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Abstract 

On December 18, 2015 Terra spacecraft completed 16 years of successful operation in space.  Terra has five 

instruments designed to facilitate scientific measurements of the Earth’s land, ocean, and atmosphere. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) and the Multi-Angle Imaging Spectroradiometer (MISR) 

instruments provide information for the temporal studies of the globe. After providing over 16 years of 

complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for 

various science products. The 20 reflective solar bands (RSB) of MODIS are calibrated using a combination of solar 

diffuser and lunar measurements, supplemented by vicarious measurements from pseudo-invariant desert sites. 

MODIS views the on-board calibrators and the Earth via a two-sided scan mirror at three spatial resolutions: 250 m 

using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000m using 10 detectors in 

bands 8-19 and 26. Simultaneous measurements of the Earth’s surface are acquired in a push-broom fashion by 

MISR at nine view angles spreading out in the forward and backward direction along the flight path. While the 

swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan 

mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus 

scan-angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and Earth-view 

measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short 

wavelength bands. The on-orbit RVS change for the short wavelength bands (band 8, 9, 3) at nadir is observed to be 

greater than 10% over the mission lifetime.  Due to absence of a scanning mechanism, MISR can serve as an 

effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also 

monitor the detector and scan-mirror differences for the MODIS bands using simultaneous measurements from 

Earth-scene targets, e.g. North Atlantic Ocean and North African desert. Simultaneous measurements provide the 

benefit of minimizing the impact of Earth-scene features while comparing the radiometric performance using 

vicarious techniques.  Long-term observations of both instruments using select ground targets also provide an 

evaluation of the long-term calibration stability.  The goal of this paper is to demonstrate the use of MISR to monitor 

and enhance the on-orbit calibration of the MODIS RSB. The radiometric calibration requirements for the MODIS 

RSB are ± 2% in reflectance and ± 5% in radiance at typical radiance levels within ± 45° of nadir. Results show that 

the long-term changes in the MODIS reflectance at nadir-frames are generally within 1%.  While the impact due to 

changing polarization sensitivity is evident in some blue bands, the mirror side differences for other MODIS bands 

are observed to be within 1%, therefore demonstrating an excellent on-orbit calibration performance. The detector 

differences in the blue bands of MODIS exhibit divergence in recent years beyond 1% and a calibration algorithm 
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improvement has been identified to mitigate this effect. Short-term variations in the recent year caused by the 

forward updates were identified in bands 1 and 2 and are planned to be corrected in the next reprocess.  

1. Introduction 

The instruments on the Terra mission continue to provide valuable scientific observations of the Earth’s land, ocean 

and atmosphere after more than 16 years of on-orbit operation. MODIS (Moderate Resolution Imaging 

Spectroradiometer) is a key instrument aboard the Terra platform and its observations are used to generate a wide 

range of land, ocean, and atmospheric science products. A key performance parameter impacting the quality of the 

science data products is the calibration stability. In addition to an intensive prelaunch calibration and 

characterization, MODIS uses a set of onboard calibrators (OBCs) to regularly track the on-orbit calibration of the 

instrument [1], [2]. The reflective solar bands (RSB) of MODIS range from 0.41 to 2.1µm, and are calibrated via 

regular solar diffuser (SD) and lunar observations, supplemented by the Earth scene observations from the pseudo-

invariant desert targets. As the MODIS instrument continues to operate well beyond its design lifetime (6 years), an 

accurate characterization of the sensor behavior becomes extremely challenging. The Multi-Angle Imaging 

Spectroradiometer (MISR) instrument on the Terra spacecraft, also with a design lifetime of 6 years, continues to 

operate successfully providing several key land and atmosphere data products [3], [4], [5]. MODIS and MISR (nadir 

camera) observe the earth-scene targets simultaneously therefore providing a unique opportunity to have a 

synergistic use of the various data-products derived from these sensors.  

In contrast to the 360 km swath width of MISR, MODIS has a wider swath of 2330 km achieved using a two-sided 

scan mirror with a ±55º scan range. With a push-broom imaging mechanism, MISR observations are centered on the 

MODIS swath (at nadir). The four spectral bands of MISR (0.46, 0.55, 0.67, and 0.86 µm) overlap with several 

MODIS land, atmosphere, and ocean color spectral bands. Previous work focused on assessing the calibration 

difference between these two sensors using widely accepted inter-comparison techniques. Radiometric validation of 

both MISR and MODIS was also performed via field campaigns over the Railroad Valley (RRV) playa in Nevada, 

USA [4]. Long-term top-of-atmosphere (TOA) reflectance trending over pseudo-invariant calibration sites (PICS), 

with standard corrections for bi-directional reflectance factor (BRDF), relative spectral response (RSR) differences 

etc. was used to evaluate the calibration differences between the two sensors [6], [7], [8]. Recently, an automated 

approach to ground-based vicarious calibration has been operational using the Radiometric Calibration Test Site 

(RadCaTS) located at the RRV site [9]. The observations from these efforts provide an understanding of the 

calibration mechanism used by these sensors along with the various uncertainties associated with it. The goal of this 

paper is to demonstrate the use of MISR to effectively monitor and enhance the on-orbit calibration of MODIS RSB 

in support of maintaining the calibration accuracy of the MODIS level 1B (L1B) products. 

MODIS views the Earth’s surface and its onboard calibrators using a two-sided scan mirror. In addition to a 

dependence on the wavelength of incident light, the reflectance of the scan mirror also depends on the angle of 

incidence (AOI). The dependence of the scan mirror’s reflectance on the AOI is described by the response versus 

scan-angle (RVS) function characterized prelaunch and monitored on-orbit using the SD, lunar and Earth-scene 



observations. Although MISR does not cover the entire MODIS swath, it can be effectively used to validate the on-

orbit RVS performance of the MODIS RSB around nadir using near-simultaneous Earth-scene observations. 

Similarly the scan mirror reflectance differences can also be assessed using these simultaneous observations. In the 

case of the short-wavelength visible bands, the detector to detector calibration difference exhibits scan angle 

dependence in addition to being different for both mirror sides. Consequently, a detector-dependent RVS has been 

implemented for these bands in the MODIS collection 6 (C6) algorithms [10], [11], [12], [13].  The detector gain is 

derived using the solar diffuser observation collected at 50.25º and the detector differences from the SD and on-orbit 

lunar measurements are used to derive the detector-dependent RVS. Residual detector differences caused by 

uncertainties in the on-orbit gain manifest in the form of detector-detector striping in the MODIS L1B products. 

Near-simultaneous MISR observations of Earth-scene targets are used to assess the performance and identify 

enhancements for the short-wavelength bands. Finally, the long-term calibration stability of MODIS RSB is also 

assessed using these near simultaneous MISR observations from two Earth-scene targets, the North African desert 

and North Atlantic Ocean, to accommodate the low-gain and high-gain MODIS RSB.  

The paper is organized into the following sections: Section 2 discusses the details of MODIS instrument including 

its on-orbit calibration mechanism as well as an overview of MISR instrument; Section 3 discusses the 

methodology; and the results are included in Section 4. Finally, the summary and conclusions are in Section 5.  

2. Background and Motivation 
 

a. MODIS RSB calibration and Collection 6 overview 

Since its launch in December 1999, the MODIS instrument on the Terra spacecraft has been acquiring Earth-scene 

and onboard measurements on a continuous basis. Given the longevity of the MODIS mission, an unprecedented 

amount of instrument measurements have been acquired and processed. The focus of this paper is to formulate a 

mechanism to independently validate and enhance the on-orbit calibration of MODIS RSB using MISR. Some key 

details regarding the Terra MODIS instrument and its operation, calibration, and on-orbit performance can be found 

here [13]. The 20 reflective solar bands on MODIS cover the spectral range from 0.41 to 2.1 µm. Bands 1 and 2, 

with nadir spatial resolutions of 250 m, are designed for land applications. Bands 3-7, with nadir spatial resolutions 

of 500 m are designed for land and atmosphere applications, and Bands 8-19 and 26 with1 km nadir spatial 

resolutions are designed for ocean and atmospheric applications.  

The MODIS RSB are calibrated at a detector level using regular SD observations with the degradation of the SD 

tracked using regular operations of the solar diffuser stability monitor (SDSM). As introduced earlier, the MODIS 

RSB calibration needs to account for the AOI-dependent reflectance change of the MODIS scan mirror. In the C5 

algorithm (started from YYYY), this is achieved by coupling the response of the solar diffuser acquired at 50.25º 

with the near-monthly lunar observations acquired at 11.25º with a linear behavior assumed at all other angles. The 

scan mirror AOIs are reported in the L1B granule for each of the1354 frames in the scan line. The frame number F 

and the AOI are related by 
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where F varies from 0 to 1353. In this paper, the scan-angle dependence of MODIS RSB will be denoted as a 

function of frame. 

The degradation of the MODIS SD as monitored by the SDSM has shown strong wavelength dependence.  The 

degradation rates range from 50% at 412 nm to about 2% at 936 nm. The degradation of the SD is accounted for in 

the computation of the instrument gain. As the instrument continues to operate beyond its design lifetime of 6 years, 

the degradation of the SD is inadequately estimated [12]. Also, the assumption of the linear change of response at 

frames between SD and lunar gain does not appear to hold. To compensate for this, Earth scene measurements from 

pseudo-invariant desert sites are used to track the long-term change at various scan-angles. This approach is 

currently implemented in C6 for Terra MODIS bands 1-4, 8-10 and will be extended to other bands as needed.  

Also, a detector-dependent RVS has been applied to bands 3, 8-12 and its extension to other RSB is also planned in 

the future. 

Figures 1a-d show the prelaunch RVS and its on-orbit variation for the four representative Terra MODIS bands 9, 4, 

1 and 2, respectively. The RVS has been plotted as a function of frames for three representative years, 2005, 2010 

and 2015. The RVS, as implemented in the C6 L1B, is a fitted function; hence the trends presented in Figure 1 

exhibit a smooth change over the frame range. The short wavelength band 9 (443 nm) shows a change of about 12% 

at the start of scan for the most recent year. The band 4 (555 nm) shows a change of about 5% for the most recent 

year, and the changes observed in bands 1 and 2 are less than 2%. The changes at nadir for band 9 exceed 5% 

whereas they are observed to be within 3% for the remaining bands. The large changes observed in the on-orbit RVS 

trends are a reflection of the instrument’s behavior and are corrected for in the calibrated L1B product. An effective 

means to evaluate the accuracy of the RVS corrections is to measure the scan-angle dependence in the calibrated 

L1B product while looking at a uniform Earth-scene target. In order to avoid the various complexities associated 

with an Earth scene target, MISR can be used as an effective substitute to evaluate these changes. 

b. MISR instrument and its suitability for RSB calibration monitoring 

MISR acquires Earth observations via nine cameras pointed at fixed angles, with one pointing at nadir and four each 

viewing the forward and backward directions along the spacecraft ground track. The forward and aftward cameras 

are symmetrically arranged around nadir image at 26.1º, 45.6º, 60º, and 70.5º. MISR has a 3% absolute calibration 

requirement in radiance scale [4], [5]. Using measurements from its onboard calibrators, supplemented by vicarious 

calibration measurements, the MISR calibration is monitored and updated on-orbit. The onboard calibrators consist 

of two Spectralon diffuse panels and six sets of photo-diode detectors designed to measure the reflected solar 

irradiance from the panels. The response is then compared with each camera’s digital output, thereby providing the 

on-orbit radiometric calibration for MISR [5].  



This study is restricted to only the nadir-camera (AN) since it acquires images at a similar view-angle as MODIS. 

Also, it provides imagery that is less distorted by surface topographic effects in comparison with other cameras. 

Unlike the whiskbroom scanning mechanism of MODIS, MISR employs a push-broom mechanism while acquiring 

the Earth-scene images. Due to the absence of a scan mirror, co-located MODIS-MISR observations can be used to 

assess the MODIS scan mirror side differences. Although MISR has a narrower swath compared to MODIS, it can 

still be used to validate the RSB RVS performance over ±10º around nadir. Statistically significant co-located 

MODIS-MISR pixels can also facilitate an evaluation of any possible MODIS detector-biases. If the long-term 

calibration stability of MISR is assumed, it can also provide useful information regarding the MODIS radiometric 

calibration stability on-orbit.  

Figure 2 shows the comparison between the RSRs of the two instruments, with MODIS plotted in black and MISR 

plotted in pink. The solid-black lines represent the RSR for the MODIS land bands and the dotted lines represent the 

RSR for the MODIS ocean bands. The RSR for the four MISR bands (blue, green, red, and near-infrared) is 

observed to have a wider bandwidth in comparison with the MODIS ocean bands and a narrower bandwidth in 

comparison with the MODIS land bands. Since the goal of this paper is to demonstrate the use of MISR to monitor 

and enhance the on-orbit characterization of MODIS RSB, a correction for RSR mismatch is not required.  

3. Methodology 
a. Site-and data-selection (North Atlantic Ocean and North African desert) 

Since MODIS and MISR are acquiring Earth-scene measurements from the same platform with a similar view-

angle, selection of a fixed target should not be required. However, selection of a fixed pseudo-invariant target on the 

Earth’s surface can significantly reduce the various uncertainties associated with the surface and atmospheric 

properties. Given the diverse scope of this work (RVS validation, detector- and mirror-side difference, long-term 

stability) and different characteristics of MODIS bands (spectral and gain settings), a single ground target is 

insufficient. Hence, two different targets of varying characteristics are chosen for this study. The widely used North 

African desert, located at 28.6º N, 23.4 ºE is selected. In addition to providing year-round measurements for both 

instruments, the desert site also presents unsaturated measurements for some of the MODIS ocean bands. Also, a 

dark-ocean site is necessary to extend the comparison and analysis to the high-gain ocean bands of MODIS; the 

North Atlantic ocean site located around 24ºN, 42ºW is also selected. A fixed number of MISR blocks are selected 

from every overpass of these sites over the mission lifetime. Figure 3 shows the selected blocks from a MISR 

overpass of each site. The image presented is from the red- MISR bands and has been stretched and arranged 

appropriately for illustration purposes. A same number (6) of MISR blocks are selected from each overpass. The 

region represented by these blocks as shown below was consistently chosen across the entire mission lifetime for 

consistency.  

The MODIS L1B Collection 6 granules were obtained from the LAADS (https://ladsweb.nascom.nasa.gov/). The 

MISR datasets were obtained from the NASA Langley Research Center Atmospheric Science Data Center. In 

addition to the TOA reflectance/radiance products, the corresponding geolocation files were also obtained. About 
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350 desert and ocean overpasses were used in this analysis. In the case of MODIS, the analysis was confined to the 1 

km aggregated products for ease of geo-location matchup with MISR. The MODIS-MISR scene-pairs from each of 

these sites occur on a repeating cycle of once every 16 days.  

b. Band-averaged and detector-dependent radiance/reflectance calculation 

The MODIS L1B granules cover a 5-minute interval with swath dimensions of 2330 km (cross track) by 10 km 

(along-track at nadir). Due to the narrower swath of MISR, a small area centered on nadir in the cross track direction 

can be selected for this analysis. As discussed earlier, the MISR blocks covering the MODIS granule are selected 

and used to obtain co-located MODIS and MISR pixels. In order to obtain the MODIS geo-located pixels at 1 km 

resolution, the MODIS L1A geolocation product (L1AGEO) is used to retrieve the latitude and longitude values for 

each pixel. The distance between a MODIS and a MISR-pixel is computed based on the retrieved latitude and 

longitude values using the following expression 
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where i and j are the cross track and along track indices for MISR respectively, and k and l denote the cross track 

and along track indices for MODIS. A smaller value of d corresponds to a larger overlap between the pixel pair and 

in order to retain pixels with a significant overlap a threshold of 0.0025° (which corresponds to a distance of 250 m) 

is used as a threshold. After this thresholding, at least 20,000 matched pixels are retained for each of the North 

Africa and the North Atlantic scene-pair. For each matched pixel between the two sensors, a ratio of top-of-

atmosphere reflectance is computed using the following expression 
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where the ρMODIS and ρMISR denote the TOA reflectance for MODIS and MISR and the indices b, m, d, f denote the 

spectral band, mirror side, detector number and frame number. Only the spectrally matching bands as shown in 

Figure 2 are chosen for this analysis. Since MISR does not acquire the data using a scanning mechanism as MODIS, 

it can be an effective tool in assessing the reflectance differences between the two sides of the MODIS scan mirror. 

The pushbroom mechanism can also be used to evaluate the RVS performance of the MODIS RSB in the calibrated 

L1B product. The reflectance ratio can be plotted as a function of MODIS frames to assess the performance of the 

MODIS RVS. The reflectance ratio can also be used to assess any residual detector-detector differences in the 

MODIS L1B product. These evaluations can be performed due to the fact that MISR has exhibited a pixel relative 

calibration to within 0.5% [4]. Finally, the reflectance ratios can also be used to track the long-term radiometric 

stability of the MODIS spectral bands over the selected sites. This assessment is based on the underlying assumption 

that the on-orbit calibration of MISR complies with its radiometric calibration stability specification [4], [6].  

 

 



4. Results: 
a. MODIS RVS monitoring (at frames corresponding to MISR swath) 

The MODIS RSB RVS was characterized prelaunch using the SIS-100 by illuminating the scan-mirror at 12 

different frames at three lamp levels, corresponding to three radiance levels. The on-orbit variation of the RVS is 

tracked using the measurements from onboard calibrators (primarily SD and lunar) and supplemented by the 

response trends from pseudo-invariant desert targets. While the on-orbit RVS characterization for bands 1,2,4 and 9 

uses the lunar and desert observations, the RVS for bands 12, 13,14 and 16 continues to rely on the onboard 

calibrators. The performance of the RVS can be evaluated by tracking the MODIS/MISR reflectance ratio as a 

function of the MODIS frame number. Figure4a shows the MODIS/MISR reflectance ratio plotted as a function of 

frame number for a simultaneous overpass of the North African desert from 2005. The result for all the detectors 

(mirror side 1) of band 9 and corresponding MISR blue band are shown. A linear model is applied to this data to 

estimate the deviation of the MODIS/MISR reflectance ratio between frames 500 and 800. The deviation from unity 

is attributed to the RSR difference between the spectral bands. Although, MODIS is viewing the desert region for a 

majority of the scan, scene variations will have an impact on the observed reflectance as a function of frame. The 

Earth-scene features observed by MODIS across this frame range may also not be uniform and normalizing by 

MISR eliminates the dependence on ground features. Since the acquisitions are simultaneous and near-nadir, the 

effects of atmospheric and surface BRDF are assumed to be consistent across this small frame range. Figure 4b 

shows a similar result for band 12 from an ocean scene-pair acquired in 2005. The ocean granules are impacted by 

the sun-glint that results in a saturated response for the high-gain ocean bands. This effect is evident in Figure 4b 

from frame 700 onwards. Also, the deviation of the MODIS/MISR ratio along the fitted line is observed to vary by 

up to 10% as opposed to around 5-7% for the desert scene-pairs. Ideally, a single ground surface is desirable to 

evaluate the RVS performance for all of the MODIS bands considered here; however, the ocean bands (12, 13, 14 

and 16) saturate while viewing the desert and the land bands yield a very low signal while viewing the ocean sites.  

The relative difference between the MODIS/MISR ratio at frame 500 and frame 800 is computed for each scene-pair 

on a band and mirror side basis and is shown in equation (3), where b denotes the band, m denotes the mirror side 

and t denotes the time of the overpass 
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This ratio is computed by performing a simple linear fit to the ratios as a function of frame number. A value of this 

ratio around unity reaffirms the RSB on-orbit RVS characterization. A calendar-year average has been performed on 

the derived results to better highlight and understand the observed trends as shown in Figures 5a to 5d. The results 

for band 1 and 4, derived from the desert scene-pairs exhibit a stable temporal trend with changes between years 

2000 and 2015 within 1%. The results for MODIS bands 13 and 14, presented in Figures 5c and 5d, are derived 

from the ocean scene-pairs. Although the long-term trend is observed to be within 1%, the observed standard 

deviations for the ocean-granules are significantly larger than the desert granules. A likely reason for this behavior is 



a combination of several scene-dependent phenomenon i.e. sun-glint, pixels contaminated by clouds etc. A complete 

summary for all the MODIS RSB chosen for this study is presented in Table I. The results from four representative 

years along with the standard deviation values are presented. In general, the results presented in Table I indicate the 

temporal change of the relative difference to be within 1% with greater standard deviation values for the 

oceanscene-pairs in comparison with the desert scene-pairs. The results presented in Table I, indicate that no 

significant bias exists between the response at frames 500 and 800, which further confirms the performance of the 

on-orbit RVS for MODIS RSB.  

b. MODIS mirror side differences 

The reflective properties between the two sides of the scan mirror are known to be different since the prelaunch 

characterization, with more divergence observed from on-orbit measurements.  The magnitude of this response 

variation exhibits a wavelength as well as AOI dependence. Although the mirror-side dependent gain of the 

instrument at any AOI should account for this change, residual mirror side differences may still exist in the 

calibrated L1B product [14], [15]. One of the primary reasons behind this is the changing polarization property of 

the MODIS scan-mirror. The impact is largest at short wavelengths with a prominent dependence on scene type and 

view geometry [16]. Since MISR uses the same pushbroom detectors for adjacent observations, normalizing each 

mirror side by MISR effectively removes variations due to scene content. It should be noted that this approach 

would be most effective for the MODIS spectral bands which have the largest overlap with MISR.  

By collating all the matched pixels from each mirror side, the difference in the TOA reflectance for both mirror 

sides can be estimated. Figure 6 shows the reflectance mirror side ratios for four representative MODIS RSB bands. 

In each case, the MODIS-reflectance for each mirror side has been normalized by MISR to eliminate the impact due 

to Earth-scenes. The results for bands 4 and 9 are derived from the desert sites whereas the bands 13 and 16 results 

are derived from ocean granules. Although fluctuations of upto ±1% are observed, the long-term change for all 

bands considered here is less than 2%. In the case of band 9, deviation from unity is observed starting in 2009. This 

is likely caused by the change in the polarization property of the scan mirror, which is different in magnitude for 

each mirror side. The polarization effect is also wavelength dependent, with the largest impact observed at short 

wavelengths. It should be noted that the MODIS L1B does not involve a correction for any changes in the 

polarization sensitivity, but the down-stream MODIS products do incorporate a correction for this effect.  

c. MODIS detector-detector differences 

The MODIS 1 km L1B products are used in the study to evaluate the detector-detector differences for the MODIS 

RSB after normalization using MISR reflectance. In the case of MODIS bands 1 and 2 (40 detectors and 4 

subframes) and band 4 (20 detectors and 2 subframes), the 1 km L1B product performs an aggregation so that 

information is retrieved at 1 km spatial resolution (at nadir). The ocean bands (9, 12, 13, 14, and 16) considered in 

this study acquires data at 1 km spatial resolution at nadir via 10 detectors. Using the reflectance ratio from equation 

(2), the MODIS detector-detector differences for a given band, mirror side are evaluated. The measurements from 

the desert are used for the evaluation of bands 1, 2, 4 and 9, and the ocean data is used for bands 12, 13, 14 and 16. 



Figure 7 (a)-(d) shows the detector difference (i.e. MODIS/MISR ratio normalized to the mean) for bands 4, 9, 12 

and 16. The results for mirror side 1 are presented and a calendar year average is performed to identify long-term 

deviations. The different colors in each plot represent different detectors and the error bars denote the standard 

deviation. The large standard deviation observed for bands 12 and 16 is expected as the trends are derived from the 

ocean granules that have significant impacts due to atmospheric scattering [17]. With the exception of band 9, the 

long term spread between the detectors is within 0.5% for all the bands. This is also true for the bands not presented 

in the Figure. In the case of band 9, the difference between detector 1 (black) and detector 10 (light blue) begins to 

evolve after 2010 and reaches a magnitude of about 1% in 2015.  As discussed earlier, a detector-dependent RVS is 

applied to the band 9, which is derived from the detector dependent lunar and SD gains. The lunar measurements are 

acquired at frame 17, and the SD gains are measured at frame 978. Consequently, a linear interpolation is used 

derive the detector differences at nadir. It is evident from the trends observed in band 9, that the linear 

approximation for the detector differences is inadequate and an improvement in the current approach is necessary. 

d. MODIS long-term trending 

The longevity of MODIS time-series measurements also warrants a necessity of highly accurate long-term 

radiometric calibration stability. Due to an inadequacy in the calibration approach, the MODIS L1B from Collection 

5 (the predecessor to C6) exhibited long-term drifts up to 8% in some of the short-wavelength bands of Terra 

MODIS. In order to overcome the shortcomings of C5, the improved algorithm involved supplementing the 

measurements of the on-orbit calibrators with Earth-view response trends from pseudo-invariant desert targets. The 

improved algorithm, as implemented in C6, has demonstrated significant improvement notably in the mitigation of 

the long-term drifts at short wavelengths. The MODIS Characterization Support Team (MCST) continues to monitor 

the radiometric stability via Earth-scene observations. In addition to providing an independent validation source for 

MODIS absolute calibration, MISR can also help assess the long-term stability of MODIS using Earth-scene targets. 

As discussed earlier, the primary advantage of using MISR is that the variations due to Earth-scene features (spatial 

and temporal) are significantly mitigated thereby decoupling the sensor behavior from any possible changes 

associated with the ground target.  

The MODIS/MISR reflectance ratio for the spectrally matched bands is tracked over the mission lifetime using the 

ground targets discussed earlier. This approach essentially eliminates the impact of scene-dependence in tracking the 

consistency of the reflectance ratios.  Figure 8 (a) and (b) show the MODIS/MISR reflectance ratio plotted as a 

function of time. The results for the four bands have been slightly offset on the time-scale for better clarity. A 

calendar year average has been performed on the derived ratios. Seasonal oscillations up to 3% (peak-to-peak) are 

observed in the reflectance ratios in Figure 8 (a) before performing a yearly average. These oscillations are likely 

caused by the difference in the surface and atmospheric BRDF on the MODIS and MISR band pair. Since the goal is 

to evaluate the long-term stability of MODIS RSB, the multi-year seasonal oscillations can be tolerated. In the case 

of ocean scenes, the total radiance observed by the satellite is composed of 5-10 % of ocean signal and 90-95% of 

atmospheric signal. A larger spread in the MODIS/MISR ratios is observed for the ocean bands with band 16 

showing the seasonal oscillations greater than 10%. MODIS band 16 is primarily used in ocean color products to 



retrieve the aerosol optical thickness at 869 nm. The water-leaving radiance in MODIS band 16 is negligible and the 

signal obtained is due to aerosols. The atmospheric and ocean surface scattering effects must be accurately modeled 

and removed to retrieve the net water-leaving radiance. Although multi-year continuous measurements are used in 

the analysis, the uncertainties caused due to these effects can bear a significant impact on the ocean band results.  

An upward drift of about 3% (2000-2015) is observed for the reflectance ratios of MODIS bands 1 and 2 with 

MISR.A similar drift of a lower magnitude (~1.8%) is observed in the case of MODIS bands 13 and 14. The long-

term changes in the reflectance ratios associated with MODIS bands 4, 9, and 12 are observed to be within 2%. 

Also, short-term deviations in these ratios are observed in the case of MODIS bands 4 and 9 in 2014 and band 1 in 

the early months of 2015.Although the assumption is that the MISR calibration is relatively stable over the mission 

lifetime, a more careful investigation is warranted to confirm this.  

In order to decouple any impact due to a reflectance drift in MISR, MODIS TOA reflectance devoid of any MISR 

contribution is analyzed. The results do not exhibit any measurable drifts (>2%) for MODIS bands 1 and 2, therefore 

confirming that a drift in MISR reflectance resulted in the long-term drift of the ratio trends. MISR performed an 

assessment of its long-term radiometric stability using observations from the Egypt 1 desert site (27.12N, 26.10E). 

Results indicated a change per decade of 0.8%, 1.49%, 1.54% and 1.74% for the blue, green, red and NIR bands 

respectively. The total mission change in the radiance for the blue, green, red, and NIR bands was observed to be 

1%, -1.9%, 2% and 2.3% respectively. However, the short-term deviation in MODIS band 1 (year 2015) is present 

in the reflectance trending of MODIS. MODIS band 1 uses Earth-view response trends from the Libyan desert to 

derive its on-orbit gain on a routine basis. This short-term deviation in the reflectance is attributed to the fitting 

algorithm update in the forward processing stream and is expected to be corrected in the next reprocessed version. 

As expected, the TOA reflectance trend from ocean sites yield a reflectance < 10% with prominent seasonal 

oscillations.  

In order to quantify the presence of a long-term drift in the reflectance trends, regression lines were fitted and a 

statistical analysis of the slope of the regression line was performed. The slope of the regression line is tested for a 

null slope, which states that no long-term drift is observed, and alternative hypothesis, which states that the slope is 

significant and therefore indicates a temporal drift. The p-value denoting the probability of the test statistic is set at a 

5% level under the following conditions: 

(a) If the p-value < 0.05, the null hypothesis (H0) is rejected; therefore indicating a long-term drift in the 

reflectance trend 

(b) If the p-value ≥ 0.05, then it fails to reject the null hypothesis (H0); therefore indicating no long-term drift 

in the TOA reflectance trend.  

Table II presents the result of the hypothesis testing confirming the absence of a measurable long-term drift in these 

MODIS bands. In all cases, the p-value is observed to be greater than 0.05 therefore failing to reject the null 

hypothesis.  Also, included in the table is the long-term reflectance drift in %. Performing a linear modeling fit to the 

data presented in Figure 8 and computing the difference in the modeled values between the first and the last year 



provides the long-term drift estimate. With the exception of bands 1 and 2, the total mission drift for other bands is 

within 2%.   

5. Future Improvements 

Among the various techniques used to monitor the on-orbit calibration of satellite sensors, comparing near-

simultaneous scene pairs over stable ground targets with another sensor, described in this paper, is an effective 

approach to enhance the on-orbit calibration.  Unlike previous efforts of comparing absolute differences between the 

two sensors, this work is more focused towards the use of MISR to benefit the on-orbit MODIS calibration for the 

RSB. By choosing simultaneous overpasses at the same view geometry over pseudo-invariant ground targets, most 

uncertainties associated with the day-to-day observations, such as variations in the atmospheric conditions or the 

impacts associated with the site’s BRDF, are largely eliminated. As MODIS continues to operate far beyond its life 

expectancy, maintaining the accuracy of the on-orbit RSB calibration poses several challenges. One of the primary 

challenges is to continue characterizing the on-orbit RVS accurately. The MISR-based evaluation of the MODIS 

RVS for the spectrally matching bands indicates the on-orbit RVS stability to be within 1% for MODIS bands 1, 2, 4 

and 9. Similar results, with greater uncertainty of up to 3%, are observed for bands 12, 13, 14 and 16. A more robust 

technique, yielding lower uncertainties is required to evaluate the on-orbit RVS performance for these bands.  

The on-orbit calibration of the MODIS RSB does not account for the changes in the instrument’s polarization 

sensitivity. The impacts are primarily observed at short wavelengths as observed in the mirror side differences in 

MODIS band 9. Work performed by Kwiatkowska et.al, and Lyapustin et.al, has shown that it is essential to account 

of the instrument’s polarization sensitivity in order to maintain an accurate on-orbit calibration [18], [19]. Efforts are 

underway to implement a polarization correction to the Earth-scene data before the on-orbit RVS is derived.  Work 

is also performed to develop alternative approaches for on-orbit RVS characterization.  Using the MISR-based 

evaluation approach, an improvement in the algorithm to characterize the detector differences for MODIS band 9 

has been identified. The differences, greater than 1%, observed at nadir are primarily caused by the lack of a reliable 

calibration source between the SD and lunar measurements on either side of nadir. An algorithm involving the 

detector differences from Earth-view data at multiple scan-angles is being developed to account for these differences 

observed at nadir.  

Finally, the temporal stability of the reflectance trends derived from the MODIS RSB is critical to maintain the 

quality of the various downstream products.  In order to decouple MISR’s long-term trends from MODIS, an 

independent confirmation solely relying on the MODIS reflectance trends was performed. With the exception of 

bands 1 and 2, the long-term stability of the MODIS bands presented in the paper is within 2%.  Short-term 

variations in the recent year caused by the forward updates were identified in bands 1 and 2. These are expected to 

be corrected for in the next entire mission reprocess.  

 

 



6. Summary and Conclusions 

The on-orbit calibration of the Terra MODIS RSB is tracked using regular measurements of its on-board calibrators 

supplemented by Earth-view measurements. The measurements from the on-board calibrators primarily rely on the 

SD and lunar measurements and the Earth-view response trends at multiple AOI are derived from pseudo-invariant 

desert sites. Uncertainties associated with the use of Earth-view targets for on-orbit calibration are well documented 

and need a constant and careful tracking. MISR, also on the Terra spacecraft, provides an effective means of 

tracking the MODIS on-orbit calibration. This paper demonstrates the use of MISR as an additional on-board 

calibrator to monitor the on-orbit calibration consistency of MODIS RSB. Due to its push-broom mechanism, 

simultaneous MISR collects effectively eliminate the impacts of scene dependence. The North Atlantic ocean and 

North African desert sites are selected to evaluate the on-orbit performance of the MODIS RVS characterization. 

Results indicate that the MODIS/MISR ratio between the two ends of the MISR swath demonstrates a stable 

behavior over time with a temporal change within 1% for all bands. A higher standard deviation is observed for the 

bands using ocean sites due to atmospheric effects. The reflectance differences between the two sides of the MODIS 

scan mirror exhibit changes < 1% for all bands with the exception of MODIS band 9. The changing polarization 

sensitivity of the instrument impacts the mirror side differences observed for band 9. An improvement to the current 

on-orbit RVS characterization methodology has been identified to ensure a more accurate characterization of the 

detector-differences at nadir. With the exception of band 9, the detector differences for the RSB reflectance 

presented here are observed to be within 1%. Finally, the temporal stability of MODIS RSB is assessed using 

MODIS/MISR reflectance ratios to decouple the impact of ground target variations. The ratios exhibited a 3% drift 

in the case of MODIS bands 1 and 2 and less than 2% drift for the other bands. To confirm these results, MODIS-

reflectance trending without the MISR normalization has been monitored for long-term consistency. A hypothesis 

testing is performed to confirm that no measurable long-term drift is observed for all of the RSB presented here. 

 

 



 

Figure 1a. Prelaunch and on-orbit RVS for Terra band 9 

 

Figure 1b. Prelaunch and on-orbit RVS for Terra band 4 

 



 

Figure 1c. Prelaunch and on-orbit RVS for Terra band 1 

 

Figure 1d. Prelaunch and on-orbit RVS for Terra band 2 

 



 

 

Figure 2 MODIS-MISR Relative Spectral Response comparison 

 
 

  
Figure 3a. North African 
desert overpass from day 

186 of the year 2015 

Figure 3b. North Atlantic 
ocean overpass from day 20 

of the year 2005 
 



 

Figure 4a . MODIS/MISR ratio for band 9 over a simultaneous desert overpass from 2005 as a function of MODIS 
frames number (scan-angle).  All the matched pixels from mirror side 1 are plotted along with a linear regression. 
 

 

Figure 4b . MODIS/MISR ratio for band 13 over a simultaneous desert overpass from 2005 as a function of MODIS 
frames number (scan-angle).  All the matched pixels from mirror side 1 are plotted along with a linear regression. 



 

 

Figure5. (a) Relative difference between the MODIS/MISR ratio at frame 500 and frame 800. A calendar-year 
average relative difference is plotted for mirror side 1 of band 1 for all North African desert scene-pairs. (b) Results 
for MODIS band 4 over the North African desert. (c) Results for MODIS band 13 over the North Atlantic ocean are 
plotted. (d) Results for MODIS band 14 over North Atlantic ocean. 

 

 



 

Table I. Summary of the MODIS RSB RVS assessment using MISR. The results for bands 1, 2,4 and 9 were derived 
using the desert site and the ocean site was used for bands 12, 13, 14 and 16. Results from four representative years 
are presented (yearly-average over the calendar year).  The standard deviation denotes the variation around the mean 
value of relative difference within the year.  

 

 
 
 
 
 
 
 
 
 
 
 

Band MS Rel. Diff Std.dev Rel. Diff Std.dev Rel. Diff Std.dev Rel. Diff Std.dev
B1 1 1.003 0.008 1.002 0.006 1.008 0.004 1.007 0.006
B1 2 1.004 0.006 1.003 0.005 1.007 0.004 1.007 0.005
B2 1 1.003 0.007 1.003 0.008 1.012 0.005 1.011 0.007
B2 2 1.004 0.006 1.003 0.004 1.012 0.006 1.012 0.006
B4 1 0.999 0.007 0.999 0.004 1.002 0.002 1.005 0.005
B4 2 0.999 0.006 1.001 0.006 1.001 0.003 1.006 0.005
B9 1 0.999 0.006 0.999 0.004 0.996 0.005 0.997 0.006
B9 2 0.998 0.005 0.999 0.003 1.000 0.004 0.997 0.005
B12 1 1.007 0.013 1.006 0.013 1.006 0.013 1.010 0.015
B12 2 1.005 0.016 1.005 0.017 0.995 0.012 1.012 0.014
B13 1 1.000 0.016 1.002 0.014 1.005 0.016 0.994 0.015
B13 2 0.997 0.017 0.991 0.011 0.998 0.015 1.002 0.013
B14 1 0.996 0.014 1.005 0.015 0.999 0.016 0.997 0.013
B14 2 0.997 0.015 1.003 0.016 1.004 0.019 0.993 0.010
B16 1 0.998 0.013 1.008 0.013 0.987 0.018 1.008 0.017
B16 2 0.988 0.012 1.014 0.006 1.005 0.019 0.990 0.015

2000 2005 2010 2015



 

 

Figure6 (a) MODIS mirror side differences for band 4, (b) band 9, (c) band 13, and (d) band 16. 

 

 

Figure 7 (a) MODIS detector-detector differences for band 4, (b) band 9, (c) band 13, and (d) band 16. 

 



 

 

Figure 8(a) MODIS/MISR reflectance ratio trending for bands 1 (black),2 (red),4 (green), and 9 (blue) over North 
African desert (b) MODIS/MISR reflectance ratio trending for bands 12 (black),13 (red),14 (green), and 16 (blue) 
over North Atlantic ocean. 

 

Table II:  Hypothesis testing for the long-term reflectance trends. Also, included is the total mission drift (%) from 
2000-2015.  
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