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In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density
orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron
numbers. The basic feature of DOE is the representation of the total supermolecular density ρs as the square of
the sum of the DO ϕa , which represents the active subsystem A and the square root of the frozen density ρf of
the environment F . The correct ρs is obtained with ϕa being negative in the regions in which ρf might exceed
ρs . This makes it possible to obtain the correct ρs with a broad range of the input frozen densities ρf so that
DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory.
The DOE Euler equation for the DO ϕa is derived with the characteristic embedding potential representing the
effect of the environment. The DO square ϕ2

a is determined from the orbitals of the effective Kohn-Sham (KS)
system. Self-consistent solution of the corresponding one-electron KS equations yields not only ϕ2

a , but also the
DO ϕa itself.
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I. INTRODUCTION

In order to efficiently treat complex molecular systems and
aggregates within density-functional theory (DFT), the frozen-
density embedding (FDE) approach has been developed in the
literature [1–9]. In FDE a total supermolecular system S of the
density ρs is partitioned to an active system A of the density
ρa embedded in an environment F with the predetermined
density ρf , which serves as an input of FDE. The total density
ρs is represented in FDE as the sum

ρs(r) = ρa(r) + ρf (r), (1)

with the environmental density ρf being frozen and the active
density ρa being determined from the effective one-electron
Kohn-Sham (KS) equations for the active system A with
the characteristic embedding potential [5]. Then, with the
total density ρs determined from (1), FDE avoids the full
conventional supermolecular calculation of the system S,
thus representing, in principle, an efficient computational
approach.

Though looking inoffensive and natural, the partitioning (1)
presents, in reality, a serious problem for the rigorous foun-
dation of FDE [10]. The point is that, in a customary DFT
fashion, all densities in (1) are considered as non-negative
functions, which is the necessary condition for their N

representability [11]. With this, the partitioning (1) is, in
principle, unable to yield the correct density ρs in the regions
in which the input frozen density ρf might happen to be larger
than the total exact density, ρf (r) > ρs(r). This means that
the FDE appears to be well-defined at the exact level only
for a severely restricted subset of so-called admissible frozen
densities ρf , which do not exceed the exact ρs everywhere
in the space, ρf (r) � ρs(r). Since the admissibility of a
given ρf cannot be, in general, verified other than by that
same full supermolecular calculation, which FDE is intended
to avoid, the partitioning (1) turns FDE into the ill-posed
problem [10].

In this article, an alternative density-orbital embed-
ding (DOE) theory is proposed, which is free from the

aforementioned frozen-density admissibility problem of FDE.
DOE is based on the concept of density orbital (DO) introduced
in Sec. II, which is a generalization of the square root of
the density characterized in DFT with the corresponding
Euler-Lagrange (EL) equation [12–15]. The DO ϕa(r) is a
real function, with which the total supermolecular density is
determined from the relation

ρs(r) = [ϕa(r) + √
ρf (r)]2. (2)

The Euler equation for the DO ϕa is derived in Sec. III from
the EL equation for the square root of the total density ρs .
Besides the KS potential vs[ϕ2

a] and the DO analog vϕ[ϕa] of
the Pauli potential for the active system A, it contains also the
embedding potential vemb([ϕa]), which represents the effect of
the environment. In Sec. IV the noninteracting system Aϕ with
a fractional number Nϕ of electrons is introduced, the density
of which is the square of the DO ϕa . One-electron equations
for the KS orbitals of this system are derived, which contains
the potentials vs[ϕ2

a] and vemb([ϕa]). A possible computational
DOE scheme is considered. In Sec. V the discussion of
the proposed DOE theory is given and the conclusions are
made. Unlike the current FDE, with the DO being negative in
the regions where ρf (r) > ρs(r), DOE is able, in principle,
to yield the correct ρs for a broad range of input frozen
densities ρf .

II. DENSITY ORBITAL CONCEPT

In this section a concept of the DO is introduced. Just as the
previous FDE, the present DOE theory employs the partition
of a supermolecule S with N electrons to an environment F

with Nf electrons and an active system (N and Nf are both
integer numbers). In both FDE and DOE the environment
F is represented with the (non-negative) frozen density ρf .
However, the description of A in DOE differs crucially from
that of FDE. As was already mentioned in the Introduction, in
FDE the active system A is represented with the non-negative
density ρa and the total density ρs is determined as the sum (1).
Because of this, FDE is unable to reproduce the exact ρs in the
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regions, in which this density is smaller than an inadmissible
input frozen density, ρs(r) < ρf (r) [10].

To remedy this serious deficiency of FDE, we propose in
the present article the concept of the DO to describe the active
system within the embedding theory. By its definition, the
DO ϕa(r) is the real function with which the total density
is partitioned according to Eq. (2). In the regions where
ρf (r) > ρs(r), the DO ϕa(r) is negative. Thus, according
to (2), the excess of the input ρf (r) in a certain region is
compensated with the negative value of the DO ϕa(r). With
this, any reasonable input frozen density ρf of embedding
theory becomes admissible density for the proposed DOE (see
the next section for a condition on ρf ).

The DO ϕa introduced in this section can be considered
as a generalization of the square root of the density, which
is characterized in DFT with the EL equation for

√
ρ [15].

Indeed, by its definition (2), in the absence of the environment,
that is, when ρf (r) = 0, ϕa turns to

√
ρs . In a general

case, while the square root of a non-negative N -representable
density is also a non-negative function, the DO ϕa might be
either positive or negative in a certain region, depending on
the relative magnitude of ρs(r) and ρf (r) in this region.

The DO ϕa is a generalization of the square root of the
density in yet another respect. While for an individual system
the density (i.e., the square of

√
ρ) integrates to an integer

number of electrons N , the square of the DO integrates (in a
general case) to a fractional number Nϕ ,

Nϕ =
∫

ϕ2
a(r) d r = N − Nf − Nf a, (3)

where

Nf a = 2
∫

d rϕa(r)
√

ρf (r). (4)

In the following sections equations will be derived, which
determine both the form of the DO and its normalization.

III. EULER EQUATION FOR THE DENSITY ORBITAL

In this section the Euler equation for the DO is derived. We
consider the EL equation for the total KS system corresponding
to the supermolecular density ρs :

δTs[ρs]

δρs(r)
+ vs{[ρs(r)]; r} = εH . (5)

Equation (5) is obtained from minimization of the total energy
Es of the noninteracting KS system,

Es[ρs] = Ts[ρs] +
∫

ρs(r)vs{[ρs(r)]; r} d r, (6)

with respect to ρs , which preserves the normalization of ρs

to N electrons. In (5) and (6) Ts is the functional of the KS
kinetic energy and vs is the canonical KS potential,

vs([ρs]; r) = vext(r) +
∫

d r ′ ρs(r ′)
|r − r ′| + δExc[ρs]

δρs(r)
, (7)

where vext is the external potential and Exc is the exchange-
correlation (xc) energy.

Equation (5) can be rewritten as the EL equation for the
square root of ρs [12–15]:
{− 1

2∇2 + vs([ρs]; r) + vθ ([ρs]; r)
}√

ρs(r) = εH

√
ρs(r).

(8)

In Eq. (8) vθ is the Pauli potential, the functional derivative
with respect to ρs ,

vθ ([ρs]; r) = δTθ [ρs]

δρs(r)
, (9)

of the kinetic functional,

Tθ [ρs] = Ts[ρs] −
∫

d r
√

ρs(r)

(
−1

2
∇2

)√
ρs(r). (10)

In the present DOE the master equation (5) is rewritten
as an equation for the DO ϕa analogous to Eq. (8) for the
square root of the total density. To accomplish this, we insert
in Eq. (5) the density partitioning (2). Then we add to and
subtract from Eq. (5) the derivative of the KS kinetic functional
δTs [ρ]
δρ(r) |ρ=ϕ2

a
evaluated at the density ϕ2

a as well as the kinetic

term −ϕ−1
a (r)(− 1

2∇2)ϕa(r) with the DO ϕa . Both sides of
the resultant equation are multiplied by ϕa(r), thus giving the
Euler equation for the DO:

{− 1
2∇2 + vs

([
ϕ2

a

]
; r

) + vϕ([ϕa]; r) + vemb([ϕa]; r)
}
ϕa(r)

= εHϕa(r). (11)

In (11), vs([ϕ2
a]; r) is the following KS potential:

vs

([
ϕ2

a

]
; r

) = va
ext(r) +

∫
d r ′ ϕ2

a(r ′)
|r − r ′| + δExc[ρ]

δρ(r)

∣∣∣∣
ρ=ϕ2

a

.

(12)

It includes the external potential va
ext of the active subsystem

A and it depends on the density, the square of the DO ϕa .
Another potential in (11) depending solely on ϕa is vϕ , which
is an analog of the Pauli potential of Eq. (9):

vϕ([ϕa]; r) = δTs[ρ]

δρ(r)
|ρ=ϕ2

a
− ϕ−1

a (r)

(
−1

2
∇2

)
ϕa(r). (13)

The environment is represented in (11) with the embedding
potential vemb, which assumes the following form:

vemb([ϕa]; r) = vs

([
ϕ2

a + 2ϕa
√

ρf + ρf

]
; r

) − vs

([
ϕ2

a

]
; r

)

+ δTs[ρ]

δρ(r)

∣∣∣∣
ρ=ϕ2

a+2ϕa
√

ρf +ρf

− δTs[ρ]

δρ(r)

∣∣∣∣
ρ=ϕ2

a

.

(14)

In (12)–(14) the generalization of the functionals Exc[ρ] and
Ts[ρ] and their density derivatives for the densities with
a fractional number of electrons is considered, which was
introduced in Ref. [16]. To employ this generalization, the
density ϕ2

a is to be represented with an ensemble of the Ni
ϕ-

and (Ni
ϕ + 1)-electron systems, where Ni

ϕ is the closest integer
from below to the number of electrons Nϕ of Eq. (3). The
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ensemble was defined in Ref. [16] as an open system, which
is in equilibrium with its environment. Due to this, DOE is
defined on a set of the input frozen densities ρf , for which
their counterparts, the DOs ϕa , are ensemble-representable
densities in the aforementioned sense. This condition appears
to be not a very restrictive one, so that the proposed DOE
could, in principle, accommodate a broad range of input
densities ρf .

IV. NONINTERACTING KS SYSTEM WITH
THE DO SQUARE AS ITS DENSITY

In this section the DO is characterized within the KS
approach. In order to accomplish this, we introduce the
noninteracting system Aϕ , which has the square ϕ2

a of the DO
as its density. This system is described with the EL equation
of the type of Eq. (5),

δTs[ρ]

δρ(r)

∣∣∣∣
ρ=ϕ2

a

+ veff
s ([ϕa]; r) = εµ, (15)

with the effective KS potential veff
s . The Lagrange multiplier

εµ in (15) represents the condition of normalization of ϕ2
a to

Nϕ , with the latter parameter being well defined at the solution
point.

The combination of (13) and (15) yields the equation
for ϕa ,

{− 1
2∇2 + veff

s ([ϕa]; r) + vϕ([ϕa]; r)
}
ϕa(r) = εµϕa(r), (16)

which includes veff
s . Then from the comparison of (16)

with (11) we obtain the following expression for veff
s (up to the

uniform shift εµ − εH , which can be neglected):

veff
s ([ϕa]; r) = vs

([
ϕ2

a

]
; r

) + vemb([ϕa]; r). (17)

This potential determines the KS spin orbitals ψa
i from the

one-electron KS equations:

{− 1
2∇2 + veff

s ([ϕa]; r)
}
ψa

i (r) = εiψ
a
i (r). (18)

In its turn, the KS spin orbitals yield the density ϕ2
a ,

ϕ2
a(r) =

Ni
ϕ∑
i

∣∣ψa
i (r)

∣∣2 + (
Nϕ − Ni

ϕ

)∣∣ψa
(Ni

ϕ+1)(r)
∣∣2

. (19)

A possible computational approach to determining the DO
ϕa from the KS equations (18) can be formulated as the
minimization of the following integral:
∫ ∣∣ϕ2

ap({ckp},Nϕp; r) − ϕ2
ao({ckp},Nϕp; r)

∣∣ d r = min . (20)

In Eq. (20) ϕap is the “potential” DO, which is used to calculate
the effective KS potential (17) and which is expanded with a
set of auxiliary functions fk:

ϕap(r) =
∑

k

ckpfk(r). (21)

The parameter Nϕp in (20) is the normalization of ϕap,

Nϕp =
∫

ϕ2
ap(r) d r (22)

= N − Nf − 2
∫

d rϕap(r)
√

ρf (r), (23)

while the function ϕ2
ao in (20) is the DO square of Eq. (19),

which is obtained from the KS orbitals calculated with the
potential veff

s ([ϕap]; r). At the point of the solution of the KS
equations (18), ϕ2

ap(r) = ϕ2
ao(r). A numerical approach to this

point could be achieved with a direct nonlinear optimization
of the coefficients ckp of (21) and of the parameter Nϕp of (22)
in order to satisfy the requirement (20).

V. CONCLUSIONS

In this article the DOE theory is proposed. Formally, a more
symmetric (than in Sec. II) description of this theory can be
given, with both active system A and its environment F being
represented in DOE with the DOs ϕa and ϕf , respectively, with
ϕf ≡ √

ρf . This description shows clearly that, conceptually,
the DO is, indeed, the generalization of the square root of the
density for the case of real functions and fractional number of
electrons.

The basic feature of the proposed DOE is the partition of
the total supermolecular density through the DOs,

ρs(r) = [ϕa(r) + ϕf (r)]2 = ϕ2
a(r) + 2ϕa(r)ϕf (r) + ϕ2

f (r),

(24)

which makes it possible to obtain the correct ρs with a
broad range of the input frozen densities ρf . A given ρf

is accommodated in the partition (24) through the quantum
interference of the DOs ϕa and ϕf represented with the second
term in the last line of Eq. (24). Specifically, the excess of
the input ρf (r) in a certain region (its inadmissibility in the
current FDE) is compensated with the negative values of the
aforementioned interference term in this region.

The DO ϕa satisfies the Euler equation (11) analogous to
that for the square root of the density. The characteristic DOE
feature of this equation is its embedding potential (14), which
describes the effect of the environment.

The DO square ϕ2
a is obtained via Eq. (19) from the orbitals

of the effective KS system. In order to yield the correct ρs

through (19) and (24), all KS orbitals must have nodes at all
points where the input frozen density is equal to the correct
supermolecular density, ρf (r) = ρs(r). At these points, the
effective KS potential (17) might well have singularities. One
can anticipate, however, that for a typical input density ρf , such
points would constitute only a set of the zero measure. Then the
KS theory can, in principle, afford the construction of a local
effective potential, which is singular on a zero-measure set.
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