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This study concentrates on the external validation of an existing Quantitative
Structure—Activity Relationship (QSAR) model widely used for long-term aquatic
toxicity to fish. In the context of the REACH Ilegislation, QSARs are used as an
alternative for experimental data to achieve a complete environmental assessment
without the need for animal testing. The predictivity of the model was evaluated
in order to increase the reliability of the model. We assessed whether the model
met all of the OECD principles. The model was adapted to become more robust,
and predictions were made with an external validation set collected from several

databases. For the internal validation of the QSAR, the 1%, Q7 and Q3 ,,, Were
used as validation criteria, and for the external validation 2, gxl, h and the
validation ratio were used. A few substances were classified as outliers and

therefore the applicability domain of the QSAR had to be adjusted. The QSAR
passed all validation criteria and met all the OECD principles for QSAR
validation, and the long-term toxicity QSAR for fish can be applied with high
certainty of a correct prediction within the limits of the inherent uncertainty of the
model in cases where the substance falls within the applicability domain.

Keywords: ECOSAR; external validation; long-term aquatic toxicity to fish;
QSAR for neutral organics; REACH

1. Introduction

(Quantitative) Structure—Activity Relationships ((Q)SARs) are theoretical models used to
predict activities from the chemical structure of a substance. These models are used, for
instance, in aquatic risk assessment to predict the potential effects in ecotoxicology. In
addition to filling the experimental data gap, (Q)SAR predictions may also be used as a
supporting tool for the evaluation of the accuracy of available experimental data, and they
can assist in the decision as to whether further testing is needed. Also, the application of
(Q)SARs will reduce animal testing and costs, and speed up the number of risk
assessments for hazardous chemicals.

According to recent policy developments in the European Union [1], it is expected that
the use of (Q)SARs for REACH (Registration, Evaluation and Authorization of
Chemicals) legislation will increase if regulators and industries rely sufficiently on these
(Q)SAR predictions. The regulatory use of (Q)SARs requires validation to ensure that
they have acceptable predictive power. However, most of the currently available (Q)SARs

*Corresponding author. Email: elske.dehaas@tno.triskelion.nl

ISSN 1062-936X print/ISSN 1029-046X online
© 2011 Taylor & Francis

DOI: 10.1080/1062936X.2011.569949
http://www.informaworld.com



Downloaded by [Vrije Universiteit Amsterdam] at 01:47 11 March 2012

546 E.M. de Haas et al.

lack details about their training set and the statistical validation, and can therefore not be
used adequately [2].

The validation of a (Q)SAR is the process by which the performance and mechanistic
interpretation of the model are assessed for a particular purpose. To assess the importance
of validation it is important to investigate how critical the impact of the (Q)SAR
prediction is on the risk assessment outcome.

According to the OECD principles for validation of (Q)SAR models, (Q)SARs should
be associated with a defined endpoint, an unambiguous algorithm to ensure transparency,
a defined domain of applicability, appropriate measures of internal performance
(as represented by goodness-of-fit and robustness) and predictivity (as determined by
external validation) and, when possible, the mechanistic interpretation should be
presented [3,4].

This implies that full details of the training set, processed data and the basic statistical
performance need to be provided. Validation statistics measure the error or accuracy of the
prediction for the validation range and are expressed as goodness-of-fit, robustness and
predictivity. The goodness-of-fit expresses whether the outcome of the model is statistically
significant. The r* is used for information about the goodness-of-fit. A model’s robustness
indicates how sensitive the model parameters are to changes in the training set. The model
robustness can be checked for instance by internal cross-validation (Q?) [5]. The accuracy
(or predictivity) of the model is acceptable if the predicted value is within a factor of three
(0.5 log units) of the measured value.

External validation analyses the predictivity for substances outside the training set. The
process of external validation includes the selection of an adequate number of test
structures; the identification of the test structures; the selection procedures of test
structures; a statistical analysis of the predictive performance of the model; and a
comparison of the predictive performance of the model with previously defined
acceptability criteria [6].

To validate the model, data independent of the training set are needed, i.e. compounds
in the external validation set are not used for model development and do not affect the
model. Further, the chemical domains of the training and validation sets must be similar
and should cover the whole chemical domain [7]. The domain of a (Q)SAR is the range of
properties of the substances for which the model is valid. The training set consists of the
data used to construct the model, and the validation set is the set of data used to validate
the model and is independent of the training set.

For validation of QSAR models, four strategies are usually adopted: internal
validation or cross-validation; data randomization or Y-scrambling; validation by
dividing the data set into training and test compounds; and true external validation by
application of the model on external data.

The main aim of this paper is the true external validation of a QSAR model for long-
term exposure of fathead minnow (Pimephales promelas) to the chemical neutral organics
class as developed for the ECOSAR™ program [8].

2. Materials and methods
2.1 Selection of the validation set

To validate the QSAR, independent data were needed that meet the properties of the
substances used in the relationship. The main data source that was explored to collect
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effect concentrations is ECOTOX 4.0 (http://cfpub.epa.gov/ecotox/). ECOTOX 4.0 is a
database with information per species (Pimephales promelas) and effect category (e.g.
growth and reproduction), and contains peer-reviewed literature as main source of data.
The OECD Screening Information Data Set (SIDS) for High Production Volume (HPV)
chemical (http://www.inchem.org/pages/sids.html) contains separate studies sorted by
substance, and the European chemical Substances Information System (ESIS) (http://
ecb.jrc.ec.europa.cu/esis/) provides only limited information. Other substance information
such as molecular weight, substance name and structure and an estimate of the log Kow
was obtained from ECOSAR™ v1.00 [8]. ECOSAR™ v1.00 has been incorporated
in EPI Suite v4.0 [9], which integrates a number of estimation models to predict
environmental and physical/chemical properties. As the long-term QSAR for fish was
developed using log Kow values calculated with EPI Suite v4.0, no experimental values
were collected for the external validation set.

2.2 Neutral organics

Neutral organic chemicals belong to a class of chemicals that are non-ionizable and
non-reactive and act via simple non-polar narcosis generally thought of as a reversible,
drug-induced loss of conscience (general anaesthesia). This general narcosis is often referred
to as baseline toxicity [10]. The types of chemicals that are known to present general narcosis
include, but are not limited to, alcohols, acetals, ketones, ethers, alkyl halides, aryl halides,
aromatic hydrocarbons, aliphatic hydrocarbons, many cyanates, sulfides and
di-sulfides [11].

Neutral organic compounds tend to be hydrophobic, i.e. they are less soluble in water
than in organic solvents. Exceptions include organic compounds that contain ionizable
groups as well as low molecular weight alcohols (e.g. methanol and ethanol, but not
propanol), amines and carboxylic acids where hydrogen bonding occurs, and therefore
exhibit excess toxicity [11].

2.3 ECOSAR™

ECOSAR™ (Ecological Structure Activity Relationships) is a program to perform a
quantitative effect assessment for aquatic organisms [8]. The QSARs presented in
ECOSAR™ are used to predict the aquatic toxicity of substances based on data available
on substances in the same chemical class.

(Q)SARSs have been used by the U.S. Environmental Protection Agency since 1981 to
predict the aquatic toxicity of new industrial chemicals in the absence of test data. The
program predicts the short-term and, sometimes, long-term toxicity of chemicals to
aquatic organisms such as fish, invertebrates and algae, but in some cases also for
terrestrial organisms, such as earthworms. If a chemical cannot be identified in a specific
class, it is categorized as a neutral organic [8].

2.3.1 Training set

The training set for fish consists of 46 experimental data points from 31 substances (Table 1).
Most of the substances are benzene, chloroethane and propane and their analogues.

log 30-d ChV(mmol/l) = —0.8508 log Kow + 0.6063
? =0.7393, n=46
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Figure 1. QSAR for Neutral Organics, Fish ChV.

The long-term QSAR for fish is shown in (Figure 1). The adapted long-term QSAR
for Pimephales promelas (Figure 2) obtained by omitting substances with excess toxicity
and averaging the multiple data points used for further validation has the following
equation:

log 30-d ChV(mmol/l) = —0.9382log Kow + 0.9459
2 =0.7679, n =28

2.3.2 Validation set

Data for the test set are selected on the basis of ‘best available data’. First a collection was
made of all substances that were tested with the species for which the QSAR applies
(Pimephales promelas), and for different effect categories that represent long-term effects
such as growth and reproduction. A further selection was made by only using tests with a
minimum test duration of 21 days or more.

Only flow-through or static renewal tests with analytical monitoring and only no-
observed effect concentration (NOEC), no-observed effect level (NOEL) and maximum
allowable toxicant concentration (MATC) values were taken into account, with NOEC
and NOEL values being preferred over MATC values if more than one endpoint per CAS-
number was available.

Next, the data were filtered for the specific group of substances, the neutral organics,
using  ECOSAR™'  which categorizes the substances based on their structure.
Furthermore, as ECOSAR™ does not always categorize chemicals correctly from
their set of substances [12], all pesticides (e.g. carbamates and organophosphates)
and other substances with one or more functional groups that have a specific mode
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Figure 2. Adapted QSAR for Neutral Organics, Fish ChV.
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Figure 3. Training (n=28, closed circles) and validation (n=23, open squares) set for long-term
fish QSAR.

of action (e.g. nitroso compounds or amines) were discarded from the validation set as
they have access toxicity (toxicity additional to narcotic toxicity).

The spread of the training and validation set for the long-term toxicity QSAR for fish
is shown in (Figure 3). The final validation set for fish is given in Table 2 [13-28].
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2.4 Validation
2.4.1 Internal validation

As the model was adapted, an internal validation was performed. The cross-validated
squared correlation coefficient (Q?) [3.4] is calculated according to the formula:

A 32
it (vi = Din)
Y =)
where y; indicates the experimental value of the ith object, ;; indicates the predicted value
of the ith object without using the ith object, and y is the average value of the dependent

variable of the entire training set; the summations run over all substances in the training
set. A model is considered acceptable when the value of Q* exceeds 0.5 [29].

0 =1-

2.4.2 External validation

One of the most important characteristics of Q(SAR) models is their predictive power. The
true predictive power must be estimated by comparing the predicted and observed
activities of an (sufficiently large) external test set of compounds that were not used in the
model development. A model that is externally predictive should also be robust.

To validate the models, an estimate of the log ChV was made by the model for the
validation data set, and these estimates were compared with the measured log ChV values.
The correlation between the measured and estimated values reveals the model
performance. The external explained variance [3,4] is calculated as:

0 =1- 2o 0 —f/i)j
ex Hext = >
Zi:l bi—=)

where y; is the predicted value of the ith object; the summations cover all the substances in
the validation set.

Another criteria is the validation ratio (predicted toxicity value/measured toxicity
value). If the ratio is 1.0, perfect accuracy would be demonstrated. Ratios of less than
1.0 indicate over-prediction and ratios greater than 1.0 toxicity under-prediction.
The Spearman’s rank correlation p coefficient is a measure to which extent the simulations
follow the observations.

2.4.3 Applicability domain

The applicability domain was verified by the leverage approach. A simple measure of a
chemical being too far from the applicability domain of the model is its leverage in the
original variable space, /;; [30], which is defined as:

Y
ol
n Zj:l (x; — X)

where x; is the descriptor value of the ith object, and x is the average value of the descriptor
in the training set, and # is the number of substances in the training set. There are different
‘rules of thumb’ for cut-off values. For small data sets, a warning leverage, A*, is
considered large when the 4; > 3(k + 1)/n. A leverage greater than the warning leverage /*
means that the predicted response is the result of substantial extrapolation of the model
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Figure 4. Projection of the training set chemicals (closed circles) and the validation test set chemicals
(open squares) in the Williams plot. The vertical line is /#* =0.214, the warning value for the X
descriptor space, and the horizontal lines are +20, the cut-off value for the Y dependent space.

Table 3. Internal and external validation of long-term QSARs for neutral organics.

Olo0 07 vio r 2. 2, Validation ratio
0.77 0.76 0.77 0.85 0.84 0.88

and, therefore, may not be reliable, so the predicted value must be used with great care.
Only predicted data for chemicals belonging to the chemical domain of the training set
should be proposed and used. The Williams plot was used to visualize influential
chemicals, i.e. chemicals with leverage greater than 4*, as well as outlier chemicals, i.e.
chemicals with standardized cross-validated residual greater than 420, the cut-off values
for the prediction (Figure 4).

The model’s performance was described by using statistical parameters related to
fitting power (%), model robustness (0%, Q7 »p, Q7 40) and model predictivity (Q2,,).

3. Results and discussion

The robustness of the adapted long-term toxicity QSAR for fish was confirmed by leave-
one-out internal cross-validation (Q7 ). The 07, for the long-term toxicity QSAR for
fish as taken from ECOSAR™ is 0.75, and the 07 oo for the adapted long-term toxicity
QSAR for fish is 0.77 (see Table 3). Even though the Q7 was slightly lower, the model is
considered acceptable as the value of Q? exceeds 0.5 [29]. The Q%MO(IS% ) for the adapted
long-term toxicity QSAR for fish was 0.76.
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Figure 5. Regression line of the model equation from the predicted log ChV fish (in mmol/l) vs. the
measured log ChV fish (in mmol/l) for both the training set (n =28, closed circles, solid line) and
the validation set chemicals (=23, open squares, dashed line).

Cross-validation provides a reasonable approximation of ability with which the QSAR
predict the activity values of new compounds. However, supported by other authors,
Golbraikh and Tropsha [31] suggest that only external validation gives the ultimate proof
of the true predictability of a model. To estimate the predictive power of a QSAR model
they recommended the use of following three statistical characteristics of the test set: the
correlation coefficient » between the predicted end observed values; coefficients of
determination r*; and the slopes « of the regression lines through the origin. In addition,
the external test set must contain at least five compounds, representing the whole range of
the log Kow [30].

The adapted long-term toxicity QSAR for fish seems to be able to provide predictions
for neutral organic chemicals with a satisfactory predictivity, evaluated by an external
explained variance in prediction (Q2,) of 0.85. The r* is 0.84 (Figure 5), thus the
predictions follow the experimental observations. The validation ratio is 0.88, indicating a
good accuracy of the model with the model having the tendency to slightly over-predict the
long-term toxicity in fish.

A parallel study was performed in which the long-term QSAR for daphnids and algae
for the neutral organics chemical class was also validated [32]. For the long-term QSAR
for daphnids the internal validity (Q3,,,) was much higher than the long-term QSAR for
fish, 0.93 and 0.75 respectively. The internal validity of the long-term QSAR for algae was
lowest (0.70). The external validation, on the other hand, was much better for fish (0.89)
than for daphnids (0.79) and algae (0.65). Also, the predictive power of the long-term
QSAR for fish is better, as the validation ratio is 0.95, resulting in a slight over-prediction
of the results; the validation ratio for daphnids is much lower (0.55), which means a larger
over-prediction of the toxicity, whereas the predictive power of the long-term QSAR for
algae is good with a validation ratio of 0.93.
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(Q)SARs are depended on accurate and valid environmental test data. In order to
improve and extend (Q)SAR analysis to all chemical classes, there is a need for standard
testing methods and greater knowledge about the physical/chemical properties of
chemicals prior to testing. In addition, all test data should be made available in an
accessible database.

Only a few studies are available that have been focussed on the validity of the long-
term toxicity QSAR for fish in ECOSAR™. An early study by Nabholz et al. [33] on the
first version of the long-term QSAR for fish in ECOSAR™ shows a low mean validation
ratio of 0.2 for the class of neutral organics.

The validity of ECOSAR™ was also evaluated by Hulzebos and Posthumus [12] with
the Setubal principles. The validation of ECOSAR™ for three “valid’ classes results in a
predictivity of >64% for fish toxicity. Their conclusion is that ECOSAR™ fulfils the first
two principles: the endpoint is clear and the algorithm is easily applicable. However, the
description of the structural fragments and the modulatory effects are missing. Also, the
standard error for the regression lines is missing. Furthermore, Hulzebos and Posthumus
[12] showed that for neutral organics, 1 out of 3 (33%) of the long-term estimations for fish
were wrong, but they concluded that the QSAR was reliable. In the study of Hulzebos and
Posthumus [12] a prediction was performed only for three substances for the neutral
organic class. This low number of data might have led to the poor results in their study as
opposed to the results in the present study, which was performed with a larger data set.

However, it must be stated that for both studies the validation set was not available,
and it could not be tested whether the substances fell within the defined applicability
domain of the model, either by defined log Kow or by the type of the substance. As shown
by Hulzebos and Posthumus [12], sometimes ECOSAR™ does not categorize chemicals
correctly from their set of substances. Therefore it is advised to carefully consider whether
the substances falls within the set of compounds on which the QSAR is built, and whether
additional functional groups are present with a more specific mode of toxic action.

The applicability domain of the model was analysed using a Williams plot (Figure 4),
where the vertical line is the warning leverage value (4*) which describes the descriptor
applicability domain, and the horizontal lines are the £2o0 the cut-off values for the
prediction. The model is characterized by the presence of some influential training
chemicals, with leverage values greater than the ‘warning leverage’ (4*) fixed at 3(k+ 1)/n
(0.214). These chemicals greatly influence the regression line: the regression line is forced
near the observed value and their residual values are small, i.e. they are well predicted.

From the Williams plot, it can be observed that for the validation set there is one
substance just falling within the applicability domain, and one substance is identified as an
outlier of the model domain in the Williams plot according to its high leverage, but the
prediction is still reliable as can be seen from the low standard error of prediction. Thus,
the model provides predictions that are expected to be reliable.

The upper limit of the applicability domain of the QSAR is set at a log Kow of 5.80.
Caution has to be taken when applying (Q)SARs to chemicals where the used property
value lies on the edges of the model, and validation should endeavour to keep the domain
as broad as possible. Carefully considering the abovementioned arguments and, according
to the results from the internal and external testing, the QSAR passed all validation
criteria and meets all of the OECD principles for (Q)SAR validation.

The QSAR has a defined endpoint, which is long-term toxicity to fish. The QSAR has
an unambiguous algorithm to ensure transparency, which is the adapted equation
as described in this study. The QSAR should have a defined domain of applicability,
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here neutral organic substances with a log Kow up to 5.80 and a molecular weight higher
than 68.1 g/mol. The QSAR should have appropriate measures of internal performance (as
represented by goodness-of-fit and robustness) and predictivity (as determined by external
validation), which are presented in the current study (see also Table 3 for a summary of the
validation results). And, when possible, the mechanistic interpretation should be
presented, which here is the reversible, drug-induced loss of consciousness (general
anaesthesia), better known as baseline toxicity [10]. Therefore the long-term toxicity
QSAR for fish can be applied with high certainty of a correct prediction within the limits
of inherent uncertainty of the model, in cases where the substance falls within the
applicability domain.

4. Conclusion

The purpose of this study was to validate a long-term toxicity QSAR model for fish to
evaluate its predictivity in order to increase the reliability of the predictions of this long-
term QSAR model for neutral organics.

The long-term toxicity QSAR model for fish could be used for hazard assessment of
chemicals by filling data gaps for the classification of environmental toxicity, thereby
reducing animal testing, or by providing a priority list of chemicals for aquatic toxicity
testing.

The predicted toxicity values for the substances in the validation set were considered
reliable only for those substances belonging to the descriptor domain of the model, as
judged by the leverage approach.

In conclusion, the adapted long-term QSAR model for fish meets all of the OECD
principles for QSAR validation and could therefore be considered for use in the regulatory
assessment of chemicals. The model was developed for a clearly defined endpoint
measured in a specific experimental system. It is associated with an unambiguous and
therefore transparent algorithm. The applicability domain of the model was re-defined,
and the model exhibits a satisfactory internal performance and predictivity. Finally the
model has a tentative mechanistic interpretation since the descriptors used in the model are
considered relevant to the endpoint. Further, it can be stated that good internal validation
results do not automatically imply that external validation results are also good, and vice
versa, as can be seen from the comparison of this validation study with the study on
validation on the long-term QSAR for fish, daphnids and algae.

Moreover, this study emphasizes the importance of identifying properly the model
applicability domain. Caution has to be taken when applying (Q)SARs to chemicals where
the used property value lies on the edges of the model, and validation should endeavour to
keep the domain as broad as possible. Further validation of other (Q)SARs will improve
insight into environmental effect assessment and increase the use and applicability of these
models.
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