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Abstract

We study whether and when parameter-driven time-varying parameter mod-

els lead to forecasting gains over observation-driven models. We consider dy-

namic count, intensity, duration, volatility and copula models, including new

specifications that have not been studied earlier in the literature. In an exten-

sive Monte Carlo study, we find that observation-driven generalised autoregres-

sive score (GAS) models have similar predictive accuracy to correctly specified

parameter-driven models. In most cases, differences in mean squared errors are

smaller than 1% and model confidence sets have low power when comparing

these two alternatives. We also find that GAS models outperform many familiar

observation-driven models in terms of forecasting accuracy. The results point

to a class of observation-driven models with comparable forecasting ability to

parameter-driven models, but lower computational complexity.
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1 Introduction

In this paper we study the predictive ability of parameter-driven versus observation-

driven time-varying parameter models. We consider dynamic count, intensity, dura-

tion, volatility and copula densities and focus on three approaches for modelling the

time-varying parameters of interest: nonlinear non-Gaussian state space models as

representatives of parameter-driven specifications; the flexible observation-driven gen-

eralised autoregressive score (GAS) class of Creal, Koopman, and Lucas (2012); and

standard observation-driven models based on moments of the data, such as the gener-

alised autoregressive conditional heteroscedasticity (GARCH) model of Engle (1982)

and Bollerslev (1987), the autoregressive conditional duration (ACD) model of Engle

and Russell (1998), and the multiplicative error models of Engle and Gallo (2006).

For ease of reference, we group this latter set of models under the general heading of

autoregressive conditional parameter (ACP) models.

Cox (1981) classifies time-varying parameter models into two classes: observation-

driven and parameter-driven specifications. In an observation-driven model, current

parameters are deterministic functions of lagged dependent variables as well as contem-

poraneous and lagged exogenous variables. In this setting, parameters evolve randomly

over time but are perfectly predictable one-step-ahead given past information. The like-

lihood function for observation-driven models is available in closed-form through the

prediction error decomposition. This feature leads to simple estimation procedures and

has contributed to the popularity of this class of models in applied econometrics and

statistics.

In parameter-driven models, parameters vary over time as dynamic processes with

idiosyncratic innovations. Analytical expressions for the likelihood function are not

available in closed-form for these models. Likelihood evaluation therefore becomes more

involved for parameter-driven models, typically requiring the use of efficient simulation

methods. Special cases of this class are stochastic volatility models as discussed by

Tauchen and Pitts (1983) and Ghysels, Harvey, and Renault (1996), the stochastic

conditional duration model of Bauwens and Veredas (2004), and the stochastic copula

models of Hafner and Manner (2011).

Given the different nature of observation-driven and parameter-driven models and

the large amount of effort devoted to studying and applying a variety of these specifi-
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cations, it is important to assess the relative merits of these two approaches from an

out-of-sample perspective. A robust out-of-sample performance is key to the applica-

bility of any time series model. However, three substantial problems have obstructed a

systematic comparison between observation-driven and parameter-driven models across

a range of data generating processes (DGPs). We contribute to the literature by provid-

ing solutions to each of these problems, thus enabling a full-scale comparison between

the two classes of models.

First, parameter-driven models are flexible and easily applied in new settings: for

any conditional observation density, we can make a specific parameter time-varying

by turning it into a stochastic process subject to its own innovation. By contrast,

observation-driven models have so far lacked a similarly flexible unifying framework:

for a new observation density and parametrisation, we need to construct a new function

of the data to update the time-varying parameter. Whereas the appropriate function

is (arguably) clear in some cases such as volatility modelling, in many other settings it

may not be evident.

The generalised autoregressive score (GAS) model of Creal, Koopman, and Lucas

(2012) is a class of observation-driven models with similar degree of generalisability as

nonlinear non-Gaussian state space models. The GAS framework uses the scaled score

vector of the predictive model density to update time-varying parameters. We can

thus apply the GAS model to any observation density. Creal, Koopman, and Lucas

(2012) show that the GAS class encompasses well-known observation-driven models

such as the GARCH model of Bollerslev (1986), while at the same time enabling the

development of completely new models such as the mixed measurement dynamic factor

model of Creal, Schwaab, Koopman, and Lucas (2011). The GAS framework therefore

provides a natural observation-driven alternative for the state space framework across

a wide range of different DGPs.

Second, observation-driven and parameter-driven models are inherently difficult

to compare even if they are based on the same measurement density. The difficulty

stems from the fact that the predictive distribution of a parameter-driven model is

a mixture of observation densities over the random time-varying parameter, whereas

the predictive density of observation-driven models is simply the observation density

given a perfectly predictable parameter. Parameter-driven models typically generate

overdispersion, heavier tails and other features that may directly put such models at
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an advantage over observation-driven models.

In order to develop a systematic comparison between the two classes of models,

we need to control for this distinction. We therefore develop new observation-driven

models that aim to accommodate similar degrees of overdispersion and fat tails as

parameter-driven models. We introduce new generalised autoregressive score models

based on exponential-gamma, Weibull-gamma and double-gamma mixtures. Beyond

their role in the current analysis, these GAS model formulations are also of intrinsic

interest as new duration and multiplicative error models that combine the flexibility

of their mixture distributions with score based updates.

Third, the estimation of parameters in nonlinear non-Gaussian state space models

is computationally intensive. As a result, large-scale comparative analyses such as the

one in Hansen and Lunde (2005) often exclude parameter-driven models. To overcome

this computational challenge, we turn to the recently developed numerically acceler-

ated importance sampling method (NAIS) of Koopman, Lucas, and Scharth (2011).

The NAIS algorithm leads to fast and numerically efficient parameter estimation for

nonlinear non-Gaussian state space models and requires no model-specific interventions

other than the specification of the appropriate observation densities. We can therefore

easily apply the NAIS algorithm repeatedly across the range of DGPs considered in our

analysis. We also employ the method for the efficient computation of the out-of-sample

forecasts, which is the prime focus of our current study.

We obtain two main findings. First, when the DGP is a state space model, the

predictive accuracy of an (misspecified) GAS model is similar to that of a (correctly

specified) state space model. This holds in particular if the (conditional) observation

density for the GAS specification allows for heavy tails and overdispersion. For the

nine model specifications in this paper, the loss in mean square error from using a

GAS model instead of the correct state space specification is most of the time inferior

to 1% and never higher than 2.5%. We extend our analysis by considering the model

confidence sets of Hansen, Lunde, and Nason (2011). For the state space DGPs, the

GAS model lies in the 90% model confidence set for at least 60% of the samples with as

many as 2, 000 observations. We conclude that we can obtain high predictive accuracy

for many relevant time-varying parameter models without the need to specify and

estimate a parameter-driven model. In most cases, an observation-driven alternative

is available that is both accurate and considerably easier to estimate.
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Second, we find that the GAS models outperform many of the familiar observation-

driven models from the literature which we have referred to as autoregressive condi-

tional parameter (ACP) models. By relying on the full density structure to update

the time-varying parameters, GAS models capture additional information in the data

that is not exploited by ACP models. GAS models are therefore effective new tools

for forecasting that often lead to important forecasting gains over other classes of

observation-driven models.

We structure the rest of this paper as follows. In Section 2 we present our three

econometric approaches for modelling time-varying parameters. Section 3 introduce

several new GAS models for continuous mixtures. Section 4 discusses the estimation

of parameters for the different model classes. Section 5 presents the results. Section 6

concludes.

2 Modelling time-varying parameters

2.1 Dynamic model specifications

Let y1, . . . , yn denote a sequence of p × 1 dependent variables of interest. In financial

applications, for example, the variables may represent stock returns, the time between

asset transactions, the number of firm defaults within a certain period, and so on. We

are interested in modelling the mean, variance or another relevant characteristic of the

conditional distribution of yt given all the data up to time t− 1. We assume that yt is

generated by the observation density

yt|θt ∼ p(yt|θt;ψ), θt = Λ(αt), t = 1, . . . , n, (1)

where θt is a time-varying parameter vector, Λ(·) is a possibly nonlinear function, and

αt has a linear dynamic specification. In this paper we focus on the case in which αt

is a scalar variable. The static parameter vector ψ incorporates additional fixed and

unknown coefficients from the density p(yt|θt;ψ).
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2.1.1 State space models

In parameter-driven models, the state vector αt evolves according to an idiosyncratic

source of innovations. We model αt as a Gaussian autoregressive process of order one

αt+1 = δ + φαt + ηt, α1 ∼ N(a1, P1), ηt ∼ N(0, σ2
η), (2)

where δ is a constant and φ is the autoregressive coefficient. We assume that the initial

state vector α1 is normally distributed with mean δ/(1− φ) and variance σ2
η/(1− φ2).

Equations (1) and (2) characterise a class of nonlinear non-Gaussian state space

models; see Durbin and Koopman (2001) for a general discussion. More generally,

αt can also follow higher order autoregressive moving average, random walk, cyclical,

seasonal and other processes or be an aggregation of those components. Shephard and

Pitt (1997) and Durbin and Koopman (1997) develop simulation-based methods for the

estimation of ψ, αt and θt. Liesenfeld and Richard (2003), Richard and Zhang (2007),

Jungbacker and Koopman (2007) and Koopman, Lucas, and Scharth (2011) report

recent developments on Monte Carlo methods for the analysis of general nonlinear

non-Gaussian state space models.

Examples of specifications within this framework include stochastic volatility mod-

els as in Tauchen and Pitts (1983), Taylor (1986), Melino and Turnbull (1990) and

Ghysels, Harvey, and Renault (1996), stochastic conditional duration models as in

Bauwens and Veredas (2004), stochastic conditional intensity models as in Bauwens and

Hautsch (2006), stochastic copulas as in Hafner and Manner (2011), and non-Gaussian

unobserved components time series models as in Durbin and Koopman (2000).

2.1.2 Generalised autoregressive score models

In observation-driven models, the time-varying vector αt in (1) depends on lagged

values of yt and on the model parameters in a deterministic way. We will consider the

autoregressive updating equation

αt+1 = d+ a st + b αt, (3)

where d, a and b are fixed coefficients and st = st(αt,Ft;ψ) is the driving mechanism,

with Ft representing the information set consisting of all observations up to time t. We
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can also consider extensions for the dynamic specification (3) which are similar to the

ones available for the state space model.

Specific choices for the driving mechanism st lead to different classes of observation-

driven models. In this paper we focus on the generalised autoregressive score (GAS)

class of Creal, Koopman, and Lucas (2012) as our central observation-driven model.

The GAS framework is of similar generality as the state space model (1)–(2) in that it

is applicable to any measurement density. In this framework, the updating step st in

(3) is the scaled density score

st = St · ∇t, ∇t =
∂ ln p(yt |αt , Ft ; ψ)

∂αt
, St = S(t , αt , Ft ; θ), (4)

where S(·) is the scaling matrix. A GAS model updates the parameter αt+1 in the

direction of steepest increase of the log-density at time t given the current parameter αt

and data history Ft. It follows from the properties of the score vector that E(st|Ft−1) =

0 and hence the GAS update is a martingale difference under the correct specification.

Creal, Koopman, and Lucas (2012) discuss appropriate choices for St based on the

curvature of the log-density at time t as summarised by the Fisher information matrix

It = E [∇t∇′t|Ft−1] , (5)

therefore linking the scaling matrix to the variance of the score. In this paper we focus

on the scaling matrix St = I−1/2
t . For this choice of scaling the step st has constant unit

variance and is invariant under non-degenerate parameter transformations Λ(·). The

constant unit variance property is an useful device for detecting model misspecification

in applications. Other choices for the scaling matrix such as St = I−1
t are also possible

and lead to different observation driven models; see Creal, Koopman, and Lucas (2012).

We can also specify the observation-driven dynamics directly for θt.

An useful feature of the GAS approach is the automatic treatment of parameter

transformations Λ(·). This characteristic facilitates comparisons between GAS and

state space models and is particularly helpful if the parameter of interest θt is subject

to constraints. For example, if θt is a correlation parameter, θt = tanh(αt) ensures

that the correlation is between −1 and +1. Finally, for some models such as the time-

varying conditional volatility, intensity, or duration models, using the transformation
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θt = exp(αt) leads to an information matrix It which does not depend on αt, such that

the choice of scaling matrix St becomes irrelevant. In this paper we only report the

results for GAS models with appropriate parameter transformations and scaling matrix

St = I−1/2
t . We have found that these specifications lead to greater predictive accuracy

across different DGPs. The evidence for a selection of alternative specifications and

parametrisations is available upon request.

2.1.3 Autoregressive conditional parameter models

Many observation-driven models directly relate the time-varying parameter to a natural

transformation of the data. A common approach is to define st such that

E(st(yt, θt;ψ)|Ft−1) = θt = αt. (6)

We refer to this class as autoregressive conditional parameter (ACP) models.

ACP models adhere to the intuitive notion that the observation-driven parameter

should increase (decrease) if the realised st is higher (lower) than its conditional ex-

pectation. For example, if θt is the conditional mean θt = E(yt|Ft−1), the ACP update

is st = yt. Similarly, if θt is the conditional variance of yt, then st = (yt− µy,t−1)2 with

µy,t−1 = E(yt|Ft−1).

Examples of autoregressive conditional parameter models include the generalised

autoregressive conditional heteroscedasticity (GARCH) model of Bollerslev (1986), the

autoregressive conditional duration (ACD) and intensity (ACI) models of Engle and

Russell (1998), the autoregressive conditional Poisson model of Rydberg and Shephard

(2000), the dynamic conditional correlation model of Engle (2002), specific autore-

gressive copulas in Patton (2006), and the HEAVY model of Shephard and Sheppard

(2010). Due to their widespread use, the class of ACP models provides a useful bench-

mark to our analysis.

2.2 Observation densities

We present the observation densities for our study below in Table 1. These densities

represent p(yt|θt;ψ) in (1). We consider a wide range of specifications, including den-

sities for count, intensity, duration, volatility and copula models. The combination
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Table 1: Observation densities.

The table displays the dynamic densities that we consider in our simulation study. We write them as

p(yt|θt;ψ), where θt is the parameter of interest. We assume that θt = Λ(αt), where θt is the time-varying

parameter of interest, and Λ(.) is a monotonically increasing transformation, and αt has a linear dynamic

specification. We denote the data by yt. For the Gaussian copula model, zi,t = Φ−1(yi,t), where the

observations yi,t have uniform (0, 1) marginal distributions and Φ−1(·) denotes the inverse normal CDF. For

the Student t copula, zi,t = T−1
ν (yi,t), where the observations yi,t have uniform (0, 1) marginal distributions

and T−1
ν (yi,t) is the inverse CDF of a Student’s t distribution with ν degrees of freedom.

Model type Distribution Density Parameterisation

Count Poisson
λ
yt
t

yt!
e−λt λt = exp(αt)

Count Neg. Binomial Γ(k1+yt)
Γ(k1)Γ(yt+1)

(
k1

k1+λt

)k1 (
λt

k1+λt

)yt
λt = exp(αt)

Intensity Exponential λte
−λtyt λt = exp(αt)

Duration Gamma 1

Γ(k1)β
k1
t

yk1−1
t e−yt/βt βt = exp(αt)

Duration Weibull k1
βt

(
yt
βt

)k1−1

e−(yt/βt)k1 βt = exp(αt)

Volatility Gaussian 1√
2πσt

e−y
2
t /2σ

2
t σ2

t = exp(αt)

Volatility Student’s t
Γ( ν+1

2 )√
(ν−2)πΓ( ν2 )σt

(
1 +

y2t
(ν−2)σ2

t

)− ν+1
2

σ2
t = exp(αt)

Copula Gaussian

1

2π

√
1−ρ2t

exp

[
z21t+z

2
2t−2ρtz1tz2t

2(1−ρ2t )

]†
∏2
i=1

1√
2π
e−z

2
it
/2

ρt = 1−exp(−αt)
1+exp(−αt)

Copula Student’s t
Γ( ν+2

2
)Γ( ν

2
)

Γ( ν+1
2

)

1√
1−ρ2t

[
1+

z21t+z
2
2t−2ρtz1tz2t

ν(1−ρ2t )

]− ν+2
2 ‡

∏2
i=1(1+zit/ν)−

ν+1
2

ρt = 1−exp(−αt)
1+exp(−αt)

of the dynamic gamma, Weibull, normal, Student’s t and copula densities in Table 1

with (2) directly lead to the stochastic conditional duration, stochastic volatility and

stochastic copula models as in Tauchen and Pitts (1983), Bauwens and Veredas (2004),

Bauwens and Hautsch (2006), and Hafner and Manner (2011).

Table 2 completes the specification of the observation-driven models by listing the

generalised autoregressive score and autoregressive conditional parameter updates st

for the densities in Table 1. The ACP updates lead to the familiar autoregressive

conditional Poisson, autoregressive conditional duration, autoregressive conditional in-

tensity, GARCH and autoregressive copula specifications. The ACP model for the
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Table 2: Observation-driven model updates.
The table displays the score and information matrix for the models given in Table 1. The GAS

update st = ∇tI−1/2
t we consider in this paper is invariant under non-degenerate parameter

transformations. The equivalent ACP models are without parameter transformation, see

Table 1. The data is denoted by yt. For the copula models, yi,t has a uniform (0, 1) marginal

distribution for i = 1, 2, ẑ1,t = z1,tz2,t, and ẑ2,t = z21,t + z22,t, where zi,t = Φ−1(yi,t) for the

Gaussian copula and zi,t = T−1
ν (yi,t) for the Student t copula, with Φ−1(·) and T−1

ν (yi,t)

denoting the is the inverse normal CDF and the inverse CDF of a Student’s t distribution

with ν degrees of freedom, respectively.

Model Distribution GAS ACP
type ∇t It st
Count Poisson yt

λt
− 1 1

λt
yt

Count Neg. Binomial yt
λt
− k1+yt

k1+λt
k1

λt(k1+λt)
yt

Intensity Exponential 1
λt
− yt 1

λ2t
yt

Duration Gamma y
θ2t
− k1

βt
k
β2
t

yt/k1

Duration Weibull k1
βt

[(
yt
βt

)k1
− 1

] (
k1
βt

)2
yt

Γ(1+k−1
1 )

Volatility Gaussian 1
2σ2
t

(
y2t
σ2
t
− 1
)

1
2σ4
t

y2
t

Volatility Student’s t 1
2σ2
t

(
ωty2t
σ2
t
− 1
)

ν
2(ν+3)σ4

t
y2
t

ωt = ν+1
(ν−2)+y2t /σ

2
t

Copula Gaussian (1+ρ2)(ẑ1,t−ρt)−ρt(ẑ2,t−2)

(1−ρ2)2
1+ρ2t

(1−ρ2t )2
z1,tz2,t

Copula Student’s t (1+ρ2)(ωtẑ1,t−ρt)−ρt(ωtẑ2,t−2)

(1−ρ2)2
(ν+2+νρ2t)

(ν+4)(1−ρ2t )2
z1,tz2,t

ωt = ν+2

ν+
ẑ1,t−2ρtẑ2,t

1−ρ2

gamma distribution with k = 1/βt corresponds to the multiplicative error model of

Engle and Gallo (2006). The GAS specifications for the exponential, gamma, normal

and Student’s t volatility models and the Gaussian copula appear in the original paper

by Creal, Koopman, and Lucas (2012). Creal, Koopman, and Lucas (2011) obtain the

GAS model for the Student’s t copula.
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2.3 Parameter-driven versus observation-driven models

When considering parameter-driven models, we have that p(yt|Ft−1;ψ) is a mixture

distribution

p(yt|Ft−1;ψ) =

∫
p(yt|θt;ψ)p(θt|Ft−1;ψ)dθt. (7)

In a parameter-driven framework the estimation of θt by construction takes into

account the full density structure of past observations. As we discuss below, the same

is not necessarily true for observation-driven models. The mixture distribution (7) may

also describe relevant features of the data. It is typically the case that higher order

conditional moments of yt, such as kurtosis, are at least as high for p(yt|Ft−1;ψ) as for

p(yt|θt;ψ). For example, Carnero, Peña, and Ruiz (2004), among others, show that

the Gaussian stochastic volatility model of Table 1 and (2) is conditionally leptokurtic.

Similarly, the stochastic count and duration models we study below display conditional

over-dispersion.

On other hand, a major obstacle for the application of parameter-driven models

is that p(θt;ψ|Ft−1) is typically not available in closed-form. This is the case for all

models in Table 1. The likelihood-based estimation of parameters in parameter-driven

models therefore requires the use of computationally intensive simulation methods for

evaluating the high-dimensional integral that characterises the likelihood function of

the model; see, for instance, Shephard and Pitt (1997) and Section 4. Monte Carlo

methods are also necessary to estimate and forecast the time-varying vector θt.

In observation-driven models the time-varying parameter θt is perfectly predictable

one step ahead given past information. This implies that the likelihood functions for

ACP and GAS models are available in closed-form. Parameter estimation is there-

fore straightforward for observation-driven models, contributing to their widespread

use in applied econometrics and statistics. However, the self-referential structure of

observation-driven models complicates their theoretical analysis. For example, the sta-

bility properties of the sequence of observations, such as stationarity and ergodicity,

are typically difficult to derive.

Within the class of observation-driven models, there are important differences be-

tween GAS and ACP specifications. GAS models can handle parameter transforma-

tions and are applicable in cases where ACP updates are not readily available; see

Creal, Koopman, and Lucas (2012). By making use of the observation density score,
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GAS model updates also take the full density information into account. By contrast,

ACP models rely exclusively on the moments of p(yt|θt;ψ), such as the mean or the

variance.

We follow Creal, Koopman, and Lucas (2012) and illustrate the difference using

time-varying volatility models for the Gaussian and Student’s t distributions based on

the GAS and ACP approaches. From Table 2, we learn that a Gaussian GAS(1,1)

volatility model with αt = σ2
t and update st = I−1

t ∇t reduces to

αt+1 = d+ a
(
y2
t − αt

)
+ b αt, (8)

which is equivalent to the standard GARCH(1, 1) model (the corresponding ACP

model). If we replace the normal distribution by the Student’s t distribution with

ν degrees of freedom, the ACP model updating equation remains the same such that

the ACP model reduces to the GARCH(1,1) model with Student’s t distributed errors.

However, the GAS update equation becomes

st = I−1
t ∇t =

(
1 + 3ν−1

)
·
(

(1 + ν−1)

(1− 2ν−1)(1 + ν−1y2
t /((1− 2ν−1) αt))

y2
t − αt

)
, (9)

see also Table 2. If ν−1 → 0, the GAS model recovers the GARCH(1,1) specification.

However, if ν is finite and observations are fat-tailed, large values of y2
t receive less

weight due to the presence of the denominator in (9). This feature is intuitively ap-

pealing. The GARCH update y2
t becomes more volatile in the presence of fat tails.

Large values of y2
t are then more likely to reflect noise caused by the excess kurtosis

in the conditional distribution of the dependent variable rather than large increases

in variance. Therefore, the GAS updating equation for the Student’s t distribution

discounts large values of y2
t in comparison to the Gaussian case.

3 Observation-driven continuous mixture models

For a given observation density p(yt|θt;ψ), parameter-driven and observation-driven

specifications imply different models for the conditional density p(yt|Ft−1;ψ). We need

to address this distinction in order to carry out a systematic comparison between

these two approaches. In this section we develop new observation-driven models based
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on exponential-gamma, Weibull-gamma and double gamma mixtures. The new GAS

models display overdispersion and fat tail features that are comparable to those implied

by parameter-driven models. These specifications also relate to the simpler negative

binomial (Poisson-gamma) GAS model of Table 2. Apart from our current motivation,

the new model specifications are of intrinsic interest as new duration and multiplicative

error models which combine the flexibility of mixture distributions, robust score based

updates and the log parametrisation.

3.1 Weibull-gamma and exponential-gamma mixture models

We consider the following parametrisation of the Weibull distribution

p(yt|γt; k1) = γt k1 y
k1−1
t exp(−γt yk1t ), (10)

where k1 is a shape coefficient and γt is a time-varying scale variable. It follows that

E(yt|γt, k) = γ
−1/k1
t Γ(1/k1 + 1). Let γt = µt νt where αt = log(µt) follows a GAS

updating equation and νt is an identically and independently Γ(k−1
2 , k2) distributed

random error with density function

p(νt; k2) =
ν
k−1
2 −1
t e−νt/k2

Γ(k−1
2 )k

k−1
2

2

. (11)

The multiplicative error νt has mean one and variance k2 <∞.

The Weibull-gamma mixture density is

p(yt|µt; k) =

∫ ∞
0

p(yt|µt, νt; k1)p(νt) dνt = µtk1y
k1−1
t

(
1 + k2µty

k1
t

)−(1+k−1
2 )

. (12)

Lancaster (1979) and Das and Srinivasan (1997) illustrate the use of this distribution

in econometrics. Grammig and Maurer (2000) propose an ACD model for a Weibull-

gamma mixture, which they refer to as the Burr distribution. They advocate the

Weibull-gamma model for the empirical analysis of price durations on the basis of its

ability to account for non-monotonic hazard functions.
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We notice that

E(yt|µt; k1, k2) = µ
−k−1

1
t Γ(k−1

1 + 1)E
(
ν
−k−1

1
t

)
= (µtk2)−k

−1
1

Γ(k−1
2 − k−1

1 )

Γ(k−1
2 )

, (13)

and hence we need to impose 0 < k2 < k1 so that Γ(k−1
2 − k−1

1 ) exists. The score and

the inverse of the Fisher information matrix are

∇t =
1

µt
− (1 + k2)

yk1t
1 + k2µty

k1
t

, I−1
t = µ2

t (1 + 2k2), (14)

respectively. This update recovers the Weibull model when k2 → 0. We base the GAS

update equation on the scaled score

st = I−1/2
t ∇t =

√
1 + 2k2

(
1− (1 + k2)

µty
k1
t

1 + k2µty
k1
t

)
. (15)

By setting k1 = 1 above, the specification specialises to the exponential-gamma GAS

model.

Figure 1 illustrates the probability density function and the GAS updates for the

Weibull (k2 = 0) and the Weibull-gamma mixture model (k2 = 0.5) for k1 = 1.2

and µt = 0.5. For k2 = 0, the scaled score for the update step simply collapses to

st = 1−µtykt . Panel (a) in Figure 1 shows that the mixture density function significantly

stretches the right tail of the distribution. Hence, large values of yt typically signal

a large realisation of νt, containing little information about µt. Accordingly, panel

(b) shows that realisations of yt in the right tail of the distribution have a limited

additional impact on st in the mixture model. This property contrasts sharply to the

corresponding ACP model, in which the update equation for the conditional mean is

linear in yt irrespective of the value of the mixture variance k2.

3.2 Double gamma mixture models

We can follow a similar approach to obtain a gamma-gamma mixture model. Let yt

be identically and independently Γ(k1, γ
−1
t ) distributed random variables with shape
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Figure 1: The Weibull-gamma mixture GAS model with k = 1.2 and µt = 0.5.

coefficient k1, time-varying scale variable γ−1
t and density function

p(yt|γt; k1) =
γk1t y

k1−1
t e−γtyt

Γ(k1)
, (16)

where γt = µtνt. The random error νt follows the Γ(k−1
2 , k2) distribution with density

(11).

The mixture density is

p(yt|µt; k1, k2) =
Γ(k1 + k−1

2 )

Γ(k1)Γ(k−1
2 )

kk12 µ
k1
t y

k1−1
t

(1 + k2µtyt)
k1+k−1

2

. (17)
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We have

E(yt|µt; δ) =
1

µt(1− k2)
, (18)

which leads to the requirement that 0 < k2 < 1. We obtain

∇t =
k1

µt
− (1 + k1k2)

yt
1 + k2µtyt

, It =
k1

µ2
t (1 + k2(k1 + 1))

. (19)

The intuition for the GAS updates of the gamma-gamma mixture distribution is there-

fore similar to that of the Weibull-gamma model.

4 Maximum Likelihood Estimation

We estimate the parameter vectors in the three classes of models (state space, GAS

and ACP) by the method of maximum likelihood. We maximise the log-likelihood

function numerically with respect to the parameters using numerical gradient-based

optimisation methods. The evaluation of the log-likelihood function is straightforward

for observation-driven models. For the parameter-driven models, we rely on simulation

methods for the evaluation of the log-likelihood function. Recent developments in

importance sampling have shown that fast and reliable simulated maximum likelihood

estimation is feasible for nonlinear non-Gaussian state space models.

4.1 Observation-driven models: maximum likelihood

Given an observed time series y1, . . . , yn, we use the standard prediction error decom-

position to obtain the maximum likelihood estimates as

ψ̂ = arg max
ψ

n∑
t=1

`t, (20)

where `t = ln p(yt|θt,Ft−1;ψ). We deduce p(yt|θt,Ft−1;ψ) directly from (1). We evalu-

ate the log-likelihood functions for the GAS and ACP models after implementing the

GAS and ACP updating equations and calculating `t for particular values of ψ. We

obtain estimates of θt by evaluating the GAS or ACP recursions with ψ set equal to

the maximum likelihood estimate ψ̂.
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4.2 Parameter-driven models: simulated maximum likelihood

The numerically accelerated importance sampling (NAIS) method of Koopman, Lucas,

and Scharth (2011) is a computationally and numerically efficient method for obtaining

an unbiased estimate of the likelihood function of a nonlinear non-Gaussian state space

model. The method is applicable to a wide class of observation densities and is able to

treat all model specifications in Table 1. The method only requires the specification

of (1) and a linear state equation such as (2). The computation times for parameter

estimation range from a few seconds to slightly less than a minute for the sample size

of two thousand observations we consider in Section 5.

The likelihood for the state space model specified by (1) and (2) is given by the

analytically intractable integral

L(y;ψ) =

∫
p(α, y;ψ) dα =

∫ n∏
t=1

p(yt|αt;ψ)p(αt|αt−1;ψ) dα1 . . . dαn, (21)

where α′ = (α′1 , . . . , α
′
n), y′ = (y′1 , . . . , y

′
n) and p(α, y;ψ) is the joint density of y and

α. To evaluate the likelihood function by importance sampling, we consider a Gaussian

importance density g(α, y;ψ) = g(y|α;ψ)g(α;ψ), where g(y|α;ψ) and g(α;ψ) are both

Gaussian densities. We then express the likelihood function as

L(y;ψ) =

∫
p(α, y;ψ)

g(α, y;ψ)
g(α, y;ψ) dα = g(y;ψ)

∫
ω(α, y;ψ)g(α|y;ψ) dα, (22)

where g(y;ψ) is the likelihood function of the Gaussian importance model and ω(α, y;ψ)

is the the importance weight function

ω(α, y;ψ) = p(y, α;ψ) / g(y, α;ψ) = p(y|α;ψ) / g(y|α;ψ). (23)

By generating S independent trajectories α(1) , . . . , α(S) from the importance den-

sity g(α|y;ψ), we can estimate the likelihood function by computing

L̂(y;ψ) = g(y;ψ) · ω̄, ω̄ =
1

S

S∑
s=1

ωs, ωs = ω(α(s), y;ψ), (24)

where ωs is the realised importance weight function in (23) for α = α(s). We base our
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estimations of Section 5 on S = 100 simulated trajectories.

The choice of the importance sampling density partly determines the accuracy of

the likelihood estimate (24). We follow the approach of Richard and Zhang (2007) and

choose an importance sampling density that (approximately) minimises the variance of

(24). Koopman, Lucas, and Scharth (2011) develop a new method to obtain such an

efficient importance sampler using a combination of numerical integration techniques

and approximating linear state space methods. We provide the details in Appendix A.

To further improve the numerical efficiency of the likelihood estimate (24), we also use

the control variables proposed by Koopman, Lucas, and Scharth (2011). The NAIS

method also facilitates the computation of the smoothed estimates of the state vector

αt; see Appendix B.

5 Predictive analysis: a Monte Carlo study

We conduct a large scale Monte Carlo study to investigate the predictive performances

of state space, generalised autoregressive score (GAS) and autoregressive conditional

parameter (ACP) models. We simulate series of observations y1, . . . , yn from both

parameter-driven and observation-driven data generation processes (DGPs), estimate

the parameters for the parameter-driven and observation-driven models, and analyse

the forecasts generated by these different specifications. In this setting, we can observe

the true values of the time-varying parameter that would be otherwise unknown in

empirical studies. We are therefore able to measure which models perform best across

a range of empirically relevant DGPs.

5.1 Design of the Monte Carlo study

In our first experiment, we take different state space model specifications as DGPs.

We consider the nine observation densities of Table 1. The autoregressive state equa-

tion (2) completes the specifications of the parameter-driven models. We draw 1, 000

realisations of time series with length n = 4, 000 for each DGP, where the parameters

for the different DPGs are in Table 3. The parameter values reflect typical of what is

found in empirical work for these and related models.

In each simulation, we use the first 2, 000 observations to estimate the parameters
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for the following model specifications: (i) the correctly specified state space model; (ii)

the GAS model based on the same conditional observation density as the DGP, with the

appropriate parameter transformation and scaling St = I−1/2
t . The functional forms of

the parameter updates for the different models are in Table 2; (iii) the corresponding

ACP model specification; (iv) in the case of the exponential, gamma, Weibull, and

Gaussian models, a robust variant of the GAS and ACP specification. We base the

robust specifications on the exponential-gamma, Weibull-gamma, double gamma (see

Section 3) and Student’s t distributions respectively.

We compute one-step-ahead predictions for the next 2,000 values of θt given the

estimated parameters, therefore considering two million forecasts in total for each spec-

ification. For reference, we also compute the predictions for the true model specifica-

tion. We compute the forecasts from the state space model using the NAIS method;

see Appendix B. For the gamma and Weibull models, we predict their means θtk and

θtΓ(1 + 1/k), respectively, rather than θt.

We measure the accuracy by means of the mean-squared error (MSE), in levels and

relative to the MSE of the state space model with estimated parameters. We compute

the MSE across the two million forecasts of θt. We can calculate the MSEs for θt since

we know the simulated “true” values of the parameter in the Monte Carlo study.

For the second experiment we adopt the GAS model as the DGP. We consider the

nine observation densities in Table 1 and the updating equation (3). Table 2 provides

the scaled scores st. We choose the GAS specification with the appropriate parameter

transformation and scaling by the square root of the information matrix. The remaining

details of the second experiment are the same as those for the first experiment. The

parameter values for the GAS models are in Table 3.

5.2 Results

Table 4 presents the results for the state space DGPs. We focus on two key findings.

First, the differences in forecasting accuracy for the estimated state space models and

for the corresponding estimated GAS models are small. We find that the MSE increase

for the GAS specifications is less than 1% percent for seven of the models and less than

2.5% for the exponential and Gaussian copula specifications. The intuition for this

result follows from our discussions in Sections 2.3 and 3. GAS models construct an
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Table 3: State Space and GAS DGPs.
We specify the state space models as yt|θt ∼ p(yt|Λ(αt);ψ), t =

1, . . . , n, αt+1 = δ + φαt + ηt, ηt ∼ N(0, σ2
η), α1 ∼ N(δ/(1 −

φ), σ2
η/(1 − φ2)). We parameterise the generalised autoregressive

score models as yt|θt ∼ p(yt|Λ(αt);ψ), t = 1, . . . , n, αt+1 = d +

a st + b αt, where the st = I−1/2
t ∇t is the scaled score from Table

2. Table 1 provides the specifications for the observation densities

and the parameterisations.

Model Distribution State Space, GAS
Type δ, d φ, b ση, a other

Count Poisson 0.00 0.98 0.15
Count Neg. Binomial 0.00 0.98 0.15 k1 = 4
Intensity Exponential 0.00 0.98 0.15
Duration Gamma 0.00 0.98 0.15 k1 = 1.5
Duration Weibull 0.00 0.98 0.15 k1 = 1.2
Volatility Gaussian 0.00 0.98 0.15
Volatility Student’s t 0.00 0.98 0.15 ν = 10
Copula Gaussian 0.02 0.98 0.10
Copula Student’s t 0.02 0.98 0.10 ν = 10

updating equation that accounts for the full density information. The score based

observation-driven models are therefore able to generate accurate forecasts when the

assumed observation densities well approximate the conditional densities implied by

the state space models.

The second finding is that the GAS specifications lead to large gains in forecasting

performance over ACP models for the exponential, Student’s t volatility, Gaussian

copula and Student’s t copula models. The GAS models also outperform the ACP

specifications for the other models, but by a smaller margin. For the exponential and

Student’s t volatility models, the result is due to the fact that the ACP updates are

sensitive to realisations from the tails of their distributions. The heavy-tailed (robust)

GAS models overcome these problems by incorporating the fat-tailed nature of the

error distribution in the update step for αt.

We can also provide further insight for the copula models. We learn from Table 2
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that the GAS copula update is given by

I−1/2
t ∇t =

(1 + ρ2)(Φ−1(y1t)Φ
−1(y2t)− ρt)− ρt(Φ−1(y1t)

2 + Φ−1(y2t)
2 − 2)√

(1 + ρ2)(1− ρ2)
, (25)

see Creal, Koopman, and Lucas (2012). The ACP update is Φ−1(y1t)Φ
−1(y2t), which is

as an unbiased estimator of ρt; see Patton (2006). Whereas the ACP driver is sensitive

to large realisations of Φ−1(y1t) or Φ−1(y2t), the distinguishing feature of the GAS cop-

ula update is the presence of the adjustment term −ρt(Φ−1(y1t)
2+Φ−1(y1t)

2−2). Creal,

Koopman, and Lucas (2012) consider two possible scenarios for illustrative purposes:

Φ−1(y1t) = 1 and Φ−1(y2t) = 1 or, alternatively, Φ−1(y1t) = 0.25 and Φ−1(y2t) = 4.

While the ACP update is the same for the two scenarios, the GAS update is able to

separate the two possibilities via the presence of the Φ−1(y1t)
2 and Φ−1(y2t)

2 terms in

st.

Table 5 presents the results for the GAS DGPs. Since the time-varying parame-

ters are perfectly predictable under the true DGP, the forecasting errors for the GAS

specification are only due to estimation error. Hence, the correct specification strongly

outperforms the other two models in relative terms. We focus on the actual differences

in mean-square errors. Our choices of parameters in Table 3 imply that the trans-

formed parameters αt have the same unconditional means and variances and the same

persistence as the states in the parameter-driven DGPs of Table 3. The results in

Tables 4 and 5 are therefore comparable.

By inspecting the results of Tables 4 and 5, we observe that the state space models

seem to be more sensitive to misspecification under the GAS DGPs than the GAS

models under the state space DGPs. However, the results vary substantially for dif-

ferent DGPs. While the state space models perform poorly for the gamma duration

and Gaussian volatility models, the differences are small and sometimes favour the

state space models for the remaining densities. The results for the negative binomial

and Student’s t models further support our discussion in Section 2.3: the state space

models generate better predictions if the GAS observation density is fat-tailed such as

those for the mixture models. Table 5 also shows that the forecasting performances

of the ACP models are comparable with those of the parameter-driven models. This

result further stresses the distinction between GAS and ACP models.
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Table 4: Results for the State Space DGPs.
We draw 1, 000 realisations of time series length n = 4, 000 for the state space DGPs of Table

3. We use the first 2, 000 observations to estimate the correct specification, a robust GAS

model (column 1, only for some DGPs), a GAS model based on the same observation density

as the DGP (column 2), a robust autoregressive conditional parameter (ACP) specification

(column 1, only for some DGPs), and an ACP model based on the same observation density

as the DGP (column 2). The GAS and ACP updates are in Table 2. The robust GAS models

are the mixture models of Section 3 for the exponential, gamma and Weibull densities and the

Student’s t GAS model for the volatility model. We compute one-step ahead out-of-sample

predictions for the next two thousand values of the time-varying parameter θt (or θtk and

θtΓ(1 + 1/k) for the gamma and Weibull models respectively, as we are interested in the mean

of these distributions) using the true specification and the estimated models.

Model Distribution State Space GAS ACP
Type True Estimated (1) (2) (1) (2)

Relative mean-square error
Count Poisson 0.987 1.000 — 1.005 — 1.059
Count Neg. Binomial 0.982 1.000 — 1.008 — 1.030
Intensity Exponential 0.979 1.000 1.022 1.200 1.117 1.260
Duration Gamma 0.985 1.000 1.004 1.050 1.033 1.032
Duration Weibull 0.981 1.000 1.005 1.057 1.040 1.023
Volatility Gaussian 0.973 1.000 1.009 1.203 1.041 1.038
Volatility Student’s t 0.968 1.000 — 1.004 — 1.145
Copula Gaussian 0.957 1.000 — 1.014 — 1.312
Copula Student’s t 0.946 1.000 — 1.006 — 1.430

Mean-square error
Count Poisson 0.280 0.283 — 0.285 — 0.300
Count Neg. Binomial 0.336 0.342 — 0.345 — 0.352
Intensity Exponential 0.433 0.442 0.452 0.531 0.494 0.557
Duration Gamma 0.771 0.783 0.786 0.822 0.809 0.808
Duration Weibull 0.317 0.324 0.325 0.342 0.337 0.331
Volatility Gaussian 0.542 0.558 0.563 0.671 0.580 0.579
Volatility Student’s t 0.570 0.589 — 0.591 — 0.674
Copula Gaussian 0.018 0.019 — 0.021 — 0.027
Copula Student’s t 0.021 0.023 — 0.023 — 0.032
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Table 5: Results for the GAS DGPs.

We draw 1, 000 realisations of time series length n = 4, 000 for the GAS DGPs from Table 3. We use

the first 2, 000 observations to estimate three statistical models: the correct specification, the state

space specification with the same observation density as the DGP, and the autoregressive conditional

parameter (ACP) specification. The ACP updates are in Table 2. We compute one-step-ahead out-

of-sample predictions for the next two thousand values of θt, or θtk1 and θtΓ(1 + k−1
1 ) for the gamma

and Weibull models as we are interested in the mean of these distributions.

Model type Distribution Relative mean-square error Mean-square error
State Space GAS ACP State Space GAS ACP

Count Poisson 2.888 1.000 9.187 0.012 0.004 0.038
Count Neg. Binomial 1.192 1.000 3.838 0.008 0.006 0.024
Intensity Exponential 5.849 1.000 4.959 0.048 0.008 0.041
Duration Gamma 6.026 1.000 3.181 0.123 0.020 0.065
Duration Weibull 7.614 1.000 5.217 0.050 0.007 0.034
Volatility Gaussian 8.039 1.000 6.253 0.180 0.022 0.140
Volatility Student’s t 1.994 1.000 3.426 0.057 0.029 0.098
Copula Gaussian 1.540 1.000 3.812 0.002 0.002 0.006
Copula Student’s t 1.175 1.000 5.490 0.002 0.002 0.010

5.3 Analysis based on model confidence sets

To verify whether we are able to statistically distinguish parameter-driven models from

observation-driven models, we continue with an analysis based on model confidence sets

(MCS) as recently proposed by Hansen, Lunde, and Nason (2011). The design of a

MCS is such that it contains the best model in terms of a chosen loss function with a

certain level of confidence.

We have constructed the model confidence sets as follows. We consider forecast

samples of length 100, 250, 500, 1,000 and 2,000. For each sample, we construct a 90%

model confidence set based on the MSE criterion. We compute the MSE loss function

based on the true parameters as an infeasible benchmark. We then evaluate the loss

function using the generated time series as in any empirical application. For the count,

intensity and duration models, we simply use the observations yt. For the volatility and

copula models, we assume the presence of a realised measure. The realised measure

is Λt(αt + εt) − ξt, where εt ∼ N(0, σ2
ε ) and ξt is a bias correction. We choose σ2

ε to

be approximately half of the prediction variance for αt under the state space model
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DGP. We report the proportion of samples in which the state space, GAS and ACP

models appear in the model confidence set. We base the comparison on the robust

GAS models when applicable.

Tables 6, 7, 8, and 9 display the results. For the state space DGPs in Tables 6 and

8, We find that it is hard to identify the correct specification in practice, even when we

assume that the true parameters are known. For all models, the number of times that

GAS models are present in the MCS is almost as high as the number of times that the

correctly specified state space models are present. The ability of MCS to distinguish

between the two alternatives is better for the two copula models. However, even in these

cases the GAS models are in the MCS at least 60% of time for sample sizes of 2,000

observations. Table 6 also shows that even though the ACP specifications perform less

well, the MCS also has difficulty in excluding the ACP models for the count, intensity,

duration and volatility DGPs. In the cases of the copula densities, the ACP forecasts

frequently drop out from the MCS with a sufficient number of observations.

When the GAS model is the DGP, the distinction between the feasible and infea-

sible model confidence sets becomes important. In Table 7 the MCS is based on the

true parameters and we observe that MCS is able to single out the correct specification

when the sample size increases. On the other hand, the feasible MCS in Table 9 has

satisfactory power only for the copula models. We conclude that the observed differ-

ences in MSE for forecasting parameters and observations will typically be statistically

insignificant. Nevertheless, we do find that the GAS forecasts are in all situations

satisfactory and robust to model misspecification.

5.4 Multi-step forecasting

We extend our analysis by considering whether our findings of Section 5.2 also hold

for multi-step forecasting. We directly compare the estimates for the unconditional

mean of θt with the true values implied by Table 3. The unconditional mean is 1.329

for the count, intensity, duration and volatility models and 0.441 for the copula mod-

els, while the unconditional variances are 1.35 and 0.038, respectively. We base the

analysis on the estimation results in Section 5.2, so that our sample of unconditional

predictions contains 1,000 observations for each model. We calculate the unconditional

mean estimates for the copula and GAS models by simulation. GAS and ACP mod-
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els sometimes lead to outliers because of their misspecification. We therefore exclude

cases in which the estimated persistence for either of these models is higher than 0.997.

We observe this problem in up to 0.8% and 5% of estimations for the GAS and ACP

models, respectively.

Table 10 reports the mean squared errors for the unconditional mean estimates

and the unconditional forecasts. We define the latter as the sum of the MSE of the

unconditional mean estimates and the unconditional variance of θt. We report the un-

conditional forecasting MSE as a ratio, with the correct specification as the benchmark.

The results show that the GAS models are able estimate the unconditional means of

the time-varying parameters almost as accurately as the correct specifications. The

ACP models, by contrast, seem to be less precise. This difference in performance is

primarily due to fact that the ACP models do not allow for a parameter transformation,

making the estimates more sensitive to extreme realisations.

6 Conclusion

We have studied the forecasting performance of three different classes of time-varying

parameter models. We have considered nonlinear non-Gaussian state space models

as representatives of parameter-driven models, generalised autoregressive score (GAS)

models as flexible representatives of observation-driven models, and autoregressive con-

ditional parameter (ACP) models such as the well-known GARCH and autoregressive

conditional duration models. Our results are applicable to a large range of specifica-

tions for count, intensity, duration, volatility, and dependence models.

The state space and GAS specifications lead to similar predictive performances if

the data generating process (DGP) is the state space model. This holds particularly if

the observation density in the GAS specification is sufficiently flexible to approximate

the conditional distribution implied by the state space model. If the DGP is the GAS

model, the forecasting performance of state space models sometimes decrease compared

to those of GAS models. We extend our analysis by considering model confidence sets.

Even when considering large samples, the ability of model confidence sets to single out

the correct specifications is low. For example, when the state space model is the DGP,

we observe that the GAS specification is part of the 90% model confidence set in at

least 60% of samples of size 2,000.
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Table 10: Unconditional Mean results for the State Space DGPs.
We draw 1, 000 realisations of time series length n = 2, 000 for the state space DGPs

of Table 3. We estimate the correct specification, a robust GAS model (column 1, only

for some DGPs), a GAS model based on the same observation density as the DGP

(column 2), a robust autoregressive conditional parameter (ACP) specification (column

1, only for some DGPs), and an ACP model based on the same observation density as

the DGP (column 2). The GAS and ACP updates are in Table 2. The robust GAS

models are the mixture models of Section 3 for the exponential, gamma and Weibull

densities and the Student’s t GAS model for the volatility model. We use estimated

parameters to compute the unconditional mean estimates for θt (or θtk and θtΓ(1+1/k)

for the gamma and Weibull models respectively, as we are interested in the mean of

these distributions). The table reports the mean squared errors for the unconditional

mean estimates and the unconditional forecasts. We define the latter as the sum of the

MSE of the unconditional mean estimates and the unconditional variance of θt. We

report the unconditional forecasting MSE as a ratio.

Model Distribution GAS ACP
Type State Space (1) (2) (1) (2)

Relative unconditional mean-square error
Count Poisson 1.000 — 0.997 — 1.002
Count Neg. Binomial 1.000 — 1.004 — 1.044
Intensity Exponential 1.000 1.004 1.023 1.129 1.210
Duration Gamma 1.000 1.018 1.009 1.403 1.512
Duration Weibull 1.000 1.054 1.004 1.567 1.185
Volatility Gaussian 1.000 1.004 1.000 1.245 1.194
Volatility Student’s t 1.000 — 1.002 — 1.369
Copula Gaussian 1.000 — 1.001 — 1.010
Copula Student’s t 1.000 — 1.001 — 1.189

Mean-square error for the unconditional mean
Count Poisson 0.058 — 0.055 — 0.061
Count Neg. Binomial 0.056 — 0.061 — 0.118
Intensity Exponential 0.055 0.062 0.088 0.236 0.350
Duration Gamma 0.127 0.154 0.140 0.722 0.883
Duration Weibull 0.048 0.123 0.053 0.841 0.307
Volatility Gaussian 0.059 0.065 0.059 0.405 0.333
Volatility Student’s t 0.058 — 0.061 — 0.578
Copula Gaussian 0.002 — 0.002 — 0.002
Copula Student’s t 0.002 — 0.002 — 0.010
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We conclude that GAS models provide a competitive alternative to state space

models from a forecasting perspective. Even though the GAS models perform slightly

worse if the true DGP is based on a state space model, they seem to be more robust

to model misspecification. The practical advantage of this finding stems from the fact

that the likelihood function for the GAS model is available in closed-form, such that

the analysis of GAS models does not require the use of simulation methods.

We also have established that GAS models often lead to important forecasting gains

over ACP models, including GARCH and dynamic conditional correlation models.

ACP models are typically intuitively based on moment conditions derived from the

conditional distribution of the observations. However, our results show that they can

miss key information about the observation density when updating the time-varying

parameters. Our evidence therefore shows that GAS models are an useful new tool for

forecasting.
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A Numerically Accelerated Importance Sampling

We represent the Gaussian importance density as

g(α, y;ψ) =
n∏
t=1

g(yt|αt;ψ)g(αt|αt−1;ψ), (A.1)

where g(αt|αt−1;ψ) is the Gaussian density for αt as implied by (1) and

g(yt|αt;ψ) = exp

{
at + b′t αt −

1

2
α′tCt αt

}
, (A.2)

with at, bt and Ct defined as functions of the data vector y and the parameter vector

ψ, for t = 1, . . . , n. The constants a1, . . . , an ensure that g(α, y;ψ) integrates to one.

The set of importance sampling parameters is

χ = {b1, . . . , bn, C1, . . . , Cn}. (A.3)

Following Shephard and Pitt (1997), the importance density (A.2) is equivalent to

the density function associated with observation y∗t = C−1
t bt and the linear Gaussian
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observation equation

y∗t = αt + εt, εt ∼ N(0, C−1
t ), t = 1, . . . , n. (A.4)

The importance sampling algorithm is then based on standard linear state space

methods. de Jong and Shephard (1995) and Durbin and Koopman (2002) have de-

veloped simulation smoothing methods for sampling α from g(α|y∗;ψ) in a computa-

tionally efficient way. The Kalman filter calculates g(y∗;ψ) via its evaluation of the

likelihood function for the linear state space model (A.4).

The choice of importance parameters in χ determines the variance of the likeli-

hood estimate (24). Following Richard and Zhang (2007) and Koopman, Lucas, and

Scharth (2011), we obtain an efficient set of importance parameters χt = {bt, Ct} via

the (approximate) variance minimisation problem

min
χt

∫
λ2(αt, yt;ψ)ω(αt, yt;ψ)g(αt|y;ψ) dαt (A.5)

where ω(αt, yt;ψ) = p(yt|αt;ψ) / g(yt|αt;ψ) and λ(αt, yt;ψ) = log p(yt|αt;ψ)−log g(yt|αt;ψ)−
λ0t, for t = 1, . . . , n, where λ0t is the normalising constant.

For a given set of values in χ = χ+ =
{
b+

1 , . . . , b
+
n , C

+
1 , . . . , C

+
n

}
of (A.3), we have

that the smoothed importance density g(αt|y;ψ) = g(αt|y∗;ψ) based on the linear

Gaussian model (A.4) is given by

g(αt|y∗;ψ) = N(α̂t , Vt) = exp

{
−1

2
V −1
t (αt − α̂t)2

}
/
√

2π Vt, (A.6)

where we compute α̂t and Vt by KFS methods applied to the importance model (A.4)

for y∗t = (C+
t )−1b+

t .

For χ = χ+, we evaluate the integral in (A.5) by means of a Gauss-Hermite quadra-

ture with M = 30 abscissae zj and associated weights h(zj) with j = 1, . . . ,M . The

required inputs are available in standard computational packages. We express the

minimisation in (A.5) as

min
χt

M∑
j=1

λ2(α̃tj, yt;ψ)wtj, wtj = g(α̃tj|y∗;ψ)ω∗(α̃tj, yt;ψ)h(zj)e
z2j , (A.7)
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where α̃tj = α̂t + V
1/2
t zj, for j = 1, . . . ,M . It follows from (A.6) that

g(α̃tj|y∗;ψ) = exp

{
−1

2
z2
j

}
/
√

2π, t = 1, . . . , n.

The minimisation (A.7) takes place via an iterative method. For a given χ = χ+, we

obtain α̂t and Vt from the KFS applied to (A.4), for t = 1, . . . , n. Minimisation (A.7) for

a scalar α̃tj reduces to weighted least squares computations, for each t, with dependent

variable p(yt|α̃tj;ψ), explanatory variables α̃tj, α̃
2
tj (including a constant) and weights

wtj. We obtain the minimum in (A.7) by setting χt = {bt, Ct} equal to the least

squares estimates associated with explanatory variables α̃tj and α̃2
tj, respectively. The

new value for χt becomes χ+
t in the next iteration. The iterative procedure terminates

after convergence.

B Forecasting for the parameter-driven models

We now provide the details on how we calculate the prediction

E(θt+1|y;ψ) =

∫
Λ(αt+1)p(αt+1|y1, . . . , yt)dαt+1, (B.1)

for the state space model specified by (1) and (2) and where the conditional density

p(αt+1|y1, . . . , yn) is not available in closed-form.

We follow a Monte Carlo approach based on the importance sampling techniques

we have discussed in Section 4. We rewrite (B.1) as

E(θt+1|y;ψ) =

∫
E(Λ(αt+1)|αt)p(αt|y1, . . . , yt)dαt, (B.2)

where we can typically calculate E(Λ(αt+1)|αt) analytically. To simplify the notation

we define f(αt) = E(Λ(αt+1)|αt) and f̄ = E(θt+1|y;ψ). By focusing on f(αt), we are

able to obtain an efficient Rao-Blackwellised estimate of f̄ without the need to simulate

αt+1 under the importance density.

Let α′ = (α′1 , . . . , α
′
t) and y′ = (y′1 , . . . , y

′
t). Durbin and Koopman (2001), among

others, show that by considering an importance density g(α|y;ψ), we can estimate f̄
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by exploiting the fact that

f̄ =

∫
f(αt)

p(α|y;ψ)

g(α|y;ψ)
g(α|y;ψ)dα =

Eg
[
f(αt)

p(α,y;ψ)
g(α|y;Ψ)

]
Eg
[
p(α,y;ψ)
g(α|y;ψ)

] . (B.3)

We estimate f̄ by drawing S trajectories α(1) , . . . , α(S) from the efficient impor-

tance density g(α|y;ψ) of Appendix A and computing

f̂ =
S∑
i=1

f
(
α

(s)
t

)
ωs /

S∑
i=1

ωs, (B.4)

where he have defined ωs in (24).

Two strategies allow us to improve the efficiency of f̂ . First, we use antithetic

variables for variance reduction; see for example Durbin and Koopman (2002). Second,

we note that observations far in the past add little or no information about the current

state αt, but contribute to the variance of the importance weights ωs. We therefore

implement the steps above for a shorter sample of recent observations (we use the most

recent 250 observations in Section 5).

For the Gaussian and Student’s t copula models, no analytical expression for the

expectation E(Λ(αt+1)|αt) is available for our choice of transformation Λ(·). Hence, we

use a second order Taylor approximation of Λ(αt+1) around α̂t+1 = E(αt+1|αt). We

have that

E(Λ(αt+1)|αt) ≈ E
(

Λ(α̂t+1) + Λ′(α̂t+1)(αt+1 − α̂t+1) +
Λ′′(α̂t+1)

2
(αt+1 − α̂t+1)2

∣∣∣∣ αt)
= Λ(α̂t+1) +

Λ′′(α̂t+1)

2
Var(αn+1 | αt)

= Λ(α̂t+1) +
Λ′′(α̂t+1)

2
σ2
η,t.

(B.5)
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