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From dynamic relaxation measurements of the decay of supercurrents in YBa2Cu3O72d films with thick-
nesses between 1.2 and 150 nm we determine the correlation lengthLc~0! ~the length of the tunneling vortex
segment atT50 K! to be 2.2 nm and show that quantum creep occurs in a transition regime where Hall
tunneling is as important as dissipative tunneling.

Soon after the discovery of high-Tc superconductivity Ye-
shurun and Malozemoff1 reported on the existence of giant
flux creep in high-temperature superconductors. Giant flux
creep which has been found in all layered superconductors
arises from the thermally activated motion of vortices from
one metastable configuration to a neighboring one. The prob-
ability for such a hopping process is proportional to
exp@2U( j ,T,Be)/kT#, whereU( j ,T,Be) is the activation en-
ergy which depends on the currentj , external field
Be5m0He and temperatureT. At low temperature
U( j ,T,Be)/kT diverges and the hopping probability van-
ishes. However, several experiments demonstrated that sub-
stantial relaxation was still present in the millikelvin regime.
One of the most convincing proofs of the existence of this
quantum creep was given by Fruchteret al.2 who found a
temperature independent relaxation rate below 1 K in an
YBa2Cu3O72d single crystal. Evidence for the existence of
quantum creep has also been found in many other investiga-
tions on high-Tc superconductors,3–7 heavy fermions,3 or-
ganic superconductors,4 and Chevrel phases.8

In contrast to thermally activated flux motion which de-
pends essentially on the height of the activation energy bar-
rier, quantum creep depends on the time spent under the
energy barrier during the tunneling of a vortex segment of
lengthLc .

9 Quantum creep is, therefore, inherently related to
the dynamics of a vortex segment, which according to Kop-
nin et al.10,11 is described by the following equation of mo-
tion:

hvW v1avW v3 ẑ5F0LcjWs3 ẑ1FW pin, ~1!

wherevW v is the vortex velocity,F0 the flux quantum,j s the
current density, andẑ a unit vector parallel to the vortex. The
first term on the left-hand side of Eq.~1! represents the vis-
cous drag and the second term is the Hall contribution.

Until recently quantum creep experiments have always
been interpreted by assuming that dissipative effects were
dominant, i.e.,h@a. However, Feigel’manet al.12 proposed
recently that high-Tc superconductors might be in the super-
clean limit and that quantum creep is essentially determined
by the Hall term in Eq.~1!. Their proposition was based on
an estimate ofrn~0! by using a linear extrapolation of
rn(T>Tc) data which leads to a low-temperature resistivity

rn~0!'10 mV cm and a mean free pathl'70 nm, which is
indeed much larger thanjEF/D, wherej is the coherence
length,EF the Fermi energy, andD the superconducting gap.

The purpose of this paper is to show that at low tempera-
tures the high-Tc superconductor YBa2Cu3O7 is ~i! neither in
the purely dissipative regime nor in the superclean limit, but
in an intermediate regime where both Hall and dissipative
terms contribute to the tunneling of vortices and~ii ! that Lc
atT50, i.e.,Lc~0! is much smaller than near the irreversibil-
ity line.13,14 To arrive at these conclusions we measured the
relaxation rateQ of superconducting currents in YBa2Cu3O7
films of thicknessesD ranging from 1.2 nm~1 unit cell! to
150 nm as a function of temperature in magnetic fields up to
7 T. In this work we concentrate on the low-temperature
relaxation.

The thin films were grown by dual target sputtering15 as 8
blocks of YBa2Cu3O7 ~YBCO! of N51, 2, 3, 4, and 8 unit
cells separated from each other by 9.6 nm of highly insulat-
ing PrBa2Cu3O7 ~PrBCO! layers. AN53 sample corresponds
thus to a sample of 8 blocks made of 3.6 nm YBCO and 9.6
nm PrBCO each. As shown by Brunneret al.13 9.6 nm thick
PrBCO layers guarantee a complete decoupling of the YBCO
layers. The use of multilayers improves the signal-to-noise
ratio by a factor of 8, which is required for measurements on
the thinnest samples.~N51; D51.2 nm.! Representative in-
plane resistive transitions forN51,2,3 samples and a 150 nm
film ~N>125! are shown in Fig. 1. TheTc values at 10% of
the transition are 23, 51, 61, and 90 K for theN51,2,3
samples and the 150 nm film, respectively.

As discussed by Jirsaet al.16 relaxation effects in thin
films are most advantageously determined by measuring the
dynamic relaxation rateQ[d ln j s/d ln(dBe/dt), i.e., by
measuring the superconducting currentj s flowing in a film as
a function of the sweepratedBe/dt of the external field.
Since j s is directly proportional to the magnetic momentMs
which can be measured by means of a sensitive capacitance
torque magnetometer,17 Q is determined from torque hyster-
esis loops recorded at various sweeprates. For all samples we
found thatj s varies linearly with ln(dBe/dt). This is clearly
visible in Fig. 2 for theN51 sample, wherej s decreases by
the same amount whenever the sweeprate is halved. This
implies that

j s5 j cF12a lnS ~dBe /dt!max
dBe /dt

D G , ~2!

PHYSICAL REVIEW B 1 JANUARY 1996-IIVOLUME 53, NUMBER 2

530163-1829/96/53~2!/896~4!/$06.00 896 © 1996 The American Physical Society



where (dBe/dt)max is the maximum sweep rate compatible
with flux creep~for dBe/dt.(dBe/dt)max the vortex system
would be in the flux-flow regime!. The functional depen-
dence in Eq.~2! implies that the effective Euclidean action
for tunnelingSeff is proportional toSeff}~12j s/ j c!. Although

Blatter et al.18 showed that the exponentn for the current
dependence (12 j s/ j c)

n can be different from 1 we found
that the data for all the films investigated here could be well
reproduced withn>1.

The slopea jc5d js/d ln(dBe/dt) in Eq. ~2!, when nor-
malized toj s at a certain sweep rate, is by definition equal to
Q at this particular sweep rate. In this work theQ values are
evaluated atdBe/dt540 mT/s. The measured relaxation
ratesQ(T) for the films withN51, 2, 3, and 125 are dis-
played versus temperature forBe50.5, 1, 2, 4, and 7 T in
Fig. 3. Similar results are found for film thicknesses of 4.8
and 9.6 nm. In the low-temperature limit these data exhibit
two most remarkable properties:~i! for all films with N>2
the extrapolated low-temperature relaxation rateQ~0! is typi-
cally 0.02 depending only slightly on the magnetic field for
0.5 T<Be<7 T and~ii ! for theN51 sample the relaxation
rate is, however, significantly larger for all magnetic fields.
The almost constancy ofQ~0! for theN>2 films is surpris-
ing since, as shown below, both in the dissipative and the
superclean limitQ}1/Lc(0) asa andh are both proportional
to Lc~0!. If Lc~0! had been as large as the value found by
Brunneret al.,13 i.e., Lc'45 nm near the irreversibility tem-
peratureTirr , we would have hadLc(0).D for all thin films
~N<8! investigated in this work and, consequently, sinceD
would be smaller thanLc~0!, Q(0)}1/D. This would have

FIG. 1. Resistive transitions of representative YBCO/PrBCO
multilayers used for the creep measurements. The resistivity is nor-
malized at its value at 100 K. The labelsN51, 2, and 3 refer to the
number of unit cells per YBCO layer. The transition at 90 K corre-
sponds to an YBCO film of 150 nm thickness~N>125!. The resis-
tivity values arern ~100 K!5317, 190, 138, and 127mV cm for the
N51,2,3 and the 150 nm film, respectively.

FIG. 2. Torque hysteresis loops nearBe54 T of aN51 YBCO/
PrBCO multilayer at 2.1 K. The most hysteretic loop corresponds to
a sweepratedBe/dt540 mT/s. The other loops are obtained by
successively reducing the sweeprate by a factor 2. Similar results,
but with a much better signal-to-noise ratio, have been measured in
all other ~thicker! samples.

FIG. 3. Dynamic relaxation rateQ of N51,2,3 YBCO/PrBCO
multilayers and of a 150 nm~N>125! thick YBCO film, deter-
mined from hysteresis loops such as in Fig. 2 forBe50.5, 1, 2, 4,
and 7 T~from bottom to top in each panel!. For clarity the curves
have been plotted as a function oft5T/Tc . The superconducting
transition temperatures areTc(N51)523 K, Tc(N52)551 K,
Tc(N53)561 K, andTc~D5150 nm!590 K. Similar results have
been obtained forN54 and 8 multilayers.
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led to a variation inQ~0! by at least a factor of 4 between the
samples withN51 andN58. Since this is not observed we
conclude thatLc~0! is smaller~or equal! to the thicknessD
for the samples withN>2 while Lc(0).D in the N51
sample.19 We conclude that a 3D-2D crossover occurs when
N is decreased from 2 to 1. Furthermore, since for theN52
sampleQ(T) increases rapidly with increasing temperature
at low t5T/Tc'0.2 we conclude thatLc~0! is only slightly
smaller than 2.4 nm. An estimate based on
Lc(t)5Lc(0)(11t2)/(12t2) ~Ref. 14! leads toLc~0!52.2
nm. The valueLc~0!'2.2 nm is consistent with an estimate
based on the following expression:18

Lc>S jF0 lnk

4pm0l
2g2 j c

D 1/2. ~3!

With j51.5 nm,k5100,l5150 nm,g57, and j c5831010

A/m2 which are appropriate for the 150 nm YBCO film at
low temperature14 one findsLc~0!53.2 nm. As discussed in
Ref. 14 the large difference betweenLc ~T'Tirr!'45 nm and
our valueLc~0!'2.2 nm is essentially due to the temperature
dependence of the various physical quantities in Eq.~3!.

For a quantitative discussion of quantum creep in thin
films we need an expression forQ~0! as a function ofa and
h. As discussed by Kopninet al.11 and Blatteret al.,18 a and
h depend onvBt as

a~vBt!5p\nsLc~0!
~vBt!2

11~vBt!2
5vBth~vBt!, ~4!

where the transport relaxation timet5m/nse
2rn(0) is re-

lated to the normal state resistivityrn~0! at zero temperature
and the density of charge carriersns . The energy separation
\vB between low lying levels in the vortex core is approxi-
mately given by\vB.\2/2mj2.

In the dissipative limit,vBt!1, the viscous drag coeffi-
cienth is given by the Bardeen-Stephen expression20 at low
temperatures

h05h~vBt!1!>
F0Bc2Lc~0!

rn~0!
5

p\2

2e2
Lc~0!

rn~0!

1

j2
. ~5!

In the superclean limit,vBt@1 and a`5a(vBt→`)
5p\nsLc(0). The effect of the averaged effective pinning
forceFW pin in Eq. ~1! is a renormalization of the viscous drag
coefficient while the Hall coefficienta remains unchanged.21

In the purely dissipative regime the quantum creep relax-
ation rateQD can readily be evaluated from the tunneling
probability derived by Caldeira and Leggett5,22 to be
QD5A\ j c/h0xhop

2 j s , where 2xhop is the distance separating
the positions of the vortex segment before and after tunnel-
ing. For a cubic potentialU(x)53U0(x/x0)

2(122x/3x0)
the results of Larkin and Ovchinnikov23 lead toA'1 and
x05xhop@12( j s/ j c)

2#1/2.&xhop@12j s/ j c#
1/2 for j s' j c . Here

j c is the critical current for which the energy barrier between
two vortex configurations vanishes. Forj s< j c and noting
that xhop is of the order ofj this leads to

QD>
\

h0j
2

j c
j s
. ~6!

For the superclean regime Feigel’manet al.12 calculated that
the Hall-relaxation rate is given by

QH'
\

a`j2
j c
j s
. ~7!

From Stephen’s treatment of quantum tunneling of vortex
lines, it is possible to obtain an expression for arbitrary val-
ues ofvBt. To logarithmic accuracy, we find that@see Eq.
~20! in Ref. 24#

Q~T50,vBt!5
1

pnsLc~0!j2 F 1

vBt
1
1

2
1
1

p
arctan~vBt!G

~8!

and we recover Eq.~6! in the limit vBt!1 and Eq.~7! in the
limit vBt@1. In Eq. ~8! we have takenj c/ j s51 which is
appropriate at low temperatures. The function between
square brackets, which is plotted in Fig. 4, has the very in-
teresting property to be essentially constant and equal to 1
for vBt.1. This means that even ifvBt varies from sample
to sample,Q~0! remains essentially constant as long as
vBt.1. We believe that this is the explanation25 of the re-
markably similarQ~0! values which have been found in
other high-Tc superconductors such as Bi2Sr2CaCu2O8 ~Ref.
6! and Tl2Ba2CaCu2O8.

7 The regime in which quantum creep
occurs in YBa2Cu3O7 films can be identified by evaluating
pQ(0)nsLc(0)j

2. UsingQ~0!50.02,Lc~0!52.2 nm, as de-
termined in this work andns5531027 m23 from Refs.
26–30 andj51.5 nm we obtainpQ(0)nsLc(0)j

251.6
which corresponds tovBt51.3. This value ofvBt and the
corresponding Hall angleQH5arctan~a/h!5arctan~vBt!

FIG. 4. Dependence of the quantum creep relaxation rateQ~0!
@in units of „pnsLc(0)j

2
…

21# onvBt5a/h, according to Eq.~8!. In
the superclean limit~vBt→`! and in the dissipative limit~vBt!1!
Eq. ~8! reduces to Eqs.~6! and ~7!, respectively.
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'50° are indicative of a creep regime intermediate between
a purely dissipative and a superclean Hall quantum creep
regime. This conclusion is further supported by the observa-
tion thatQ~0! increases as soon as oxygen is removed from
YBa2Cu3Ox films.

31 When x is lowered below 7,rn~0! in-
creases andvBt decreases. A simultaneous increase ofvBt
and decrease ofQ~0! is impossible, since in the superclean

limit Q~0! is virtually independent ofvBt, as shown in Fig.
4.
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