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Abstract

We study a Bayesian approach to recovering the initial condition for the heat equation
from noisy observations of the solution at a later time. We consider a class of prior distri-
butions indexed by a parameter quantifying ‘smoothness’ and show that the corresponding
posterior distributions contract around the true parameter at a rate that depends on the
smoothness of the true initial condition and the smoothness and scale of the prior. Correct
combinations of these characteristics lead to the optimal minimax rate. One type of priors
leads to a rate-adaptive Bayesian procedure. The frequentist coverage of credible sets is
shown to depend on the combination of the prior and true parameter as well, with smoother
priors leading to zero coverage and rougher priors to (extremely) conservative results. In the
latter case credible sets are much larger than frequentist confidence sets, in that the ratio
of diameters diverges to infinity. The results are numerically illustrated by a simulated data
example.

1 Introduction

Suppose a differential equation describes the evolution of some feature of a system (e.g., heat
conduction), depending on its initial value (at time t = 0). We observe the feature at time T > 0,
in the presence of noise or measurement errors, and the aim is to recover the initial condition.
Inverse problems of this type are often ill-posed in the sense that the solution operator of the
differential equation, which maps the function describing the initial state to the function that
describes the state at the later time T > 0 at which we observe the system, does typically
not have a well-behaved, continuous inverse. This means that in many cases some form of
regularization is necessary to solve the inverse problem and to deal with the noise.

In this paper we study a Bayesian approach to this problem for the particular example of
recovering the initial condition for the heat equation. Specifically, we assume we have noisy
observations of the solution u to the Dirichlet problem for the heat equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(x, 0) = µ(x), u(0, t) = u(1, t) = 0, (1.1)

where u is defined on [0, 1]× [0, T ] and the function µ ∈ L2[0, 1] satisfies µ(0) = µ(1) = 0. The
solution to (1.1) is given by

u(x, t) =
√
2

∞∑
i=1

µie
−i2π2t sin(iπx),

where (µi) are the coordinates of µ in the basis ei =
√
2 sin(iπx), for i ≥ 1. In other words, it

holds that u(·, T ) = Kµ, for K the linear operator on L2[0, 1] that is diagonalized by the basis
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(ei) and that has corresponding eigenvalues κi = exp(−i2π2T ), for i ≥ 1. We assume we observe
the solution Kµ in white noise of intensity 1/n. By expanding in the basis (ei) this is equivalent
to observing the sequence of noisy, transformed Fourier coefficients Y = (Y1, Y2, . . .) satisfying

Yi = κiµi +
1√
n
Zi, i = 1, 2, . . . , (1.2)

for (µi) and (κi) as above, and Z1, Z2, . . . independent, standard normal random variables. The
aim is to recover the coefficients µi, or equivalently, the initial condition µ =

∑∞
i=1 µiei, under

the assumption that the signal-to-noise ratio tends to infinity (so n → ∞).
This heat conduction inverse problem has been studied in frequentist literature (see, e.g.,

Bissantz and Holzmann, 2008; Cavalier, 2008, 2011; Golubev and Khas′minskĭı, 1999; Mair, 1994;
Mair and Ruymgaart, 1996) and has also been addressed in Bayesian framework (with additional
assumptions on the noise), cf. Stuart (2010). For more background on how this backward heat
conduction problem arises in practical problems, see for instance Beck et al. (2005) or Engl et al.
(1996), and the references therein. Since the κi decay in a sub-Gaussian manner, the estimation
of µ is very hard in general. It is well known for instance that the minimax rate of estimation for
µ in a Sobolev ball of regularity β (see Sec. 1.1) relative to the ℓ2-loss is only (log n)−β/2. This
rate is attained by various methods, including generalized Tikhonov regularization and spectral
cut-off (Bissantz and Holzmann, 2008; Mair, 1994; Mair and Ruymgaart, 1996; Golubev and
Khas′minskĭı, 1999).

Convergence rates for Bayesian methods for problems like (1.2) have only been studied for
the case that κi decays like a power of i, see Knapik et al. (2011). In this paper, like in Knapik
et al. (2011), we put product priors of the form

Π =

∞⊗
i=1

N(0, λi) (1.3)

on the sequence (µi) and study the corresponding sequence of posterior distributions. The results
we obtain are different from the ones in Knapik et al. (2011) in a number of ways however. First
of all, it is in this case not true that to obtain optimal contraction rates for the posterior, we
need to match the regularities of the true sequence µ0 and the prior exactly. Any degree of
oversmoothing will do as well. Moreover, if the prior variances λi are chosen sub-Gaussian,
then we obtain the optimal rate (logn)−β/2 for any β-regular µ0, i.e., we obtain a rate-adaptive
procedure. Unfortunately however, these very smooth prior behave badly from another point
of view. We show that asymptotically, the frequentist coverage of credible sets based on these
priors is 0 for a very large class of true µ0’s. As in Knapik et al. (2011) we see that asymptotic
coverage 1 is obtained when the prior is less regular than the truth. The radius of a credible set
is in that case however of a strictly larger order than the radius of the corresponding frequentist
credible set, which is another difference with the findings in Knapik et al. (2011) for polynomial
κi.

These statements are made precise and are refined to include the possibility of rescaling the
priors in Sec. 2. On a qualitative level, the conclusion of the results must be that in the severely
ill-posed case that we study in this paper it is advisable to use a prior that is slightly less regular
than the truth, just as in the mildly ill-posed case of Knapik et al. (2011). Unfortunately,
the corresponding Bayesian credible sets can be very large in the present setting and hence of
limited use. The results in Sec. 2 all deal with the recovery of the full parameter µ. In Sec. 3 we
derive the analogous results for the problem of estimating linear functionals of µ. The results
are numerically illustrated in Sec. 4. Sec. 5 contains proofs of the results presented in Secs. 2
and 3. Auxiliary lemmas are presented in Sec. 6.
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1.1 Notation

For β > 0, the Sobolev norm ∥µ∥β and the ℓ2-norm ∥µ∥ of an element µ ∈ ℓ2 are defined by

∥µ∥2β =

∞∑
i=1

µ2
i i

2β , ∥µ∥2 =
∞∑
i=1

µ2
i ,

and the corresponding Sobolev space by Sβ = {µ ∈ ℓ2 : ∥µ∥β < ∞}.
For two sequences (an) and (bn) of numbers, an ≍ bn means that |an/bn| is bounded away

from zero and infinity as n → ∞, an . bn means that an/bn is bounded, an ∼ bn means that
an/bn → 1 as n → ∞, and an ≪ bn means that an/bn → 0 as n → ∞. For two real numbers a
and b, we denote by a ∨ b their maximum, and by a ∧ b their minimum.

2 Recovering the full parameter

Under the model (1.2) and the prior (1.3) the coordinates (µ0,i, Yi) of the vector (µ0, Y ) are
independent, and hence the conditional distribution of µ0 given Y factorizes over the coordinates
as well. Thus the computation of the posterior distribution reduces to countably many posterior
computations in conjugate normal models. It is straightforward to verify that the posterior
distribution Πn( · | Y ) is given by

Πn( · | Y ) =

∞⊗
i=1

N

(
nλiκi

1 + nλiκ2i
Yi,

λi

1 + nλiκ2i

)
. (2.1)

Our first theorem shows that the posterior contracts as n → ∞ to the true parameter at
a rate εn and quantifies how this rate depends on the behavior of the sequence (λi) of prior
variances and the regularity β of the true parameter µ0. We say the posterior contracts around
µ0 at the rate εn if

Eµ0Πn(µ : ∥µ− µ0∥ ≤ Mnεn | Y ) → 0

for every Mn → ∞, where the expectation is under the true model governed by the parameter
µ0.

Theorem 2.1 Suppose the true parameter µ0 belongs to Sβ for β > 0.
If λi = τ2ni

−1−2α for some α > 0 and τn > 0 such that nτ2n → ∞, then the posterior contracts
around µ0 at the rate

εn =
(
log(nτ2n)

)−β/2
+ τn

(
log(nτ2n)

)−α/2
. (2.2)

The rate is uniform over µ0 in balls in Sβ. In particular:

(i) If τn ≡ 1, then εn = (log n)−(β∧α)/2.

(ii) If n−1/2+δ . τn .
(
log n

)(α−β)/2
, for some δ > 0, then εn =

(
log n

)−β/2
.

If λi = e−αi2 for some α > 0 then the posterior contracts around µ0 at the rate

εn =
(
log n

)−β/2
. (2.3)

The rate is uniform over µ0 in balls in Sβ.

We think of the parameters β and α as the regularity of the true parameter µ0 and the prior,
respectively. The first is validated by the fact that in the heat equation case (ei) is the (sine)
Fourier basis of L2[0, 1]. Therefore β quantifies the smoothness of µ0 in Sobolev sense. In case
of the polynomial decay of the variances of the prior (later referred to as the polynomial prior),
the parameter α is also closely related to Sobolev regularity.
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The minimax rate of convergence over a Sobolev ball Sβ is of the order
(
log n

)−β/2
. Now

consider the case λi = τ2ni
−1−2α. By statement (i) of the theorem the posterior contracts at the

optimal minimax rate if the regularity of the prior is at least the regularity of the truth (α ≥ β)
and the scale τn is fixed. Alternatively, the optimal rate is also attained by appropriately scaling
a prior of any regularity. Note that if α ≥ β scaling is redundant. The theorem shows that
‘correct’ specification of the prior regularity gives the optimal rate. In contrast to Knapik et al.
(2011) however, the regularity of the prior does not have to match exactly the regularity of the
truth. Moreover, even though rough priors still need to be scaled to give the optimal rate, there
is no restriction on the ‘roughness’.

The second assertion of the theorem shows that for very smooth priors (where we take
λi = e−αi2) the contraction rate is always optimal. Since the prior does not depend on the
unknown regularity β, the procedure is rate-adaptive in this case.

Both choices of priors lead to the conclusion that oversmoothing yields the optimal rate,
and this has been noted also in the frequentist literature (see Mair, 1994). A fully adaptive
frequentist method is presented in Bissantz and Holzmann (2008), and in both situations the
optimal performance is caused by the dominating bias. However, in Bayesian inference one often
takes the spread in the posterior distribution as a quantification of uncertainty. If λi = e−αi2

this spread is much smaller than the minimax rate. To understand the implications, we next
consider the frequentist coverage of credible sets. As the posterior is Gaussian, it is natural to
center a credible region at the posterior mean. Different shapes of such a set could be considered,
but the natural counterpart of the preceding theorem is to consider balls. The study of linear
functionals in the next section makes it possible to consider pointwise credible bands as well.

A credible ball centered at the posterior mean µ̂, where µ̂i = nλiκi(1 + nλiκ
2
i )

−1Yi, takes
the form

µ̂+B(rn,γ) :=
{
µ ∈ ℓ2 : ∥µ− µ̂∥ < rn,γ

}
, (2.4)

where B(r) denotes an ℓ2-ball of radius r around 0 and the radius rn,γ is determined such that

Πn

(
µ̂+B(rn,γ) | Y

)
= 1− γ. (2.5)

Because the spread of the posterior is not dependent on the data, neither is the radius rn,γ . The
frequentist coverage or confidence of the set (2.4) is, by definition,

Pµ0

(
µ0 ∈ µ̂+B(rn,γ)

)
, (2.6)

where under the probability measure Pµ0 the variable Y follows (1.2) with µ = µ0. We shall
consider the coverage as n → ∞ for fixed µ0, uniformly in Sobolev balls, and also along sequences
µn
0 that change with n.
The following theorem shows that the relation of the coverage to the credibility level 1− γ

is mediated by the regularity of the true µ0 and the two parameters controlling the regularity
of the prior—α and the scaling τn—for both types of priors. For further insight, the credible
region is also compared to the ‘correct’ frequentist confidence ball µ̂ + B(r̃n,γ) chosen so that
the probability in (2.6) is exactly equal to 1− γ.

Theorem 2.2 Suppose the true parameter µ0 belongs to Sβ for β > 0.
If λi = τ2ni

−1−2α for some α > 0 and τn > 0 such that nτ2n → ∞, then asymptotic coverage
of the credible region (2.4) is

(i) 1, uniformly in µ0 with ∥µ0∥β ≤ 1, if τn ≫
(
log n

)(α−β)/2
; in this case rn,γ/r̃n,γ → ∞.

(ii) 1, uniformly in µ0 with ∥µ0∥β ≤ r for r small enough, if τn ≍
(
logn

)(α−β)/2
;

1, for every fixed µ0 ∈ Sβ, if τn ≍
(
log n

)(α−β)/2
.

(iii) 0, along some µn
0 with supn

∥∥µn
0

∥∥
β
< ∞, if τn .

(
log n

)(α−β)/2
.
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If λi = e−αi2 for some α > 0, then the asymptotic coverage of the credible region (2.4) is

(iv) 0, for every µ0 such that |µ0,i| & e−ci2/2 for some c < α.

If τn ≡ 1, then the cases (i), (ii), and (iii) arise if α < β, α = β and α ≥ β, respectively. If
α > β in case (iii) the sequence µn

0 can then be chosen fixed.

The easiest interpretation of the theorem is in the situation without scaling (τn ≡ 1). Then
oversmoothing the prior (case (iii): polynomial prior with α > β, and case (iv): exponential
prior) has disastrous consequences for the coverage of the credible sets, whereas undersmoothing
(case (i): polynomial prior with α < β) leads to (very) conservative sets. Choosing a prior of
correct regularity (case (ii) and (iii): polynomial prior with α = β) gives mixed results, depending
on the norm of the true µ0. These conclusions are analogous to the ones that can be drawn from
Theorem 4.2 in Knapik et al. (2011) for the mildly ill-posed case.

There is one crucial difference, namely the radius of the conservative sets in case (i) are
not of the correct order of magnitude. It means that the radius r̃n,γ of the ‘correct’ frequentist
confidence ball is of strictly smaller order than the radius of the Bayesian credible ball.

By Theorem 2.1 the optimal contraction rate is obtained by smooth priors. Combining
the two theorems leads to the conclusion that polynomial priors that slightly undersmooth the
truth might be preferable. They attain a nearly optimal rate of contraction and the spread of
their posterior gives a reasonable sense of uncertainty. Slightly undersmoothing is only possible
however if an assumption about the regularity of the unknown true function is made. It is an
important open problem to devise methods that achieve this automatically, without knowledge
about the true regularity. Exponential priors, although adaptive and rate-optimal, often lead to
very bad pointwise credible bands.

3 Recovering linear functionals of the parameter

In this section we consider the posterior distribution of a linear functional Lµ of the parameter.
In the Bayesian setting we consider measurable linear functionals relative to the prior, covering
the class of continuous functionals, but also certain discontinuous functionals (for instance point
evaluation), following the definition of Skorohod (1974). Let (li) ∈ R∞ satisfy

∑∞
i=1 l

2
i λi < ∞.

Then it can be shown that Lµ := limn→∞
∑n

i=1 liµi exists for all µ = (µi) in a (measurable)
subspace of ℓ2 with

⊗∞
i=1N(0, λi)-probability one. We define Lµ = 0 if the limit does not exist.

The posterior of the linear functional Lµ can be obtained from (2.1) and the definition given
above (see also Knapik et al., 2011)

Πn(µ : Lµ ∈ · | Y ) = N

( ∞∑
i=1

nliλiκi
1 + nλiκ2i

Yi,
∞∑
i=1

l2i λi

1 + nλiκ2i

)
. (3.1)

We measure the smoothness of the functional L by the size of the coefficients li, as i → ∞. It
is natural to assume that the sequence (li) is in the Sobolev space Sq for some q, but also more
controlled behavior will be assumed in following theorems. We say that the marginal posterior
of Lµ contracts around Lµ0 at the rate εn if

Eµ0Πn(µ : |Lµ− Lµ0| ≤ Mnεn | Y ) → 0

as n → ∞, for every sequence Mn → ∞.

Theorem 3.1 Suppose the true parameter µ0 belongs to Sβ for β > 0.
If λi = τ2ni

−1−2α for some α > 0 and τn > 0 such that nτ2n → ∞, and the representer (li) of
the linear functional L is contained in Sq, or li . i−q−1/2 for some q ≥ −β, then the marginal
posterior of Lµ contracts around Lµ0 at the rate

εn =
(
log(nτ2n)

)−(β+q)/2
+ τn

(
log(nτ2n)

)−(1/2+α+q)/2
. (3.2)
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The rate is uniform over µ0 in balls in Sβ. In particular:

(i) If τn ≡ 1, then εn = (log n)−(β∧(1/2+α)+q)/2.

(ii) If n−1/2+δ . τn .
(
log n

)(1/2+α−β)/2
, for some δ > 0, then εn =

(
log n

)−(β+q)/2
.

If λi = e−αi2 for some α > 0 then the marginal posterior of Lµ contracts around Lµ0 at the
rate

εn =
(
log n

)−(β+q)/2
. (3.3)

The rate is uniform over µ0 in balls in Sβ.

The minimax rate over a ball in the Sobolev space Sβ is known to be bounded above by(
log n

)−(β+q)/2
(for the case of q = −1/2 see Goldenshluger, 1999, and for general q in a closely

related model see Butucea and Comte, 2009). In view of Theorem 2.1, it is not surprising
that exponential priors yield this optimal rate. In case of polynomial prior this rate is attained
without scaling if and only if the prior smoothness α is greater than or equal to β minus 1/2.
Here we observe a similar phenomenon as in Knapik et al. (2011), where the ‘loss’ in smoothness
by 1/2 is discussed. The regularity of the parameter in the Sobolev scale is not the appropriate
type of regularity to consider for estimating a linear functional Lµ. If the polynomial prior is
too rough, then the minimax rate may still be attained by scaling the prior. The upper bound
on the scaling is the same as in the global case (see Theorem 2.1.(ii)) after decreasing β by 1/2.
So the ‘loss in regularity’ persists in the scaling.

Because the posterior distribution for the linear functional Lµ is the one-dimensional normal
distribution N(L̂µ, s2n), where s2n is the posterior variance in (3.1), the natural credible interval

for Lµ has endpoints L̂µ± zγ/2sn, for zγ the (lower) standard normal γ-quantile. The coverage
of this interval is

Pµ0

(
L̂µ+ zγ/2sn ≤ Lµ0 ≤ L̂µ− zγ/2sn

)
,

where Y follows (1.2) with µ = µ0. In the following theorem we restrict (li) to sequences that
behave polynomially.

Theorem 3.2 Suppose the true parameter µ0 belongs to Sβ for β > 0.
If λi = τ2ni

−1−2α for some α > 0 and τn > 0 such that nτ2n → ∞, and |li| ≍ i−q−1/2, then

the asymptotic coverage of the interval L̂µ± zγ/2sn is:

(i) 1, uniformly in µ0 such that ∥µ0∥β ≤ 1 if τn ≫
(
log n

)(1/2+α−β)/2
,

(ii) 1, uniformly in µ0 with ∥µ0∥β ≤ r for r small enough, if τn ≍
(
logn

)(1/2+α−β)/2
;

1, for every fixed µ0 ∈ Sβ, if τn ≍
(
log n

)(1/2+α−β)/2
,

(iii) 0, along some µn
0 with supn

∥∥µn
0

∥∥
β
< ∞, if τn .

(
log n

)(1/2+α−β)/2
.

If λi = e−αi2 for some α > 0, then the asymptotic coverage of the interval L̂µ± zγ/2sn is:

(iv) 0, for every µ0 such that µ0,ili & e−ci2/2i−q−1/2 for some c < α.

In case (iii) the sequence µn
0 can be taken a fixed element µ0 in Sβ if τn ≤ τ̃n

(
log n)−δ for some

δ > 0. Furthermore, if τn ≡ 1, then the cases (i), (ii) and (iii) arise if α < β−1/2, α = β−1/2
and α ≥ β − 1/2, respectively. If α > β − 1/2 in case (iii) the sequence µn

0 can then be chosen
fixed.

6



Similarly as in the problem of full recovery of the parameter µ oversmoothing leads to
coverage 0, while undersmoothing gives (extremely) conservative intervals. In the case of a
polynomial prior without scaling the cut-off for under- or oversmoothing is at α = β − 1/2,
while the cut-off for scaling is at the optimal rate τ̃n. Exponential priors are bad even for very
smooth µ0, and the asymptotic coverage in this case is always 0. It should be noted that too
much undersmoothing is also undesirable, as it leads to very wide credible intervals, and may
cause that

∑∞
i=1 l

2
i λi is no longer finite.

In contrast with the analogous theorem in Knapik et al. (2011), the conservativeness in case
of undersmoothing is extreme, as the coverage is 1. Since it holds for every linear functional that
can be considered in this setting, we do not have a Bernstein–von Mises theorem. The linear
functionals considered in this section are not smooth enough to cancel the ill-posedness of the
problem (cf. discussion after Theorem 5.4 in Knapik et al., 2011).

4 Simulation example

To illustrate our results with simulated data we fix a time T = 0.1 and a true function µ0,
which we expand as µ0 =

∑∞
i=1 µ0,iei in the basis (ei). The simulated data are the noisy and

transformed coefficients

Yi = κiµ0,i +
1√
n
Zi.

The (marginal) posterior distribution for the function µ at a point x is obtained by expanding
µ(x) =

∑∞
i=1 µiei(x), and applying the framework of linear functionals Lµ =

∑∞
i=1 liµi with

li = ei(x) (so li . 1 and q = −1/2). Recall

µ(x) | Y ∼ N

( ∞∑
i=1

nλiκiei(x)

1 + nλiκ2i
Yi,

∞∑
i=1

ei(x)
2λi

1 + nλiκ2i

)
.

We obtained (marginal) posterior pointwise credible bands by computing for every x a central
95% interval for the normal distribution on the right side of the above display. We considered
both types of priors.

Figure 1 illustrates these bands for n = 104 and the polynomial prior. In every of 10 panels
in the figure the black curve represents the function µ0, defined by

µ0(x) = 4x(x− 1)(8x− 5), µ0,i =
8
√
2(13 + 11(−1)i)

π3i3
, (4.1)

where µ0,i are the coefficients relative to ei, thus µ0 ∈ Sβ for every β < 2.5. The 10 panels
represent 10 independent realizations of the data, yielding 10 different realizations of the pos-
terior mean (the red curves) and the posterior pointwise credible bands (the green curves). In
the left five panels the prior is given by λi = i−1−2α with α = 1, whereas in the right panels the
prior corresponds to α = 3. Each of the 10 panels also shows 20 realizations from the posterior
distribution. This is also valid for Figure 2, with the exponential prior, so λi = e−αi2 . In the
left panels α = 1, and in the right panels α = 5.

A comparison of the left and right panels in Figure 1 shows that the rough polynomial prior
(α = 1) is aware of the difficulty of inverse problem: it produces wide pointwise credible bands
that in (almost) all cases contain nearly the whole true curve. Figure 1 together with Figure 2
show that smooth priors (polynomial with α = 3 and both exponential priors) are overconfident:
the spread of the posterior distribution poorly reflects the imprecision of estimation. Our theo-
retical results show that the inaccurate quantification of the estimation error (by the posterior
spread) remains even as n → ∞.

The reconstruction, by the posterior mean or any other posterior quantiles, will eventually
converge to the true curve. The specification of the prior influences the speed of this convergence.
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Figure 1: Polynomial prior. Realizations of the posterior mean (red) and (marginal) posterior
credibility bands (green), and 20 draws from the posterior (dashed curves). In all ten panels
n = 104. Left 5 panels: α = 1; right 5 panels: α = 3. True curve (black) given by (4.1).
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Figure 2: Exponential prior. Realizations of the posterior mean (red) and (marginal) posterior
credibility bands (green), and 20 draws from the posterior (dashed curves). In all ten panels
n = 104. Left 5 panels: α = 1; right 5 panels: α = 5. True curve (black) given by (4.1).
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Figure 3: Polynomial prior. Realizations of the posterior mean (red) and (marginal) posterior
credibility bands (green), and 20 draws from the posterior (dashed curves). Left 5 panels:
n = 104 and α = 0.5, 1, 2, 5, 10 (top to bottom); right 5 panels: n = 108 and α = 0.5, 1, 2, 5, 10
(top to bottom). True curve (black) given by (4.1).
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Figure 4: Exponential prior. Realizations of the posterior mean (red) and (marginal) posterior
credibility bands (green), and 20 draws from the posterior (dashed curves). Left 5 panels:
n = 104 and α = 0.5, 1, 2, 5, 10 (top to bottom); right 5 panels: n = 108 and α = 0.5, 1, 2, 5, 10
(top to bottom). True curve (black) given by (4.1).
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This is illustrated in Figures 3 and 4. Every of 10 panels in each of the figures is similarly
constructed as before, but now with n = 104 and n = 108 for the five panels on the left and
right side, respectively, and with α = 1/2, 1, 2, 5, 10 for the five panels from top to bottom
(λi = i−1−2α in Figure 3, and λi = e−αi2 in Figure 4). As discussed above, all exponential priors
give the optimal rate, but lead to bad pointwise credible bands. Also smooth polynomial priors
give the optimal rate. This can be seen in Figure 3 for n = 108 and α = 2 or 5, where pointwise
credible bands are very close to the true curve. However, for α = 5 it should be noted that the
true curve is mostly outside the pointwise credible band.

5 Proofs

5.1 Proof of Theorem 2.1

Let si,n and ti,n be such that the posterior distribution in (2.1) can be denoted by⊗∞
i=1N

(√
nti,nYi, si,n

)
. Because the posterior is Gaussian, it follows that∫

∥µ− µ0∥2 dΠn(µ | Y ) = ∥µ̂− µ0∥2 +
∞∑
i=1

si,n, (5.1)

where Y follows (1.2) with µ = µ0, and

µ̂ =

(
nλiκi

1 + nλiκ2i
Yi

)
i

=

(
nλiκ

2
iµ0,i

1 + nλiκ2i
+

√
nλiκiZi

1 + nλiκ2i

)
i

=: Eµ0 µ̂+
(√

ti,nZi

)
i
.

By Markov’s inequality the left side of (5.1) is an upper bound to M2
nε

2
nΠn

(
µ : ∥µ − µ0∥ ≥

Mnεn | Y ). Therefore, it suffices to show that the expectation under µ0 of the right side of the
display is bounded by a multiple of ε2n. The expectation of the first term is the mean square
error of the posterior mean µ̂, and can be written as the sum ∥Eµ0 µ̂ − µ0∥2 +

∑∞
i=1 ti,n of its

square bias and ‘variance’. The second term
∑∞

i=1 si,n is deterministic. If λi = τ2ni
−1−2α the

three quantities are given by:

∥Eµ0 µ̂− µ0∥2 =
∞∑
i=1

µ2
0,i

(1 + nλiκ2i )
2
=

∞∑
i=1

µ2
0,i

(1 + nτ2ni
−1−2αe−2π2Ti2)2

(5.2)

∞∑
i=1

ti,n =
∞∑
i=1

nλ2
iκ

2
i

(1 + nλiκ2i )
2
=

∞∑
i=1

nτ4ni
−2−4αe−2π2T i2

(1 + nτ2ni
−1−2αe−2π2Ti2)2

(5.3)

∞∑
i=1

si,n =

∞∑
i=1

λi

1 + nλiκ2i
=

∞∑
i=1

τ2ni
−1−2α

1 + nτ2ni
−1−2αe−2π2Ti2

. (5.4)

By Lemma 6.1 (applied with q = β, t = 0, r = 0, u = 1+2α, p = 2π2T , v = 2, and N = nτ2n)
the first term can be bounded by log(nτ2n)

−β , which accounts for the first term in the definition
of εn in (2.2). By Lemma 6.2 (applied with t = 2+ 4α, r = 2π2T , u = 1+ 2α, p = 2π2T , v = 2,

and N = nτ2n) the second expression is of the order τ2n
(
log nτ2n

)−1/2−α
. The third expression is

of the order the square of the second term in the definition of εn in (2.2), by Lemma 6.2 (applied
with t = 1 + 2α, r = 0, u = 1 + 2α, p = 2π2T , v = 1, and N = nτ2n).

The consequences (i)–(ii) follow by verification after substitution of τn as given.
In case of λi = e−αi2 , we replace i−1−2α by e−αi2 and set τn ≡ 1 in (5.2)–(5.4). We then

apply Lemma 6.1 (with q = β, t = 0, r = 0, u = 0, p = 2π2T + α, v = 2, and N = n) and

see that the first term can be bounded by
(
log n

)−β
, which accounts for the first term in the

definition of εn in (2.3). By Lemma 6.2 (applied with t = 0, r = 2α + 2π2T , u = 0, p = 2π2α,
v = 2, and N = n), and again Lemma 6.2 (applied with t = 0, r = α, u = 0, p = α + 2π2T ,
v = 1, and N = n) the latter two are of the order n−α/(α+2π2T ).
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5.2 Proof of Theorem 2.2

Because the posterior distribution is
⊗∞

i=1N(
√
nti,nYi, si,n), by (2.1), the radius rn,γ in (2.5)

satisfies P(Un < r2n,γ) = 1 − γ, for Un a random variable distributed as the square norm of an⊗∞
i=1N(0, si,n)-variable. Under (1.2) the variable µ̂ is

⊗∞
i=1N

(
(Eµ0 µ̂)i, ti,n

)
-distributed, and

thus the coverage (2.6) can be written as

P
(
∥Wn + Eµ0 µ̂− µ0∥ ≤ rn,γ

)
, (5.5)

for Wn possessing a
⊗∞

i=1N(0, ti,n)-distribution. For ease of notation let Vn = ∥Wn∥2.
The variables Un and Vn can be represented as Un =

∑∞
i=1 si,nZ

2
i and Vn =

∑∞
i=1 ti,nZ

2
i ,

for Z1, Z2, . . . independent standard normal variables, and si,n and ti,n are as in the proof of
Theorem 2.1. By Lemma 6.2 (cf. previous subsection)

EUn =

∞∑
i=1

si,n ≍ τ2n
(
lognτ2n

)−α
sdUn =

√√√√2

∞∑
i=1

s2i,n ≍ τ2n
(
log nτ2n

)−1/4−α

EVn =
∞∑
i=1

ti,n ≍ τ2n
(
log nτ2n

)−1/2−α
sdVn =

√√√√2
∞∑
i=1

t2i,n ≍ τ2n
(
log nτ2n

)−1/2−α
.

It follows that
r2n,γ ≍ τ2n

(
log nτ2n

)−α ≍ EUn ≫ EVn ≍ sdVn,

and therefore

P
(
Vn ≤ δr2n,γ

)
= P

(
Vn − EVn

sdVn
≤

δr2n,γ − EVn

sdVn

)
→ 1, (5.6)

for every δ > 0. The square norm of the bias Eµ0 µ̂ − µ0 is given in (5.2), where it was noted
that

Bn := sup
∥µ0∥β.1

∥Eµ0 µ̂− µ0∥ ≍
(
log nτ2n

)−β/2
.

The bias Bn is decreasing in τn, whereas EUn is increasing. The scaling rate τ̃n ≍
(
log n

)(α−β)/2

balances the square bias B2
n with the posterior spread EUn, and hence with r2n,γ .

Case (i). In this case Bn ≪ rn,γ . Hence P
(
∥Wn + Eµ0 µ̂ − µ0∥ ≤ rn,γ

)
≥ P

(
∥Wn∥ ≤

rn,γ − Bn

)
= P

(
Vn ≤ r2n,γ(1 + o(1))

)
→ 1, uniformly in the set of µ0 in the supremum defining

Bn. Note that r̃n,γ is such that the coverage in (5.5) is exactly 1 − γ. Since ∥Wn∥2 = Vn, we

have that r̃2n,γ is of the order B2
n + τ2n

(
log nτ2n

)−1/2−α
, so of strictly smaller order than r2n,γ , and

therefore rn,γ/r̃n,γ → ∞.
Case (ii). In this case Bn ≍ rn,γ . By the second assertion of Lemma 6.2 the bias ∥Eµ0 µ̂−µ0∥

at a fixed µ0 is of strictly smaller order than the supremum Bn. The argument of (i) shows that
the asymptotic coverage then tends to 1. The maximal bias Bn(r) over ∥µ0∥β ≤ r is of the order
rn,γ and proportional to the radius r. Thus for small enough r we have that rn,γ − Bn(r) &
rn,γ → ∞. Then P

(
∥Wn + Eµ0 µ̂− µ0∥ ≤ rn,γ

)
≥ P

(
∥Wn∥ ≤ rn,γ −Bn(r)

)
≥ P

(
Vn . r2n,γ

)
→ 1.

Case (iii). In this case Bn & rn,γ . Hence any sequence µn
0 that (nearly) attains the maximal

bias over a sufficiently large ball ∥µ0∥β ≤ r such that Bn(r) − rn,γ & rn,γ satisfies P
(
∥Wn +

Eµ0 µ̂− µ0∥ ≤ rn,γ
)
≤ P

(
∥Wn∥ ≥ Bn(r)− rn,γ

)
≤ P

(
Vn & r2n,γ

)
→ 0.

If τn ≡ 1, then Bn and rn,γ are both powers of 1/ log n and hence Bn ≫ rn,γ implies that

Bn & rn,γ
(
log n

)δ
, for some δ > 0. The preceding argument then applies for a fixed µ0 of the

form µ0,i ≍ i−1/2−β−ε, for small ε > 0, that gives a bias that is much closer than
(
log n

)δ
to Bn.

Case (iv). In the proof of Theorem 2.1, we obtained EUn ≍ EVn ≍ n−α/(α+2π2T ). It can be
shown that sdUn ≍ n−α/(α+2π2T ), so also r2n,γ ≍ n−α/(α+2π2T ). If |µ0,i| & e−ci2/2 for some c < α,
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we have

∥Eµ0 µ̂− µ0∥2 =
∞∑
i=1

µ2
0,i

(1 + nλiκ2i )
2
&

∞∑
i=1

e−ci2

(1 + ne−(α+2π2T )i2)2
≍ n−c/(α+2π2T ) ≫ n−α/(α+2π2T ),

by Lemma 6.2 (applied with t = 0, r = c, u = 0, p = α + 2π2T , v = 2, and N = n). Hence
P
(
∥Wn + Eµ0 µ̂− µ0∥ ≤ rn,γ

)
≤ P

(
Vn ≥ ∥Eµ0 µ̂− µ0∥2 − r2n,γ

)
→ 0.

5.3 Proof of Theorem 3.1

By (3.1) the posterior distribution is N(L̂µ, s2n), and hence similarly as in the proof of Theo-
rem 2.1 it suffices to show that

Eµ0 |L̂µ− Lµ0|2 + s2n = |Eµ0L̂µ− Lµ0|2 +
∞∑
i=1

l2i nλ
2
iκ

2
i

(1 + nλiκ2i )
2
+ s2n

is bounded above by a multiple of ε2n. If λi = τ2ni
−1−2α the three quantities are given by

|Eµ0L̂µ− Lµ0| =
∣∣∣∣ ∞∑
i=1

liµ0,i

1 + nλiκ2i

∣∣∣∣ ≤ ∞∑
i=1

|liµ0,i|
1 + nτ2ni

−1−2αe−2π2Ti2
(5.7)

t2n :=
∞∑
i=1

l2i nλ
2
iκ

2
i

(1 + nλiκ2i )
2
= nτ4n

∞∑
i=1

l2i i
−2−4αe−2π2Ti2

(1 + nτ2ni
−1−2αe−2π2T i2)2

(5.8)

s2n =
∞∑
i=1

l2i λi

1 + nλiκ2i
= τ2n

∞∑
i=1

l2i i
−1−2α

1 + nτ2ni
−1−2αe−2π2T i2

. (5.9)

By the Cauchy–Schwarz inequality the square of the bias (5.7) satisfies

|Eµ0L̂µ− Lµ0|2 ≤ ∥µ0∥2β
∞∑
i=1

l2i i
−2β

(1 + nτ2ni
−1−2αe−2π2Ti2)2

. (5.10)

Consider (li) ∈ Sq. By Lemma 6.1 (applied with q = q, t = 2β, r = 0, u = 1 + 2α, p = 2π2T ,
v = 2, and N = nτ2n) the right side of this display can be further bounded by ∥µ0∥2β∥l∥2q times
the square of the first term in the sum of two terms that defines εn. By Lemma 6.1 (applied
with q = q, t = 2 + 4α, r = 2π2T , u = 1 + 2α, p = 2π2T , v = 2, and N = nτ2n), and again by
Lemma 6.1 (applied with q = q, t = 1 + 2α, r = 0, u = 1 + 2α, p = 2π2T , v = 1, and N = nτ2n)
the right sides of (5.8) and (5.9) are bounded above by ∥l∥2q times the square of the second term
in the definition of εn.

Consider li . i−q−1/2. This follows the same lines as in the case of (li) ∈ Sq, except that we
use Lemma 6.2 instead of Lemma 6.1. In this case the upper bound for the standard deviation

of the posterior mean tn is of the order τn
(
log nτ2n

)−(1+α+q)/2
.

Consequences (i)–(ii) follow by substitution.
If λi = e−αi2 , then in case (li) ∈ Sq we use Lemma 6.2 (with q = q, t = 2β, r = 0, u = 0,

p = α + 2π2T , v = 2, and N = n), and Lemma 6.2 (with q = q, t = 0, r = 2α + 2π2T , u = 0,
p = α + 2π2T , v = 2, and N = n), and again Lemma 6.2 (with q = q, t = 0, r = α, u = 0,

p = α+2π2T , v = 2, and N = n) to bound (5.10) by a multiple of
(
log n

)−(β+q)
, and (5.8)–(5.9)

by a multiple of n−α/(α+2π2T )
(
log n

)−q
.

If li . i−q−1/2, we use Lemma 6.1 (with t = 1 + 2q + 2β, r = 0, u = 0, p = α + 2π2T ,
v = 2, and N = n), and Lemma 6.1 (with t = 1 + 2q, r = 2α + 2π2T , u = 0, p = α + 2π2T ,
v = 2, and N = n), and again Lemma 6.1 (with t = 1 + 2q, r = α, u = 0, p = α+ 2π2T , v = 1,

and N = n) to bound (5.10) by a multiple of
(
log n

)−(β+q)
, and (5.8)–(5.9) by a multiple of

n−α/(α+2π2T )
(
log n

)−1/2−q
.
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5.4 Proof of Theorem 3.2

Under (1.2) the variable L̂µ is N(Eµ0L̂µ, t
2
n)-distributed, for t2n given in (5.8). It follows that

the coverage can be written, with W a standard normal variable,

P
(
|Wtn + Eµ0L̂µ− Lµ0| ≤ −snzγ/2

)
. (5.11)

The bias |Eµ0L̂µ− Lµ0| and posterior spread s2n are expressed as series in (5.7) and (5.9).

Because W is centered, the coverage (5.11) is largest if the bias Eµ0L̂µ − Lµ0 is zero. It is
then at least 1− γ, because tn ≤ sn, and tends to exactly 1, because tn ≪ sn.

The supremum of the bias satisfies

Bn := sup
∥µ0∥β.1

|Eµ0L̂µ− Lµ0| ≍
(
log(nτ2n)

)−(β+q)/2
. (5.12)

The maximal bias Bn is a decreasing function of the scaling parameter τn, while the root

spread sn increases with τn. The scaling rate τ̃n =
(
log n

)(1/2+α−β)/2
in the statement of the

theorem balances Bn with sn.
Case (i). If τn ≫ τ̃n, then Bn ≪ sn. Hence the bias |Eµ0L̂µ − Lµ0| in (5.11) is negligible

relative to sn, uniformly in ∥µ0∥β . 1, and P
(
|Wtn + Eµ0L̂µ − Lµ0| ≤ −snzγ/2

)
≥ P

(
|Wtn| ≤

−snzγ/2 − |Eµ0L̂µ− Lµ0|
)
→ 1.

Case (ii). If τn ≍ τ̃n, then Bn ≍ sn. If bn = |Eµn
0
L̂µ − Lµn

0 | is the bias at a sequence
µn
0 that nearly assumes the supremum in the definition of Bn, we have that P

(
|Wtn + dbn| ≤

−snzγ/2
)
≥ P

(
|Wtn| ≤ sn|zγ/2| − dbn

)
→ 1 if d is chosen sufficiently small. This is the coverage

at the sequence dµn
0 , which is bounded in Sβ . On the other hand, using Lemma 6.3 it can be

seen that the bias at a fixed µ0 ∈ Sβ is of strictly smaller order than the supremum Bn, and
hence the coverage at a fixed µ0 is as in case (i).

Case (iii). If τn . τ̃n, then Bn & sn. If bn = |Eµn
0
L̂µ− Lµn

0 | is again the bias at a sequence
µn
0 that (nearly) attains the supremum in the definition of Bn, we we have that P

(
|Wtn+dbn| ≤

−snzγ/2
)
≤ P

(
|Wtn| ≥ dbn − sn|zγ/2|

)
→ 0 if d is chosen sufficiently large. This is the coverage

at the sequence dµn
0 , which is bounded in Sβ. By the same argument the coverage also tends

to zero for a fixed µ0 in Sβ with bias bn = |Eµ0L̂µ − Lµ0| ≫ sn ≫ tn. For this we choose
µ0,i = i−β−1/2−δ′ for some δ′ > 0. By another application of Lemma 6.2, the bias at µ0 is of the
order

∞∑
i=1

liµ0,i

1 + nτ2ni
−1−2αe−2π2Ti2

≍
∞∑
i=1

i−β−q−δ′−1

1 + nτ2ni
−1−2αe−2π2Ti2

≍
(
log(nτ2n)

)−(β+q+δ′)/2
.

Therefore if τn ≤ τ̃n
(
log n

)−δ
for some δ > 0, then Bn & sn

(
log nτ2n

)δ′′
for some δ′′ > 0, and

hence taking δ′ = δ′′ we have bn ≍ Bn

(
log(nτ2n)

)−δ′′/2 ≫ sn ≫ tn.

Case (iv). In the proof of Theorem 3.1, we obtained sn ≍ tn ≍ n−α/(α+2π2T )
(
log n

)−q
. If

µ0,ili & e−ci2/2i−q−1/2 for some c < α, we have

|Eµ0L̂µ− Lµ0| =
∣∣∣∣ ∞∑
i=1

liµ0,i

1 + nλiκ2i

∣∣∣∣ & ∞∑
i=1

e−ci2i−2q−1

(1 + ne−(α+2π2T )i2)2

≍ n−c/(α+2π2T )
(
log n

)−1/2−q ≫ n−α/(α+2π2T )
(
log n

)−1/2−q
,

by Lemma 6.2 (applied with t = 1+ 2q, r = c, u = 0, p = α+ 2π2T , v = 2, and N = n). Hence

P
(
|Wtn + Eµ0L̂µ− Lµ0| ≤ −snzγ/2

)
≤ P

(
|Wtn| ≥ |Eµ0L̂µ− Lµ0| − snzγ/2

)
→ 0.

If the scaling rate is fixed to τn ≡ 1, then it can be checked from (5.12) and the proof of
Theorem 3.1 that Bn ≪ sn, Bn ≍ sn and Bn ≫ sn in the three cases α < β − 1/2, α = β − 1/2
and α ≥ β− 1/2, respectively. In the first and third cases the maximal bias and the root spread

differ by more than a logarithmic term
(
log n

)δ
. It follows that the preceding analysis (i), (ii),

(iii) extends to this situation.
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6 Appendix

Lemma 6.1 For any q, u, v ≥ 0, t ≥ −2q, p > 0, and 0 ≤ r < vp, as N → ∞,

sup
∥ξ∥q≤1

∞∑
i=1

ξ2i i
−te−ri2

(1 +Ni−ue−pi2)v
≍ N−r/p

(
logN

)−t/2−q+ur/(2p)
.

Moreover, for every fixed ξ ∈ Sq, as N → ∞,

N r/p
(
logN

)t/2+q−ur/(2p)
∞∑
i=1

ξ2i i
−te−ri2

(1 +Ni−ue−pi2)v
→ 0.

Proof Let IN be the solution to Ni−ue−pi2 = 1. In the range i ≤ IN we have Ni−ue−pi2 ≤
1 +Ni−ue−pi2 ≤ 2Ni−ue−pi2 , while 1 ≤ 1 +Ni−ue−pi2 ≤ 2 in the range i ≥ IN . Thus

∑
i≤IN

ξ2i i
−te−ri2

(1 +Ni−ue−pi2)v
≍

∑
i≤IN

ξ2i i
2q i

uv−t−2qe(vp−r)i2

Nv
≤ ∥ξ∥2qN−r/pI

−t−2q+ur/p
N ,

since for N large enough all terms iuv−t−2qe(vp−r)i2 in this range will be dominated by
Iuv−t−2q
N e(vp−r)I2N and IN solves the equation Ni−ue−pi2 = 1. Similarly for the second range, we
have ∑

i≥IN

ξ2i i
−te−ri2

(1 +Ni−ue−pi2)v
≍

∑
i≥IN

ξ2i i
2qi−t−2qe−ri2 ≤ N−r/pI

−t−2q+ur/p
N

∑
i≥IN

ξ2i i
2q.

Lemma 6.4 yields the upper bound for the supremum.
The lower bound follows by considering the sequence (ξi) given by ξi = i−q for i ∼ IN and

ξi = 0 otherwise, showing that the supremum is bigger than N−r/p
(
logN

)−t/2−q+ur/(2p)
.

The preceding display shows that the sum over the terms i ≥ IN is

o
(
N−r/p

(
logN

)−t/2−q+ur/(2p))
. Furthermore

N r/p
(
logN

)t/2+q−ur/(2p)
∑
i≤IN

ξ2i i
−te−ri2

(1 +Ni−ue−pi2)v
≍

∑
i≤IN

ξ2i i
2q i

uv−t−2qe(vp−r)i2

NvI−t−2q
N e−rI2N

,

and this tends to zero by dominated convergence. Indeed, as noted before, for N large enough
all terms iuv−t−2qe(vp−r)i2 in the range i ≤ IN are upper bounded by Iuv−t−2q

N e(vp−r)I2N =

Nv−r/pI
−t−2q+ur/p
N , and by Lemma 6.4 Nv−r/pI

−t−2q+ur/p
N ≍ Nv−r/p

(
logN

)−t/2−q+ur/(2p) → ∞,
since v − r/p > 0. 2

Lemma 6.2 For any t, u, v ≥ 0, p > 0, and 0 ≤ r < vp, as N → ∞,

∞∑
i=1

i−te−ri2

(1 +Ni−ue−pi2)v
≍

{
N−r/p

(
logN

)−t/2+ur/(2p)
if r ̸= 0,(

logN
)−(t+1)/2

if r = 0.

Proof As in the preceding proof we split the infinite series in the sum over the terms i ≤ IN
and i ≥ IN . For the first part of the sum we get

∑
i≤IN

i−te−ri2

(1 +Ni−ue−pi2)v
≍

∑
i≤IN

iuv−te(vp−r)i2

Nv
.

Most certainly Nv · I−t
N e−rI2N = IN

uv−te(vp−r)IN
2 ≤

∑
i≤IN

iuv−te(vp−r)i2 . If iuv−te(vp−r)i2 as
a function of i is strictly increasing, then the sum is upper bounded by the integral in the same
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range, and the value at the right end-point. Otherwise iuv−te(vp−r)i2 first decreases, and then
increases, and therefore the sum is upper bounded by the integral, and values at both endpoints:

∑
i≤IN

iuv−te(vp−r)i2 ≤
∫ IN

1
xuv−te(vp−r)x2

dx+ evp−r + IN
uv−te(vp−r)IN

2

=
1

2(vp− r)
IN

uv−t−1e(vp−r)IN
2(
1 + o(1)

)
+ evp−r + IN

uv−te(vp−r)IN
2

≍ IN
uv−te(vp−r)IN

2(
1 + o(1)

)
,

by Lemma 6.5. Therefore by Lemma 6.4

∑
i≤IN

iuv−te(vp−r)i2

Nv
≍ I−t

N e−rI2N = N−r/pI
−t+ur/p
N ≍ N−r/p

(
logN

)−t/2+ur/(2p)
.

The other part of the sum satisfies

∑
i≥IN

i−te−ri2

(1 +Ni−ue−pi2)v
≍

∑
i≥IN

i−te−ri2 .

Suppose r > 0. Again, the latter sum is lower bounded by I−t
N e−rI2N ≍ N−r/p

(
logN

)−t/2+ur/(2p)
.

Since i−te−ri2 is decreasing, we get the following upper bound∑
i≥IN

i−te−ri2 ≤ I−t
N e−rI2N +

∫ ∞

IN

x−te−rx2
dx ≤ I−t

N e−rI2N +
1

2r
I−t−1
N e−rI2N

≍ I−t
N e−rI2N

(
1 + o(1)

)
≍ N−r/p

(
logN

)−t/2+ur/(2p)
,

where the upper bound for the integral follows from Lemma 6.5.

In case r = 0, we get
∑

i>IN
i−t ≍ I−t+1

N ≍
(
logN

)−(t+1)/2
(see Lemma 8.2 in Knapik et al.,

2011). 2

Lemma 6.3 For any t ≥ 0, u, p > 0, µ ∈ St/2, and q > −t/2, as N → ∞

∞∑
i=1

∣∣µii
−q−1/2

∣∣
1 +Ni−ue−pi2

≪
(
logN

)−t/2−q
.

Proof We split the series in two parts, and bound the denominator 1+Ni−ue−pi2 by Ni−ue−pi2

or 1. By the Cauchy–Schwarz inequality, for any r > 0,∣∣∣∣∑
i≤IN

∣∣µii
−q−1/2

∣∣
Ni−ue−pi2

∣∣∣∣2 ≤ 1

N2

∑
i≤IN

ir

i

∑
i≤IN

µ2
i i

2u−2q−re2pi
2

≤ 1

N2
IrN

∑
i≤IN

µ2
i i

t i
2u−2q−r−te2pi

2

I2u−2q−r−t
N e2pI

2
N

I2u−2q−r−t
N e2pI

2
N

= I−t−2q
N

∑
i≤IN

µ2
i i

t i
2u−2q−r−te2pi

2

I2u−2q−r−t
N e2pI

2
N

.

The terms in the remaining series in the right side are bounded by a constant times µ2
i i

t for
large enough N and all i bigger than a fixed number, and tend to zero pointwise as N → ∞,
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and the sum tends to zero by the dominated convergence theorem. Therefore the first part of
the sum in the assertion is o(I−2q−t

N ). As for the other part we have∣∣∣∣∑
i>IN

|µii
−q−1/2|

∣∣∣∣2 ≤ ∑
i>IN

i−2q−1
∑
i>IN

µ2
i ≤ I−t−2q

N

∑
i>IN

µ2
i i

t,

which completes the proof as µ ∈ St/2, and I−t−2q
N ≍

(
logN

)−t/2−q
by Lemma 6.4. 2

Lemma 6.4 Let IN be the solution for 1 = Ni−ue−pi2, for u ≥ 0 and p > 0. Then

IN ∼
√

1

p
logN.

Proof If u = 0 the assertion is obvious. Consider u > 0. The Lambert function W satisfies the
following identity z = W (z) expW (z). The equation 1 = Ni−ue−pi2 can be rewritten as

2p

u
N2/u = exp

(2p
u
i2
)2p
u
i2

and therefore by definition of W (z)

IN =

√
u

2p
W

(
N2/u

2p

u

)
.

By Corless et al. (1996) W (x) ∼ log(x), which completes the proof. 2

Lemma 6.5 1. For γ ∈ R, ζ > 0 we have, as K → ∞,∫ K

1
eζx

2
xγ dx ∼ 1

2ζ
eζK

2
Kγ−1.

2. For K > 0, γ > 0, ζ > 0 we have∫ ∞

K
e−ζx2

x−γ dx ≤ 1

2ζ
e−ζK2

K−γ−1.

Proof First integrating by substitution y = x2 and then by parts proves the lemma, with the
help of the dominated convergence theorem in case 1. 2
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