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Halving the Casimir force with conductive oxides: Experimental details
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This work is an extended version of a paper published previously [S. de Man et al., Phys. Rev. Lett. 103,
040402 (2009)], where we presented measurements of the Casimir force between a gold-coated sphere and a
plate coated with either gold or an indium tin oxide (I TO) layer. The experiment, which was performed in air,
showed that I TO conducts sufficiently to prevent charge accumulation but is still transparent enough to halve
the Casimir attraction when compared to gold. Here we report all the experimental details that, owing to the
limited space available, were omitted in the previous article. We discuss the performance of our setup in terms of
stability of the calibration procedure and reproducibility of the Casimir force measurement. We also introduce
and demonstrate a technique to obtain the spring constant of our force sensor. Furthermore, we present a thorough
description of the experimental method, a comprehensive explanation of data elaboration and error analysis, and
a complete characterization of the dielectric function and of the surface roughness of the samples used in the
actual experiment.
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I. INTRODUCTION

It is well known that the Casimir effect [1] strongly
depends on the dielectric function of the interacting surfaces
[2,3]. Transparent dielectrics, for example, attract less than
highly reflective metals. Dielectric materials, however, tend
to accumulate isolated charges. Those charges give rise to
an electrostatic force that easily overcomes the Casimir
interaction.

In a recent paper [4], we presented measurements of the
Casimir force between a gold-coated sphere and a plate coated
with either gold or an indium tin oxide (I TO, In2O3:Sn) layer.
The experiment, which was performed in air, showed that
I TO conducts sufficiently to prevent charge accumulation but
is still transparent enough to halve the Casimir attraction when
compared to gold.

The experiment was carried out by means of a quite compli-
cated technique that, owing to the limited space available, was
not thoroughly explained in our previous work. We believe it is
important to extend that work and provide the community with
all the details of the experimental technique and data analysis,
which is the purpose of this paper.

This paper is organized as follows. First, we describe the
experimental setup and discuss general issues one has to tackle
to perform Casimir force measurements. Then we discuss
the experimental technique we developed to simultaneously
calibrate the setup and measure the Casimir force gradient,
and we derive in detail the specific forms of all our calibration
and measurement signals. Second, we illustrate a method to
determine the spring constant of our force sensor. Third, we
present experimental results on the general performance of
our setup, namely the stability of the calibration procedure,
the reproducibility of the force gradient measurements, and
the spring constant determination. Fourth, we present the
Casimir force measurements for the gold-gold and gold-I TO
interactions and show measurements of the dielectric functions
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and surface topographies of our surfaces. Finally, we compare
the hydrodynamic forces for the two sets of experiments.

II. EXPERIMENTAL SETUP

A. Description

Our experimental setup is designed to precisely measure
surface forces between a 100-µm-radius sphere and planar
samples at ambient pressure. The sphere is attached to a
micromachined cantilever (spring constant roughly 1 N/m)
whose deflection in response to external forces can be
measured with picometer sensitivity by a commercial atomic
force microscope (AFM) detection head (Veeco Multimode);
the detection system is formed by a laser beam that reflects
from the free end of the cantilever and hits a position-sensitive
photodetector (see Fig. 1). The sphere-cantilever assembly is
coated with a Ti adhesion layer and a 100-nm Au film. The
planar sample is mounted on a two-stage mechanical translator
formed by a stick-slip piezoelectric motor (Attocube) and a
feedback-controlled piezoelectric transducer (Physik Instru-
mente) to vary the separation between the sphere and plate
surfaces. The stick-slip motor is used for coarse approach
(travel range 6 mm), while the feedback-controlled transducer
executes the fine distance scanning (range 12 µm, closed-loop
resolution 50 pm). Both the detection head and the two-stage
mechanical translator are anchored to a 10 cm3 Al block that is
actively temperature stabilized at 300 K to reduce mechanical
drift from differential thermal expansion of the components.
The Al block is screwed onto an active antivibration table
(Halcyonics), which is placed inside an anechoic chamber.
This chamber lies on a heavy marble optical table that is located
in a temperature-controlled laboratory.

B. Three crucial issues

In a Casimir force measurement, there are three crucial
issues that have to be dealt with. First, even if one would
electrically connect both interacting surfaces, there exists
an electrostatic potential difference V0 due to the different
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FIG. 1. (Color online) (a) Drawing of the experimental setup used to perform precise measurements of the Casimir force between a
100-µm-radius sphere and a plate. The aluminum block acts as a heat reservoir to keep the temperature of the setup constant. The instrument is
based on a commercial AFM head that is, together with a custom-designed mechanical translator, mounted on the aluminum block. (b) Schematic
representation of the working principle of the experimental technique. The V0 feedback circuit allows one to measure and compensate the
residual voltage present between the sphere and the plate. The calibration lock-in amplifier is used to calibrate the instrument and to find the
initial separation between the two surfaces d0. The measurement lock-in amplifier performs the measurements of the Casimir force gradient
and the hydrodynamic force. (c) Definition of the initial separation d0, the movement of the feedback-controlled piezoelectric stage dpz, and
the nonmodulated separation between the surfaces d = d0 − dpz as used in the Taylor expansion that leads to Eqs. (2)–(7).

work functions of the surfaces. Since work functions of
surfaces depend on quite a number of parameters, like crystal
growth orientation and adsorbates, typically there even exists
a potential difference between surfaces made out of the same
material. This electrostatic potential difference gives rise to a
force that is generally stronger than the Casimir force. To avoid
this problem, most Casimir force setups rely on a counterbias
circuit that is used to apply −V0 to the surfaces in order to
have no residual electrostatic force.

Second, even in setups where the distance between the
sphere and the plate is varied with a feedback-controlled piezo-
electric transducer, one has only knowledge of the relative
position changes and not of the absolute separation between
the surfaces. It is thus mandatory to find the initial separation d0

with a calibration procedure. Because the distance dependence
of the electrostatic force between a sphere and a plate is known
exactly, most modern setups use this force to extract d0.

Third, the instrument has to be calibrated with a known
force. Again, one can use the electrostatic interaction to cali-
brate photodetector voltage versus force. We have developed
a measurement scheme that solves all three issues at the same
time.

C. Force modulation measurements

We present a measurement technique that makes use of
simultaneous detection of both calibration signals (based on
the electrostatic force) and the Casimir force. The motivation
for this approach is the benefit of absolute certainty that the
calibration parameters always correspond to the measured
forces because they are acquired simultaneously; it is thus
impossible to have inconsistent calibration and force data due
to time-related drifts or other events. In order to achieve this
goal, we have separated the calibration and Casimir signals
in frequency space: the signals are modulated at distinct
frequencies that can be demodulated individually with lock-in
amplifiers.

Modulating an electrostatic interaction is extremely easy:
one just has to apply a time-dependent potential difference
to the sphere and the plate [Vac in Fig. 1(b)]. We thus apply
an oscillating voltage Vdc + Vac cos (ω1t) between the sphere
and the plate, where Vdc is used to compensate for the contact
potential difference V0 [5]. Unfortunately, modulating the
Casimir force is a lot more challenging because its strength
depends only on geometry and dielectric properties of the
surfaces. On the other hand, of course, the strong distance
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dependence of the Casimir force can be used to modulate
its strength considerably. Therefore, we chose to add a small
modulation of the form �d cos (ω2t) to the piezoelectric
transducer displacement dpz, as previously introduced in [6].
When the sphere and plate surfaces are separated by a distance
d, we have the following three forces acting on the sphere:
F (V,d,ω2,�d) = FE(V,d) + FC(d) + FH (d,ω2,�d), where
FE(V,d) is the electrostatic force for externally applied
potential difference V , FC(d) is the Casimir force, and
FH (d,ω2,�d) is the hydrodynamic force due to the moving
air caused by the oscillatory motion of the plate. These forces
induce a bending of the cantilever F/k according to Hooke’s
law, where k is the spring constant of the cantilever. The output
of the optical lever readout S is then changed by �S = γF/k,
where the sensitivity of the readout is characterized by the
calibration factor γ . We now develop the full form of this
signal �S.

Following elementary electrostatic arguments, one can
show that the electrostatic force between a plane and a sphere
of radius R is given by

FE(V,d) = −ε0πR (V + V0)2

d
, (1)

where ε0 is the permittivity of vacuum, V is the externally
applied voltage, V0 is the contact potential difference between
the two surfaces, and d � R (i.e., within the proximity force
approximation (PFA) [3]). To evaluate the total signal �S,
we substitute V = Vdc + Vac cos (ω1t) and incorporate the dis-
tance modulation �d cos (ω2t). We then approximate the pho-
todetector signal with a first-order Taylor expansion for small
excursion �d cos (ω2t) around d = d0 − dpz [see Fig. 1(c)]:

�S(t) � S0 + Sω1 cos(ω1t) + S2ω1 cos(2ω1t) + SI
ω2

cos(ω2t)

+ SQ
ω2

sin(ω2t) + Srem(t), (2)

where

S0 = −γ ε0πR
[
(V0 + Vdc)2 + V 2

ac

/
2
]

k(d0 − dpz)
+ γ

k
FC(d0 − dpz),

(3)

Sω1 = −2γ ε0πR(V0 + Vdc)Vac

k(d0 − dpz)
, (4)

S2ω1 = − γ ε0πR

k(d0 − dpz)

V 2
ac

2
, (5)

SI
ω2

=−γ ε0πR
[
(V0 +Vdc)2 +V 2

ac

/
2
]
�d

k(d0 − dpz)2
− γ

k

∂FC

∂d

∣∣∣∣
d0−dpz

�d,

(6)

SQ
ω2

= γ

k
FH (d0 − dpz,ω2,�d). (7)

In the preceding equations, FC

(
d0 − dpz

)
is the Casimir force

at separation d0 − dpz, Srem(t) contains the cross terms at
frequencies like ω1 ± ω2 and 2ω1 ± ω2 and the gradient of the
hydrodynamic force at 2ω2, and we have neglected the effect of
the cantilever deflection on the distance between the surfaces.
Since the remaining terms in Srem are located at different
frequencies than our measurement signals, they do not interfere
with the lock-in measurements of Sω1 , S2ω1 , SI

ω2
, and SQ

ω2
. The

variable Srem is thus neglected in the rest of the paper.

Equation (2) is only valid if the force sensor can follow the
modulations of the force without picking up phase delays. It is
thus convenient to operate in the quasistatic regime, which
also ensures that the amplitude response of our cantilever
at the various measurement frequencies does not vary. For
these reasons, we set ω1/2π = 72.2 Hz and ω2/2π = 119 Hz,
which are both much lower than the resonance frequency
of the force sensor (1.9 kHz, quality factor �75 in air).
Furthermore, we have not included the elastic component of
the hydrodynamic interaction in SI

ω2
. According to [7], the

compression effect is small as long as σsphere = 4ηω2R

pd
< 1,

where η is the viscosity of air and p is the air pressure. In
our experiment, σsphere � 10−3, so the elastic component can
be neglected and we only have to consider the dissipative part
of FH (d,ω2). Since a dissipative effect depends on velocity
v = ∂d/∂t = ω2�d sin(ω2t), it manifests itself as a cantilever
oscillation at ω2 with a corresponding detector signal SQ

ω2
that

is rotated 90◦ with respect to SI
ω2

.

D. Electrostatic calibration

The first task of the electrostatic calibration procedure
is to compensate for the presence of the contact potential
difference V0 between the two interacting surfaces. Since Sω1 is
proportional to V0 + Vdc [see Eq. (4)], we can create a negative
feedback loop in which a lock-in amplifier at ω1 generates Vdc

in such a way that Sω1 vanishes (i.e., Vdc = −V0) [5,8]. The
stability of this feedback loop is guaranteed by a single large
time constant. In the current experiment, the systematic error in
the compensation voltage is negligible (|V0 + Vdc| < 50 µV),
and the statistical error is �1 mV. This feedback scheme is
similar to Kelvin probe force microscopy [9] and allows one
to measure V0 at all sphere-plane separations. Even more,
the automatic compensation of V0 leads to the zeroing of the
(V0 + Vdc) terms in Eqs. (3) and (6), greatly simplifying the
measurement scheme.

The periodic component of �S at 2ω1, S2ω1 , measured with
a second lock-in amplifier [the calibration lock-in in Fig. 1(b)],
is used to calibrate the force sensitivity and to find the initial
separation between the surfaces d0. We define

α = γ ε0πR

k(d0 − dpz)
. (8)

According to Eq. (5), α can be experimentally obtained
from α = 2|S2ω1 |/V 2

ac. In this way, we have essentially per-
formed an ac measurement of the curvature of the electrostatic
parabola instead of using multiple dc measurements with
different applied voltages [10]. We measure α as a function
of dpz by varying the extension of the capacitive feedback
controlled piezoelectric transducer [see Fig. 1(c)] in discrete
steps. We then fit Eq. (8) to these α data. This procedure allows
us to calibrate the separation at the start of the measurement d0

and the force sensitivity κ = γ ε0πR/k for each measurement
run. We then use the estimate of d0 to adjust the initial value
of dpz of the next measurement run in order to have all runs
start at the same separation. To avoid large electrostatic forces
at small separations, we reduce Vac as the surfaces approach
such that S2ω1 stays nearly constant at a value that corresponds
to a root-mean-square electrostatic force of �50 pN [5].
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E. Casimir force measurement

We use a third lock-in amplifier [the measurement lock-in
Fig. 1(b)], locked at ω2, to measure the Casimir force. The
phase of this lock-in amplifier is aligned to the actual motion
of the plate by examining the signal from a dedicated fiber optic
interferometer (not shown in Fig. 1). The same interferometer
is used to calibrate the amplitude �d of the separation
modulation. We see from Eq. (6) that the in-phase component
SI

ω2
contains both an electrostatic contribution and the gradient

of the Casimir force FC at the current separation. Since
V0 + Vdc = 0 by the V0 feedback circuit, Eq. (6) simplifies to

SI
ω2

= − γ ε0πR

k
(
d0 − dpz

)2

V 2
ac

2
�d − γ

k

∂FC

∂d

∣∣∣∣
d0−dpz

�d. (9)

Combining Eqs. (5) and (9), one obtains

SI
ω2

= S2ω1

d0 − dpz
�d − γ

k

∂FC

∂d

∣∣∣∣
d0−dpz

�d. (10)

Since the absolute separations d0 − dpz and S2ω1 are known
from the simultaneous electrostatic calibration (and �d is
calibrated too), one can calculate the value of the first term of
Eq. (10). Using the force sensitivity κ = γ ε0πR/k obtained
from the calibration, we can finally get the Casimir force
gradient:

1

R

∂FC

∂d
= ε0π

κ

(
S2ω1

d0 − dpz
− SI

ω2

�d

)
. (11)

It is interesting to note that we obtain the Casimir force gradient
divided by the sphere radius R, because we have calibrated the
instrument with the electrostatic force which scales linearly
in R [see Eq. (1)]. However, within the PFA, the gradient of
the force between a sphere and a plate relates directly to the
pressure between two parallel plates Ppp as long as d � R:

1

R

∂FC

∂d
= 2πPpp(d), (12)

where Ppp(d) can be calculated with the Lifshitz theory [2]
and depends only on the dielectric properties of the interacting
surfaces. Therefore, we can directly compare our 1

R

∂FC

∂d
data

to theory, without any need to know the precise radius of the
sphere.

Furthermore, by using a quadrature lock-in amplifier at ω2,
we can obtain SQ

ω2
together with SI

ω2
. We can thus measure the

hydrodynamic interaction between the sphere and the plate
simultaneously with, but independently of, the Casimir force
gradient.

F. Determination of deflection sensitivity and
cantilever spring constant

So far, we have neglected the bending of the cantilever in
the assessment of the distance between the sphere and plate
surfaces. This is valid as long as the forces are relatively weak
and the spring constant of the cantilever is relatively high.
Of course, the nominal spring constant of the cantilever is
supplied by the manufacturer, but the addition of a glued sphere
and metal coating influence the stiffness. Therefore, we have
developed a technique to measure the spring constant with
the electrostatic force. Furthermore, this method also allows

us to extract the deflection sensitivity γ of the optical lever
readout; we can then convert the photodetector signal �S into
cantilever deflection F/k. This technique might be useful for
AFM force measurements in general.

To obtain the cantilever spring constant and the deflection
sensitivity, we apply a relatively large Vac between the sphere
and the plate. Exactly as described earlier in the electrostatic
calibration section, we keep the electrostatic force at 2ω1

constant, but now at roughly 2 nN rms instead of 50 pN rms,
by reducing Vac while increasing the piezoelectric transducer
extension dpz in discrete steps. This strong force reduces the
sphere plate distance, and we therefore have to solve the
following implicit equation for the electrostatic force:

FE = − ε0πRV 2

d0 − dpz + FE/k
, (13)

where, since we have already dealt with the contact potential
difference V0 with the feedback circuit, V just refers to
the ac component of the applied voltage. For the sake
of simplicity, we have omitted the piezomodulation at ω2

from this derivation, because it does not affect the results.
Equation (13) has two solutions for FE , and the physically
correct one reads

FE = − 1
2 [k(d0 − dpz) −

√
k2(d0 − dpz)2 − 4kε0πRV 2].

(14)

If we Taylor-expand this expression for small cantilever
deflection (which means small force and small applied voltage
V ) and use �S = γF/k, we obtain

�S = − γ ε0πRV 2

k(d0 − dpz)
− γ ε2

0π
2R2V 4

k2(d0 − dpz)3
+ O(V 6). (15)

Substituting V = Vac cos(ω1t) and neglecting the higher-order
terms yields a detector signal

�S(t) � S0 + S2ω1 cos(2ω1t) + S4ω1 cos(4ω1t), (16)

where S0 is the dc component and the amplitudes of the two
ac components are given by

S2ω1 = − γ ε0πRV 2
ac

2k(d0 − dpz)
− γ ε2

0π
2R2V 4

ac

2k2(d0 − dpz)3
(17)

and

S4ω1 = − γ ε2
0π

2R2V 4
ac

8k2(d0 − dpz)3
. (18)

S2ω1 is already measured by our electrostatic calibration
lock-in amplifier, and we simply add another lock-in amplifier
locked at 4ω1 to detect S4ω1 .

The second term in Eq. (17) is much smaller than the first
term and can be neglected. We then find that

Vac

√
S2ω1

S4ω1

= 2

√
k

ε0πR
(d0 − dpz), (19)

which means that we can obtain k/R by fitting Eq. (19) to data
of Vac

√
S2ω1/S4ω1 as a function of relative piezodisplacement

dpz. Apart from the resulting knowledge on the cantilever
spring constant (the sphere radius is roughly known), we also
obtain the deflection sensitivity γ by combining the value of
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k/R with that of κ = γ ε0πR/k determined by the analysis
of the simultaneously acquired α data (as described in the
electrostatic calibration procedure).

III. RESULTS AND DISCUSSION

We have divided our experimental results into two parts.
In the first part, we describe the precision and stability of
the electrostatic calibration procedure and comment on the
reproducibility of the Casimir force gradient detection in a set
of 580 measurement runs between two gold-coated surfaces.
Also, we present a single data set obtained with a large
electrostatic force between the sphere and the plate that allows
us to check the validity of Eq. (6) [and Eq. (11) as well] and to
obtain the spring constant of our cantilever and the deflection
sensitivity of the optical lever readout. In the second half, we
combine the Casimir force measurements between the two
gold surfaces with measurements between a gold surface and
a surface coated with ITO (In2O3:Sn), as presented in [4],
adding details that, for the sake of brevity, were previously
omitted. Furthermore, we obtain the hydrodynamic forces for
both measurement sets and compare the results.

A. General performance

We now analyze the 580 measurement runs between two
gold surfaces obtained during nearly 72 h of continuous
data acquisition. In this experiment, the separation between
the surfaces is varied in discrete steps with the feedback-
controlled piezoelectric transducer, and a typical measurement
run consists of �50 dpz set points in the measurement range
50 < d < 1100 nm. The lock-in measurements are obtained
with 24 dB rolloff low-pass filter settings with 1 s RC time.
The waiting time for every value of dpz is 8 s, and a complete
run takes roughly 7 min. The S2ω1 set point corresponds to
a cantilever movement of approximately 50 pm rms. The
distance modulation is set to �d = 3.85 ± 0.08 nm, and
the in-phase and out-of-phase cantilever responses at ω2 are
less than 80 pm rms during the entire experiment. All force
measurements are performed in air at atmospheric pressure,
300 K temperature, and 29% relative humidity.

Concerning the electrostatic calibration, we have to fit our
α data with Eq. (8) to obtain the initial separation d0 and the
force sensitivity κ . Due to the fact that we hold S2ω1 constant
by reducing Vac, the relative statistical error in α is constant
(see [5]) and was measured to be �0.7%. We have verified that
α follows Eq. (8), as suggested in [11] and discussed in [5].
In Figs. 2 and 3, we present the fitted values for d0 and κ

and analyze their stability in time. Figure 2(a) shows all the
values of d0 for the 580 runs with error bars as propagated from
the error on α. The gray line represents the smooth thermal
expansion of the setup and is estimated by smoothing the
data with a 100-point moving-window second-order Savitsky-
Golay filter. The total mechanical drift of our setup is 52 nm
in 72 h, which is less than 1 nm/h and less than 0.1 nm per
measurement run. Clearly, we can neglect the mechanical drift
in our assessment of separation between the surfaces in a single
run. In Fig. 2(b), we plot a histogram of the difference between
the d0 data and the smoothed gray line of Fig. 2(a). These
differences are clearly normally distributed with a standard
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FIG. 2. Mechanical stability of the experimental setup. (a) Me-
chanical drift in the initial separation d0 as a function of run number
for all 580 Au-Au measurement runs. The error bars are determined
by propagation of the error on α into the estimate of d0 by the fit with
Eq. (8). The gray line represents a trend line that accounts for the slow
thermal drift of the setup. (b) Histogram of the differences between
the measured d0 values and the gray line of (a). The line represents the
best Gaussian fit, resulting in a 0.5-nm standard deviation.

deviation of 0.5 nm. Therefore, in these experimental runs, we
could determine the separation between the sphere and plate
surfaces with 0.5-nm precision. This estimate of the precision
in the measurement of d0 is insensitive to the precise form and
size of the smoothing window.

Figure 3(a) shows all the values of the force sensitivity
κ that we obtained from the fit to our electrostatic calibration
data. The error bars are calculated by propagating the errors on
α. The gray line is a smoothed trend line that represents slow
variations in κ over time, obtained by smoothing the data with a
200-point moving-window second-order Savitsky-Golay filter.
There is clearly no long-term drift in the force sensitivity,
which shows that our setup is very stable. In Fig. 3(b), we
plot a histogram of the relative deviations between our κ data
and the smooth gray line of Fig. 3(a). These deviations are
normally distributed with a standard deviation of 0.2% and are
insensitive to the specifics of the smoothing window. We have
thus determined the force sensitivity of the setup for every
single measurement run with a precision of 0.2%.

062512-5



S. DE MAN, K. HEECK, AND D. IANNUZZI PHYSICAL REVIEW A 82, 062512 (2010)

(a)

(b)

0 100 200 300 400 500

188.0

188.5

189.0

189.5

190.0

190.5

 (
n
m

/V
)

run number

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

50

100

150

200

250

C
o
u
n
ts

relative deviation (%)

 = 0.2%

FIG. 3. Stability of the electrostatic calibration. (a) All 580
obtained values for the force calibration constant κ as a function
of run number. The error bars are calculated by propagating the error
on α. The gray line is a smooth trend line that accounts for slow
variations. (b) Histogram of the relative deviations of the κ data from
the trend line in (a). The Gaussian fit has a standard deviation of
0.2%.

In Fig. 4 we present measurements of the total force gradient

1

R

∂F

∂d
= −ε0π

κ

SI
ω2

�d
(20)

as a function of the nonmodulated separation d = d0 − dpz [see
Fig. 1(c)]. This force gradient should, according to Eq. (11),
obey

1

R

∂F

∂d
= 1

R

∂FC

∂d
+ 1

R

∂FE

∂d
(21)

with

1

R

∂FE

∂d
= −ε0π

κ

S2ω1

d0 − dpz
. (22)

In Fig. 4(a), the data points represent the −ε0πSI
ω2

/(κ�d)
data points and the solid line shows the electrostatic force
gradient as obtained with Eq. (22) from the S2ω1 values of the
simultaneous electrostatic calibration procedure. For clarity,
we have shown only 150 measurement runs out of the total
580. It is clear that, in the distance range where our setup is
sensitive to the Casimir force, the electrostatic force gradient
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FIG. 4. (a) The data points represent measurements of the total
force gradient as a function of separation between the sphere and
plate surfaces for 150 measurement runs out of a total of 580 runs.
The line shows the electrostatic force gradient associated with the
simultaneous calibration procedure. (b) Plot of all 580 force gradient
measurements obtained for d � 95 nm as a function of time. The gray
line represents the average force gradient. (c) Histogram of all the
relative deviations between the single force gradient measurements
around 95 nm and the average force gradient. The Gaussian fit has a
standard deviation of 3.5%.

caused by the electrostatic calibration is small compared to
the Casimir force gradient. To assess the stability of our force
gradient measurement, we have plotted all 580 1

R
∂F
∂d

data points
gathered around 95 nm from our 580 measurement runs in
Fig. 4(b). Our data do not show any drift in time, which means
that the setup is stable. The gray line represents the average
of the data points. In Fig. 4(c), we plot a histogram of all the
relative deviations of the data with respect to the average. These
deviations are normally distributed with a standard deviation
of 3.5%, which corresponds to a standard deviation in the
measurement of the force gradient of 1.85 N/m2. This value
represents an overestimate of the noise though, because the
data are obtained at slightly different separations; the exact
position of a data point depends on the estimate of d0 coming
from the previous measurement run. Since the error in the
determination of d0 is 0.5 nm [see Fig. 2(b)], the data are
horizontally scattered with a standard deviation of 0.5 nm.
For d � 95 nm, the local slope of the data in Fig. 4(a) is
approximately 1.3 N m−2 nm−1, which translates this scatter
in d into a force gradient scatter of 0.65 N/m2. Therefore, the
actual precision in a single force gradient data point around
95 nm is 1.75 N/m2, if we assume that both the force gradient
noise and the scatter in separation are uncorrelated.

From the electrostatic calibration results, we could have
also estimated the noise in the force gradient measurement.
In fact, the noise in S2ω1 is 30 µV rms with a 1-s RC time.
The force gradient signal at ω2 is located at a comparable
frequency; therefore, the noise is quite the same. If we
substitute our measured values of κ and �d into Eq. (20),
we see that we would have expected the noise in 1

R
∂F
∂d

to be
1.62 N/m2. But we have not yet taken into account the 0.5-nm
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error in the separation that arises from the estimate of d0.
For d � 95 nm, this results in an additional statistical error of
0.65 N/m2 in the force gradient at this distance. The combined
error, assuming the force gradient and distance errors are
uncorrelated, is then 1.75 N/m2 for d � 95 nm, which agrees
perfectly with the data of Fig. 4.

Since our Casimir force gradient measurement consists
of measuring the total force gradient and subtracting the
electrostatic force gradient [see Eq. (11)], it is interesting
to investigate the accuracy in the assessment of 1

R
∂FE

∂d
. For

that, we have gathered a new data set with a relatively strong
electrostatic interaction (high Vac) between the sphere and the
plate. When we combine the high-Vac total force gradients
with measurements obtained with low Vac, we can get

1

R

∂F

∂d

∣∣∣∣
Vac>

− 1

R

∂F

∂d

∣∣∣∣
Vac<

= 1

R

∂FE

∂d

∣∣∣∣
Vac>

− 1

R

∂FE

∂d

∣∣∣∣
Vac<

(23)

because the Casimir force gradient is equal in both cases and
drops out. Even more, any other systematic effects present in
the force gradient measurement that do not depend on Vac,
for example, laser light that reflects from the planar sample
and hits the photodetector, are also canceled in this way. The
right-hand side of Eq. (23) can be calculated with Eq. (22), and
we can thus assess the validity of the latter and, consequently,
of Eq. (11). In Fig. 5, we have plotted the difference in
total force gradients [obtained with Eq. (20)] as a function of
distance. The solid line represents the difference in calculated
electrostatic force gradients [Eq. (22)], determined with the
corresponding sets of S2ω1 data. Although the agreement
between the two electrostatic force gradients is good (there
are no adjustable parameters), there exists a slight discrepancy
between the two curves. The measured total force gradient
difference is systematically about 3% higher than the values
calculated from S2ω1 . If this discrepancy means that there is

FIG. 5. Plot of the electrostatic force gradient difference between
a measurement run performed with a strong electrostatic interaction
and a run performed with a weak electrostatic force. Data are plotted
as a function of separation. The line corresponds to the electrostatic
force gradient obtained from the calibration signal. See text for
details.

a small error in the determination of the electrostatic force
gradient, then the measurement of the Casimir force gradient
is almost unaffected. For example, for all d < 120 nm, the
electrostatic force gradient is always <25% of the total force
gradient, which results in an error of <1% in the measurement
of the Casimir force gradient. If, on the other hand, the
mismatch is caused by the uncertainty in the determination
of �d with the dedicated fiber optic interferometer, then
our Casimir force gradients are affected by a 3% systematic
error. Nevertheless, this systematic error does not hamper
the comparison between force gradient data obtained with
different samples, because we always use the same �d.

To measure the deflection sensitivity of the readout and
the spring constant of the cantilever, we follow the procedure
outlined above. In essence, we apply a big potential difference
between the sphere and the plate, record the cantilever
deflection signal at both 2ω1 and 4ω1 as a function of relative
piezoelectric transducer displacement dpz, and fit Eq. (19) to
those data. In Fig. 6, we plot Vac

√
S2ω1/S4ω1 as a function

of dpz for such a single data set. The straight line represents
the best fit with Eq. (19) (reduced χ2 = 0.25). The error bars
were determined by measuring the absolute error in S2ω1 and
assuming that the error in S4ω1 is equal and independent of the
error in S2ω1 . This is not entirely correct, because some sources
of error, for example fluctuations in d, lead to correlated
variations in S2ω1 and S4ω1 . We have thus overestimated the
error in Vac

√
S2ω1/S4ω1 , which leads to a reduced χ2 < 1. In

any case, the slope of the data allows us to extract k/R =
(11.12 ± 0.06) × 103 N/m2 (the uncertainty is obtained by
setting reduced χ2 = 1). When we combine this value of k/R

with the simultaneously determined κ = 191.3 ± 0.2 nm/V,
we find that γ = (7.64 ± 0.04) × 107 V/m. With this value of
γ , we can now establish that the S2ω1 set point we used for
this data set corresponds to a cantilever motion of 2 nm rms
at 2ω1. It is interesting to observe that this 2-nm modulation
of the separation d at 2ω1 gives rise to a measurable signal
at 4ω1 even at 1 µm distance. Furthermore, if we use the
approximately known sphere radius of 100 µm, we obtain

FIG. 6. Plot of Vac

√
S2ω1/S4ω1 as a function of piezoelectric

transducer extension. The line represents the best fit of the data with
Eq. (19) (reduced χ 2 = 0.25). The slope of the fit can be used to
obtain the cantilever spring constant and the deflection sensitivity γ .
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the spring constant of our cantilever, k = 1.1 N/m. Since the
nominal spring constant before sphere attachment and gold
coating was 0.9 N/m, the value we find with this electrostatic
method is very reasonable.

With the deflection sensitivity calibrated, we can now
assess the total cantilever bending and the precision in the
measurements of the cantilever deflection. In the measurement
runs presented in Figs. 2, 3, and 4, we used an S2ω1 set point
of 4 mV rms, which corresponds to a cantilever motion of
52 pm rms. Therefore, the static bending of the cantilever due
to the electrostatic calibration procedure is 74 pm [see Eqs. (3)
and (5)]. In any case, this static bending is constant during
the measurement run and it is thus automatically taken into
account in the estimate of d0. The cantilever oscillations at
ω2 caused by the total force gradient and the hydrodynamic
interaction are less than 80 pm rms for these measurement
runs, which means that the corresponding static bending is
less than 113 pm. It is thus evident that we can safely neglect
the static bending of the cantilever in our data analysis. Since
the noise in S2ω1 is 30 µV rms, the precision in the detection
of the cantilever deflection is 400 fm rms with our 1-s RC time
(24-dB low-pass filter). This means that our setup has an rms
sensitivity of 1 pm/

√
Hz at 2ω1/2π = 144.4 Hz.

B. Halving the Casimir force

We now present a comparison between two experiments
performed with the same gold-coated 100-µm-radius sphere
and two different plates. The first experiment is conducted
with a polished sapphire substrate coated with a gold film
similar to the one deposited on the sphere. The general
performance of our setup was discussed above by analyzing
this first experiment. The second experiment consists of 580
measurement runs in which the plate is replaced by a float
glass substrate with a sputtered ITO thin film on top (PGO
CEC010S, typically 8.5 /sq., or, equivalently, ρ = 1.6 ×
10−4  cm). After purchase, this sample was exposed to air
for more than 2 yr before our measurements were performed.

Figure 7 shows the Casimir force gradient between the
two pairs of surfaces [Au-Au in (green) triangles, Au-I TO in
(red) squares] [4]. In Fig. 7(a), we plot the force gradients
as a function of separation on a double logarithmic scale
for randomly chosen subsets of the data (150 out of 580 for
both cases). Both data sets are obtained with the exact same
settings for the electrostatic calibration and the force gradient
measurement, and the Casimir force gradient is obtained from
Eq. (11). The black lines indicate the theoretical force gradient,
which is explained below. Figures 7(b) and 7(c) present two
histograms of all 580 Casimir force gradient measurements
for both Au-Au and Au-I TO at separations d = 120 nm and
d = 80 nm, respectively. It is clear that the interaction strength
with the I TO sample is considerably reduced with respect to
the gold plate.

Note that our estimate of d0, and thus d, relies on the
simple form of Eq. (1) and is only valid for d � R (PFA).
This assumption is not entirely correct in the probed separation
range [5] and results in a systematic error in d0 of about 1.4 nm.
Still, the corresponding underestimate of the separation is
equal for both the measurements with Au and ITO and can
thus be neglected in the comparison of the two experiments.

60 80 100 120 140 160 180 200

1

10

100

d (nm)

5 10 15 20 25

40 50 60 70 80 90
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~ 40%

~ 50%

(b)

(c)

FIG. 7. (Color online) (a) Casimir force gradient as a function
of separation for the Au-Au [(green) triangles] and Au-ITO [(red)
squares] interactions for randomly chosen subsets of the data (150
out of 580 for both cases) plotted on a double logarithmic scale,
with the common electrostatic background subtracted from the data.
The solid lines correspond to the calculated Casimir interactions.
(b) Histogram of all 580 force measurements for both the Au-Au and
the Au-ITO measurements at d = 120 nm. The difference in Casimir
force gradients is �50% between the gold and ITO measurements.
(c) Same as in (b), but for d = 80 nm. At this separation, the difference
in the force gradient is �40%.

Concerning the compensation voltage, we observed that
V0 varies approximately 1 and 3 mV over the complete
measurement range in the Au-Au and Au-ITO cases, re-
spectively. These slight variations of V0 do not compromise
the measurement of the Casimir force at the current level
of sensitivity. The value of V0 drifts in time from −106 to
−103 mV for Au-Au and from 72 to 50 mV for Au-ITO
at d = 100 nm. It is also important to note that, for the
duration of the experiment, we never observed any problem
with electrostatic charging of the Au or ITO layers, which
would have most likely resulted in erratic behavior of α

and/or V0.
In order to compare the obtained Casimir force gradients

with theoretical predictions, we have investigated the dielectric
properties of our surfaces. In Fig. 8, we show the reflection and
transmission spectra of the two plates, measured from the thin-
film side, in the frequency range from 0.5 to 6.5 eV. The black
continuous lines represent the reflection and transmission
spectra calculated from the literature. For Au, we used the
values reported in [12]. The imaginary part of the dielectric
function of ITO is constructed from a sum of Drude and
Tauc-Lorentz models with the parameters from [13]. The
real part of the dielectric function is calculated with direct
Kramers-Kronig integration. The thickness of the ITO thin
film was fitted by examining the interference fringes in
the reflection and transmission spectra (taking into account
the refractive index of the material) and turned out to be
190 nm, which is close to the typical thickness reported
by the manufacturer (180 nm). The agreement between the
spectroscopic measurements and these literature values is
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FIG. 8. (Color online) Measured reflection (R) and transmission
(T) spectra as a function of photon energy for the Au on sapphire
[open (green) squares] and ITO on float glass [open (red) squares]
samples. The continuous solid lines are calculations of the reflection
and transmission spectra expected for our samples (no fit parameters
except ITO layer thickness), using handbook data for gold [12] and
a model from [13] for ITO. The transmission spectra for gold are
zoomed in because the maximum transmission (around 2.5 eV) is
only 1.4%. The calculation of the transmission spectrum of the ITO
sample is quite sensitive to the choice of dielectric properties of the
float glass for photon energies above 4 eV. The black lines describe
the measured data reasonably enough to allow for calculations of the
Casimir force.

reasonable in the probed energy range. We want to stress that
for Au there are no adjustable parameters whatsoever in Fig. 8,
and that for ITO only the thickness was fitted. These results
allow us to estimate the Casimir force expected in the two
cases (Au and ITO) and to compare the calculation with our
measurements [see Eq. (12)].

The theoretical Casimir interaction is calculated with the
Lifshitz equation using the dielectric properties of our surfaces.
For Au, we have extrapolated the data of [12] with a Drude
model (ωp = 9.0 eV and 1/τ = 0.035 eV from [14]). For ITO,
we used the model from [13] for all frequencies. The computed
force gradient is plotted as the solid lines in Fig. 7. The
agreement between data and theory is reasonable, although
we do seem to obtain different powers for data and theory.
At small separation, the experimental curves are bending
upward, which is a sign of surface roughness effects [15];
the theoretical curves were calculated for perfectly smooth
surfaces. Furthermore, the Au-Au data tend to give rise to
a stronger force at large distance compared to theory, which
is most likely caused by an artifact common to many AFM
force measurements: the laser light is reflected from the planar

)b()a(
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FIG. 9. (Color online) (a, b) AFM topography scans (10 ×
10 µm) of the surfaces of the Au on sapphire and ITO on float glass
samples, respectively. The surface roughness for the gold sample is
0.8 nm rms, while the ITO plate has a surface roughness of 4 nm rms.
(c) Optical profiler scan of the bottom of the gold-coated polystyrene
sphere that is attached to the cantilever for our force measurements.
The surface roughness of the sphere is 3.8 nm rms.

sample into the photodetector, giving rise to a background
signal. In the Casimir force gradient method presented here,
this artifact results, to first order, in an offset in the data; this
explains the upward trend of the data for large d. Although
the precise distance dependence and strength of this artifact
is unknown, we estimate from the force gradient data at large
separation (d > 500 nm) that the associated systematic error is
certainly less than 2 N/m2. In the case of the Au-ITO measure-
ments, such a background signal is a lot smaller because ITO
does not reflect the laser light well (see Fig. 8 at ω = 1.9 eV).
To explain the mismatch, it is therefore more likely that the
model we used for the dielectric properties [13] is too metallic
at low energy and that, consequently, the calculated Casimir
interaction is too strong, especially at large d.

So far, we have neglected the effects of surface roughness
in our analysis. In Fig. 9, we show topology measurement of
our surfaces. Figures 9(a) and 9(b) are AFM tapping-mode
scans (10 × 10 µm) of the Au on polished sapphire and ITO
on float glass samples, respectively. The gold sample has an
rms surface roughness of 0.8 nm, while the ITO coated plate
has a roughness of 4 nm rms. Figure 9(c) presents a height
profile of the surface of the sphere bottom obtained with an
optical profiler. Since the cantilever is mounted at a 15◦ angle
with respect to the planar sample surface (this is typical in
AFM design), the top of this profile does not correspond to the
area of closest approach in a force measurement. However, this
height profile does give us the ability to estimate the surface
roughness of the sphere, resulting in a value of 3.8 nm rms.

Since we used the same sphere in both sets of measure-
ments, the surface roughness of the sphere can never cause
the observed difference in Casimir force gradients between
the Au-Au and Au-ITO cases. Furthermore, we recall that
surface roughness tends to enhance the strength of the Casimir
interaction [15]. It is therefore impossible that the different
surface roughnesses of the two planar samples is responsible
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FIG. 10. (Color online) Hydrodynamic force (rms) acting on the
sphere as a function of separation for a subset of the data (150 out of
580 for both cases), caused by the oscillations of the plate surfaces
at 119 Hz. The (green) triangles represent the force in the case of
two gold-coated surfaces, while the (red) squares correspond to the
Au-ITO interaction.

for the difference reported in Fig. 7, because the ITO sample is
considerably rougher than the gold-coated sapphire substrate.

When we discussed the details of our experiment, we
mentioned the interesting feature that we can measure both
the Casimir force gradient and the hydrodynamic force acting
on the sphere with the same lock-in amplifier at ω2. Figure 10
shows the hydrodynamic force for both the Au-Au interaction
[(green) triangles] and for the Au-ITO case [(red) squares].
We have plotted the rms force resulting from the 2.72-nm rms
oscillation of the plate at ω2/2π = 119 Hz. Both curves appear
to change exponent at a separation of around 200 nm. This
bending is caused by the slip of the air flow across the surfaces
(i.e., the fluid velocity at the gas-solid interface is nonzero).
This phenomenon is treated in [16] and the expressions
derived there describe our data satisfactorily. Concerning the
comparison of the two sets of hydrodynamic data, it is clear
that the hydrodynamic forces are very similar in the Au-Au
and Au-ITO experiments. Still, there exists a small difference
between the two curves of roughly 2%. This difference cannot
be caused by an error in the determination of the initial
separation d0, because both data sets are parallel on the double
logarithmic plot. We suppose that the cause may lie in the
different surface roughnesses of the Au and ITO samples that
lead to different amounts of fluid slip over the sample surfaces.

It is worthwhile to compare our method for the detection of
hydrodynamic forces with recent measurements obtained with
AFMs [7,17]. In [7], the cantilever with sphere is driven at its
free resonance and the amplitude and phase of the cantilever
motion are used to extract the hydrodynamic force. In [17],
two methods were employed to measure the hydrodynamic
interaction between a colloid sphere and a plate: measuring the
static deflection of the cantilever during a fast approach of the
planar sample and analyzing the thermal noise of the cantilever
while slowly approaching the plate toward the sphere. In both
papers, however, the separation between the two interacting
surfaces was determined by bringing the sphere and plate
into contact, a method that is prone to inaccuracies due to
surface asperities (this is also reported in [17]). Since our
method employs both a hydrodynamic force measurement and
a precise calibration of the distance at the same time, we have
developed a more reliable technique for hydrodynamic force
measurements.

IV. CONCLUSIONS

We have presented the experimental details of our Casimir
force measurements between gold and ITO surfaces [4]. We
have shown that the mechanical drift of our setup is less than
0.1 nm per measurement run and that our electrostatic cali-
bration is performed with 0.2% precision. Force gradient data
obtained over approximately 72 h reveal no drift in the signal at
all, confirming the high stability of the setup. Furthermore, we
have introduced and demonstrated a method to determine the
spring constant of our cantilever and the deflection sensitivity
of the AFM readout. We also presented our measurements of
the Casimir and hydrodynamic interactions between the gold
and ITO surfaces and provided a complete characterization of
our samples in terms of their dielectric properties and surface
roughness.
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