMC approach can not be
applied to more complex IV models or Simultaneous Equations Models with multiple
possibly endogenous regressors. An Approximate DMC (ADMC) approach is intro-
duced that makes use of the proposed Hybrid Mixture Sampling (HMS) method,
which facilitates Metropolis-Hastings (MH) or Importance Sampling from a proper
marginal posterior density with highly non-elliptical shapes that tend to infinity for
a point of singularity. After one has simulated from the irregularly shaped marginal
distribution using the HMS method, one easily samples the other parameters from
their conditional Student-t and Inverse-Wishart posteriors. An example illustrates
the close approximation and high MH acceptance rate. On the other hand, using
a simple candidate distribution such as the Student-t may lead to an infinite vari-
ance of Importance Sampling weights. The choice between the IV model and a
simple linear model under the restriction of exogeneity (or the model weights in a
Bayesian Model Averaging application of these models) may be based on predictive
likelihoods, for which the efficient simulation of all model parameters may be quite

23



useful. In future work the ADMC approach may be extended to more extensive
IV models such as IV with multiple possibly endogenous regressors, IV with non-
Gaussian errors, panel IV, or probit/logit IV. Also for other reduced rank models
such as cointegration or factor models, extended or adapted versions of the ADMC
method may be useful.
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A Derivation of posterior densities for the IV model with one endoge-
nous variable and k instruments

We consider the generalization of the IV model in Section 3, with one possibly
endogenous regressor and k instruments. As an introduction we note that for the
model y = xβ + u with u ∼ NID(0, ω), the posterior density of β under flat priors
is a student-t density with posterior mean equal to the Maximum Likelihood or
least squares estimator. The scaling factor of this density is also standard, see e.g.
Koop (2003) and direct simulation from this posterior is possible. For the IV model
however, this posterior density is more complex, in fact it is a student-t density
times a polynomial or a rational function. In Figure A.1 we summarize the existence
conditions and the derivation steps for the posterior densities in the IV model under
flat priors.

Figure A.1 presents the steps for the decomposition of the joint posterior into con-
ditional and marginal posteriors, where we extend the scheme of integration steps
in Bauwens and Van Dijk (1990). For the step-by-step derivation of these posterior
densities see the Appendix. Under flat priors, conditional posteriors of β|π, Ω, data,
π|β, Ω, data and Ω|β, π, data are Normal and Inverted Wishart densities. Moments
of these densities exist, and this result does not depend on the number of instru-
ments. However, Gibbs sampling using these conditional densities can only be used
if the joint posterior is a proper density, which is not the case for an exactly iden-
tified model (k = 1). Hence a straightforward application of the Gibbs sampling
procedure on these posteriors can be erroneous. See e.g. Arnold, Castillo, and Sara-
bia (1999); Hobert and Casella (1998) for a discussion and how Markov Chain and
Gibbs sampling methods might be employed erroneously on models with improper
posteriors.

Likelihood function and the joint posterior under a Flat Prior Consider
the structural form (SF) representation of the IV model with one endogenous vari-
able and k instruments:

y = xβ + u, (A.1)

x = zπ + v, (A.2)

where y is the T × 1 vector of data of the dependent variable, x is the T × 1 vector
of data on the possibly endogenous explanatory variable, z is the T × k matrix of
data on the instruments, and the disturbances follow an iid normal distribution:

(u′, v′)′ ∼ N(0, Ω⊗ I), where I is the identity matrix of size T and Ω = ( ω11 ω12
ω12 ω22 ).

The orthogonal structural form (OSF) for the IV model is obtained by decomposing
u in (A.1) into two independent components u = vη + ε:

y = xβ + vη + ε, (A.3)

x = zπ + v, (A.4)
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Figure A.1. Scheme of Derivation Steps for Posterior Densities of the IV Model with One
Endogenous Variable and k Instruments, under a Flat Prior
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where η = ω12/ω22, (ε′, v′)′ ∼ NID(0, Σ ⊗ I), Σ =
(

σ11 0
0 σ22

)
, σ22 = ω22 and σ11 =

ω11 − ω2
12/ω22. By definition, (η, β, π) ∈ Rk+2, (σ11, σ22) ∈ R2

+
5 .

The likelihood of IV model in terms of the SF representation in (A.1) and (A.2) is
equivalent to the following kernels:

p(y, x | β, π, Ω, z) ∝ |Ω|−T/2 exp
{
−1

2
|Ω|−1

(
ω22(y − xβ)′(y − xβ)

− 2ω12(y − xβ)′(x− zπ) + ω11(x− zπ)′(x− zπ)
)}

(A.5)

= |Ω|−T/2 exp
{
−1

2
tr

(
(y − xβ, x− zπ)′(y − xβ, x− zπ)Ω−1

)}

(A.6)

A flat prior for the model in (A.1) and (A.2) is:

p(β, π, Ω) ∝ |Ω|−3/2 . (A.7)

Combining the prior in (A.7) with the likelihood in (A.5) and (A.6), the posterior
density of parameters is:

p(β, π, Ω | y, x, z) ∝ |Ω|−(T+3)/2 exp
{
−1

2
|Ω|−1

(
ω22(y − xβ)′(y − xβ)

− 2ω12(y − xβ)′(x− zπ) + ω11(x− zπ)′(x− zπ)
)}

, (A.8)

= |Ω|−(T+3)/2 exp
{
−1

2
tr

(
(y − xβ, x− zπ)′(y − xβ, x− zπ)Ω−1

)}
.

(A.9)

Conditional posterior densities for the IV model under a Flat Prior Con-
ditional posterior of β | π, Ω, y, x, z is derived using (A.8):

p(β | π, Ω, y, x, z) ∝ exp
{
−1

2
|Ω|−1 (ω22(y − xβ)′(y − xβ)− 2ω12(y − xβ)′(x− zπ))

}

∝ exp
{
−1

2
|Ω|−1

(
ω22β

2(x′x)− 2β (ω22y
′x− ω12x

′(x− zπ))
)}

⇒β | π, Ω, y, x, z ∼ N(β̂, Vβ) (A.10)

where Vβ = |Ω|/(ω22x
′x) and β̂ = y′x/(x′x)− ω12/ω22(1− x′zπ/(x′x)).

5 The support for the variable η is unrestricted: Define ρ = ω12/(ω11ω22)1/2 where ρ ∈
(−1, 1) for a pds matrix Ω. Then the transformation for η is: η = ω12/ω22 = ρ(ω11/ω22)1/2.
Given that (ω11, ω22) ∈ R2

+ and ρ ∈ (−1, 1), η ∈ R.
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Conditional posterior π | β, Ω, y, x, z is derived from (A.8):

p(π | β, Ω, y, x, z) ∝ exp
{
−1

2
|Ω|−1 (−2ω12(y − xβ)′(x− zπ) + ω11(x− zπ)′(x− zπ))

}

∝ exp
{
−1

2
|Ω|−1 (ω11π

′z′zπ − 2π′(ω11z
′x− ω12z

′(y − xβ)))
}

⇒ π | β, Ω, y, x, z ∼ N(π̂, Vπ) (A.11)

where Vπ = |Ω|(ω11z
′z)−1 and π̂ = (z′z)−1z′x− ω12/ω11(z

′z)−1z′(y − xβ).

Conditional posterior of Ω | β, π, y, x, z follows from (A.9) and the properties of the
Inverse-Wishart distribution. Given that (y− xβ, x− zπ)′(y− xβ, x− zπ) is a pds
matrix and T > 1, conditional posterior of Ω is (see e.g. (Zellner, 1971, pp. 395)):

p(Ω | β, π, y, x, z) ∝ |Ω|−(T+3)
2 exp

{
−1

2
tr

(
(y − xβ, x− zπ)′(y − xβ, x− zπ)Ω−1

)}

⇒ Ω | β, π, y, x, z ∼ IW ((y − xβ, x− zπ)′(y − xβ, x− zπ), T ) , (A.12)

where IW (Ξ,m) denotes the Inverse-Wishart distribution with the inverse scale
matrix Ξ and m degrees of freedom.

We conclude that the under flat priors, conditional posteriors in (A.10), (A.11) and
(A.12) are conventional Normal and Inverted Wishart densities. Moments of these
densities exist for all values of π in their domain and for any number of instruments
k = 1, 2, . . . , K. However, Gibbs sampling using these conditional densities can only
be used if the joint posterior is a proper density. Hence a straightforward application
of the Gibbs sampling procedure on these posteriors can be erroneous.

We next derive the marginal posteriors of β, π for the IV model under flat priors.
A graphical illustration of these integration steps to obtain the marginal posteriors
under the flat prior is given in Bauwens and Van Dijk (1990).

Marginal posterior density of β for the IV model under a Flat Prior As
an intermediary step, consider the marginal posterior of β, π | y, x, z, obtained by
the Inverse-Wishart step on Ω:

p(β, π | y, x, z) ∝
∫

Ω
p(β, π, Ω | y, z)dΩ

∝
∫

Ω
|Ω|−(T+3)/2 exp

{
−1

2
tr

(
(y − xβ, x− zπ)′(y − xβ, x− zπ)Ω−1

)}
dΩ

∝ |(y − xβ, x− zπ)′(y − xβ, x− zπ)|−T/2
. (A.13)

Marginal density p(β | y, z) is achieved by the following determinant decomposition
and by completing the squares on π in (A.13):

p (π, β | y, x, z) ∝
∣∣∣(y − xβ, x− zπ)′ (y − xβ, x− zπ)

∣∣∣
−T/2

= ((y − xβ)′(y − xβ))
−T/2

((x− zπ)′Mu(x− zπ))
−T/2

(A.14)
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where u = y − xβ and Mα = I − α (α′α) α′ is the projection matrix out of the span
of α.

We next rewrite the sum of squares in π in (A.14). Define π̂ = (z′Muz)−1 z′Mux and

s2
π̂ = ((x − zπ̂)

′
Mu(x − zπ̂))/(T − k) = (Mux)

′
MMuz (Mux) /(T − k). Completing

the squares in π yields:

p (π, β | y, x, z) ∝
(
(T − k) s2

π̂

)−T
2

(
1 +

(π − π̂)′ (z′Muz) (π − π̂)

(T − k) s2
π̂

)−T
2

(A.15)

where it is assumed that the condition Muz 6= 0 holds.

From (A.15), conditional posterior of π is a matric-variate t density:

π | β, y, x, z ∼t
(
π̂, s2

π̂|z′Muz|−1, T − k
)
. (A.16)

From (A.15) and (A.16), marginal density of β is:

p (β | y, x, z) =
∫

p (β, π | y, z) dπ

∝ ((y − xβ)′(y − xβ))−
T
2

(
(T − k) s2

π̂

)−T
2

(∣∣∣z′Muz
∣∣∣ /s2

π̂

)−1/2

×
∫ (∣∣∣z′Muz

∣∣∣ /s2
π̂

)1/2
(

1 +
(π − π̂)′ (z′Muz) (π − π̂)

(T − k) s2
π̂

)−T
2

dπ (A.17)

∝
∣∣∣z′Muz

∣∣∣
−1/2 (

(T − k) s2
π̂

)−T−k
2 (u′u)

−T
2 , (A.18)

where the last equality holds since the integral in (A.17) is a multivariate student-t
density apart from the integrating constant.

Simplifying the first term on the right-hand side of (A.18):

∣∣∣z′Muz
∣∣∣ =

(
u
′
Mzu

)
|z′z| / (u′u) ∝

(
u
′
Mzu

)
/ (u′u) . (A.19)

We next simplify the second term in (A.18), using the determinant decomposition:

(T − k)s2
π̂ = (Mux)

′
MMuz (Mux)

= (MuzMMuxMuz) (x′Mux) |z′Muz|−1
, (A.20)

where the first term on the right-hand side of (A.20) is the sum of squared residuals
(SSR) in a regression of Muz on Mux, which is equal to the SSR in a regression of
z on u and x by the Freisch-Waugh theorem:

(MuzMMuxMuz) = (MxzMMxuMxz) .

Substituting u = y − xβ in Mxu yields:

Mxu = Mx(y − xβ) = Mxy. (A.21)
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Hence the first term on the right-hand side of (A.20) is independent of the data,
and can be disregarded for the marginal posterior of β:

(MuzMMuxMuz) = (MxzMMxuMxz) = (MxzMxyMxz)

Therefore the following simplification holds

(T − k)s2
π̂ ∝ (x′Mux) |z′Muz|−1 ∝ u′Mxux′x

u′u

(
u′Mzu |z′z|

u′u

)−1

∝ (u′Mzu)−1,

(A.22)

where we use the determinant decomposition, (A.21), and disregard the factors not
depending on π.

Substituting (A.19) and (A.22) in (A.18), we have the simplified marginal posterior
for β:

p(β | y, x, z) ∝
(

u
′
Mzu

u′u

)−1/2

(u′Mzu)
T−k

2 (u′u)
−T

2 = (u′Mzu)
T−k−1

2 (u′u)
T−1

2 (A.23)

which is a polynomial, (u′Mzu)(T−k−1)/2, times a t-density form, (u′u)(T−1)/2. Marginal
posterior of β is a proper density for all parameter values. However, it is not trivial
to simulate from this posterior density.

Marginal posterior density of π for the IV model under a Flat Prior
Marginal density p(π | y, z) is achieved by the following determinant decomposition
and by completing the squares on β using (A.13):

p (π, β | y, x, z) ∝ ((x− zπ)′(x− zπ))
−T/2

((y − xβ)′Mv(y − xβ))
−T/2

(A.24)

where v = x− zπ, Mα = I − α (α′α) α′.

The solution to the quadratic form for the last term in (A.24) exists if and only if
Mvx 6= 0, i.e. Pvx 6= x. This condition holds when the model is identified, i.e. π 6= 0.

Assuming this condition, define β̂ =
(
x
′
Mvx

)−1
x
′
Mvy and s2

β̂
= y′MMvxy/(T −1) =

(Mxy)
′
MMvx (Mxy) /(T − 1). Hence the following holds:

p (β, π | y, x, z) ∝
(
v
′
v
)−T

2
(
(T − 1) s2

β̂

)−T
2


1 +

(
β − β̂

)′ (
β − β̂

)

(T − 1) s2
β̂
/ (x′Mvx)




−T
2

. (A.25)

From (A.25), conditional posterior of β after integrating out Ω is:

p (β | π, y, x, z) ∼t(β̂, s2
β̂
/(x

′
Mvx), T − 1). (A.26)

.
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From (A.25) and (A.26), the marginal density for π is:

p (π | y, x, z) =
∫

p (β, π | y, z) dβ ∝ (x′Mvx)
− 1

2

(
v
′
v
)−T

2
(
(T − 1) s2

β̂

)−T−1
2 . (A.27)

We simplify the first and the last terms in equation (A.27) using the properties of
projection:

x′Mvx =
v
′
Mxvx′x
v′v

∝ v′Mxv

v′v
(A.28)

The last term in (A.27) can be written as:

(T − 1) s2
β̂
∝ (Mxy)

′
MMvx (Mxy) = (Mxv)′ MMyx (Mxv)

y′Mxy

v′Mxv
∝ v′M(y x)v (v′Mxv)

−1

(A.29)

Hence (A.27) becomes:

p (π | y, x, z) ∝
(
v
′
v
)−T/2

((v′Mxv) /v′v)
−1/2

(
v′M(y x)v (v′Mxv)

−1
)T−1

2 , (A.30)

where the following holds for the projections on the right-hand side of (A.30):

Mxv =Mx (x− zπ) = Mxzπ (A.31)

M(y x)v =M(y x) (x− zπ) = M(y x)zπ. (A.32)

Inserting (A.31) and (A.32) in (A.30):

p (π | y, x, z) = (v′v)
−T−1

2 (π′z′Mxzπ)
− 1

2 ,

(
π′z′Mxzπ

π′z′M(y x)zπ

)T−1
2

(A.33)

is a t-density form times a rational function, see Kleibergen and Van Dijk (1994,
1998) for the derivation of this posterior density. It is an improper density for an
exactly identified model (k = 1); and a proper density for an overidentified model
(k > 1). It is not trivial to simulate from this density.

Possibly improper posterior densities and the effect of the number of
instruments For the structural form representation of the model in (A.1) and
(A.2), we employ a simple change of variables to show that the joint posterior
of β, π, Ω has a ridge under the flat prior. Consider the transformation of vari-
ables in the parameter space leading to the OSF representation in (A.3) and (A.4):
η = ω12/ω22, σ11 = ω11 − ω2

12/ω22, σ22 = ω22, β = β, π = π. Note that, by defi-
nition, (η, β, π) ∈ Rk+2, (σ11, σ22) ∈ R2

+. The determinant of the Jacobian of this
transformation is |J | = 1/σ22.
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Define the diagonal matrix Σ =
(

σ11 0
0 σ22

)
such that Ω =

(
1 η
0 1

)
Σ

(
1 0
η 1

)
, and let

φ(.; µ, V ) denote the (multivariate) normal density with mean µ and covariance V .
The likelihood for observation i is:

p(yi, xi | β, π, σ11, η, σ22, zi) = φ







1 −η

0 1







yi − xiβ

xi − ziπ


 ;




0

0


 , Σ


 .

Using the independence assumption and the properties of the diagonal matrix Σ,
the likelihood for all data points is:

p(y, x | β, π, σ11, η, σ22, z) = φ (y − xβ − xη + zπη; 0, σ11I) φ (x− zπ; 0, σ22I) .
(A.34)

Consider a (general) flat prior: |Ω|−h/2. In the transformed parameter space we have

p(β, π, η, σ11, σ22) ∝ |Σ|−h/2/σ22, (A.35)

where we use the Jacobian of the transformation and the following equality: |Σ| =
σ11σ22 = |Ω|.

Combining the prior in (A.35) and the likelihood in (A.34), the posterior density is:

p(β, π, σ11, η, σ22 | y, x, z) ∝|Σ|−(T+h)/2/σ22 φ (y − xβ − xη + zπη; 0, σ11I)

× φ (x− zπ; 0, σ22I) . (A.36)

We next show that the joint posterior in (A.36) has a ridge in the parameter subspace
π = 0, and β + η = C for a constant C ∈ R:

p(β, π, σ11, η, σ22 | y, x, z, π = 0, β + η = C) =|Σ|−(T+h)/2/σ22φ (y − xC; 0, σ11)

× φ (x; 0, σ22) , (A.37)

where, given (σ11, σ22), the right-hand-side is a non-zero constant for (infinitely
many) points (β, η, π) ∈ R3 on satisfying β + η = C, π = 0. That is, in the 3-
dimensional space of the OSF parameters (β, η, π) this corresponds to the straight
line with {β + η = C, π = 0}; in the 5-dimensional space of (β, η, π, σ11, σ22) this
obviously amounts to a 3-dimensional subspace of infinite volume. For the origi-
nal parameter space of the structural form, the subspace of this ridge corresponds
to a more complex, non-trivially curved subspace. The effect of this ridge on the
properness of the joint posterior depends on the number of instruments.

In line with the ridge of the posterior density under flat priors, the joint density
of β, π, Ω is possibly improper. We focus on the properness (i.e., the integrability)
of the marginal posterior of π for the case of a single instrument and for k > 1
instruments. Under flat priors, the marginal posterior of π is:

p (π | y, x, z) = (v′v)
−T−1

2

(
π′z′Mxzπ

π′z′M(y x)zπ

)T−1
2

(π′z′Mxzπ)
−1/2

, (A.38)
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where the first term on the right-hand-side of (A.38) is a (k-dimensional) t-density
form with T − 1− k degrees of freedom, the second factor is a rational function and
also the last term is a (simple) rational function. For the first factor we only assume
that our number of observations is not extremely small (e.g. T > k+1 suffices, which
is obviously typically satisfied). The second factor in (A.38) is a Rayleigh quotient,
bounded from above and below. Further, the first factor in (A.38) is bounded from
above and below by definition. It can be shown that for π → −∞ or π → +∞, the
first factor in (A.38) goes to 0 quickly. Hence the density is rather well-behaved in
these regions. The main problem of integrability in (A.38) is the behavior of the last
factor in (A.38) around the space π = 0k where 0k is the k×1 vector of zeros. For the
IV model, this space corresponds to irrelevant instruments, where the endogenous
variable cannot be explained by any of the instruments.

We have
∫

π∈A
(π′z′Mxzπ)−1/2dπ = |z′Mxz|−1/2

∫

{π∗|π∗′π∗≤1}
(π∗

′
π∗)−1/2dπ∗, (A.39)

where A is a certain subspace of Rk of which 0 is an interior point and where
π∗ ≡ (z′Mxz)1/2π. For k = 1 the non-integrability of the posterior is clear, as the
integral on the right hand side of (A.39) amounts to

∫ 1

−1

1

|π∗| dπ∗ = ∞. (A.40)

For k = 2 we have

∫

{π∗|π∗′π∗≤1}
(π∗

′
π∗)−1/2dπ∗ = π+

∫ ∞

1
π

1

f 2
df = π+

[
−π

1

f

]∞

1

= π+(0− (−π)) = 2π,

(A.41)
with π = 3.14159 . . . (as opposed to the k×1 vector of coefficients at the instruments
throughout the text) on the right hand side. Here we used that the volume under
the graph of f = (π∗

′
π∗)−1/2 at {π∗| π∗′π∗ ≤ 1} can be computed by integrating the

surfaces π 1
f2 of circles with radius 1

f
for 1 ≤ f < ∞ and the surfaces π of circles

with radius 1 for 0 ≤ f < 1. For k ≥ 3 a similar derivation involving an integral
over k-dimensional balls yields a different finite value.

Hence the existence of the marginal posterior of π for k ≥ 2, so that the joint
posterior of β, π, Ω depends on the number of instruments.

We finally focus on the properness of the marginal posterior of β for the case of
a single instrument and for k > 1 instruments. Under flat priors, the marginal
posterior of β is:

p (β | x, y, z) ∝
(

u′u
u′Mzu

)−T−1
2

(u′Mzu)
− k−1+1

2 , (A.42)

where the first factor in (A.42) is smaller than 1, since u′u > u′Mzu. The second
factor is a t-density form with k − 1 degrees of freedom. For k = 1 the tails are too
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fat to have a finite integral, so that the kernel in (A.42) does not correspond to a
finite density. For k ≥ 2 the tails correspond to a proper t-density, so that (A.42)
defines a proper density.
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