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Abstract

We consider the problem of sharing water among agents located along a river. Each agent

has quasi-linear preferences over river water and money, where the benefit of consuming an

amount of water is given by a continuous and concave benefit function. A solution to the

problem efficiently distributes the river water over the agents and wastes no money. We

introduce a number of (independence) axioms to characterize two new and two existing

solutions. We apply the solutions to the particular case that every agent has constant

marginal benefit of one up to a satiation point and marginal benefit of zero thereafter. In

this case we find that two of the solutions (one existing and one new) can be implemented

without monetary transfers between the agents.

Keywords: Water allocation, Harmon doctrine, concave benefit function, stability, exter-

nality, independence axiom, water claim.

JEL codes: C71, D62, Q25



1 Introduction

In this paper we consider the problem of sharing water among agents, e.g. countries, cities,

firms, located along a river. As the number of agents involved in sharing (international)

river water is usually small, and formal (international) water exchanges are scarce, trade in

river water normally takes place by the signing of contracts between the parties involved.

These contracts directly specify the amount of water to be delivered and the amount

of money that has to be paid for this water, see Dinar, Rosegrant and Meinzen-Dick

(1997) and its references. Cooperative game theory deals with strategic situations in which

the outcome of one agent’s choice depends on choices made by other agents, and the

agents making the choices are able to sign binding bi- or multilateral contracts to enforce

cooperation. For this reason cooperative game theory is one of the main tools that is

used in modeling (international) water resource issues, see Parrachino, Dinar and Patrone

(2006) for an overview.

Ambec and Sprumont (2002) introduce a model in which a group of agents is located

along a single-stream river from upstream to downstream. Each agent is assumed to

have quasi-linear preferences over river water and money, where the benefit of consuming

an amount of water is given by a differentiable, strictly increasing and strictly concave

benefit function. An allocation of the river water among the agents is efficient when it

maximizes the total sum of benefits. To sustain an efficient water allocation, the agents can

compensate each other by paying monetary transfers. Every water allocation and transfer

schedule yields a welfare distribution, where the utility of an agent is equal to its benefit

from water consumption plus its monetary transfer, which can be negative. By deriving a

cooperative game from their model, Ambec and Sprumont (2002) find out how the river

water should be allocated over the agents and propose what monetary transfers should

be performed in order to realize a fair welfare distribution. They suggest the downstream

incremental solution as a welfare distribution that satisfies both core lower bounds as well

as aspiration upper bounds. This downstream incremental solution can be seen as the

marginal contribution vector of their cooperative game corresponding to the ordering of

agents along the river, from upstream to downstream.

Ambec and Ehlers (2008), Khmelnitskaya (2010), van den Brink, van der Laan and

Moes (2010) and Wang (2011) all generalize the model of Ambec and Sprumont (2002)

in a specific way. Ambec and Ehlers (2008) allow for satiable agents by assuming that

the benefit function of each agent is differentiable and strictly concave, but not necessar-

ily increasing (i.e., the benefit function can be decreasing beyond some satiation point).

Khmelnitskaya (2010) considers rivers that have a so-called sink-tree or rooted-tree struc-

ture allowing multiple springs or deltas. Van den Brink, van der Laan and Moes (2010)

study rivers with multiple springs (as in Khmelnitskaya (2010)) and satiable agents (as in
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Ambec and Ehlers (2008)) and suggest a new class of solutions based on a water distribu-

tion principle known as Territorial Integration of all Basin States (TIBS). Finally, Wang

(2011) proposes a solution to the original single-stream model in which water trading is

restricted to pairs of neighboring agents.

Our paper adds to this growing literature in three ways. First, we weaken the as-

sumption of Ambec and Ehlers (2008) (and therefore also the assumption of Ambec and

Sprumont (2002)) on the benefit functions by only requiring continuity and concavity.

Second, we characterize two existing solutions for the single-stream model by introducing

several (independence) axioms. Third, we propose and characterize two new solutions for

the single-stream model, also by using new (independence) axioms.

In contrast to the papers mentioned above, in this paper we avoid the detour of modeling

the river situation as a cooperative game. Instead, we immediately impose axioms on the

class of all river water sharing problems. This has as main advantage that the axioms

we propose can directly be interpreted in terms of water (benefit) allocation. While most

axioms used in the literature are also derived from water distribution principles, they are

ultimately axioms on cooperative games and not on water allocation problems. This often

leads to friction when trying to interpret the cooperative game axioms in terms of water

allocation. We feel that our approach is more natural as it allows for a straightforward

interpretation of the axioms.

After considering the general case, we apply the four solutions that we discuss in this

paper to the particular case that every agent has constant marginal benefit of one up to

a satiation point, and marginal benefit of zero thereafter, see also Ansink and Weikard

(2011). This could be seen as representing a situation where the full benefit functions of

the agents are unknown and each agent has only specified a single claim on water from

the river. We find that in this case two of the solutions (one existing and one new) can be

implemented without monetary transfers between the agents.

The paper is organized as follows. In Section 2 we recall the single-stream river sharing

model of Ambec and Sprumont (2002) and weaken the assumptions on the benefit functions

of that model. In Section 3 we introduce a number of axioms on river sharing problems. In

Sections 4, 5, 6 and 7 we show that different sets of axioms characterize different solutions

assiging fair welfare distributions to every river problem. More specifically, we characterize

two existing solutions, known as the downstream incremental solution (Section 4) and the

upstream incremental solution (Section 5), and propose and characterize two new solutions:

the downstream solution (Section 6) and the upstream solution (Section 7). In Section 8

we apply the four solutions to the case where every agent has constant marginal benefit of

one up to a satiation point, and marginal benefit of zero thereafter. We conclude with a

comparison of the four solutions in Section 9.
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2 River problems with concave benefit functions

In their paper ‘Sharing a river’, Ambec and Sprumont (2002) consider the problem of

finding a ‘fair’ distribution of the welfare resulting from allocating the inflows of water

along an international or transboundary river to the agents located along the river. Let

N = {1, . . . , n} be the set of agents, in the sequel also called countries, along the river,

numbered successively from upstream to downstream, and let ei ≥ 0 be the inflow of water

on the territory of agent i, i = 1, . . . , n. Every agent i is assumed to have a quasi-linear

utility function assigning to every pair (xi, ti) with xi ∈ IR+ an amount of water allocated

to i and ti ∈ IR a monetary compensation to i, the utility

νi(xi, ti) = bi(xi) + ti, (2.1)

where bi: IR+ → IR is a continuous function yielding benefit bi(xi) to agent i of the consump-

tion xi of water. In the following we denote such a river situation by the triple (N, e, b),

where N is the set of agents, e ∈ IRn
+ is the vector of nonnegative inflows and b = (bi)i∈N

is the collection of benefit functions.

Because of the one-directionality of the water flow from upstream to downstream, every

agent can be assigned at most the water inflow at the territories of himself and his upstream

agents, but the water inflow downstream of some agent cannot be allocated to this agent.

Therefore, a water allocation x ∈ IRn
+ assigns an amount of water xi to agent i, i = 1, . . . , n,

under the constraints
j∑

i=1

xi ≤
j∑

i=1

ei, j = 1, . . . , n,

i.e., x ∈ IRn
+ is a water allocation if, for every agent j, the sum of the water assignments

x1, . . . , xj is at most equal to the sum of the inflows e1, . . . , ej. A water allocation x

yields total welfare
∑n

i=1 bi(xi). We allow for monetary transfers amongst the agents,

so that agents can make monetary compensations to other agents for receiving water. A

compensation scheme t ∈ IRn gives a monetary compensation ti to agent i, i = 1, . . . , n,

under the constraint
n∑

i=1

ti ≤ 0.

As mentioned before, a pair (x, t) of a water allocation x and a compensation scheme t

yields utilities νi(xi, ti) given by (2.1) for every i = 1, . . . , n. A pair (x, t) is Pareto efficient

if no water and no money is wasted, i.e., (x, t) is Pareto efficient if and only if x ∈ IRn
+

maximizes the welfare maximization problem

max
x1,...,xn

n∑
i=1

bi(xi) s.t.

j∑
i=1

xi ≤
j∑

i=1

ei, j = 1, . . . , n, and xi ≥ 0, i = 1, . . . , n, (2.2)
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and the compensation scheme t ∈ IRn
+ is budget balanced:

∑n
i=1 ti = 0.

In Ambec and Sprumont (2002) it is assumed that every benefit function bi: IR+ → IR

is an increasing and strictly concave function, which is differentiable at every xi > 0 with

derivative going to infinity as xi tends to zero. Under this assumption the maximization

problem (2.2) has a unique solution x∗. We say that z ∈ IRn is a welfare distribution if

there exists a Pareto efficient pair (x∗, t) such that

zi = bi(x
∗
i ) + ti, i = 1, . . . , n.

Hence, a welfare distribution z distributes the maximum attainable welfare
∑n

i=1 b(x∗i )

amongst the agents by allocating x∗i to agent i, i = 1, . . . , n, and implementing a bud-

get balanced monetary compensation scheme t. Reversely, notice that for the optimal

allocation x∗ every budget balanced compensation scheme t induces a welfare distribution.

In Ambec and Sprumont (2002) the problem to find a ‘fair’ budget balanced com-

pensation scheme, or equivalently a fair welfare distribution, is modeled by a cooperative

transferable utility game. Then a solution for the cooperative game is proposed by taking

into account two principles for a fair welfare distribution given in Kilgour and Dinar (1995).

The principle of Absolute Territorial Sovereignty (ATS) states that every country has unre-

stricted access to use its own natural resources. For an international river this leads to the

Harmon doctrine, stating that a country is absolutely sovereign over the inflow to the river

on its own territory and thus every agent is the legal owner of its own water inflow. This

principle favors upstream countries by implying that, for every j = 1, . . . , n, the coalition

{1, . . . , j} of the first j upstream countries are entitled to use the total inflow of water on

their own territories without taking into account what consequences this might have for

the downstream countries. In contrast to this, the principle of Territorial Integration of

all Basin States (TIBS) favors downstream countries by stating that all the water inflows

belong to all the countries together, no matter where it enters the river. It makes all coun-

tries together the legal owner of all water inflows, without regard to their own contribution

to the flow. Taking the one-directionality of the water flows from upstream to downstream

into account, an interpretation of the TIBS principle is the principle of Unlimited Territo-

rial Integrity (UTI), stating that unrestricted use by a country of its own natural resources

is only permitted in so far it does not cause damage to other sovereign countries. In its

extreme form this principle implies that a country j is entitled to use all the water inflows

on its own territory and on the territories of all its upstream countries. Of course, this

leads to conflicting situations in the sense that the inflow ei at the territory of country i is

entitled to every country j ≥ i.

As argued by Ambec and Sprumont (2002), the Harmon doctrine implies stability

in the sense that for every i and every j ≥ i the total welfare that the collection of

consecutive countries {i, i + 1, . . . , j} receives at a Pareto efficient pair (x∗, t) should be
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at least equal to the sum of benefits that these countries can guarantee themselves by an

optimal (welfare maximizing) allocation of their own inflows ei, . . . , ej amongst themselves.1

In case j = i this stability notion reduces to individual rationality, saying that the payoff

of a country i should be at least equal to the benefit bi(ei) of the water inflow on its own

territory.2 Taking i = 1 and j ≥ i, stability implies upstream stability, meaning that for

every upstream collection of consecutive countries {1, . . . , j}, j = 1, . . . , n, that the total

welfare
∑j

i=1 zi of the first j upstream countries at a Pareto efficient pair (x∗, t) should be

at least equal to the maximum that these countries can guarantee themselves by solving

the welfare maximization problem

max
x1,...,xj

j∑
i=1

bi(xi) s.t.
k∑

i=1

xi ≤
k∑

i=1

ei, k = 1, . . . , j, and xi ≥ 0, i = 1, . . . , j. (2.3)

Under the assumptions made on the benefit functions in Ambec and Sprumont (2002),

for each j this maximization problem has a unique solution. We denote this solution by

xj = (xj1, . . . , x
j
j) and the corresponding total welfare by vj =

∑j
i=1 bi(x

j
i ). Notice that

xni = x∗i , i = 1, . . . , n, and vn =
∑n

i=1 bi(x
∗
i ). It follows that upstream stability requires

that
∑j

i=1 zi ≥ vj for every j = 1, . . . , n.

On the other hand, based on the UTI principle favoring the downstream coun-

tries, Ambec and Sprumont (2002) impose the condition that for every upstream coalition

{1, . . . , j}, j = 1, . . . , n, the total welfare of these countries is bounded from above by their

aspiration level, being the maximum welfare they can obtain by distributing their own

water optimally amongst themselves. Thus, the aspiration level property requires that for

each j the total welfare
∑j

i=1 zi of the first j upstream countries is at most equal to the

welfare obtained from solving the welfare maximization problem (2.3), i.e.,
∑j

i=1 zi ≤ vj

for every j = 1, . . . , n. It follows that the upstream stability requirement and the aspira-

tion level property together require that
∑j

i=1 zi = vj for every j = 1, . . . , n, and thus

determine the unique welfare distribution zi = vi − vi−1, i = 1, . . . , n, with v0 defined to

be equal to zero. The corresponding so-called downstream incremental solution assigns to

every river problem (N, e, b), the welfare distribution d(N, e, b) ∈ IRn given by

di(N, e, b) = vi − vi−1, i = 1, . . . , n. (2.4)

Although this welfare distribution is fully determined by the upstream stability requirement

and the aspiration level property, it is also stable for every coalition {i, i + 1, . . . , j}, 1 ≤
i ≤ j ≤ n, of consecutive agents.

1Within the game-theoretic model of Ambec and Sprumont this equals the well-known notion of Core

stability.
2Notice that this notion of individual rationality only holds under the assumption that a country is the

legal owner of its own inflow.
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Ambec and Ehlers (2008) generalized the basic river game described above by al-

lowing for satiable agents. This means that they weaken the assumption on the benefits

in Ambec and Sprumont (2002) by deleting the requirement that the benefit function is

strictly increasing. They assume that every benefit function bi: IR+ → IR is a strictly con-

cave function, differentiable at every xi > 0 with derivative going to infinity as xi tends to

zero. Under this assumption it is possible that for some point ci > 0, called the satiation

point of agent i, the benefit is increasing from xi = 0 to ci, reaches its maximum value

at ci, and is decreasing for xi > ci. The existence of satiation points has serious conse-

quences for the corresponding cooperative game. Without satiation points, only coalitions

of consecutive agents are able to cooperate in order to maximize their joint welfare by

allocating optimally their own water inflows amongst each other (under the Absolute Ter-

ritorial Sovereignty (ATS) assumption, saying that the agents in each coalition have the

rights to use their own water inflows). A non-consecutive coalition of two (consecutive)

subsets of agents would never transfer water from the upstream part to the downstream

part, because the increasing benefit functions would make that all water sent from the

upstream agents to the downstream agents would be taken by the agents in-between the

two parts. In contrast, under the weaker assumption of Ambec and Ehlers (2008), it might

be profitable for a non-consecutive coalition of agents to transfer water from its upstream

part to its downstream part when all agents in-between have a satiation point. Although

some of this flow might be taken by the in-between agents, these agents will only take

water up to their satiation points. When the flow is big enough, part of it will reach the

downstream agents, possibly rendering cooperation between the two parts of the coalition

profitable. This phenomenon might cause positive externalities on the agents in-between

two parts of a non-consecutive coalition. As a result, in the corresponding cooperative

game the worth that can be obtained by a coalition depends on the behavior of the other

agents, leading to a more complicated model, a so-called game in partition function form.

However, it is clear that for every j, the upstream coalition {1, . . . , j} is externality free,

i.e., the maximum welfare that such a coalition can obtain by allocating their own wa-

ter inflows optimally amongst themselves does not depend on the behavior of the agents

after j, and these maximum welfare levels are still given by the values vj, j = 1, . . . , n,

at the solutions of the welfare maximization problems (2.3). Therefore, the downstream

incremental solution d(N, e, b) is still well-defined for river problems (N, e, b) with satiation

points, and in Ambec and Ehlers (2008) it is shown that also for river situations with sa-

tiable agents this solution is uniquely determined by requiring upstream stability and the

aspiration level property. Although they model the river problem with satiable agents by

a game in partition function form, eventually they characterize a solution which only uses

the welfare levels that can be obtained by consecutive coalitions containing agent 1, and
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these levels are externality free. Under the assumption that ei ≤ ci for every i, the solution

is also stable for every coalition {i, i+ 1, . . . , j}, 1 ≤ i ≤ j ≤ n, of consecutive agents.

In this paper we further weaken the assumptions of Ambec and Ehlers (2008), and

therefore also those of Ambec and Sprumont (2002), by allowing the benefit functions to

be concave instead of strictly concave. Moreover, we weaken differentiability to continuity.

Assumption 2.1 In a river situation (N, e, b), every benefit function bi: IR+ → IR is con-

cave and continuous for xi > 0.

The assumption says that bi may be nondecreasing, but also allows that there may

exist an interval [ci, c
i], ci ≥ ci, such that bi is increasing on xi < ci, constant on xi ∈ [ci, c

i],

and decreasing when xi > ci. In the latter case the point ci is the satiation point of agent

i. Agent i reaches its highest benefit at ci. All water consumption levels between ci and

ci also yield this maximal benefit, but water consumption higher than ci yields a lower

benefit. We allow for ci = 0 and ci = ∞ (meaning that bi is constant for xi ≥ ci ≥ 0). In

particular this allows for bi(xi) = bi(0) for every xi ≥ 0.

Under Assumption 2.1, the maximization problems (2.3) do not necessarily have a

unique solution, but are still well-defined. Let Xj be the set of solutions of the welfare

maximization problem (2.3) for country j, j = 1, . . . , n, under Assumption 2.1. Then, for

every solution xj ∈ Xj we have that vj =
∑j

i=1 bi(x
j
i ) and for every xn ∈ Xn, the budget

balanced pair (xn, t) yields a welfare distribution

zi = bi(x
n
i ) + ti, i = 1, . . . , n,

with sum of payoffs equal to the Pareto efficient total welfare vn =
∑n

i=1 bi(x
n
i ).

Under Assumption 2.1, the corresponding cooperative game is not well defined un-

less we make additional assumptions on the water consumption of agents that have concave,

but not strictly concave, benefit functions. Consider again a non-consecutive coalition con-

sisting of a consecutive upstream part and a consecutive downstream part. If some agent

j between these two parts has a benefit function with a satiation point cj and a point

cj > cj such that its benefit is constant between cj and cj and decreasing thereafter, then

the cooperative game is not well-defined without an additional assumption about the water

consumption of agent j in case the water flow sent by the upstream part to the downstream

part becomes so big that the availability of water for agent j exceeds his satiation point

cj. Instead of making such an assumption, in the following sections we will impose axioms

directly on the river situation (N, e, b) and we derive from these axioms unique solutions

for the welfare distribution problem without modeling the river situation as a cooperative

game. Doing so, we do not need such an additional assumption.
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3 Axioms for fair welfare distribution

In this section we formulate axioms concerning the distribution of welfare in river situations

(N, e, b), where the preferences of the agents over water are described by benefit functions

satisfying Assumption 2.1. Let WN denote the collection of all river situations (N, e, b)

satisfying Assumption 2.1. Then a solution is a function f assigning to every (N, e, b) ∈ WN

a welfare distribution f(N, e, b) ∈ IRn. In the sequel, the component fi(N, e, b) is called

the payoff of agent i, i = 1, . . . , n. Notice that the welfare levels depend on the inflow

vector e and the set of benefit functions b. Therefore, in the following we denote for every

j the maximum welfare level obtained by solving the welfare maximization problem (2.3)

by vj(e, b) instead of just vj.

As we have seen before, stability reflects the Harmon principle that each agent is

the legal owner of its own water, and therefore stability puts a severe requirement on the

welfare distribution. In particular, upstream stability may contradict the TIBS principle

that each inflow belongs to all agents together. It certainly is conflicting with the UTI

interpretation of the TIBS principle stating that every agent has the right to use the total

inflow of himself and all his upstream agents. Therefore, one might argue that stability is

too strong. In the next two axioms we weaken the stability requirement. The efficiency

axiom only requires stability for the coalition of all agents and states that the total sum of

payoffs equals the total welfare vn(e, b) in an optimal water allocation.

As noticed before, for individual agents stability yields individual rationality, saying

that an agent gets at least a payoff equal to the highest benefit that can be obtained by

consuming at most its own water inflow (this reflects that every agent is the owner of its

own inflow). Under Assumption 2.1 this benefit is at least equal to the benefit of consuming

a zero amount of water. The lower bound property axiom weakens individual rationality

by only requiring that each agent gets at least a payoff equal to the benefit of consuming

a zero amount of water.

Axiom 3.1 (Efficiency) For every river problem (N, e, b) we have that
∑

i∈N fi(N, e, b) =

vn(e, b).

Axiom 3.2 (Lower bound property) For every river problem (N, e, b) we have that

fi(N, e, b) ≥ bi(0) for all i ∈ N .

As mentioned before, the aspiration level property reflects the UTI principle, but

also utilizes this principle to put an upper bound on the total payoff to the members of

all upstream coalitions {1, . . . , j}, j = 1, . . . , n, by stating that the total payoff to such a

coalition is at most equal to the highest total benefit it can obtain by allocating at most

their own water inflows amongst themselves. By this requirement it is a priori excluded
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that the total monetary compensation to an upstream coalition is more than what is needed

to compensate the agents in the coalition for their loss of total benefit by allocating some

of their inflow to their downstream agents. Consequently, all benefits from allocating all

inflows optimally over all agents go to the downstream agents. One might wonder why a

coalition of upstream agents agrees with such an optimal allocation if their total payoff

is at most equal to what they can get by consuming all the water by themselves. In the

next two axioms we weaken the aspiration level property in two different ways. In the first

axiom, called the drought property, the aspiration level property is only required for an

upstream coalition if the total water inflow of the coalition is zero. In the second axiom

the aspiration level property is weakened in a way that a coalition of upstream agents can

benefit from allocating some of their inflows to downstream agents. This weak aspiration

level property requires that no agent earns a higher payoff as its utility when it has access

to all the water inflow, that is its own inflow plus all upstream and downstream water

inflows.

Axiom 3.3 (Drought property) For every river problem (N, e, b) with ej = 0 for all

j ≤ i, we have that fi(N, e, b) ≤ bi(0).

Axiom 3.4 (Weak aspiration level property) For every river problem (N, e, b), we

have that fi(N, e, b) ≤ maxxi≤
∑

j∈N ej bi(xi) for all i ∈ N .3

A more severe axiom than the drought property is the no contribution property. It

states that an agent with zero inflow of water on his territory should get at most a payoff

equal to its benefit of zero water consumption.

Axiom 3.5 (No contribution property) For every river problem (N, e, b) and i ∈ N

with ei = 0 we have that fi(N, e, b) ≤ bi(0).

Next we state several independence axioms. The first one states that the payoff of

an agent does not depend on the benefit functions of its downstream agents, the second one

states that the payoff of an agent does not depend on the benefit functions of its upstream

agents.

Axiom 3.6 (Independence of downstream benefits) For every pair of river problems

(N, e, b) and (N, e, b′) such that bj = (b′)j for all j ≤ i, we have that fi(N, e, b) = fi(N, e, b
′).

Axiom 3.7 (Independence of upstream benefits) For every pair of river problems

(N, e, b) and (N, e, b′) such that bj = (b′)j for all j ≥ i, we have that fi(N, e, b) = fi(N, e, b
′).

3Note that under increasing benefit functions we can write this inequality as fi(N, e, b) ≤ bi(
∑

i∈N ei)

for all i ∈ N .
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The next two independence axioms concern the inflows. The first one states that

the payoff of an agent does not depend on the inflows at the territories of its downstream

agents, the second one states that the payoff of an agent does not depend on the inflows

at the territories of its upstream agents.

Axiom 3.8 (Independence of downstream inflows) For every pair of river problems

(N, e, b) and (N, e′, b) such that ej = e′j for all j ≤ i, we have that fi(N, e, b) = fi(N, e
′, b).

Axiom 3.9 (Independence of upstream inflows) For every pair of river problems (N, e, b)

and (N, e′, b) such that ej = e′j for all j ≥ i, we have that fi(N, e, b) = fi(N, e
′, b).

As follows from the results in the following sections, not all the axioms stated in

this section can be satisfied simultaneously. In the next sections we show that different

sets of axioms characterize different fair welfare distributions.

4 The downstream incremental solution

The first result is that on the class WN of river problems (N, e, b) the downstream incre-

mental solution d, given by (2.4) and discussed in Section 2, is characterized by the four

axioms of efficiency, lower bound property, weak aspiration level property and independence

of downstream benefits.

Theorem 4.1 A solution f on the class WN of river problems is equal to the downstream

incremental solution d if and only if f satisfies efficiency, the lower bound property, the

weak aspiration level property and independence of downstream benefits.

Proof. It is straightforward to show that the downstream incremental solution satisfies

these four axioms. Hence, it is sufficient to show that the four axioms determine a unique

solution.

Let (N, e, b) ∈ WN be a river problem and suppose that solution f satisfies the four

axioms. We prove uniqueness by induction on the labels of the agents, starting with the

most upstream agent 1. We first show that f1(N, e, b) is uniquely determined by the four

axioms. Consider the modified river problem (N, e, b1) given by benefit functions (b1)1 = b1,

and (b1)j(x) = 0 for all x ∈ IR+ and j ∈ {2, . . . , n}. Imposing the lower bound property

on (N, e, b1) requires that fj(N, e, b
1) ≥ (b1)j(0) = 0 for all j ∈ {2, . . . , n}, while the weak

aspiration level property requires that fj(N, e, b
1) ≤ maxxj≤

∑
k∈N ek (b1)j(xj) = 0 for all j ∈

{2, . . . , n}. Hence, fj(N, e, b
1) = 0 for all j ∈ {2, . . . , n}. By efficiency we then have that

f1(N, e, b
1) = vn(e, b1) being the welfare level at the solution of the maximization problem

(2.2) for (N, e, b1). Since (b1)j(x) = 0 for every x ∈ IR+ and j ∈ {2, . . . , n}, it follows that
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vn(e, b1) = v1(e, b1) = maxx1≤e1(b
1)1(x1) = maxx1≤e1 b1(x1) = v1(e, b). Independence of

downstream benefits then implies that f1(N, e, b) = f1(N, e, b
1) = v1(e, b) = d1(N, e, b).

Proceeding by induction, assume that fk(N, e, b) = dk(N, e, b) for all k < i ≤ n.

Next, consider the modified river problem (N, e, bi) given by (bi)j = bj for all j ∈ {1, . . . , i}
and (bi)j(x) = 0 for all x ∈ IR+ and j ∈ {i+ 1, . . . , n}. Similar as above, the lower bound

property requires that fj(N, e, b
i) ≥ 0 for all j ∈ {i+ 1, . . . , n}, while the weak aspiration

level property requires that fj(N, e, b
i) ≤ 0 for all j ∈ {i+ 1, . . . , n}. Thus

fj(N, e, b
i) = 0 for all j ∈ {i+ 1, . . . , n}. (4.5)

Independence of downstream benefits and the induction hypothesis imply that fj(N, e, b
i) =

fj(N, e, b) = dj(N, e, b) for all j ∈ {1, . . . , i− 1}. Hence,

i−1∑
j=1

fj(N, e, b
i) =

i−1∑
j=1

dj(N, e, b) = vi−1(e, b). (4.6)

Efficiency, the induction hypothesis, (4.5) and (4.6) then determine that

fi(N, e, b
i) = vn(e, bi)−

i−1∑
j=1

fj(N, e, b
i)−

n∑
j=i+1

fj(N, e, b
i) = vn(e, bi)− vi−1(e, b). (4.7)

Since (bi)j(x) = 0 for every x ∈ IR+ and j ∈ {i + 1, . . . , n}, similar as above it follows

that vn(e, bi) = vi(e, bi) = vi(e, b). Therefore, with (4.7) we have fi(N, e, b
i) = vn(e, bi) −

vi−1(e, b) = vi(e, b)− vi−1(e, b) = di(N, e, b). Finally, independence of downstream benefits

implies that fi(N, e, b) = fi(N, e, b
i) = di(N, e, b). 2

Logical independence of the axioms used in Theorem 4.1 and in the characteriza-

tions in the following sections, is shown in the appendix. Notice that the solution is fully

determined by the welfare levels obtained by solving the welfare maximization problems

(2.3) and that these problems are well-defined when the benefit functions satisfy Assump-

tion 2.1. Therefore we do not need to make any additional assumption concerning agents

with concave, but not strictly concave, benefit functions.

5 The upstream incremental solution

As noticed in Section 2, the aspiration level property puts an upper bound on the total

payoff to the members of an upstream coalition {1, . . . , j}, j = 1, . . . , n. Therefore, ac-

cording to the downstream incremental solution all gains in benefits that occur when some

of the inflows at the territories of an upstream coalition {1, . . . , j} are allocated to its

downstream agents i, i > j, go to the downstream agents in the sense that the upstream

coalition is only compensated for its loss of total benefit. Alternatively, van den Brink, van
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der Laan and Vasil’ev (2007) introduced the upstream incremental solution. According

to this solution all gains in benefits that occur when some of the inflows at the territo-

ries of an upstream coalition {1, . . . , j} are allocated to its downstream agents i, i > j,

go to the upstream agents in the sense that the total payoff to the downstream coalition

{j + 1, . . . , n} is just equal to the total benefit they can achieve by allocating their own

inflows optimally amongst themselves. In van den Brink, van der Laan and Moes (2010)

a class of so-called TIBS-fairness axioms is introduced that, together with efficiency, yield

the downstream incremental solution and the upstream incremental solution as extreme

cases.

To define the upstream incremental solution, we consider for every j = 1, . . . , n, the

welfare maximization problem

max
xj ,...,xn

n∑
i=j

bi(xi) s.t.
k∑

i=j

xi ≤
k∑

i=j

ei, k = j, . . . , n, and xi ≥ 0, i = j, . . . , n, (5.8)

i.e., for agent j the maximization problem (5.8) optimally allocates the inflows ej, . . . , en

amongst the agents in the coalition {j, j + 1, . . . , n}, given the uni-directionality of the

water flow. Under Assumption 2.1, these maximization problems do not have a unique

solution but are well-defined. For a solution yj = (yjj , . . . , y
j
n) of maximization problem

(5.8) for agent j, denote wj(e, b) =
∑n

i=j bi(y
j
i ) as the maximum welfare that the agents

in {j, j + 1, . . . , n} can obtain by distributing their own inflows. Notice that for j = 1

the maximization problem (5.8) is equal to problem (2.2), so that w1(e, b) = vn(e, b) is the

maximum total benefit that can be obtained when allocating all inflows optimally amongst

all agents. For every solution y1 of (5.8), the budget balanced pair (y1, t) yields a welfare

distribution

zi = bi(y
1
i ) + ti, i = 1, . . . , n,

with sum of payoffs equal to the Pareto efficient total welfare w1(e, b) =
∑n

i=1 bi(y
1
i ).

The upstream incremental solution assigns to every agent i its marginal contribution

to the welfare when the agents enter subsequently from the most downstream agent to the

most upstream agent. Hence, the upstream incremental solution assigns to every river

situation (N, e, b), the welfare distribution u(N, e, b) ∈ IRn given by

ui(N, e, b) = wi(e, b)− wi+1(e, b), i = 1, . . . , n,

with wn+1(e, b) = 0.

The next theorem states that on the class WN of river problems (N, e, b) the up-

stream incremental solution u is characterized by the four axioms of efficiency, lower bound

property, drought property and independence of upstream inflows.
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Theorem 5.1 A solution f on the class WN of river problems is equal to the upstream

incremental solution u if and only if f satisfies efficiency, the lower bound property, the

drought property and independence of upstream inflows.

Proof. It is straightforward to show that the upstream incremental solution satisfies these

four axioms. Therefore, it is sufficient to prove that the four axioms determine a unique

solution.

Let (N, e, b) ∈ WN be a river problem and suppose that solution f satisfies the four

axioms. We apply induction on the labels of the agents, starting with the most downstream

agent n. We first consider fn(N, e, b). Consider the modified river problem (N, en, b) given

by (en)n = en, and (en)j = 0 for all j ∈ {1, . . . , n− 1}. The lower bound property requires

that fj(N, e
n, b) ≥ bj(0) for all j ∈ {1, . . . , n−1}, while the drought property requires that

fj(N, e
n, b) ≤ bj(0) for all j ∈ {1, . . . , n − 1}. Thus, we conclude that fj(N, e

n, b) = bj(0)

for all j ∈ {1, . . . , n− 1}. By efficiency we then have that

fn(N, en, b) = w1(en, b)−
n−1∑
j=1

fj(N, e, b) = w1(en, b)−
n−1∑
j=1

bj(0). (5.9)

Since enj = 0 for all j ∈ {1, . . . , n−1} and enn = en, it follows that w1(en, b) =
∑n−1

j=1 bj(0)+

wn(en, b) =
∑n−1

j=1 bj(0) + wn(e, b), and thus with (5.9) we have fn(N, en, b) = wn(e, b).

Independence of upstream inflows then implies that fn(N, e, b) = fn(N, en, b) = wn(e, b) =

un(N, e, b).

Proceeding by induction, assume that fk(N, e, b) = uk(N, e, b) is determined for all

k > i ≥ 1. Next, consider the modified river problem (N, ei, b) given by (ei)j = ej for all

j ∈ {i, . . . n}, and (ei)j = 0 for all j ∈ {1, . . . , i − 1}. Similar as above, the lower bound

property requires that fj(N, e
i, b) ≥ bj(0) for all j ∈ {1, . . . , i − 1}, while the drought

property requires that fj(N, e
i, b) ≤ bj(0) for all j ∈ {1, . . . , i− 1}. Thus,

fj(N, e
i, b) = bj(0) for all j ∈ {1, . . . , i− 1}. (5.10)

Independence of upstream inflows and the induction hypothesis imply that fj(N, e
i, b) =

fj(N, e, b) = uj(N, e, b) for all j ∈ {i+ 1, . . . , n}. Hence,

n∑
j=i+1

fj(N, e
i, b) =

n∑
j=i+1

uj(N, e, b) = wi+1(e, b). (5.11)

Efficiency, the induction hypothesis, (5.10) and (5.11) then determine that

fi(N, e
i, b) = w1(ei, b)−

i−1∑
j=1

fj(N, e
i, b)−

n∑
j=i+1

fj(N, e
i, b)

= w1(ei, b)−
i−1∑
j=1

bj(0)− wi+1(e, b). (5.12)
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Since eij = 0 for all j ∈ {1, . . . , i − 1} and eij = ej for all j ∈ {i, . . . n}, similar as above it

follows that w1(ei, b) =
∑i−1

j=1 bj(0) + wi(ei, b) =
∑i−1

j=1 bj(0) + wi(e, b). Thus, with (5.12)

we have fi(N, e
i, b) = w1(ei, b)−

∑i−1
j=1 bj(0)−wi+1(e, b) = wi(e, b)−wi+1(e, b) = ui(N, e, b).

Finally, independence of downstream benefits implies that fi(N, e, b) = fi(N, e
i, b) =

ui(N, e, b). 2

Notice that the solution is fully determined by the welfare levels obtained by solving

the welfare maximization problems (5.8). Hence, by definition the upstream incremental

solution satisfies stability for every downstream coalition {i, i + 1 . . . , n}. Like the down-

stream incremental solution, it also satisfies the stability requirement for every coalition of

consecutive agents, see for instance van den Brink, van der Laan and Vasil’ev (2007).

6 The downstream solution

As mentioned in the previous sections, both the downstream and the upstream incremental

solution satisfy stability for every coalition of consecutive countries, and so they both meet

the Harmon doctrine saying that every agent is the legal owner of its own water inflow.

Under the Harmon doctrine the downstream incremental solution favors the downstream

agents as much as possible. The upstream incremental solution is more in favor of the

upstream agents.

As discussed in Section 2, the Harmon doctrine is conflicting with the TIBS principle

which makes all countries together the legal owner of all water inflows. For example,

according to the TIBS principle all agents are entitled to get a share of the water inflow

e1 at the territory of agent 1. Taking the TIBS principle in its most extreme form, one

might argue that the most downstream agent is entitled to receive all the water inflows.

Under this condition, the upstream agents can ‘buy’ water by compensating the most

downstream agent for its loss of water. Taking this viewpoint on water rights, we define

the downstream solution s, which assigns to a river situation (N, e, b) ∈ WN the welfare

distribution s(N, e, b) given by

si(N, e, b) = ŵi(e, b)− ŵi+1(e, b), i = 1, . . . , n,

where ŵn+1(e, b) = 0 and ŵj(e, b) =
∑n

i=j bi(y
j
i ), j = 1, . . . , n, with yj = (yjj , . . . , y

j
n) a

solution of the welfare maximization problem

max
xj ,...,xn

n∑
i=j

bi(xi) s.t.
k∑

i=j

xi ≤
k∑

i=1

ei, k = j, . . . , n, and xi ≥ 0, i = j, . . . , n. (6.13)

Notice the difference between the maximization problems (6.13) and (5.8). In (5.8) the

agents in a downstream coalition {j, j+1, . . . , n} can only consume their own water inflow,
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while in (6.13) they can use their own water inflows and also all the water inflows at

the territories of all agents upstream of j. Then, for a coalition {j, j + 1, . . . , n} the

maximization problem (6.13) optimally allocates the inflows e1, . . . , en amongst the agents

in the coalition, given the uni-directionality of the water flow. Notice that for j = 1 the

maximization problem (6.13) is again equal to problem (2.2), so that ŵ1(e, b) = vn(e, b)

is the maximum total benefit that can be obtained when allocating all inflows optimally

amongst all agents. Since
∑n

i=1 si(N, e, b) = ŵ1(e, b) = vn(e, b), also the downstream

solution distributes the maximum attainable total welfare that the agents can achieve

together and thus also this solution is efficient.

It turns out that the downstream solution can be characterized similarly as the

downstream incremental solution in Theorem 4.1, but now the independence of downstream

benefits is replaced by independence of upstream benefits.4

Theorem 6.1 A solution f on the class WN of river problems is equal to the downstream

solution s if and only if f satisfies efficiency, the lower bound property, the weak aspiration

level property and independence of upstream benefits.

Proof. It is straightforward to prove that the downstream solution satisfies these four

axioms. Therefore, it only remains to prove that the four axioms determine a unique

solution.

Let (N, e, b) ∈ WN be a river problem and suppose that solution f satisfies the

four axioms. Similar as in the proof of Theorem 5.1, we apply induction on the labels of

the agents, starting with the most downstream agent n. We first determine fn(N, e, b).

Consider the modified river problem (N, e, bn) given by (bn)n = bn, and (bn)j(x) = 0 for

all x ∈ IR+ and j ∈ {1, . . . , n− 1}. The lower bound property requires that fj(N, e, b
n) ≥

(bn)j(0) = 0 for all j ∈ {1, . . . , n − 1}, while the weak aspiration level property requires

that

fj(N, e, b
n) ≤ max

xj≤
∑

k∈N ek
(bn)j(xj) = 0, for all j ∈ {1, . . . , n− 1}.

Thus, we conclude that fj(N, e, b
n) = 0 for all j ∈ {1, . . . , n − 1}. By efficiency we then

have that

fn(N, e, bn) = vn(e, bn) = ŵ1(e, bn). (6.14)

4For the auction games of Graham, Marshall and Richard (1990), it is shown in van den Brink (2004)

that, together with efficiency and symmetry, independence of higher valuations characterizes the Shapley

value, while independence of lower valuations characterizes the equal division solution. In bankruptcy or

rationing problems independence on higher claims is used to characterize the constrained equal awards

rule, while independence on lower claims is used to characterize the constrained equal losses rule, see e.g.

Moulin (2003).
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Since (bn)j(x) = 0 for every x ∈ IR+ and j ∈ {1, . . . , n − 1}, and (bn)n = bn, it follows

that ŵ1(e, bn) = ŵn(e, bn) = ŵn(e, b) and thus, with (6.14), fn(N, e, bn) = ŵ1(e, bn) =

ŵn(e, b) = sn(N, e, b). Independence of upstream benefits then implies that fn(N, e, b) =

fn(N, e, bn) = sn(N, e, b).

Proceeding by induction, assume that fk(N, e, b) = sk(N, e, b) for all k > i ≥ 1.

Next, consider the modified river problem (N, e, bi) given by (bi)j = bj for all j ∈ {i, . . . , n},
and (bi)j(x) = 0 for all x ∈ IR+ and j ∈ {1, . . . , i− 1}. Similar as above, the lower bound

property requires that fj(N, e, b
i) ≥ 0 for all j ∈ {1, . . . , i− 1}, while weak aspiration level

fairness requires that fj(N, e, b
i) ≤ 0 for all j ∈ {1, . . . , i− 1}. Thus,

fj(N, e, b
i) = 0 for all j ∈ {1, . . . , i− 1}. (6.15)

Independence of upstream benefits and the induction hypothesis imply that fj(N, e, b
i) =

fj(N, e, b) = sj(N, e, b) for all j ∈ {i+ 1, . . . , n}. Therefore,

n∑
j=i+1

fj(N, e, b
i) =

n∑
j=i+1

sj(N, e, b) = ŵi+1(e, b). (6.16)

Efficiency, the induction hypothesis, (6.15) and (6.16) then determine that

fi(N, e, b
i) = ŵ1(e, bi)−

i−1∑
j=1

fj(N, e, b
i)−

n∑
j=i+1

fj(N, e, b
i) = ŵ1(e, bi)− ŵi+1(e, b). (6.17)

Since (bi)j(x) = 0 for every x ∈ IR+ and j ∈ {1, . . . , i − 1}, and (bi)j = bj for all j ≥ i,

similar as above it follows that ŵ1(e, bi) = ŵi(e, bi) = ŵi(e, b). Hence, with (6.17) we have

fi(N, e, b
i) = ŵ1(e, bi)−ŵi+1(e, b) = ŵi(e, b)−ŵi+1(e, b) = si(N, e, b). Finally, independence

of upstream benefits implies that fi(N, e, b) = fi(N, e, b
i) = si(N, e, b). 2

Note that in the welfare maximization problems (6.13), the agents in the downstream

coalition {j, . . . , n} are entitled to get the total water inflow
∑

i∈N ei. When some of

the water is allocated to other agents, according to the downstream solution the most

downstream agent is fully compensated for his loss of benefits by monetary compensations

of the other agents. This is an extreme interpretation of the TIBS principle. Consequently,

the downstream solution does not satisfy upstream stability and thus violates the Harmon

doctrine: clearly all water rights are given to the most downstream agent.

7 The upstream solution

As noticed in the previous section, the upstream incremental solution favors the upstream

agents as much as possible under the restriction of stability for the downstream coalitions.

As counterpart of the downstream solution, in this section we introduce the upstream
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solution r that favors the upstream agents as much as possible given the uni-directionality

of the water flows. It takes the Harmon principle in its most extreme form by requiring

that the agents from upstream to downstream receive the highest attainable additional

benefit from their water inflows given that the inflows of their upstream agents have been

distributed already.

To define the upstream solution, we first reconsider the welfare distribution ac-

cording to the upstream incremental solution. This solution yields a payoff un(N, e, b) =

wn(e, b) to the last agent n, where wn(e, b) is the highest benefit that agent n can achieve

from the consumption of only his own water inflow. Then agent n−1 receives un−1(N, e, b) =

wn−1(e, b) − wn(e, b), where wn−1(e, b) is the total benefit that agents n − 1 and n can

jointly achieve by distributing their own water optimally. In this way agent n− 1 receives

its marginal contribution to the total benefit of his water inflow en−1 to the water inflow

en, taking all the upstream inflows equal to zero. In general, agent i receives his marginal

contribution to the total benefit of his water inflow ei to the downstream inflows ej, j > i,

taking all the upstream inflows ej, j < i, equal to zero.

Similar to the upstream incremental solution, the upstream solution can be defined

the other way around, starting with agent 1. When all inflows are zero, every agent has

payoff bi(0), i = 1, . . . , n. Now, let the most upstream inflow e1 be distributed optimally

amongst all agents. Then agent 1 receives in addition to b1(0) a payoff equal to the marginal

contribution to the total benefit when distributing his inflow e1 optimally amongst all other

agents and assuming all other inflows to be equal to zero, i.e., the upstream solution r yields

to agent 1 payoff r1(N, e, b, ) = v̂1(e, b), where

v̂1(e, b) = b1(0) +
n∑

j=1

(bj(y
1
j )− bj(0)) = b1(y

1
1) +

n∑
j=2

(bj(y
1
j )− bj(0)),

with y1 = (y11, . . . , y
1
n) a solution of the welfare maximization problem

max
x1,...,xn

n∑
j=1

bj(xj) s.t.
n∑

j=1

xj ≤ e1, xj ≥ 0, j = 1, . . . , n.

Next, the inflows e1 and e2 are distributed optimally over all agents assuming all other

inflows to be equal to zero, and agent 2 receives his initial payoff b2(0) plus the additional

total benefit that the distribution of his inflow e2 generates to the benefits obtained already

from e1. Subsequently, for agent i all inflows ej, j ≤ i, are distributed optimally over all

agents assuming all inflows of the downstream agents j > i to be equal to zero, and agent

i receives his initial payoff bi(0) plus the additional total benefit that the distribution of

his inflow ei generates to the benefit obtained already from e1 to ei−1. In general, the

upstream solution r assigns to a river situation (N, e, b) ∈ WN the welfare distribution
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r(N, e, b) given by

ri(N, e, b) = v̂i(e, b)− v̂i−1(e, b), i = 1, . . . , n,

where v̂0(e, b) = 0 and v̂i(e, b) =
∑i

j=1 bj(y
i
j) +

∑n
j=i+1 (bj(y

i
j)− bj(0)), i = 1, . . . , n, with

yi = (yi1, . . . , y
i
n) a solution of the welfare maximization problem

max
x1,...,xn

n∑
j=1

bj(xj) s.t.


∑n

j=1 xj ≤
∑i

j=1 ej,∑k
j=1 xj ≤

∑k
j=1 ej, k = 1, . . . , i− 1,

xj ≥ 0, j = 1, . . . , n.

(7.18)

Observe that this maximization problem optimally distributes the water inflow of the

agents in {1, . . . , i} over all agents, taking into account that for every agent k < i the total

consumption of the first k agents is at most equal to the sum of their own inflows. The

payoffs of the welfare distribution r(N, e, b) can also be written as

ri(N, e, b) = v̂i(e, b)− v̂i−1(e, b)

=
i∑

j=1

bj(y
i
j) +

n∑
j=i+1

(bj(y
i
j)− bj(0))−

(
i−1∑
j=1

bj(y
i−1
j ) +

n∑
j=i

(bj(y
i−1
j )− bj(0))

)

= bi(0) +
n∑

j=1

(bj(y
i
j)− bj(yi−1j )), i = 1, . . . , n.

For j = n, the maximization problem (7.18) is again equal to problem (2.2), so that

v̂n(e, b) = vn(e, b) is the maximum total benefit that can be obtained when allocating all

inflows optimally amongst all agents. Since
∑n

i=1 ri(N, e, b) = v̂n(e, b) = vn(e, b), also the

upstream solution distributes the maximum attainable total welfare that the agents can

achieve together, and thus also this solution is efficient. It turns out that the upstream

solution can be characterized similarly as the upstream incremental solution by means

of efficiency and the lower bound property, but now the drought property is changed for

the no contribution property and the independence of upstream inflows is replaced by

independence of downstream inflows.

Theorem 7.1 A solution f on the class WN of river problems is equal to the upstream

solution r if and only if f satisfies efficiency, the lower bound property, the no contribution

property and independence of downstream inflows.

Proof. It is straightforward to show that the upstream solution satisfies these four axioms.

Therefore, it is sufficient to prove that the four axioms determine a unique solution.

Let (N, e, b) ∈ WN be a river problem and suppose that solution f satisfies the four

axioms. Similar as in the proof of Theorem 4.1, we apply induction on the labels of the
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agents, starting with the most upstream agent 1. We first determine f1(N, e, b). Consider

the modified river problem (N, e1, b) given by (e1)1 = e1, and (e1)j = 0 for all j ∈ {2, . . . , n}.
The lower bound property requires that fj(N, e

1, b) ≥ bj(0) for all j ∈ {2, . . . , n}, while

the no contribution property requires that fj(N, e
1, b) ≤ bj(0) for all j ∈ {2, . . . , n}. Thus,

we conclude that fj(N, e
1, b) = bj(0) for all j ∈ {2, . . . , n}. By efficiency we then have that

f1(N, e
1, b) = vn(e1, b) −

∑n
j=2 fj(N, e

1, b) = vn(e1, b) −
∑n

j=2 bj(0). Since e1j = 0 for all

j ∈ {2, . . . , n} and e11 = e1, it follows that vn(e1, b) =
∑n

j=1 bj(y
1
j ) = v̂1(e, b) +

∑n
j=2 bj(0),

and thus f1(N, e
1, b) = v̂1(e, b) +

∑n
j=2 bj(0) −

∑n
j=2 bj(0) = v̂1(e, b). Independence of

downstream inflows then implies that f1(N, e, b) = f1(N, e
1, b) = v̂1(e, b) = v̂1(e, b) −

v̂0(e, b) = r1(N, e, b).

Proceeding by induction, assume that fk(N, e, b) = rk(N, e, b) is determined for all

k < i ≤ n. Next, consider the modified river problem (N, ei, b) given by (ei)j = ej for

all j ∈ {1, ..., i} and (ei)j = 0 for all j ∈ {i + 1, . . . , n}. Similar as above, the lower

bound property requires that fj(N, e
i, b) ≥ bj(0) for all j ∈ {i + 1, . . . , n}, while the no

contribution property requires that fj(N, e
i, b) ≤ bj(0) for all j ∈ {i+ 1, . . . , n}. Thus,

fj(N, e
i, b) = bj(0) for all j ∈ {i+ 1, . . . , n}. (7.19)

Independence of downstream inflows and the induction hypothesis imply that fj(N, e
i, b) =

fj(N, e, b) = rj(N, e, b) for all j ∈ {1, ..., i− 1}. Therefore,

i−1∑
j=1

fj(N, e
i, b) =

i−1∑
j=1

rj(N, e, b) =
i−1∑
j=1

[v̂j(e, b)− v̂j−1(e, b)] = v̂i−1(e, b). (7.20)

Efficiency, the induction hypothesis, (7.19) and (7.20) then determine that

fi(N, e
i, b) = vn(ei, b)−

i−1∑
j=1

fj(N, e, b)−
n∑

j=i+1

fj(N, e, b)

= vn(ei, b)− v̂i−1(e, b)−
n∑

j=i+1

bj(0). (7.21)

Since eij = 0 for all j ∈ {i + 1, . . . , n} and eij = ej for all j ∈ {1, . . . , i}, similar as above

it follows that vn(ei, b) =
∑n

j=1 bj(y
i
j) = v̂i(e, b) +

∑n
j=i+1 bj(0). Thus, with (7.21) we

have fi(N, e
i, b) = v̂i(e, b)+

∑n
j=i+1 bj(0)− v̂i−1(e, b)−

∑n
j=i+1 bj(0) = v̂i(e, b)− v̂i−1(e, b) =

ri(N, e, b). Finally, independence of downstream inflows implies that fi(N, e, b) = fi(N, e
i, b) =

ri(N, e, b). 2

According to the upstream solution, every upstream coalition {1, . . . , j} receives

the total welfare that can be attained by allocating the water inflows of such a coalition

optimally over all agents. Clearly, the welfare at a solution of the corresponding welfare
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maximization problem (7.18) is at least as high as the welfare at a solution of the corre-

sponding welfare maximization problem (2.3) in which the inflows of a coalition {1, . . . , j}
are distributed optimally amongst themselves. So, the upstream solution certainly satis-

fies stability for the upstream coalitions and thus satisfies the Harmon principle for the

upstream coalitions. However, the upstream solution does not satisfy stability in general.

For example, agent n receives the marginal benefit v̂n(e, b)− v̂n−1(e, b), being the difference

between the total benefit of the water consumptions yn and yn−1. Nothing can be said

about this difference and the benefit bn(en) that agent n can obtain by consuming his own

water. Therefore, it might happen that rn(N, e, b) < bn(en), violating individual rational-

ity and thus stability.5 However, we could say that for every coalition {i, i + 1, . . . , j} of

consecutive agents the upstream solution reflects a weaker form of the Harmon principle

in the sense that such a coalition receives as much as possible under the restriction that

the total payoff to its upstream coalition {1, . . . , i − 1} is equal to the highest attainable

total welfare of all countries that can be achieved by allocating their inflows e1, . . . , ei−1

amongst all countries.

8 A special case: the claims model

In this section we consider the particular case that every country has constant marginal

benefit of one up to its satiation point ci and has constant benefit of every water consump-

tion above its satiation point, i.e., for every i there exists a ci > 0 such that

bi(xi) =

{
xi if xi ≤ ci

ci if xi > ci.
(8.22)

Such benefit functions have been considered in Ansink and Weikard (2011) within river

situations in which it is not allowed or possible to make monetary transfers. In such a

model the satiation point ci can be considered as the claim of country i for water and

the problem is to find, without monetary compensations, a fair distribution of the water

inflows amongst the countries given their claims and the uni-directionality of the water

flows. We now consider the four solutions in case of such benefit functions within the

model considered in this paper, allowing for monetary compensations.

Recall that the downstream incremental solution d is given by

dj(N, e, b) = vj(e, b)− vj−1(e, b), j = 1, . . . , n, (8.23)

5Note that the definition of stability is based on the game theoretical model proposed in Ambec and

Sprumont (2002). This model is a thought experiment to study the allocation problem at hand that takes

into account the Harmon principle. A different model could be proposed taking into account the TIBS

principle and/or the UTI principle, which would lead to stability of the upstream solution.
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where v0(e, b) = 0 and vj(e, b) is the welfare at a solution of the welfare maximization

problem (2.3) for agent j. For benefit functions of type (8.22) it follows straightforwardly

that

v1(e, b) = min[c1, e1],

and successively

vj(e, b) = vj−1(e, b) + min[cj,

j∑
i=1

ei − vj−1(e, b)], j = 2, . . . , n.

Substituting this in the equations (8.23) we obtain

d1(N, e, b) = min[c1, e1]

and, for j = 2, . . . , n, recursively,

dj(N, e, b) = min

[
cj, ej +

j−1∑
i=1

(ei − di(N, e, b))

]
,

using the fact that by definition
∑j−1

i=1 di(N, e, b) = vj−1(e, b), j = 2, . . . , n. This down-

stream incremental solution can be implemented by assigning to each upstream coalition

{1, . . . , j} as much water as possible given the uni-directionality of the water flows and

under the constraint that no country gets water above its satiation point. We conclude

that, when each country has a benefit function of type (8.22), monetary compensations are

not needed to implement the downstream incremental solution.

Recall that the downstream solution s is given by

sj(N, e, b) = ŵj(e, b)− ŵj+1(e, b), j = 1, . . . , n, (8.24)

where ŵn+1(e, b) = 0 and ŵj(e, b) is the welfare at a solution of the welfare maximization

problem (6.13) for agent j. To avoid notational burden, in the following we assume, without

loss of generality, that
∑n

i=j ei <
∑n

i=j ci for every j = 1, . . . , n. Suppose this does not

hold for j = n. Then en ≥ cn and the water inflow at agent n is at least as high as his

satiation point. Then this country does not need to get water from his upstream countries.

Because also his excess en − cn of water cannot be assigned to his upstream countries,

in this case country n stands alone and does not affect the welfare of the other agents.

Therefore, it is sufficient to consider the agents 1, . . . , n − 1. Similarly, suppose that the

condition holds for all agents i > j and not for agent j. Then ej ≥ cj +
∑n

i=j+1(ci − ei)
and the water inflow at agent j is high enough to assign agent j and all its downstream

agents water up to their satiation points, and so the water consumptions of these agents

do not affect the upstream agents. In this case, we have to solve two independent water
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distribution problems, one for the upstream coalition {1, . . . , j − 1} and the other for the

downstream coalition {j, . . . , n}. Therefore, the assumption can be made without loss of

generality. Under this assumption it follows straightforwardly that for benefit functions of

type (8.22)

ŵn(e, b) = min[cn,
n∑

i=1

ei].

By the above assumption we have that ŵn(e, b) ≥ en and then

ŵn−1(e, b) = ŵn(e, b) + min[cn−1,
n∑

i=1

ei − ŵn(e, b)],

and again by the assumption we have that ŵn−1(e, b) ≥ en−1 + en. Continuing, it follows

successively from j = n− 2 to j = 1 that

ŵj(e, b) = ŵj+1(e, b) + min[cj,
n∑

i=1

ei − ŵj+1(e, b)].

Substituting this in the equations (8.24) we obtain

sn(N, e, b) = min[cn,
n∑

i=1

ei]

and, recursively from j = n− 1 to j = 1,

sj(N, e, b) = min[cj,
n∑

j=1

ej −
n∑

i=j+1

si(N, e, b))],

using the fact that by definition
∑n

i=j+1 si(N, e, b) = ŵj+1(e, b), j = 1, . . . , n − 1. From

these expressions it follows that the downstream solution can be implemented by assign-

ing to each downstream coalition {j, . . . , n} as much water as possible given the uni-

directionality of the water flows and under the constraint that no country gets water above

its satiation point. Again, when each country has a benefit function of type (8.22), mon-

etary compensations are not needed to implement the downstream solution and thus the

downstream solution also can be implemented when monetary compensations cannot be

made.

Recall that the upstream incremental solution u is given by

uj(N, e, b) = wj(e, b)− wj+1(e, b), j = 1, . . . , n, (8.25)

where wn+1(e, b) = 0 and wj(e, b) is the welfare at a solution of the welfare maximization

problem (5.8) for agent j. Again, without loss of generality we assume that
∑n

i=j ei <
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∑n
i=j ci for every j = 1, . . . , n. For benefit functions of type (8.22) it then follows straight-

forwardly that

wj(e, b) =
n∑

i=j

ei, j = 1, . . . , n

and substituting this in the equations (8.25) we obtain

uj(N, e, b) =
n∑

i=j

ei −
n∑

i=j+1

ei = ej, j = 1, . . . , n.

Therefore, the upstream incremental solution gives precisely payoff ej to each country j.

Clearly, it might be possible that this cannot be implemented without monetary transfers.

For example, take n = 2, c1 < e1 < c1 + c2 and e2 = 0. The total welfare e1 is obtained

for every solution x∗ of the welfare maximization problem (2.2), thus for every x∗ with

max[0, e1 − c2] ≤ x∗1 ≤ c1 and x∗2 = e1 − x∗1. Thus, to implement the welfare distribution

u(N, e, b) = (e1, 0)> ∈ IR2
+ it is required that agent 2 pays a monetary compensation t = x∗2

to agent 1 since by only consuming water, agent 1 cannot reach a higher payoff than

c1 < e1. We conclude that in general the upstream incremental solution cannot be applied

when monetary compensations are not allowed or not possible. However, notice that when

ei ≤ ci for all i, then the downstream incremental solution reduces to dj(N, e, b) = ej for

all j, and thus the downstream incremental and upstream incremental solution coincide.

Finally, recall that the upstream solution r given by

rj(N, e, b) = v̂j(e, b)− v̂j−1(e, b), j = 1, . . . , n, (8.26)

where v̂0(e, b) = 0 and v̂j(e, b) is obtained from a solution of the welfare maximization

problem (7.18) for agent j. Again under the assumption that
∑n

i=j ei <
∑n

i=j ci for every

j = 1, . . . , n, it follows straightforwardly that

v̂j(e, b) =

j∑
i=1

ei, j = 1, . . . , n

and substituting this in the equations (8.26) we obtain

rj(N, e, b) =

j∑
i=1

ei −
j−1∑
i=1

ei = ej, j = 1, . . . , n.

Therefore, the upstream solution and the upstream incremental solution coincide and thus

in general the upstream solution cannot be applied when monetary compensations are not

allowed or not possible.
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9 Comparison of the four solutions and concluding

remarks

In this paper we consider the problem of sharing water among agents located along a river.

We adapted the model of Ambec and Sprumont (2002) by weakening the assumption on

the benefit functions of the agents. Using nine different axioms we were able to characterize

four solutions for this model. The downstream incremental solution, originally suggested by

Ambec and Sprumont (2002), can be characterized by efficiency, the lower bound property,

the weak aspiration level property and independence of downstream benefits. The upstream

incremental solution, originally suggested by van den Brink, van der Laan and Vasil’ev

(2007), can be characterized by efficiency, the lower bound property, the drought property

and independence of upstream inflows. The new downstream solution can be characterized

by efficiency, the lower bound property, the weak aspiration property and independence

of upstream benefits, and the new upstream solution can be characterized by efficiency,

the lower bound property, the no contribution property and independence of downstream

inflows.

The taxonomy is shown in Table 9.1 (where, for every solution, the four boldface

‘yes’ give an axiomatization of the solution).

Solution: downstream incr. upstream incr. downstream upstream

Axiom:

efficiency yes yes yes yes

lower bound yes yes yes yes

drought yes yes yes yes

weak aspiration yes no yes no

no contribution no yes no yes

downstream benefits yes no no no

upstream benefits no yes yes no

upstream inflows no yes no no

downstream inflows yes no no yes

Table 9.1 Table of axioms satisfied by the four solutions.

Notice from this table that none of the four solutions satisfies simultaneously the

weak aspiration level property and independence of upstream inflows. Similarly none of the

four solutions satisfies simultaneously the no contribution property and the independence

of downstream benefits. Further, the independence of downstream benefits is only satisfied

by the incremental downstream solution and the independence of upstream inflows is only

satisfied by the incremental upstream solution. Thus, if the countries along an international
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river agree to impose one of these properties, then it selects a unique solution out of the

four solutions presented in this paper and therefore also provides the countries with a

compensation scheme.

From the selected axioms it follows that independence of downstream benefits gives

lower compensations to the upstream countries than the independence of upstream inflows.

The two other independence properties are satisfied by two solutions (one extreme and one

incremental solution). The independence of upstream benefits is satisfied by the down-

stream solution and the upstream incremental solution, the independence of downstream

inflows is satisfied by the upstream solution and the downstream incremental solution.

Finally, when we apply the four solutions to the particular case that every agent

has constant marginal benefit of one up to a satiation point and marginal benefit of zero

thereafter, only the downstream and downstream incremental solutions can be implemented

without monetary transfers between the agents. This means that when countries along an

international river only state a claim on the river water and are not willing to transfer

money to each other, out of the four solutions presented in this paper only these two

solutions are viable.
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Appendix: Logical independence

In this appendix we show logical independence of the axioms in the four axiomatizations

by, for each axiomatization, giving four alternative solutions, each of these solutions only

satisfying three of the four axioms.

The axioms of Theorem 4.1

1. The solution fi(N, e, b) = bi(0) for all i ∈ N and all river problems (N, e, b) satisfies

the lower bound property, the weak aspiration level property, and independence of

downstream benefits. It does not satisfy efficiency.

2. The solution fi(N, e, b) = maxxi≤
∑

j∈N ej bi(xi) for all i ∈ N \ {n}, and fn(N, e, b) =

vn(e, b)−
∑n−1

j=1 fi(N, e, b) assigns to every agent except the most downstream agent

its highest benefit when it would have access to all water inflows, while the benefit of

the most downstream agent is obtained by subtracting all these benefits from the total

benefit in an efficient allocation. It satisfies efficiency, independence of downstream

benefits, and the weak aspiration level property. It does not satisfy the lower bound

property.

3. The solution fn(N, e, b) = vn(e, b) −
∑n−1

j=1 bi(0) and fi(N, e, b) = bi(0) for all i ∈
N\{n} satisfies efficiency, the lower bound property, and independence of downstream

benefits. It does not satisfy the weak aspiration level property.

4. The downstream solution satisfies efficiency, the lower bound property, and the weak

aspiration level property. It does not satisfy independence of downstream benefits.

The axioms of Theorem 5.1

1. The solution fi(N, e, b) = bi(0) for all i ∈ N satisfies the lower bound property,

the drought property, and independence of upstream inflows. It does not satisfy

efficiency.

2. For some ε > 0, define the solution f as f(N, e, b) = u(N, e, b) if en = 0. Otherwise,

define f1(N, e, b) = u1(N, e, b) − ε, fi(N, e, b) = ui(N, e, b) for i = 2, . . . , n − 1 and

fn(N, e, b) = un(N, e, b) + ε. It is easily seen that f satisfies efficiency, the drought

property, and independence of upstream inflows since u satisfies these properties. It

does not satisfy the lower bound property.
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3. The solution f1(N, e, b) = w1(e, b) −
∑n

j=2 bj(0) and fi(N, e, b) = bi(0) for all i ∈
N \ {1} satisfies efficiency, the lower bound property, and independence of upstream

inflows. It does not satisfy the drought property.

4. The downstream incremental solution d satisfies efficiency, the lower bound property,

and the drought property. It does not satisfy independence of upstream inflows.

The axioms of Theorem 6.1

1. The solution assigning fi(N, e, b) = bi(0) to i, i = 1, . . . , n, satisfies the lower bound

property, the weak aspiration level property, and independence of upstream benefits.

It does not satisfy efficiency.

2. The solution fi(N, e, b) = maxxi≤
∑

j∈N ej bi(xi) for all i ∈ N \ {1}, and f1(N, e, b) =

vn(e, b)−
∑n

j=2 fi(N, e, b) assigns to every agent except the most upstream agent its

highest benefit when it would have access to all water inflows, while the benefit of

the most upstream agent is obtained by subtracting all these benefits from the total

benefit in an efficient allocation. This solution satisfies efficiency, independence of

upstream benefits, and the weak aspiration level property. It does not satisfy the

lower bound property.

3. The upstream incremental solution satisfies efficiency, the lower bound property, and

independence of upstream benefits. It does not satisfy the weak aspiration level

property.

4. From Theorem 4.1 it follows that the downstream incremental solution satisfies effi-

ciency, the lower bound property, and the weak aspiration level property. It does not

satisfy independence of upstream benefits.

The axioms of Theorem 7.1

1. The solution fi(N, e, b) = bi(0) for all i ∈ N satisfies the lower bound property, the no

contribution property, and independence of downstream inflows. It does not satisfy

efficiency.

2. For some ε > 0, define the solution f by f(N, e, b) = r(N, e, b) if e1 = 0. Otherwise,

define f1(N, e, b) = r1(N, e, b) + ε, fi(N, e, b) = ri(N, e, b) for i = 2, . . . , n − 1 and

fn(N, e, b) = rn(N, e, b)− ε. It is easily seen that f satisfies efficiency, the no contri-

bution property, and independence of upstream inflows. It does not satisfy the lower

bound property.

28



3. The solution fi(N, e, b) = bi(0) for all i ∈ N\{n} and fn(N, e, b) = vn(e, b) −∑n−1
j=1 bj(0) satisfies efficiency, the lower bound property, and independence of down-

stream inflows. It does not satisfy the no contribution property.

4. The upstream incremental solution u satisfies efficiency, the lower bound property,

and the no contribution property. It does not satisfy independence of downstream

inflows.
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