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I INTRODUCTION 

1.1. Theoretical background 

Human-induced land use change has altered nearly two-thirds of all terrestrial 
ecosystems (MEA, 2005) with significant consequences for biological diversity, 
ecosystem functioning and the provisioning of ecosystem services (TEEB, 
2010; Cardinale et al., 2013). European semi-natural dry grasslands are one of 
the most biodiverse ecosystems globally, but they are also among the eco-
systems most threatened by land use change (Habel et al., 2013). Such grass-
lands constitute the natural vegetation of the steppe biome of Eastern Europe 
(Bohn et al., 2004). However, in many other areas of Europe, where humid 
conditions naturally allow tree-growth, semi-natural dry grasslands have been 
favoured by continuous extensive land use, notably grazing by domestic 
animals and low intensity agriculture (Bignal & McCracken 1996, Eriksson et 
al. 2002). Such management practices have resulted in extremely high richness 
of plants and other taxa (e.g. butterflies; WallisDeVries & van Swaay, 2009) at 
small spatial scales (<100m2) (Wilson et al., 2012; Dengler et al., 2012). Almost 
20% of Europe’s endemic vascular plants are restricted to grasslands, which is 
twice as many as those restricted to forests, despite the latter covering a much 
larger area (Hobohm & Bruchmann, 2009). However, socio-economic shifts 
during the last century have led to a dual process of agricultural intensification 
(e.g. Strijker 2005) and land use abandonment (e.g. Ceballos et al. 2010) that 
has affected a large proportion of European semi-natural dry grasslands and 
poses a considerable threat to grassland biodiversity. 

Abandonment of semi-natural dry grasslands has predominantly occurred in 
grasslands where agriculture intensification would not be profitable. After 
cessation of management, regeneration succession of semi-natural dry grass-
lands typically leads to gradual shrub and tree encroachment, reducing the area 
of grassland habitat (Poschlod et al., 2005), altering light and soil conditions in 
remaining grassland patches, and consequently influencing plant species 
richness (Gazol et al., 2012). In particular, dense woody cover is associated with 
the loss of typical grassland species dependent on traditional land management, 
which in turn reduces plant species richness (Rejmanek & Rosen, 1988; Pärtel 
et al., 1999). Since many typically grassland species are rare, the potential for 
local extinctions due to land use change is a major concern in grassland 
conservation (e.g. Saar et al., 2012; Ödman & Olsson, 2014). Some mechanisms 
shaping the responses of grassland plant communities to land use abandonment 
have been identified during recent decades (e.g Hautier et al., 2009, Öckinger et 
al., 2010; Ozinga et al., 2009). However, detailed knowledge of such mech-
anisms represents a necessary baseline for designing conservation and restoration 
strategies that can effectively reduce biodiversity loss and species extinctions in 
grassland ecosystems. 
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One approach to understanding plant community responses to environmental 
change is to conceptualize plant community composition as the outcome of 
multiple ecosystem processes simultaneously filtering plants according to their 
functional traits (Weiher & Keddy, 1995). Observed plant composition represents 
the cumulative action of these filters, i.e. of the most relevant ecosystem pro-
cesses (Schamp & Aarssen, 2009). Environmental change thus affects plant 
community composition by altering ecological filtering processes, and assessing 
plant trait responses to environmental change can inform about shifts in the 
most relevant ecosystem processes (Mayfield et al., 2010). The filters can be 
thought of as belonging to three broad categories: dispersal filters (can a species 
disperse to a certain habitat?); environmental filters (can a species tolerate 
certain abiotic environmental conditions e.g. light conditions, soil fertility, etc.) 
and biotic filters (can a species survive in the presence of certain biotic inter-
actions?) (White & Jentsch, 2004; Mayfield & Levine, 2010).  

Previous studies have shown that shifts in dispersal (Ozinga et al., 2009; 
May et al., 2013) and environmental filters (especially light conditions) (Gazol 
et al., 2012; Bernhard-Verdier et al., 2012) influence the directions of com-
positional changes in grassland vegetation following land use abandonment. 
The complex vegetation structure and lack of grazing in abandoned grasslands 
can hinder long distance dispersal of grassland species by wind or grazing 
animals, while reduced light availability under dense vegetation limits the estab-
lishment of light-demanding grassland species (Pärtel et al., 1999; Saar et al., 
2012). These observations indicate that successful conservation or restoration of 
typical grassland communities requires maintenance or re-establishment of low 
woody cover levels and continuous grazing management (Kiehl et al., 2010, 
Habel et al., 2013). Since grazing management is labour and cost-intensive, and 
the relative contribution to shifts in grassland communities of altered dispersal 
compared with altered light conditions is often unclear, grazing management is 
not always included in conservation plans for semi-natural dry grasslands 
(Römermann et al., 2009; Tälle et al., 2015). An assessment of the relative 
importance of shifts in light and dispersal conditions for shaping compositional 
changes in abandoned semi-natural grasslands can thus help to clarify the 
potential contribution of grazing management to successful grassland conser-
vation and restoration.  

Grassland conservation through suppression of woody cover and regular 
grazing management may also benefit grassland biodiversity by influencing 
several biotic filters believed to drive compositional changes in grassland 
communities. In particular, regular biomass removal and the creation of niches 
for plant regeneration in patches of bare soil may equalize plant-plant 
competition (Grime et al., 1987). In addition, increased plant diversity can itself 
provide nectar sources for pollinators (Lazaro et al., 2016; Orford et al., 2016) 
and the movement corridors of grazing animals can enhance the dispersal 
efficiency of other organisms (Ozinga et al., 2009; Albert et al., 2015; Tälle et 
al., 2015).  
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In addition to biotic filters involving interactions between plants and above-
ground organisms – e.g., pollinators and aboveground herbivores – there is an 
increasing body of research suggesting that interactions between plants and soil 
biota also play a central role in structuring plant communities (van der Putten et 
al., 2013). This suggests that variations in soil communities might influence 
plant community development and ecosystem functioning (Kardol et al., 2006; 
Mace et al., 2012) and are thus an important factor to consider for biodiversity 
conservation and restoration in terrestrial ecosystems (Carbajo et al., 2011; 
Wubs et al., 2016). However, knowledge about the role of soil biota in 
determining plant biodiversity and ecosystem functioning is only now emerging 
(Bever et al., 2010; Delgado-Baquerizo et al. 2016), as is an understanding of 
how to integrate soil biota into conservation and restoration practices (Harris, 
2009; Kardol & Wardle, 2011, Wubs et al., 2016). 

Among soil biota, mycorrhizal fungi may be of particular relevance for 
attempts to conserve and restore terrestrial ecosystems (Kardol & Wardle, 
2010), since about 80–90% of all land plants host these obligate symbionts 
(Brundrett et al., 2009). In exchange for plant-assimilated carbon, mycorrhizal 
fungi increase plant nutrient supply (Smith & Read, 2008), enhance plant 
resistance to pathogens (Jung et al., 2012; Laliberté et al., 2015) and alleviate the 
effects of environmental stress (Augé et al., 2015, Gehring et al., 2017). Through 
these mechanisms, mycorrhizal fungi can influence plant performance and, by 
mediating plant-plant interactions (Hart et al., 2003; Moora & Zobel, 2010; Lin 
et al. 2015; Peay, 2018), affect plant diversity and community structure (van der 
Heijden et al., 1998; Klironomos et al., 2011, Teste et al., 2017). Moreover, 
mycorrhizal fungi can improve soil physical characteristics, since their extra-
radical hyphae and production of glomalin promotes soil aggregate stability and 
resistance to soil erosion (Rillig et al., 2002). 

While there are multiple potential benefits to plants arising from the mycor-
rhizal association, recent meta-analyses have demonstrated that mycorrhizal 
effects on plants are context-dependent, i.e. they vary with host plant and mycor-
rhizal fungal identity, and with biotic and abiotic environmental conditions 
(Hoeksema et al., 2010; Lin et al., 2015; Bunn et al., 2015). These analyses 
showed soil nutrient availability (mainly N and P) and plant functional charac-
teristics, reflecting plant reliance on mycorrhizal fungi for nutrient uptake, to be 
important factors regulating the benefits that mycorrhizal inoculation provides 
to plant growth. Plant characteristics that determine the degree to which plants 
are involved in the mycorrhizal symbiosis (e.g. for nutrient uptake) also appear 
useful candidates for explaining mycorrhizal effects on plant-plant interactions 
and plant community structure (Janos, 2007; Hempel et al., 2013; Moora, 2014; 
Menzel et al., 2016, 2017; Bueno et al., 2017; Gerz et al., 2018). For example, 
plant mycorrhizal type (e.g. arbuscular mycorrhiza (AM), ectomycorrhiza 
(EcM)) determines the role of mycorrhizal symbiosis in nutrient cycling 
(Philipps et al., 2013) and could potentially impact plant community structure 
(Bennett et al., 2017, Jo et al., 2018). Mycorrhizal status reflects how frequent 
mycorrhizal symbiosis occurs in plant species; plant species are either always 
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(obligately) or sometimes (facultatively) mycorrhizal (Trappe, 1987; Smith & 
Read, 2008). Mycorrhizal status is therefore indicative of the degree to which 
plant species rely on the mycorrhizal symbiosis (Smith & Read, 2008; Moora, 
2014). Changes in environmental conditions can induce shifts in the dominant 
mycorrhizal type and status within plant communities (Hempel et al., 2013; 
Bueno et al., 2017), which in turn, can lead to shifts in local fungal communities 
(Lekberg et al., 2012; Gazol et al., 2016). Thus, shifts in dominant plant 
mycorrhizal type and status probably influence how strongly plant community 
structure is linked to the presence and composition of local mycorrhizal fungal 
communities.  

One shortcoming of most previous attempts to investigate the context-
dependency of mycorrhizal effects is that they were conducted under controlled 
conditions (i.e. with pot experiments). This limits inferences that can be drawn 
about the situations determining the benefits of mycorrhizal fungi in nature 
(Hoeksema et al., 2010; Bunn et al., 2015; Lin et al., 2015; but see Maltz & 
Treseder, 2015). Pot experiments may show that plant performance increases 
following mycorrhizal inoculation (Hoeksema et al., 2010), but they do not 
clarify whether or not addition of mycorrhizal fungi in the field is beneficial, as 
mycorrhizal fungi might already be present in local soils or able to disperse to 
them (Kulmatiski & Beard, 2011). In a similar manner, evidence from pot 
experiments that mycorrhizas have positive effects on plant diversity is of 
limited relevance to understanding the ways in which mycorrhizal fungi influence 
plant communities in nature. This is because such results do not inform about 
the relative importance of mycorrhizal fungi compared with other environ-
mental factors determining plant community composition (e.g. soil fertility, 
light availability, dispersal limitation) (Klironomos et al., 2011). Consequently, 
predicting the effectiveness of inoculation with mycorrhizal fungi in bio-
diversity conservation and ecosystem restoration requires thorough testing 
under field conditions.  

Notwithstanding the need for field experiments in mycorrhizal research, 
controlled microcosm experiments are useful for detecting the potential 
mechanisms regulating interactions between plant and mycorrhizal fungal com-
munities. For example, competition experiments have revealed that equalizing 
inter-specific plant competitive abilities could be one mechanism through which 
mycorrhizal fungi influence plant diversity (Hart et al., 2003; Lin et al., 2015), 
and that mycorrhizal effects vary with fungal taxon identity (Scheublin et al., 
2007; Stanescu & Maherali, 2017) and fungal richness (Vogelsang et al., 2006; 
Wagg et al., 2011). However, most such experiments have the shortcoming that 
the employed inocula contained low numbers of fungal taxa, whereas plants are 
frequently colonized by several mycorrhizal fungal taxa simultaneously in 
nature. Moreover, experiments have frequently focused on competition between 
plants that have very different reliance on the mycorrhizal symbiosis (Moora & 
Zobel, 2010), but in many ecosystems most plants are mycorrhizal. Conse-
quently, the results of such experiments can provide information about the 
‘coarse scale’ effects of mycorrhizal fungi on plant-plant interactions (sensu 
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Hart et al., 2003), i.e. presence vs absence of fungi, functional differences 
between fungi. Inferences to be drawn from such approaches about the role of 
mycorrhizal fungi for plant-plant interactions in nature are thus arguably limited 
to early successional ecosystems, i.e. to conditions where dispersal limitation of 
mycorrhizal fungi, and thus of suitable fungal inoculum, might disadvantage 
strongly mycotrophic plant species (Hart et al., 2003; Moora & Zobel, 2010). In 
order to understand the role of mycorrhizal fungi for plant-plant interactions in 
more successionally advanced ecosystems, experiments using natural fungal 
inocula would be strongly preferable (Moora & Zobel, 2010). This is because in 
more mature ecosystems, mycorrhizal fungi are abundant and most plants are 
mycorrhizal. Therefore, the ‘fine-scale effects’ of mycorrhizal fungi (sensu Hart 
et al., 2003), such as the roles of fungal diversity and composition, are more 
likely to shape plant-plant interactions. 

 
 

1.2. Objectives of the thesis 

This thesis aims to address these knowledge gaps and, in doing so, to determine 
the potential of mycorrhizal fungi as a tool for improving strategies of bio-
diversity conservation and ecosystem restoration. The thesis uses abandoned 
semi-natural dry grasslands – a target of many conservation and restoration 
efforts in Europe (Kiehl et al., 2010; Habel et al., 2013) – as a model of land use 
change. It explores the main plant- and mycorrhizal fungal-related filters 
determining plant responses to land use change. Among mycorrhizal fungal 
filters, the thesis focusses on effects of arbuscular mycorrhizal fungi (AM; 
phylum Mucoromycota, subphylum Glomeromycotina; Spatafora et al., 2016), 
which form the dominant type of mycorrhizal symbiosis associated with grass-
land plants (Gerz et al., 2016) and indeed with terrestrial plants globally 
(involving 80% of plant species; Smith & Read, 2008). The thesis includes five 
papers: 

Paper I: The objective of paper I was to assess the main plant-related eco-
logical filters driving compositional changes in grassland plant communities 
after land use abandonment, disentangling the relative importance of light and 
dispersal limitation. To meet this objective paper I used a plant functional trait 
approach, considering plant traits reflecting adaptation to reduced light 
availability and dispersal strategies as determinants of differences between the 
plant composition of continuously managed and abandoned grasslands. 

Paper II and III: Using an observational study design, papers II and III 
tested whether compositional changes in plant and AM fungal communities in 
semi-natural grasslands are correlated. The rationale behind this approach is that 
re-introduction of local AM fungal communities during grassland restoration 
could represent a useful tool for promoting the re-establishment of typical 
grassland communities, including rare target plant species (e.g. Torrez et al., 
2016). In addition, papers II and III tested in greater detail which abiotic and 
biotic factors shape the strength of the plant-AM fungal relationship. Paper II 
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focussed on the potential role of dispersal limitation of plants and AM fungi 
(Zobel & Öpik, 2014; Horn et al., 2017). Paper III addressed the role of soil 
nutrient availability (Zobel & Öpik, 2014; Horn et al., 2017) and plant 
functional characteristics describing plant involvement in the AM symbiosis 
(e.g. mycorrhizal type or status) (Moora, 2014; Gerz et al., 2016; Gazol et al., 
2016).  

Paper IV: Paper IV tested whether, in addition to the plant functional cha-
racteristics examined in paper III, the differential effects of AM fungal 
composition on plant-plant interactions is a factor regulating the plant-AM 
fungal relationship (Hart et al., 2003; Moora & Zobel, 2010). For this, paper IV 
used a greenhouse experiment comparing the effects of two natural AM fungal 
communities originating from different grassland habitats studied in paper III 
on the interaction of grassland species native to the study region of paper III.  

Paper V: The objective of paper V was to summarize published field 
evidence revealing effects of mycorrhizal inoculation on plant growth and plant 
diversity in ecosystem restoration and to investigate the context-dependency of 
effects. For this, paper V used meta-analysis of 34 experimental studies 
reporting responses to mycorrhizal inoculation for one or both of plant growth 
and diversity, and estimated variation in inoculation effects on these response 
variables in relation to relevant explanatory factors (Hoeksema et al., 2010; Lin 
et al., 2015; Bunn et al. 2015).  
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II MATERIAL AND METHODS 

2.1. Relevance of light and dispersal limitation  
for plant composition in grasslands 

2.1.1. Study design and data collection 

Paper I assessed the relevance of light and dispersal limitation as drivers of 
compositional shifts in grassland plant communities in response to land use 
abandonment, with a particular focus on shifts in the functional structure of plant 
communities. The taxonomic and functional community structure of the same 
semi-natural dry grasslands in Estonia was compared between two points in 
time: 1975, when traditional grazing prevailed (baseline data), and 2013, when 
management had ceased for at least 30 years (revisitation data). The study area 
is approximately 1.5 km2 of calcareous semi-natural dry grassland, located in 
Western Estonia (latitude: 58.642N, longitude: 23.516E). Under continuous 
grazing management, this area was open, with juniper (Juniperus communis, L.) 
cover of ca. 30% and pine (Pinus sylvestris, L.) cover of < 1%. The maintenance 
of these grasslands depends on active management, particularly grazing by 
domestic animals and cutting of shrubs and trees, but these practices ceased in 
the 1980s (Rosen 1982, Pärtel et al., 1999), leading to widespread overgrowth 
by juniper and pine (ca. 40–100% cover) in the semi-natural dry grasslands of this 
region. The dataset of paper I comprised plant composition data collected in 1975 
by M. Zobel and K. Zobel (baseline data) from 93 plots of 4m2 located randomly 
within five study sites (Fig. 1 in I) and measurements of the same plots in 2013 
(revisitation data) using the same sampling methodology. The functional structure 
of plant communities was described by assigning plant functional traits known to 
respond to changes in dispersal conditions and reduced light availability 
(‘response traits’ sensu Lavorel & Garnier, 2002) to all species recorded during 
the baseline and resurvey (Table 1). 
 

2.1.2. Data analysis 

The functional structure of plant communities was measured by estimating the 
distribution of plant functional traits within plant communities. Two metrics 
were calculated for each trait: (1) the community-weighted mean (CWM) i.e. 
the mean of the trait values weighted by the relative abundances of species 
(Garnier et al., 2004), and (2) functional diversity (FD), calculated as the mean 
species pairwise distance (MPD) in trait values weighted by species abundances 
(de Bello et al., 2016). CWM summarizes shifts in community composition 
resulting from selection processes for certain functions/functional traits (Ricotta 
& Moretti, 2011). MPD reflects shifts in patterns of trait similarity i.e. trait 
convergence or divergence, which can be related to ecological filters structuring 
the plant community (Cornwell & Ackerly, 2009). Successional changes in 
mean traits and FD were assessed from shifts in CWM values and MPD 
between the baseline and resurvey data.  
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Table 1: Response traits used in the analyses. All trait information was retrieved from 
the Leda trait database (Kleyer et al. 2008). (According to Table 1 in paper I) 

Trait Data type Attributes 
Indicative for ecological 
process 

leaf dry matter 
content  
(mg g–1) 

continuous  
shade tolerance 
(Kitajiima et al., 2010) 

specific leaf area  
(mm2 mg–1) 

continuous  
shade in general 
(Gommers et al., 2013) 

clonal mobility  binary 
0,1; no clonal 
mobility, clonal 
mobility 

shade avoidance (Stuefer 
et al., 1994; Zobel et al., 
2010) 

vegetation height (m) continuous   
shade avoidance 
(Gommers et al., 2013) 

seed mass (mg) continuous   zoochory by ungulates 
(Albert et al., 2015) 
 release height (m) continuous  

epizoochorous 
dispersal  

binary 

0, 1; no 
epizoochorous 
dispersal, 
epizoochorous 
dispersal  

epizoochory, long 
distance dispersal (Albert 
et al., 2015) 

endozoochorous 
dispersal 

binary 

0, 1; no 
endozoochorous 
dispersal, 
endozoochorus 
dispersal 

endozoochory, long-
distance dispersal (Albert 
et al., 2015) 

bird dispersal bird 
0, 1; no bird dispersal, 
bird dispersal 

endozoochory, 
ornithochory,  
long-distance dispersal 
(Albert et al., 2015) 

simple wind dispersal 
(without special 
adaptions) 

binary 

0, 1; no wind 
dispersal, wind 
dispersal (without the 
help of diaspore 
appendages) 
 

anemochory (Tamme et 
al., 2013) 

specialised wind 
dispersal 

binary 

0, 1; non wind 
dispersal, wind 
dispersal (with the 
help of diaspore 
appendages) 

anemo-, epizoochory, 
long distance dispersal 
(LDD) (Tamme et al., 
2013; Albert et al. 2015) 
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To assess the proportion of variation in taxonomic community composition 
explained by dispersal and light related traits in different surveys, partial 
redundancy analysis (pRDA) was performed. Thus, the variation explained by 
the sub-models comprising traits related either to dispersal (release height, seed 
mass, dispersal syndrome), or light availability (plant height, clonal mobility, 
specific-leaf area (SLA), leaf dry matter content (LDMC)) was compared to the 
full model comprising all traits. The same approach was used to further 
compare the contribution of different aspects of dispersal and light-capturing 
strategies for explaining variation within their respective group of traits related 
to dispersal and light availability. Variation among sites was accounted for by 
including site as a conditioning variable in all pRDA. 
 
 

2.2. Covariation of plant and AM fungal communities  
in grasslands 

2.2.1. Sampling design and data collection 

Papers II and III used two spatial gradients, each representing three consecutive 
stages of regeneration succession in semi-natural dry grasslands, as model 
systems to investigate patterns of covariation between plant and AM fungal 
communities. These model systems are of the same grassland type as studied in 
paper I, with a similar land use history. Paper II assessed shifts in covariation 
strength between plant-AM fungal communities along an early successional 
gradient – regeneration succession in a former gravel pit – and paper III con-
sidered a later successional gradient – regeneration succession of mature grass-
lands after cessation of management.  

To address the role of plant and AM fungal dispersal limitation as potential 
factors regulating the strength of covariation between communities, the study 
sites of paper II were located along two early successional gradients on two 
Western Estonian islands (Muhu, Saaremaa), with moderate distances (distance 
1–40 km) between successional stages, assuming that dispersal limitation could 
occur between successional stages. To assess local factors determining the 
strength of plant and AM fungal covariation, such as soil nutrient availability 
and plant involvement in the AM symbiosis, the study sites of paper III were 
situated in one grassland area (2 km2) in Western Estonia (latitude: 58.624N, 
longitude: 23.542E). In this study site, patches with varying degrees of over-
growth (transitional grasslands (TR) and young pine forests (FO)) surrounded 
open grassland (GR) patches.  

Plant and AM fungal communities in paper II were sampled from six sites – 
one site per successional stage and island, with ten plots per site (n=60) – and in 
paper III from 25 sites within the studied grassland, each containing three plots, 
i.e. one plot per successional stage (n=75). For each plot (1x1 m) the identity 
and cover of plant species in the field layer were determined and the relative 
abundance of plants forming AM symbiosis (AM plants) was calculated to 



16 

provide an estimate of the proportional cover of these species in the community. 
Moreover, the relative abundance of AM plants with different mycorrhizal 
status (AM status: a plant, either obligately or facultatively forming the AM 
symbiosis, Moora, 2014) was estimated. Data on mycorrhizal status were 
obtained from the MycoFlor database (Hempel et al., 2013).  

To describe the AM fungal communities present in plant roots and soil, a 
10x10x10 cm soil core was collected from the centre of each plot; plant roots 
and soil were separated and dried for molecular analysis. In paper III two 
additional soil subsamples were taken from each plot for analysis of soil 
geochemical properties and for measuring the concentration of the AM fungal 
neutral lipid fatty acid marker (NLFA 16ω:5), which provides an estimate of 
AM fungal abundance in soil (Mårtensson et al., 2012). AM fungal commu-
nities in soil and plant roots were characterised based on the DNA extracted 
from dried soil (Gazol et al., 2016) and mixed root samples (Hiiesalu et al., 
2014; Saks et al. 2014). Glomeromycotina gene sequences (SSU rRNA) were 
amplified with the primers NS31 and AML2 (Simon et al., 1992; Lee et al., 
2008) and identified using pyrosequencing as described in Davison et al. (2012) 
and Öpik et al. (2013). To assign taxonomic information to the quality-filtered 
(Davison et al., 2012; Vasar et al., 2017) sequences, the similarity of sequences 
to published Glomeromycotina sequences in the MaarjAM database (Öpik et al., 
2010) was assessed (Blast+ search; Camacho et al., 2009). The MaarjAM 
database classifies the central part of Glomeromycotina SSU rRNA gene 
sequences into phylogenetically delimited sequence clusters – virtual taxa (VT, 
cf. Öpik et al., 2009), which roughly correspond to species-level taxa (Öpik et 
al., 2013). Sequences were assigned to VT if sequence similarity was ≥97% and 
quality criteria for sequence alignment were met (see paper II, III).  
 

 
2.2.2. Data analysis 

To investigate successional dynamics in plant and AM fungal communities in 
both papers (II, III), shifts in plant and AM fungal (VT) species richness (the 
number of VT per sample), and plant and AM fungal species composition 
among successional stages were tested using linear mixed models and ordi-
nation techniques (NMDS). The species matrix for the ordination analyses 
contained relative plant and AM fungal abundances in each plot. Relative AM 
fungal species (VT) abundance was calculated as the proportion of reads from 
individual VT compared to the total number of reads in a sample (Kohout et al., 
2014; Leff et al., 2015).  

In both papers (II, III), correlation (i.e. a scaled measure covariance) between 
plant and AM fungal communities was assessed using multivariate correlation 
analyses (procrustean randomization tests; PROTEST, Peres-Neto & Jackson, 
2001). The assumption is that strong interdependence of two communities is 
reflected in strong correlation between the compositions of both communities. 
In a further step, partial PROTEST was performed in paper III to assess 
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correlation between plant and AM fungal communities while accounting for the 
effects of variation in soil conditions on both communities. The residuals from 
Procrustes correlation serve as an estimate of variation in correlation strength: 
high residuals indicate weak correlation, and vice versa (Lisboa et al., 2014). In 
paper III, the partial Procrustes residuals were used to relate variation in 
correlation strength to successional stage, AM fungal abundance (NLFA 16ω:5) 
and the relative abundances of AM, obligate and facultative AM plants.  

In paper II, the potential role of dispersal and microsite limitation for plant 
and AM fungal communities during grassland succession was compared by 
estimating the completeness of plant and AM fungal communities. Community 
completeness was calculated as the ratio between plant and AM fungal species 
present in a plot and the number of species present in the local species pool 
(sensu Zobel, 2016; all species recorded in the grassland plots of one island). 
Low completeness was assumed to indicate either strong dispersal or microsite 
limitation.  
 
 

2.3. Relevance of AM fungal composition  
for mediating plant-plant interactions 

2.3.1. Experimental design and data collection 

Paper IV used the dry semi-natural grasslands studied in paper III as a model 
system to test the effect of differences in AM fungal composition on plant-plant 
interactions with a full-factorial greenhouse experiment. The AM fungal commu-
nities present in the soil of open grasslands and young pine forests, which 
differed significantly in species richness and composition (paper III), served as 
natural inocula in the experiment. The experiment tested the effect of inoculum 
type on the growth response of two focal forb species (Leontodon hispidus, L.; 
Plantago lanceolata, L.) to competition with a competitor grass species (Festuca 
rubra, L.). Experimental plants were native to the study region, but differed in 
their habitat preference: P. lanceolata grew more frequently in open grasslands, 
L. hispidus in young pine forests and F. rubra was equally frequent in both 
habitat types.  

Seedlings for all experimental plants were pre-germinated for five weeks 
from sterilized seeds collected from the study region (P. lanceolata, L. hispidus) 
or locally produced seeds (F. rubra). Inocula were produced from mixtures of 
field soil and sterile sand to equalize soil chemical properties between inocula. 
The five-week old seedlings of P. lanceolata and L. hispidus were transplanted 
into pots (one seedling per pot), and grown for 15 weeks either alone or in 
mixture with four individuals of F. rubra. The pots differed in soil inocula: 
grassland inoculum containing 1/3 of live grassland soil, 1/3 of sterilized forest 
soil and 1/3 of sterile sand; forest inoculum containing live forest soil (1/3), 
sterilized grassland soil (1/3) and sterile sand (1/3); and a non-mycorrhizal 
control soil containing only sterilized soils (2/3) and sand (1/3). Each forb 



18 

species-competition-soil combination was replicated 10 times (n=120) and 40ml 
of microbial wash mixed from grassland and forest soils was added to each pot 
to control for potential differences in soil bacteria and non-AM fungal commu-
nities among treatments (Koide & Li, 1989). After 15 weeks, plant biomass 
from each pot was harvested, divided into root and shoot fractions for each 
species, dried at 55°C for 24h and weighed. 

AM fungal root colonization was estimated for five root subsamples of both 
forb species (P. lanceolata, L. hispidus) from each treatment combination, 
(n=30 samples per species) to assess whether inoculation was successful and 
whether changes in plant biomass were linked to changes in AM fungal abun-
dance in plant roots. Preparation of roots and estimation of root colonization 
followed the methods described by Koske & Gemma (1989) and McGonigle et 
al. (1990). No root colonization was recorded in the roots of L. hispidus and P. 
lanceolata growing in non-mycorrhizal control soils, and thus colonization 
results are reported only for the grassland and forest inoculum treatments. 

 
 

2.3.2. Data analysis 

Plant growth responses to competition and inoculation were calculated as esti-
mates of relative plant growth in competition compared with growth without 
competition (RIIc), and relative plant growth when inoculated compared with 
growth in non-mycorrhizal control soils (RIIi), respectively. Thus, RIIc and RIIi 
were calculated for plant biomass according to Armas et al. (2004; Relative-
Interaction Index, RII): 
 
RII = [biomass treatment – mean (biomass control)]/[biomass treatment + mean (biomass control)], 
 
where biomass treatment is the biomass of the focal plant grown in the experi-
mental treatment (i.e. in mixture with F. rubra – RIIc; with inoculum – RIIi), 
and biomass control is the biomass of the same species growing in control con-
ditions (i.e. without F. rubra – RIIc; in non-mycorrhizal control soils – RIIi). 
Values of RII are symmetrical around zero, and bound between –1 and 1. 
Positive values indicate a beneficial effect of the interaction with F. rubra 
(RIIc) or with added AM fungi (RIIi) on plant biomass, and negative values 
indicate a detrimental effect. The difference between inoculation effects (RIIi) 
on the focal forb species compared to F. rubra when grown in mixture with 
each other (dRIIi mixture) served as an estimate of the competitive benefit the 
focal species received from inoculation compared to the competitor species. 
Positive values indicate that inoculation benefits were larger for the focal than 
the competitor species, suggesting less competitive pressure on the focal 
species, and negative values indicate that inoculation benefits were smaller for 
the focal than the competitor species, suggesting amplified competition (for the 
focal species) (Moora & Zobel, 2010). 
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Linear models were used to test for significant differences in interaction 
parameters (RIIc, RIIi, dRIIi mixture) among different types of inoculum (grass-
land, forest, control), focal plant species (P. lanceolata, L. hispidus) or depending 
on the combination of inoculum type and focal species. Interaction indices and 
linear models were calculated for root, shoot and total biomass (i.e. shoot + root 
biomass). The same approach as described above for plant growth was applied 
to test for a response to inoculation and competition in the percentage of root 
colonization in the focal species. 
 
 

2.4. Relevance of mycorrhizal fungi  
for ecosystem restoration 

2.4.1. Study design and data collection 

Paper V used meta-analysis to summarize the context-dependency of plant 
responses to mycorrhizal inoculation in field-based restoration projects. The 
relevant studies for the meta-analysis were selected based on a literature search 
in the ISI Web of Science database (1900–2016) using the keywords mycorrhiza* 
AND (restoration OR reclamation OR rehabilitation). This search identified 34 
studies suitable for the meta-analysis testing the effect of mycorrhizal inoculation 
on plant growth (biomass, height) and/or plant species richness under field 
conditions in a restoration context. If a study reported results from multiple 
comparisons (e.g. from different host plants, inoculation treatments or study 
sites), information about all comparisons was collected. Comparisons were 
pooled into five datasets. Three ‘global datasets’ were constructed to assess the 
general effect of inoculation on plant growth and plant richness in response to 
different explanatory factors, one for each response variable (plant biomass, 
height and richness). If studies reported data on inoculation effects for multiple 
points in time, only data on inoculation effects from the last harvest were 
included into the global datasets. For plant growth, two ‘time datasets’ were 
also compiled using all studies from the global biomass and height datasets that 
reported inoculation effects over multiple time points (up to 36 months). There 
were too few suitable studies (n=1) to construct a ‘time dataset’ for plant richness.  

For each comparison, data on plant response to inoculation was extracted 
from text, tables and figures. Moreover, data on potential factors influencing 
mycorrhizal effects on plant performance were recorded from each publication 
i.e. data on plant functional group, soil conditions (pH, soil total N, available P), 
disturbance history, inoculum complexity, control treatment and time since 
restoration (Hoeksema et al., 2010; Bunn et al., 2015; Lin et al., 2015; Maltz 
and Treseder, 2015). See Table 2 for details. 
 
 

 



20 

Table 2: Explanatory factors used to assess the context dependency of inoculation effects on plant 
biomass, height and richness (Table 2 in paper V).  

Explanatory 
factors 

Categories/ 
units 

Proportion of 
comparisons where data 

was available (%) for 
plant biomass (global 
dataset, time dataset) 

Proportion of 
comparisons where 

data was available (%) 
for plant height 

(global dataset, time 
dataset) 

Proportion of 
comparisons 
where data 

was available 
(%) for plant 

richness 

Time (since 
inoculation) 

number of months –, 100 –, 100 ––– 

Plant 
functional 
group 

C3-grass, C4-grass,  
non-N-fixing forb, forb-
grass mix, non-N-fixing 
woody, N-fixing woody 

100, 100 100, 100 100 

Habitat 
conditions 

    

pH 
1–14 
(min = 4.4; max = 10.2) 

67, 100 87, 100 44 

soil total N 
g kg–1 
(min = 0; max = 12) 

60, 100 67, 100 11 

soil avail-
able P 

mg kg–1  
(min = 0; max = 61) 

63, 91 87, 91 44 

Disturbance 
history a 

soil severely altered, 
soil not altered 

100, 100 100, 100 100 

Inoculum 
complexity b 

single, mix, mix-whole soil, 
whole soil inoculum 

100, 100 100, 100 100 

Control 
treatment c 

no inoculum, sterile soil, 
sterile soil & microbial wash

100, 100 100, 100 100 

a Categories of disturbance history reflect the degree of soil disturbance. “Soil severely altered” included studies in 
which disturbance activities removed or severely altered the topsoil (e.g. mining, road construction, tree logging 
with bulldozers, agriculture), assuming that mycorrhizal fungal communities had been severely altered by these 
activities. Otherwise, studies were categorized as “soil not altered” 

b Categories of inoculum complexity were chosen as follows: Single inoculum is an inoculum containing a single 
fungal taxon originating from commercial inoculum or natural soil applied as a tablet, water-mixture or solution of 
water and nurse plant roots. A mix inoculum is a mixture of 2–10 fungal taxa originating from commercial 
inoculum or natural soil applied as a tablet, water-mixture or solution of water and nurse plant roots. Mix-whole soil 
inoculum refers to studies comparing effects of inoculation with a fungal mix to whole soil inocula using the same 
control for both treatments. Thus, comparisons are not statistically independent and effect sizes were calculated as 
the average effect of both types of inocula. Whole soil inoculum consists of soil collected from reference sites, 
expected to contain the complete biotic soil community i.e. organisms including but not exclusively mycorrhizal 
fungi. All studies comparing fungal mixtures to whole soil inocula used AM fungi. For AM fungi, inoculation 
effects stemming from whole soil inocula can be related to mycorrhizal fungal effects, if they are compared to a 
control, which has received a microbial filtrate (wash) containing the majority of soil organisms of the experimental 
soil, except AM fungi (pore size 50 μm; Koide and Li, 1989). This method works effectively for AM fungi due to 
their relatively large spores compared to the majority of other soil microbial communities (e.g. bacteria and non-AM 
fungi) (Uibopuu et al., 2012). For plant biomass 100% of all comparisons using whole soil inoculum and 50% of all 
comparisons using the "mix-whole soil" type of inoculum soil applied a microbial wash to control treatments, 50% 
applied no specific control treatment (no inoculum). For plant height, 100% of the comparisons using whole soil 
inoculum or the “mix-whole soil” type inoculum applied microbial wash to control treatments. 
c No inoculum refers to the type of control treatment where no specific mycorrhizal control treatment was applied, 
but plants where grown in untreated soil at the restoration site. Sterile soil refers to the type of control treatment 
where control plants were grown in field soil that had been sterilized by radiation or autoclaving. Sterile soil plus 
microbial wash refers to the type of control treatment where a microbial filtrate (wash) containing the majority of 
soil organisms of the experimental soil, except mycorrhizal fungi, was added to the sterilised control soil.  



21 

2.4.2. Data analysis 

The natural logarithm of the response ratio (ln(R) = ln(inoculated/non-inocu-
lated)) was used to estimate the effect sizes of plant responses to mycorrhizal 
inoculation. A positive response ratio indicates a beneficial effect of inoculation, 
and a negative response ratio a detrimental effect. Effect sizes were calculated 
for each comparison, except for comparisons from the same study that shared 
the same control. For these comparisons combined effect sizes and sample 
variances were calculated, to guarantee the independence of experimental 
comparisons in the datasets (Borenstein, 2009).  

The significance of mycorrhizal inoculation effects, as well as the effects of 
explanatory variables on plant biomass, height and richness were tested with 
mixed-effects models (Viechtnbauer, 2010). These models estimated inoculation 
effects as mean effect sizes weighted by sample variances (Viechtbauer, 2010), 
and inoculation effects were considered significant if weighted mean values and 
their 95% confidence intervals (CI) significantly differed from zero (Borenstein, 
2009). In models testing for changes through time of plant responses to inocu-
lation (within studies), time after inoculation (in months) was included as a 
fixed factor. To test the interactive effects of time and other explanatory variables, 
the interaction term of both variables was included as a fixed factor. All models 
included study as a random factor, in order to adjust effect size estimates for 
methodological differences between studies. Potential publication bias was 
assessed by visually checking each dataset via funnel plots and testing for 
asymmetry with Eggers’ regression test (Borenstein, 2009). There was no 
indication of publication bias. 

 
 

2.5. Statistical software 

All statistical analyses performed in paper I–V were carried out using R (ver. 
3.1.0; R Core Team 2014) in the RSTUDIO environment (ver. 0.98.932). 
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III RESULTS 

3.1. Relevance of light and dispersal limitation  
for plant composition in grasslands 

Closed vegetation structure, with reduced light availability, and altered dispersal 
conditions were the main drivers of shifts in plant functional structure in semi-
natural grasslands experiencing land use abandonment. Compositional shifts in 
grassland communities were characterised by an increase in the proportion of 
plant species with either larger or coarser leaves (higher SLA or higher LDMC), 
which are adaptations to low light availability, and an increase in the proportion 
of species with clonal growth forms, which are able to escape low light avail-
ability (Fig.3 in I). Abandonment also led to a higher proportion of species 
adapted to the changed dispersal conditions of the closed vegetation, e.g. species 
relying on bird-dispersal instead of wind and epizoochorus dispersal in the fur 
of grazing animals (Fig.3 in I). Shifts in traits related to wind dispersal were 
somewhat weaker than for those for traits related to animal dispersal, yet a 
decrease in species specially adapted to wind dispersal over long distances 
became apparent in the most overgrown sites (Fig. S8 in I). Consequently, small 
sedges and forbs declined the most in response to land use abandonment and 
their decline likely led to a reduction in small-scale species richness. The 
majority of these species have high light requirements, rely on wind or epizoo-
chorus dispersal in the fur of animals, and are typical of dry semi-natural 
grasslands in the study region (e.g. Carex caryophyllea L., Thymus serpyllum 
L., Antennaria dioica L.). 

Variance partitioning showed that the proportion of variation in plant com-
position explained by plant traits related to light availability and dispersal 
explained increased from 31% in grazed grasslands to 37% in abandoned 
grasslands (Fig. 1a). This increase reflected an increase in variation attributed to 
both light or dispersal traits and a concomitant decrease in variation attributed 
to differences between study sites. Dispersal traits explained a larger proportion 
of variation in plant community composition than light traits both in grazed and 
abandoned grasslands. Yet, the increase in variation explained by light traits 
following grassland abandonment exceeded the increase in variation explained 
by dispersal traits, suggesting that the importance of light relative to dispersal 
traits increased following land use abandonment in the studied grasslands (ratio 
between explained variation (%) of dispersal vs. light traits: grazing = 1.8, 
abandonment2013= 1.5; Fig 1a).  
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Fig.1: Variation in plant community composition of semi-natural dry grasslands 
explained by groups of dispersal traits and light traits. Grassland communities were 
measured prior to (1975) and following (2013) land use abandonment. Estimates of 
explained variance are based on partial RDA with trait groups as fixed and site diffe-
rences as conditioned factors. (a) Proportions of variation in community composition 
explained by dispersal and light traits, their intersection as well as site differences in 
different years (1975, 2013). (b) Proportion of variation in community composition 
explained by different aspects of dispersal strategies (dispersal syndrome, plant 
morphology). (c) Proportion of variation in community composition explained by light 
traits reflecting different strategies to cope with reduced light availability (shade 
avoidance (s. avoidance), shade tolerance (s. tolerance) and shade in general (s. general)) 
as well as by their interaction in different years (1975, 2013). Dispersal traits (‘dispersal’) 
included the traits of dispersal vector (disp. vector): epizoochorous, endozoochorous 
and bird dispersal, special and simple wind dispersal; and plant morphology (plant 
morph.): release-height and seed mass. Light traits (‘light’) included clonal mobility 
(CM), vegetation height (VH), specific leaf area (SLA) and leaf dry matter content 
(LDMC). CM and VH were representatives of the ‘shade avoidance’ strategy, LDMC 
represented ‘shade tolerance’ and SLA shade in general (‘shade general’). Modified 
after Fig. 5 in I. 
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3.2. Covariation of plant and AM fungal communities  
in grasslands 

Multivariate correlation analysis revealed significant correlation of plant and 
AM fungal community composition across early (regeneration of disused gravel 
pits, II: r plant-soil AM fungi=0.44; r plant-root AM fungi=0.31) and late (regeneration 
succession after cessation of grazing management, III: r plant-soil AM fungi=0.44; 
r plant-root AM fungi=0.40) stages of grassland succession. The residuals of Procrustes 
correlation remained stable during the early stages of grassland succession (II), 
but significantly decreased during later stages (III) (Fig 3 in II, Fig S5 in III). 
Residuals increased most during the transition from open or partially overgrown 
grasslands to young pine forest. These results suggest that plant and AM fungal 
communities were correlated equally strongly during regeneration of grassland 
vegetation from gravel pits (bare soil), but the strength of correlation decreased 
following shrub and tree encroachment into mature grasslands, which occurred 
due to cessation of management.  

Further analysis of the abiotic and biotic factors influencing the strength of 
correlation between plant and AM fungal communities during the later stages of 
grassland succession (III) revealed that the strength of correlation weakened 
when models controlled for variations in soil properties (∆r: 10–12%), but the 
correlation remained significant (Fig. 2 in III). This suggests that variation in 
soil properties had only a moderate effect on the correlation of plant and AM 
fungal communities. At the same time, the composition of plant AM status in 
the grassland communities significantly influenced the strength of correlation 
between plant and AM fungal communities. Procrustes residuals decreased with 
the increasing abundance of obligate AM plants and vice versa for the 
abundance of facultative AM plants (Fig. 2a, b). These findings suggest that 
plant and AM fungal communities were strongly correlated when the abundance 
of obligate AM plants was high, but the relationship weakened with increasing 
abundance of facultative AM plants. The abundance of AM plants in the 
grassland communities and the biomass of AM fungi (NLFA 16ω:5) did not 
influence the strength of correlation between plant and AM fungal communities 
(Fig. 2c, d).  

Analysis of the completeness of plant and AM fungal communities during 
the regeneration of disused gravel pits (II) demonstrated that for both plants and 
AM fungi the proportion of local species pools realized in the studied local 
grassland communities increased during succession (Fig 3). These results 
suggest that over time increasing numbers of plant and AM fungal species 
successfully disperse to and establish in grassland sites from surrounding grass-
land habitats. At the same time, the completeness of AM fungal communities 
exceeded that of plant communities in all successional stages (Fig. 3). This 
finding indicates that the proportion of the local taxon pool that was realised in 
the studied grasslands was larger among AM fungi than plants (Fig 3), potentially 
reflecting a faster arrival of AM fungi than plants to the study sites than.  
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Fig. 2: Relationships between the strength of plant-soil AM fungal correlation and the 
relative abundance of AM (a), obligate AM (c) and facultative AM (d) plants in the 
ground layer and AM fungal abundance (NLFA 16:1ω5) (b). Data for NLFA 16:1ω5 
are shown with outliers omitted (see Table S5 in IV for relationships considering all 
data). The strength of co-variation was measured as the residuals from Procrustes corre-
lation, i.e. low values of Procrustes residuals indicate strong correlation. Regression 
lines, equations and p-values for the fixed effect are shown on each plot based on linear 
mixed-effects model-estimated regression parameters. Regression lines of significant 
(p<0.05, solid line) and marginally non-significant relationships (p<0.1; dashed line) are 
shown. Copy of Fig. 3 in III. 
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3.3. Relevance of AM fungal composition for mediating 
plant-plant interactions 

The results of greenhouse experiments showed that inoculation with both AM 
fungal inocula (grassland inoculum, forest inoculum) led to abundant colo-
nization of the roots of all experimental plants. Hyphae and arbuscules were 
most abundant in forb roots, with an average root length colonization of 80% by 
hyphae, and 40% by arbuscules. There was negligible variation in percentage 
root colonization in response to competition and inoculation (Table S1, Table 
S2 in IV). There was, however, significant variation in plant biomass detectable 
in response to the competition and inoculation treatment. Since results showed 
similar trends for root, shoot and total biomass, only the results for total bio-
mass are presented. See paper IV for a detailed presentation of other fractions of 
biomass. For ease of reading total biomass is hereafter referred to as plant bio-
mass. 

Competition with four F. rubra individuals significantly reduced the bio-
mass of the focal forb plants (RIIc<0; Fig.4, Table 3). Inoculation with AM 
fungi increased forb biomass both when grown alone and in mixture with 
F. rubra (Fig. 4, Table 3). The opposite pattern was true for F. rubra, whose 
biomass decreased in response to inoculation (Table 3), leading to an overall 
greater inoculation benefit for both forbs compared with F. rubra (dRIIi>0; 
Table 3). The beneficial effects of inoculation with AM fungi on plant 
responses to competition varied with the type of inoculum (grassland or forest). 

 
Fig. 3: The proportions (%) of taxa present in each plot relative to the total number of 
taxa observed for all successional stages on each island (local taxon pool) for plants, AM 
fungi in soil (soil AMF) and AM fungi in roots (root AMF). Community completeness 
is a relative measure that was calculated for each taxon and habitat (soil or root) 
separately. Box whiskers extend to the 95% confidence intervals around the median 
(black line). Modified after Fig 4 in II. 
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For both forb species, the growth response to competition was stronger when 
inoculated with the grassland inoculum (Fig. 1 in IV). Larger growth benefits 
from the grassland inoculum were related to the fact that the forb species and 
F. rubra showed opposite growth responses to inoculum type. When grown in 
mixture with F. rubra, the growth response of both forb species was highest 
with the grassland inoculum, lower with the forest inoculum and lowest in the 
non-mycorrhizal control soil (Table 3a). F. rubra showed exactly the opposite 
trend, exhibiting highest growth in non-mycorrhizal control soil and lowest 
growth with the grassland inoculum (Table 3b). Consequently, the grassland 
inoculum promoted forb growth over the growth of F. rubra, relatively more 
than the forest inoculum (dRIIi, Table 3d). Yet, since the growth response of 
F. rubra to inoculation differed less between inoculum types, differences bet-
ween the average dRIIi for the grassland compared with the forest inoculum 
were marginally non-significant (Table 3b, d).  
 

Fig. 4: Differences in relative biomass response of focal species to competition in 
relation to focal species identity (L. hispidus, P. lanceolata) and type of inoculum. 
Different letters indicate significant differences according to linear models (p<0.05). 
Box whiskers extend to the 95% confidence intervals around the median (black line). 
grassland = grassland inoculum; forest = young pine forest inoculum; control = non-
mycorrhizal control. Copy of Fig. 2 in IV. 
 

 

grassland forest control grassland forest control

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
F

oc
al

 b
io

m
as

s 
re

sp
on

se
 to

 c
om

pe
tit

io
n 

(R
IIc

)

a ab a a a b

L. hispidus (ns) P. lanceolata (p<0.05)



28 

Table 3: Results of linear models assessing the factors influencing different measures of plant 
response to competition. The measures were (a) total biomass of focal species (L. hispidus, 
P. lanceolata) and (b) competitor species (F. rubra) when grown in mixture with each other; (c) total 
biomass growth response of focal species to competition (RIIc) and (d) the difference in growth 
response to inoculation of focal species and F. rubra when grown in mixture with each other 
(dRIIimixture). Growth response parameters were calculated based on total plant biomass (root + shoot 
biomass), see Table S3-S5 in V for separate results of root and shoot biomass. Explanatory factors 
tested were focal species (L. hispidus, P. lanceolata), type of inoculum (grassland inoculum, forest 
inoculum) and the interaction of both factors. For RIIc, values >0 indicate an increase and values <0 a 
decrease of plant biomass in response to competition. For, dRIIimixture values >0 indicate a larger and 
values <0 a smaller growth benefit from inoculation to focal species compared to F. rubra. If factor 
levels significantly (p<0.5) or marginally non-significantly (p<0.1) differed from each other, group 
means (± SE) are displayed, with different letters indicating significant differences (p<0.05). Copy of 
Table 2 in IV. 

Types of plant 
growth 
response (total 
biomass, g) 

explanatory  
factor 

estimate SE DF p-value Post Hoc Test (TUKEY) 

a) Bio-
massfocal, mixture  

mean value 0.8 0.1 0 <0.001   

focal species   1 0.083 
L. hispidusa = 0.6±0.2 

P. lanceolataa = 1.0±0.2 

type of 
inoculum 

  2 <0.001 
grasslanda = 1.5±0.2 

forestb= 0.9±0.2 
controlc = 0.03±0.01 

focal species 
× type of 
inoculum 

  5 0.229   

b) Bio-
masscomp, mixture  
 
 

mean value 6.3 0.5 0 <0.001   

focal species   1 0.435  

type of 
inoculum 

  2 <0.001 
grasslanda = 4.6±0.3 

foresta= 5.1±0.4 
controlb = 9.1±1.2 

focal species 
× type of 
inoculum 

  5 0.187   

c) RIIcfocal 

mean value –0.67 0.03 0 <0.001 
 

focal species 1 0.375 

type of 
inoculum   2 0.004 

grasslanda = –0.56±0.04 
forestb= –0.69±0.04 

controlb = –0.77±0.05 

focal species 
× type of 
inoculum 

  
5 <0.001 

L. hispidus 
grasslanda   –0.59±0.07 
foresta      –0.74±0.06 
controla      –0.61±0.06

P. lanceolata 
grasslanda  –0.52±0.04
foresta  –0.65±0.06
controlb  –0.93±0.01

d) dRIIimixture 

mean value 1.16 0.03 0 <0.001  

focal species 
  

1 0.022 
L. hispidusa = 1.20±0.03 

P. lanceolatab = 1.31±0.04 

type of 
inoculum   

1 0.088 
grasslanda = 1.29±0.03 

foresta= 1.21±0.04 

focal species 
× type of 
inoculum 

  
3 0.075 

L. hispidus 
grasslanda  1.20±0.04 
foresta     1.20±0.05 

P. lanceolata 
grasslanda  1.39±0.02
forestb        1.23±0.06
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Both forb species showed similar growth responses to competition, but they 
differed in how competition responses were modulated by inoculation (Table 
3c). The growth responses to inoculation of both species were positive and of 
similar magnitude when grown alone (Table S4 in V). When grown in mixture 
with F. rubra, only the biomass of P. lanceolata significantly increased in 
response to inoculation, while the biomass production of L. hispidus did not 
differ between inoculated and non-inoculated conditions. (Fig. 4). Both forb 
species tended to receive larger growth benefits from the grassland compared to 
the forest inoculum, but this difference in growth benefit was only significant 
for P. lanceolata (Table 3d; Fig. 4). 

 
 

3.4. Relevance of mycorrhizal fungi for ecosystem 
restoration 

A meta-analysis of 34 restoration experiments showed that mycorrhizal 
inoculation led to a significant increase in plant growth and plant richness: on 
average a 1.7 fold increase in plant biomass and a 1.3 fold increase in plant 
height and richness. Inoculation effects were dependent on the nutrient-uptake 
strategies of the host plant and the soil conditions of the restoration site. Growth 
benefits from inoculation were largest for those plants with high nutrient 
demand (N-fixing woody plants) and inefficient nutrient-uptake (C4-grasses) 
and those growing in soils with low N or P availability (Fig 5; Fig. 3 in V). 
Inoculation complexity and the type of control treatment used did not signi-
ficantly influence measured inoculation effects.  

Time-series analyses demonstrated that the positive effects of inoculation on 
plant growth could increase within timeframes of up to three years, in particular 
for N-fixing woody species (Fig. 4a, b in V). These analyses also indicated that 
the benefits from inoculation are greater in restoration sites where soil has been 
severely disturbed prior to restoration (e.g. due to mining, road-construction) 
compared to restoration sites with undisturbed soils (Fig 4c in V). These results 
suggest that disturbance history, through alteration of the soil mycorrhizal 
fungal community, may be another factor influencing the success of restoration 
efforts. 
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Fig. 5: Plant biomass response to inoculation in the global dataset (n=70), and levels of 
categorical explanatory factors ‘plant functional group’, ‘disturbance history’, ‘inoculum 
complexity’ and ‘control treatment’. Symbols are means (closed squares, centre of the 
diamond) ± 95% confidence intervals (error bars, right/left tip of the diamond). Diffe-
rences among factor levels were estimated using random-effects models. Effect size is 
the natural logarithm of the response ratio where positive values equate to a benefit of 
inoculation on plant biomass. Copy of Fig. 2 in V. 
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IV DISCUSSION 

4.1. Maintenance of dispersal conditions through  
grazing as a prerequisite for successful grassland 

conservation and restoration  

Land use abandonment resulted in significant shifts in the dispersal and light 
capturing strategies of the dominant plants in semi-natural grasslands. Although 
animal-mediated dispersal remained the dominant dispersal strategy, land use 
abandonment was characterised by a decrease in the importance of wind-
mediated and a shift in the importance of different types of animal-mediated 
dispersal strategies. These changes probably reflected the lack of grazing 
animals as dispersal vectors in abandoned semi-natural grasslands (Ozinga et 
al., 2009). Although the total abundance of animal-dispersed (endo- and epizoo-
chorous) species decreased, this change was not general, as evidenced by the 
increased abundance of bird-dispersed species, which suggests that land use 
abandonment favoured bird-dispersed species over mammal-dispersed species 
(MacArthur & Levins, 1967; Purves & Dushoff, 2005). Reduced light avail-
ability in abandoned grasslands increased the abundance of shade-tolerant 
berry-producing forest species with large seeds and high specific leaf area 
(SLA; Metcalfe & Grubb, 1995; Wilson et al., 1999), which are dispersed by 
birds. Moreover, the decreased representation of species adapted to long 
distance dispersal by wind – manifested by small seed size and appendages that 
keep seeds airborne (Tamme et al., 2013) – indicates that the denser vegetation 
structure of abandoned grasslands might limit wind-mediated seed dispersal 
between sites (Weiher & Keddy, 1995; Damschen et al., 2014).  

Corroborating earlier studies, abandonment of semi-natural grasslands also 
promoted species adapted to low-light conditions, with increased abundance of 
species that are strong competitors for light (i.e. avoid shade) or are able to 
tolerate shade (Lavorel & Garnier 2002, Bernard-Vernier et al. 2012, Gommers 
et al. 2013). While there was a clear increase in the abundance of bird-dispersed 
species at the expense of species favouring other types of animal dispersal, plant 
responses to abandonment were more diverse in terms of the strategies used to 
improve light capture, indicating that multiple processes (related to reduced 
light availability) shaped community assembly (Spasojevic & Suding, 2012). 
Species that increased in abundance after land use abandonment maximised 
light acquisition through three strategies: i) tall and fast growth (Franklin et al. 
2008), which was reflected in the high abundance of tall plants and plants with 
high SLA (Poorter & Remkes 1990, Westoby 1998); ii) rapid occupation of 
open habitat patches (Zobel et al. 2010, Johansson et al. 2011), which was 
reflected in the high abundance of clonal plants; and iii) maximised photo-
synthesis (Givinsih 1988, Wilson et al. 1999) and leaf protection (Kitajiima et 
al. 2010, Moles et al. 2013) to increase shade tolerate, which was reflected by 
increases in SLA and LDMC in densely overgrown sites. 
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Overall, the importance of dispersal relative to light traits in explaining 
compositional shifts decreased with abandonment. These results indicate that 
dispersal was limited in abandoned grasslands due to the denser vegetation 
structure and the lack of domestic grazing animals as dispersal vectors, which 
played an important role in grazed semi-natural grasslands. At the same time, 
shifts in the relative importance of light traits highlight the increased relevance 
of adaption to reduced light availability for plant species survival and thus plant 
community composition in abandoned semi-natural grasslands. Several typical 
grassland species share characteristics opposite to those promoted by the altered 
dispersal and light conditions in abandoned semi-natural grasslands, i.e. low 
height, high light requirements and adaptation to wind and epizoochorous 
dispersal (Laasimer, 1965; Saar et al, 2012), and are thus likely to be most 
susceptible to land use abandonment. In summary, it appears that successful 
grassland conservation needs to incorporate both restoration of light and 
dispersal conditions. Such goals can be achieved by reducing the woody cover 
to a maximum of 40% and by re-establishing a regular grazing regime. The 
former would restore the typical light conditions (Rosen & van der Maarel, 
2000), and the latter would restore the dispersal conditions (Ozinga et al. 2009) 
by increasing habitat connectivity and provisioning of suitable microsites for 
plant species establishment (Bakker et al., 2006; Albert et al., 2015).  
 
 

4.2. The relevance of symbiont availability for successful 
grassland conservation and restoration 

The analysis of drivers of plant composition in semi-natural grasslands in study 
II–IV revealed that besides interactions between plants and grazing animals, 
interactions between plants and their associated AM fungal communities shape 
plant community composition. Strong correlation between plant and AM fungal 
communities during early and mature stages of semi-natural grassland succession 
suggests that shifts in richness and community composition of one symbiont 
could induce shifts in the community of the other, corroborating findings from 
mesocosm experiments (van der Heijden et al., 1998; Vogelsang et al., 2006; 
Klironomos et al., 2011). Thus, re-establishment of typical grassland plant 
communities might be enhanced by considering local AM fungal communities 
in parallel (e.g. Torrez et al., 2016). A significant shift in the abundance, diversity 
and composition of local AM fungal communities in young pine forests 
indicates a need to consider re-introduction of AM fungal communities from 
appropriate target communities in order to achieve successful restoration of 
heavily overgrown grasslands (cf. Kardol et al., 2006; Wubs et al., 2016). 

Abundance of AM fungi (NLFA) in young pine forests was low, which may 
reflect limited wind-dispersal of AM fungi in the dense vegetation structure of 
young pine forests, a situation similar to that mentioned before for grassland 
plants (Damschen et al., 2014). However, community completeness of all 
measured AM fungal communities was high, suggesting that local environmental 
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conditions rather than dispersal limitation drove the spatial distribution of AM 
fungi at the studied scales (see also Lekberg et al., 2012; Davison et al., 2015). 
Another factor limiting symbiont abundance in young pine forests might have 
been the shift in the dominant mycorrhizal type from AM to EcM, which is 
typical of regeneration succession in European semi-natural grasslands 
(Prévosto et al., 2011; Gerz et al., 2016) i.e. an EcM tree layer forms over an 
AM plant dominated field layer. This shift might lead to suppression of AM by 
the EcM fungi associated with the relatively large root systems of pine trees, 
and subsequently to a reduction in AM fungal abundance in young pine forests 
(c.f. Gazol et al., 2016). Yet, AM fungal abundance in the soil (NLFA) was a 
weak predictor of correlation strength between plant and AM fungal com-
munities, suggesting that fine-scale effects (sensu Hart et al., 2003; i.e. shifts in 
the diversity and composition of AM fungi) may be more relevant drivers of 
plant community recovery in restored grassland (Moora & Zobel, 2010). 

Plant and AM fungal community diversity and composition was similar in 
most of the early and later stages of grassland succession, when plant-AM fungal 
correlation was strong. However, in both symbiont communities diversity 
significantly declined and composition shifted at the transition to pine forest, 
and correlation between plant and AM fungal communities weakened. Dif-
ferences between grassland and forests in terms of AM fungal diversity and 
composition have been reported before (Moora et al., 2014; Davison et al., 
2015). However, the results of this thesis provide evidence that differences in 
AM fungal community composition influenced plant-plant coexistence, which 
may have translated into differences in plant community structure (see also 
Scheublin et al., 2007; Wagg et al, 2011).  

Experimental results from study IV showed that AM fungal communities 
from open grasslands could balance competition between grassland plants. This 
was probably one factor contributing to the strong linkage between plant and 
AM fungal communities in open grasslands and enabling the observed high 
small-scale plant diversity, which is typical of semi-natural grassland (van der 
Heijden et al., 1998). The positive effects of native grassland inocula on plant 
species richness observed in the meta-analysis also support this interpretation. 
Weaker effects on plant-plant interactions of the AM fungal community from 
young forests might then explain the weaker linkage of plant and AM fungal 
communities in young pine forests and perhaps in part the lower plant diversity 
observed in this habitat type. These findings underline the need to coordinate 
reintroduction of plants and their associated AM fungal communities from 
appropriate target systems during grassland restoration, in order to promote re-
establishment of the plant-AM fungal interaction patterns and thus the plant 
community structure that is typical of the grassland under restoration (Kardol et 
al., 2006; Harris, 2009; Wubs et al., 2016). 

The importance of AM fungal re-introduction in grassland restoration is 
likely to depend on the functional composition of the target and degraded plant 
communities. In study III, the strength of the plant-AM fungal relationship varied 
according to the dominant plant mycorrhizal status in the plant communities 
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measured, suggesting that plant reliance on mycorrhizal symbiosis could be 
another factor regulating how tightly plant and AM fungal communities are 
related (Brundrett et al. 2002). The importance of plant functional traits for 
mediating the plant-AM fungal relationship has mostly been observed in 
controlled greenhouse experiments with low numbers of plant and AM fungal 
species (Hoeksema et al., 2010; Wagg et al., 2011; Lin et al., 2015; but see 
Wubs et al., 2016), but these results provide evidence for this effect occurring in 
nature.  

High abundance of obligate AM plants in semi-natural grasslands was 
associated with a strong correlation between plant and AM fungal communities, 
while a high abundance of facultatively AM plants was associated with weak 
correlation. Shifts in plant AM status largely reflected a shift from legumes to 
grasses, with high legume abundance in open and partially overgrown grass-
lands, and high grass abundance in young pine forests. High reliance on the 
mycorrhizal symbiosis by legumes, which is probably due to high nutrient 
demand (in particular P for N-fixation; Azcon et al., 1991, Wagg et al., 2011), 
might have been one mechanism that led to the strong association between plant 
and AM fungal communities in open grasslands. By contrast, the grass species 
that were abundant in the young forests (C3-grasses) were frequently facultatively 
AM plants (Hempel et al., 2013), i.e. they form mycorrhiza but not always, and 
are able to perform well when fungal abundance is low. Weak reliance of C3-
grasses on mycorrhizal symbiosis is frequently attributed to their fibrous and 
well-branched root systems that allow efficient nutrient uptake (Hetrick et al., 
1990; Maherali et al., 2014). In summary, the relationship between plant and AM 
fungal communities is likely to be strong if the majority of plant species rely 
obligately on AM symbiosis, and weak if the majority of plant species rely 
facultatively on AM symbiosis. The weak mycorrhizal response of the grass 
F. rubra to inoculation in the competition experiments supports this conclusion. 
Consequently, the relative abundance of obligate AM plants in a grassland com-
munity might serve as a first indication of how important a consideration of the 
AM symbiosis should be in the conservation of a particular semi-natural 
grassland. 
 
 

4.3. Nutrient limitation as a regulator of mycorrhizal 
benefits to ecosystem restoration across ecosystems 

The meta-analysis of restoration experiments conducted in study V confirms the 
potential of mycorrhizal inoculation to benefit ecosystem restoration across 
different habitat types globally. Addition of mycorrhizal fungi to restoration sites 
promoted plant growth and plant richness, and effects of mycorrhizal inocu-
lation remained stable or even increased over timeframes of 3 years. However, 
the strength of these effects was strongly context-dependent, corroborating results 
reported from controlled conditions (Hoeksema et al., 2010). The most important 
factor regulating mycorrhizal benefits to plant growth was nutrient availability, 
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which is consistent with the well-known role of mycorrhizal fungi in facilitating 
plant nutrient uptake (Koide, 1991; Schwartz & Hoeksema, 1998; Smith & Read, 
2008). Growth responses to mycorrhizal inoculation were greatest for N-fixing 
plants, C4 grasses and in soils with low N and P concentration. The strong growth 
responses of N-fixing plants and C4 grasses probably reflect high nutrient 
demand (mostly P) for maintaining N-fixation (Mortimer et al., 2008; Wagg et 
al., 2011), and inefficient nutrient uptake due to the coarse root systems of C4 
grasses, respectively (Hetrick et al., 1990; Wilson & Hartnett, 1998). The 
stronger plant growth response to mycorrhizal inoculation in low N and P soils 
is consistent with the theory that plant benefits from trading C for fungal-derived 
nutrients are greatest under low nutrient-availability (Koide, 1991; Schwartz and 
Hoeksema, 1998; Jones and Smith, 2004). With regard to drivers of plant-AM 
fungal covariation in semi-natural grasslands, these results support the notion 
that differences in the nutrient uptake strategies of plants may have mediated 
plant reliance on mycorrhizal symbiosis and thus the relationship between plant 
and AM fungal communities. 

Plant growth responses to inoculation did not vary significantly in relation to 
inoculum complexity (i.e. the number of fungal taxa contained in the inoculum), 
perhaps reflecting the low host specificity of the AM fungi used as inoculant in 
most restoration experiments (Smith & Read, 2008). However, whole soil inocula 
(native fungal communities from the soil of intact reference ecosystems) tended 
to promote plant growth more than other types of inocula. The high efficiency 
of whole soil inocula might be due to the adaptation of native fungal com-
munities to the soil properties at the restoration site or due to the comple-
mentary functions provided by the high fungal diversity of whole soil inocula 
(van der Heijden et al., 1998; Hart & Klironomos, 2003). In concert with earlier 
studies reporting similar findings (Barea et al., 2011; Maltz & Treseder, 2015) 
and in light of the differential response of plant-plant interactions to variations 
in AM fungal composition discussed above, these results highlight the effective-
ness of whole soil inocula for promoting plant growth and probably plant 
diversity in ecosystem restoration.  

Inoculation benefits were stronger in soils that had been severely disturbed 
prior to restoration (e.g. due to mining or road-construction) compared with non-
altered soils, emphasizing the importance of soil legacies as regulators of 
restoration outcomes (Prach & Hobbs, 2008; Standish et al., 2009). Severe soil 
disturbance can reduce the abundance of mycorrhizal fungi and alter their com-
munity composition, hampering the natural recovery of mycorrhizal fungal 
communities (Moora et al., 2014; Lekberg & Koide, 2005). Our results demon-
strate that in these cases mycorrhizal inoculation can alleviate symbiont limita-
tion, thereby assisting recovery of mycorrhizal fungal communities at resto-
ration sites and promoting subsequent revegetation of disturbed soils by annual 
and perennial species (Barea et al., 2011). However, effects of disturbance 
history on plant responses to inoculation were weaker than effects of nutrient 
availability. This may reflect the wide range of disturbance histories included 
within the category “severely disturbed soils”, which probably induced 



36 

differential plant responses to inoculation. Further research should attempt to 
distinguish those types of disturbance for which mycorrhizal inoculation is 
particularly beneficial in assisting ecosystem recovery.  

In addition to promotion of plant growth, the results of the meta-analysis 
showed that mycorrhizal inoculation can increase plant richness and the similarity 
in composition of restored and intact/historic reference plant communities 
(Fischer et al., 2013; Koziol and Bever, 2016; Torrez et al., 2016). These findings 
corroborate predictions from mesocosm experiments (van der Heijden et al., 
1998) and demonstrate the high potential of mycorrhizal inoculation for 
promoting restoration of diverse communities towards the state of intact/historic 
reference sites. The outcomes of previous plant-competition experiments 
(Moora & Zobel, 2010) and the one conducted in study IV suggest that positive 
inoculation effects on plant richness could result from the equalizing effect of 
mycorrhizal fungi on the competitive abilities of dominant and subordinate 
plants (Grime et al., 1987). Mycorrhizal inoculation may thus help to meet the 
aim of restoring diverse communities from sown target species, which currently 
challenges many restoration practitioners (e.g. Grman et al., 2015), by facilitating 
establishment and persistence of rare, often less competitive plant species. 
Conclusions about a positive influence of mycorrhizal inoculation on plant 
richness in ecosystem restoration were based on a small number of studies, so 
further research is required to precisely establish the potential of mycorrhizal 
inoculation to restore plant diversity and composition in a wide range of 
ecosystem types and environmental conditions.  
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V CONCLUSIONS 
Widespread human-induced degradation of terrestrial ecosystems poses an acute 
threat to biodiversity and ecosystem functioning (MEA, 2005). As such, there is 
an urgent need to optimize existing strategies and develop new approaches to 
effectively conserve and restore ecosystem diversity and function (Martin et al., 
2016). On one hand, research assessing the effectiveness of existing conser-
vation and restoration measures can provide conservation practitioners with 
scientific, evidence-based arguments to underpin requests for political and finan-
cial support in taking action. This may be especially relevant for conservation and 
restoration measures that incur additional costs and labour requirements in the 
long-term (e.g. regular grazing management of semi-natural grasslands; Tälle et 
al., 2015). On the other hand, it is crucial to investigate the potential of new and 
lesser-known conservation and restoration strategies (e.g. inoculation with soil 
biota, such as mycorrhizal fungi; Kardol & Wardle, 2010; Wubs et al., 2016). 
The results of this thesis contribute in both of these ways to the improvement of 
science-based biodiversity conservation and ecosystem restoration.  

The results of this thesis confirm the relevance of integrating regular grazing 
management into semi-natural grassland conservation and restoration planning. 
This integration would help to maintain the abundance of typical and often rare 
grassland species, whose life-history strategies are adapted to and thus dependent 
on regular grazing by ungulates. With regard to mycorrhizal fungi, the results 
provide evidence for a strong relationship between plant and AM fungal com-
munities in grasslands, with mediation of plant-plant interactions by AM fungal 
communities being one mechanism linking plant and AM fungal communities 
in grasslands. The recorded strong linkages between plant and AM fungal com-
munities suggest that AM fungal communities should be considered in grass-
land conservation and restoration planning. Significant changes to AM fungal 
diversity and composition in young pine forests indicate that re-introduction of 
AM fungal communities from appropriate target systems could benefit grass-
land restoration in very overgrown sites. Moreover, application of AM fungal 
inoculum in grassland restoration might be especially beneficial if the abundance 
of obligate AM plant species is high in the target grassland community, since 
the compositions of local plant and AM fungal communities were most tightly 
correlated in such grassland types.  

Some of the results in this thesis suggest plant-mycorrhizal fungal relation-
ships are relevant to understanding the suitability of inoculation with mycorrhizal 
fungi in a range of degraded ecosystem types besides grasslands. Benefits from 
mycorrhizal fungi to revegetation success and re-establishment of whole plant 
communities can be expected to be greatest under conditions of nutrient limi-
tation. This means that the benefits for ecosystem restoration from mycorrhizal 
inoculation will be greatest in ecosystems with low soil nutrient availability (N 
and P), and high abundance of plants with strong reliance on mycorrhizal symbiosis 
(e.g. obligate AM plants), due to high nutrient-demand (e.g. N-fixing species) or 
low nutrient-uptake efficiency (e.g. C4 grasses with coarse root systems).  
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SUMMARY IN ESTONIAN 

Taimekoosluse ja arbuskulaarmükoriisse seenekoosluse 
dünaamika rohumaadel muutuva maakasutuse tingimustes 

Alatest 1992. aastast, kui allkirjastati bioloogilise mitmekesisuse konventsioon 
ning seeläbi tõsteti globaalses skaalas esile elurikkuse vähenemise problemaatika, 
on välja töötatud erinevaid elurikkuse kaitse strateegiaid. Samas elurikkuse 
langus jätkub seniajani, olles ühelt poolt tingitud nö. poliitilise tahte puudu-
misest ning teiselt poolt seotud piisava informatsiooni puudumisega elurikkuse 
muutumist põhjustavate mehhanismide osas. Eriti vähe on andmeid mikros-
koopiliste mullaorganismide mitmekesisuse ja funktsionaalse struktuuri kohta. 
Samas on nende liikide määramine ja funktsiooni uurimine aina lihtsam tänu 
kiirelt arenevatele molekulaarsetele meetoditele.  

Pool-looduslikud rohumaad kujutavad endast Euroopa liigirikkamaid taime-
kooslusi, mille elurikkus sõltub nii ajaloolisest kui ka tänapäevasest inimtege-
vusest. Lisaks taimede kõrgele liigirikkusele on pool-looduslikud rohumaad 
oluliseks elupaigaks ka paljudele teistele liigirühmadele (nt. liblikad ja linnud) 
ning pakuvad mitmeid ökosüsteemi hüvesid (nt. kultuurilised ja tolmeldamise 
hüved). Kuna Euroopa pool-looduslikud rohumaad on kujunenud kestva ja 
mõõduka niitmise ja/või karjatamise tulemusel, siis on taolise maakasutuse 
jätkumine vajalik nende säilimiseks. Alates 20.sajandi keskpaigast on kogu 
Euroopas linnastumise, põllumajanduse intensiivistumise ja traditsioonilise 
majandamise lakkamise tõttu pool-looduslike rohumaade pindala ja kvaliteet 
oluliselt vähenenud. Majandamata rohumaad võsastuvad, seal suureneb puit-
taimede katvus, mis omakorda vähendab tänu valgus- ja mullatingimuste muut-
misele rohurinde taimede liigirikkust. Kinnikasvanud rohumaade taastamiseks 
on vaja puittaimede katvust vähendada ja rohumaid regulaarselt karjatada ja/või 
niita. Karjatamine soodustab niidutaimede seemnete levimist ning seetõttu 
leevendab ka koosluste fragmenteerumise mõju.  

Lisaks mulla- ja valgustingimuste ja seemnete levimistingimuste muutumisele 
maakasutuse käigus mõjutavad taimekoosluste mitmekesisust ja koosseisu ka 
muutused mullaelustikus. Viimaste hulgas on olulisel kohal arbuskulaarmükoriisa 
(AM) seened, mis moodustavad sümbioosi umbes 80–90%-ga maismaa taime-
liikidest. Mükoriisaseened saavad peremeestaimelt süsivesikuid ning vastutasuks 
varustavad taimi toitainetega (eriti fosfori ja lämmastikuga) ning kaitsevad taimi 
patogeenide eest. AM seened mõjutavad taimede kasvu ja viljakust ning selle 
kaudu ka taimede omavahelisi interaktsioone ning lõppkokkuvõttes taimeliikide 
kooseksisteerimist. Kuigi AM seente võimalik mõju taimekooslustele on üld-
teada, on empiirilisi andmeid taimekoosluste ja AM seenekoosluste kovariat-
siooni kohta väga vähe. Seetõttu pole selge, kas rohumaade kasutusrežiimi muu-
tumine mõjutab ka seenekooslusi ning kas muutused taime- ja seenekoosluses 
on paralleelsed? 
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Käesolevas töös esitati järgmised küsimused: 
i) Kuidas muutub pool-looduslike rohumaade taimekooslus maakasutuse muutu-
misel? ii) Kuidas mõjutab maakasutuse muutus AM seenekooslust? iii) Kuidas 
sõltub taime- ja seenekoosluse kovariatsioon keskkonnatingimustest? iv) Millist 
rolli mängivad AM seened taimekoosuste taastamisel? 

Kinnikasvanud ja karjatatava rohumaa võrdlus näitas, et taimekoosluse muu-
tudes muutus erineva valgusnõudluse ja levimisstrateegiaga taimeliikide esin-
datus. Kinnikasvamisel suurenes varjutaluvate ja/või klonaalselt kasvavate liikide 
osakaal ning tõusis lindlevijate taimeliikide arv. Valgusnõudlike, madalate ja 
tuul- ning loomlevijate (v.a. linnud) taimeliikide osakaal langes. Rohumaade 
taimekoosluste taastamisel tuleb silmas pidada, et valgustingimuste ja levimis-
tingimuste taastamine on oluline osa kogu protsessist. 

AM seente ja taimekoosluse liigilise koosseisu võrdlev analüüs näitas, et nii 
taime- kui ka AM seenekoosluste koosseis muutus rohumaa kinnikasvamisel 
oluliselt. Liigirikkuse langus oli eriti märgatav mändidega tihedalt kinni kasvanud 
rohumaadel. Taime- ja AM seenkoosluste kovariatsioon oli oluline, s.t. muutus-
tega ühe koosluse koosseisus kaasnesid vältimatult muutused ka teise koosluse 
koosseisus. Seega võib AM seente lisamine kinnikasvanud ning vaesunud elu-
rikkusega rohumaade taastamisel kasuks tulla. Samas näitab varaste suktses-
siooniastmete analüüs, et AM seentel on hea levimisvõime. Seega võib AM 
seente diaspooride lisamine rohumaade taastamisel olla oluline olukorras, kus 
taastamisala ümbruskonnas ei ole heas seisukorras olevaid rohumaid või AM 
seente eoste levik on takistatud ümbritseva tiheda taimestiku poolt. AM seente 
olemasolu on eriti oluline obligatoorselt mükoriissetele taimeliikidele, mille hulka 
kuuluvad paljud liblikõielised. 

Taimekoosluste taastamiseksperimentide metaanalüüsi tulemused näitasid, et 
mükoriisaseente lisamine mõjutas taimekasvu ja liigirikkust üldiselt positiivselt, 
kuid mõju suurus varieerus, olles kõige suurem toitainete (eriti lämmastiku ja 
fosfori) defitsiidi tingimustes või tingimustes, kus mükoriisaseente ohtrus oli 
väga madal. Näiteks sõltusid mükoriisast rohkem liblikõielised taimed, mis 
vajavad N-fikseerimise toetamiseks suhteliselt rohkem fosforit. Analüüs näitas, 
et mükoriisa positiivne efekt ei ilmne ainult isendi ja liigi tasemel, vaid on 
märgatav ka koosluse tasemel, suurendades muuhulgas taastatava taimekoos-
luse sarnasust häiringuteta referentsökosüsteemiga.  

Käesoleva doktoritöö tulemused näitavad mükoriisaseente positiivset mõju 
taimekoosluste liigirikkusele. Samuti näitavad tulemused, et mükoriisaseente 
kasutamine taimekoosluste taastamisel on võimalik ja vajalik. Edaspidised 
uuringud saavad anda vastuse küsimusele, millise seeneinokulumi kasutamine 
taastamiskatsetes on nii majanduslikult kui ökoloogiliselt efektiivseim.  
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