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Abstract 16 

 17 

Version 1 of the NASA MERRA Aerosol Reanalysis (MERRAero) assimilates bias-corrected 18 

aerosol optical depth (AOD) data from MODIS-Terra and MODIS-Aqua, and simulates particulate 19 

matter (PM) concentration data to reproduce a consistent database of AOD and PM concentration around 20 

the world from 2002 to the end of 2015. The purpose of this paper is to evaluate MERRAero’s simulation 21 

of fine PM concentration against surface measurements in two regions of the world with relatively high 22 

levels of PM concentration but with profoundly different PM composition, those of Israel and Taiwan. 23 

Being surrounded by major deserts, Israel’s PM load is characterized by a significant contribution of 24 

mineral dust, and secondary contributions of sea salt particles, given its proximity to the Mediterranean 25 

Sea, and sulfate particles originating from Israel’s own urban activities and transported from Europe. 26 

Taiwan’s PM load is composed primarily of anthropogenic particles (sulfate, nitrate and carbonaceous 27 

particles) locally produced or transported from China, with an additional contribution of springtime 28 

transport of mineral dust originating from Chinese and Mongolian deserts. The evaluation in Israel 29 

produced favorable results with MERRAero slightly overestimating measurements by 6% on average 30 

and reproducing an excellent year-to-year and seasonal fluctuation. The evaluation in Taiwan was less 31 

favorable with MERRAero underestimating measurements by 42% on average. Two likely reasons 32 

explain this discrepancy: emissions of anthropogenic PM and their precursors are largely uncertain in 33 

China, and MERRAero doesn’t include nitrate particles in its simulation, a pollutant of predominately 34 

anthropogenic sources. MERRAero nevertheless simulates well the concentration of fine PM during the 35 

summer, when Taiwan is least affected by the advection of pollution from China. 36 
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INTRODUCTION 40 

 41 

NASA’s Modern-Era Retrospective Analysis for Research and Application (MERRA, Rienecker 42 

et al., 2011) is a reanalysis tool integrating satellite observations from the Earth Observing System and 43 

model data from the 5th version of the Goddard Earth Observing System (GEOS-5) atmospheric model 44 

and data assimilation system (Rienecker et al., 2008) in order to produce a consistent database in both 45 

time and space of various environmental variables around the world since the beginning of the satellite 46 

era. Recently, bias-corrected aerosol optical depth (AOD) observations from the Moderate Resolution 47 

Imaging Spectroradiometers (MODIS, Remer et al., 2005) on board the Terra and Aqua satellites as well 48 

as the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model (Chin et al., 2002) were 49 

included in MERRA to create a reanalysis of aerosols labelled “MERRAero”. GOCART simulates the 50 

sources, sinks, transport and concentration of sulfate (SO4), organic carbon (OC), black carbon (BC), 51 

dust (DS) and sea salt (SS) aerosols (Chin et al., 2002; Colarco et al., 2010). DS and SS emissions are a 52 

function of surface properties and wind speed at the surface, and their respective concentrations are 53 

classified in different diameter bins. Sources of other species are simulated from emission inventories, 54 

including their precursors. Sulfur dioxide (SO2, the precursor of SO4) anthropogenic emissions are input 55 

from the Emission Database for Global Atmospheric Research (EDGAR) version 4.1 inventory from 56 

2005 and biomass burning emissions (primarily OC and BC) are input from the NASA Quick Fire 57 

Emission Dataset (QFED) version 2.1 (Buchard et al., 2015). 58 

MERRAero simulates the concentration of the five aerosol species listed in the previous paragraph 59 

all over the world with a resolution of 0.5° latitude by 0.625° longitude and 72 vertical layers (from the 60 

surface to 80 km) from 2002 to the end of 2015 (Buchard et al., 2015). Considering that these aerosol 61 

species, also referred to airborne particulate matter (PM), affect public health and visibility differently 62 
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depending on their size and chemistry (e.g., Laden et al., 2000; Schwartz and Neas, 2000; Groblicki et 63 

al., 1981), MERRAero’s differentiation of the aerosols’ chemical speciation is a significant improvement 64 

for studying a broad range of air quality issues around the world since very few monitoring networks 65 

make such a distinction of local PM observations, but especially in regions with unreliable or scarce 66 

monitoring. 67 

Different components of MERRAero have been evaluated in different regions of the world. Its 68 

assimilation of AOD has been validated over Africa, South America, central and eastern Asia using many 69 

remote sensing instruments (Buchard et al., 2015); in the United States, the surface concentrations of 70 

PM2.5, their chemical speciation and SO2 has been thoroughly evaluated (Buchard et al., 2014; 2016); 71 

and in Europe, an evaluation of the surface concentrations of PM10, PM2.5 and some of their chemical 72 

speciation has been performed (Provençal et al., 2016). The concentrations of PM10, PM2.5 and SO4 were 73 

generally well simulated in both the U.S. and Europe but Buchard et al. (2016) and Provençal et al. 74 

(2016) noticed an underestimation of carbonaceous concentration in urban/suburban locations, 75 

particularly in winter, due to unresolved sources by MERRAero. 76 

The U.S. and Europe have similar PM signatures in the sense that both regions are highly 77 

industrialized and therefore anthropogenic particles contribute significantly to their PM load. At the same 78 

time, implementation of air quality regulation has successfully reduced the emissions of various 79 

atmospheric pollutants across the U.S. and Europe over the last decades (e.g. Granier et al., 2011; 80 

Klimont et al., 2013; Hand et al., 2012; Xing et al., 2013; de Gouw et al., 2014; Vestreng et al., 2007) 81 

and, as a result, maintained relatively low levels of PM concentration. There are nevertheless important 82 

differences with respect to the chemical speciation of PM between the two regions such as a 83 

predominance of carbonaceous particles over the western U.S. due to summer wildfires and a 84 

predominance of dust particles over southern Europe due to its proximity to the Sahara desert. 85 
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The PM signature in the U.S. and Europe is not representative of many other regions in the world 86 

where PM sources and pollution control are profoundly different. In order for MERRAero to achieve 87 

optimal reliability for studying air quality issues around the world, the purpose of this article is to pursue 88 

MERRAero’s evaluation in regions with different and distinct aerosol signatures, those of Israel and 89 

Taiwan. The evaluation in Israel, a region with a heavy PM load due to its proximity to major deserts, 90 

will ascertain MERRAero’s ability to simulate the concentration of aerosol originating from natural 91 

sources. Taiwan being located in a region of the world which is routinely experiencing severe air 92 

pollution episodes, the evaluation there will provide insight on MERRAero’s applicability in highly 93 

polluted regions where its contribution would be most beneficial. 94 

 95 

LOCATIONS AND METHODS 96 

 97 

Israel and Taiwan 98 

Israel is located in western Asia, surrounded by the Mediterranean Sea, the Sahara desert and the 99 

Middle Eastern deserts. Its PM concentration load is relatively high, composed largely of mineral DS 100 

(Kushelevsky et al., 1983; Malenky et al., 1983; Foner and Ganor, 1992) with an occasionally important 101 

contribution from SS particles when the wind is blowing inland (Foner and Ganor, 1992). PM 102 

concentration in urban areas such as the coastal city of Tel Aviv is even higher due to anthropogenic SO4 103 

locally produced or transported from Europe (Foner and Ganor, 1992). Rural locations in Israel have also 104 

been impacted by the advection of SO4 particles originating from Europe (Luria et al., 1989). 105 

Taiwan is an island located in eastern Asia, separated from mainland China by the Taiwan Strait. 106 

Its concentration level of PM is fairly high, especially in urban areas (Chen et al., 1999), caused by 107 

industrial and transportation activities within Taiwan but also due to wintertime synoptic features that 108 
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transport polluted air from China (Lin et al., 2005). SO4, OC, BC, nitrate (NO3) and ammonium (NH4) 109 

particles together compose a large portion of PM concentration (Lin et al., 2008; Lin, 2002; Chen et al., 110 

2003; Tsai and Kuo, 2005; Tsai and Cheng, 1999; 2004). Taiwan nevertheless enjoys cleaner air during 111 

the summer, coinciding with the typhoon season which sweeps the island with strong winds and heavy 112 

rain (Lin et al., 2008). In spring, Taiwan is also impacted by the advection of dust originating from 113 

Chinese and Mongolian deserts (Chen et al., 2004). 114 

 115 

Evaluation method 116 

MERRAero simulates the concentration of five PM2.5 (PM with diameter ≤ 2.5 µm) species every 117 

hour: SO4, OC, BC, DS2.5 and SS2.5. From these, it is possible to apply a mass reconstruction method to 118 

estimate the total concentration of PM2.5. Chow et al. (2015) reviewed 11 commonly used equations to 119 

reconstruct PM mass from speciation measurements which are usually determined by the measurements 120 

available. The equations usually took the following form: 121 

 122 

PM = Inorganic ions + Organic matter + BC + DS + SS     (1) 123 

 124 

Inorganic ions include SO4, NO3 and NH4 ions. When NH4 measurements were lacking, SO4 and 125 

NO3 were assumed to be fully neutralized by NH4 in the form of ammonium sulfate ((NH4)2SO4) and 126 

ammonium nitrate (NH4NO3) by multiplying their respective concentrations by 1.375 and 1.29; 127 

(NH4)2SO4 being composed of 73% of SO4 by mass and NH4NO3 being similarly composed of 78% of 128 

NO3. The concentration of inorganic ions was ultimately estimated by: 1.375 × [SO4] + 1.29 × [NO3] 129 

(brackets denote concentration). [NH4NO3] was occasionally omitted altogether when NO3 130 

measurements were lacking or unreliable (e.g., Malm et al., 1994). 131 
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The concentration of particulate organic matter (POM) was estimated through OC measurements 132 

multiplied by a coefficient which took into account other organic compounds found in POM but not 133 

measured. Commonly and historically, a coefficient of 1.4 was used (Chow et al., 2015; Turpin and Lim, 134 

2001), but Turpin and Lim (2001) argued that such a value is often too low. They recommended a value 135 

of 1.6 ± 0.2 for urban carbonaceous particles, 2.1 ± 0.2 for aged (non-urban) particles and a value as high 136 

as 2.6 for biomass burning particles. 137 

Taking into consideration the PM species simulated by MERRAero and given that this evaluation 138 

is performed in a combination of urban and non-urban locations, the following reconstruction is used: 139 

 140 

[PM2.5] = 1.375 × [SO4] + 1.8 × [OC] + [BC] + [DS2.5] + [SS2.5]   (2) 141 

 142 

Eq. 2 lacks the concentration of NO3 particles whose sources are predominantly anthropogenic in nature 143 

(Delmas et al., 1997). 144 

MERRAero’s simulation at the surface is compared to hourly observations of [PM2.5] measured at 145 

11 locations in Israel between 2003 and 2014, and 13 locations in and around Taiwan between 2005 and 146 

2014 (Fig. 1). A spatial consistency algorithm is applied to assure reliability of the observed and 147 

simulated data which goes as follows: since trace concentrations are usually lognormally distributed, the 148 

bias between log-simulated concentration and log-observed concentration (Blog = log(Cs) – log(Co); Cs: 149 

simulated concentration, Co: observed concentration) is calculated at all locations within each study areas 150 

on a given hour; the average and standard deviation of Blog are calculated and used to define a reliability 151 

interval which justifies ~95% of the normal distribution: Blog  ± 2σBlog; all data pairs that fall outside 152 

this interval are excluded. 153 
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Performance statistics are calculated to quantify MERRAero’s accuracy: the mean fraction 154 

F  = Cs  / Co , the mean bias B  = Cs  – Co , the standard deviation of the bias (SD-B) and the 155 

correlation coefficient (R). Given that trace concentrations are lognormally distributed, it is also relevant 156 

to compute log-transformed statistics: Blog , SD-Blog and Rlog. Willmott (1982) criticized the use of R to 157 

evaluate model performance since it doesn’t directly compare simulated with observed data. Therefore, 158 

Chang and Hanna (2004) recommended as a rigorous index to evaluate air quality models the proportion 159 

of simulated data which falls within a factor of 2 of observed data (FAC2, i.e. proportion of the data 160 

which satisfies 0.5 ≤ Co / Cs ≤ 2.0) since this index is not disproportionately sensitive to extreme values 161 

and is unaffected by simplification of errors. Chang and Hanna (2004) considered a model’s performance 162 

to be reasonably good if FAC2 ≥ 0.5. 163 

 164 

RESULTS AND DISCUSSION 165 

 166 

Israel 167 

The spatial consistency algorithm excluded 5% of the data in Israel. At 22.5 µg m–3, the PM2.5 load 168 

in Israel is high (Table 1) compared to Europe (Provençal et al., 2016), rural and suburban U.S. (Buchard 169 

et al., 2016). Overall, MERRAero simulates [PM2.5] very well in Israel by slightly overestimating its 170 

average concentration by 6% or 1.4 µg m–3 (Table 1). However, the high SD-B value and modest R 171 

suggest significant scatter within the data and a low bias resulting from simplification of errors. On the 172 

other hand, it is worth mentioning that SD’s are disproportionately impacted by extreme data pairs. For 173 

instance, if such data which fall outside a factor of 5 between observed and simulated concentrations, 174 

which represent 2.6% of the sample, B  and SD-B are reduced to 1.0 µg m–3 and 19.6 µg m–3, 175 
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respectively. Furthermore, the density scatter plot of Fig. 2a reveals that although there is some scatter, 176 

the bulk of the data is generally well simulated. This is further supported by a high FAC2 value of 76%. 177 

The log-transformed data (Table 1; Fig. 2b) support a similar analysis. Additionally, Fig. 3 compares the 178 

annual and monthly fluctuations between simulated and observed data, and illustrates an excellent 179 

identity between both datasets. 180 

MERRAero’s ability to accurately estimate [PM2.5] in Israel relies predominantly on its ability to 181 

simulate [DS2.5] since [PM2.5] is largely composed of this species (Table 2) and, to a lesser extent, its 182 

ability to simulate [SO4] and [SS2.5]. The evaluation of [DS2.5] in the U.S. revealed important seasonal 183 

biases without much impact on the evaluation of [PM2.5] given its small contribution to [PM2.5] there 184 

(Buchard et al., 2016). While the U.S. is mostly impacted by long range transport of DS, this evaluation 185 

in Israel would suggest that MERRAero performs well in simulating [DS2.5] originating from local 186 

sources. [SO4] has been shown to be well simulated in the U.S. and in Europe (Buchard et al., 2016; 187 

Provençal et al., 2016), we therefore have no reason to believe otherwise in this region. MERRAero 188 

largely overestimated [SS2.5] in both the U.S. and Europe due in part to measurement biases which could 189 

very well be the case in Israel. An overestimation of [SS2.5] could compensate the lack of nitrate particles 190 

in the simulation. In any case, the lack of nitrate particles is likely a minor shortcoming given that they 191 

are less abundant than SO4 and probably contribute little to [PM2.5]. 192 

 193 

Taiwan 194 

The spatial consistency algorithm excluded 3% of the data in Taiwan. The PM2.5 load in Taiwan is 195 

higher than in Israel (29.8 µg m–3; Table 1). Despite a FAC2 of 59%, MERRAero’s performance in 196 

Taiwan is much less encouraging. On average, MERRAero underestimates total [PM2.5] by 8.8 µg m–3, 197 

a factor of 1.42. The SD-B is also high and R is positive but low. Fig. 4a–b reveals that the bulk of the 198 
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simulated data, 66% to be precise, is indeed underestimated. 199 

MERRAero’s simulation of [PM2.5] in Taiwan is mostly anthropogenic in nature (Table 2) with a 200 

significant proportion attributed to SO4. This information coupled with Fig. 5 which compares annually 201 

and monthly averaged simulated and observed concentration reveals a few clues as to why MERRAero’s 202 

performance is less favorable in Taiwan. The evaluation performs well during the summer (typhoon) 203 

season but deteriorates during the rest of the year when Taiwan is most impacted by the advection of 204 

pollution from China. The use of a constant inventory of SO2 emissions from 2005 is problematic in the 205 

long term since it is increasingly becoming antiquated with every passing year. Indeed, in 2005, China 206 

successfully implemented comprehensive policies to reduce SO2 emissions. As a result, SO2 emissions 207 

and, by extension, SO4 concentrations have been decreasing since 2006 (Lu et al., 2010; 2011; Wang 208 

and Hao, 2012; Zhang et al., 2012; Klimont et al., 2013; B. Zhao et al., 2013; Y. Zhao et al., 2013). This 209 

is reflected in Fig. 5 with a near constant decrease of [PM2.5] observations as opposed to the near constant 210 

year to year concentrations simulated by MERRAero. SO2 emission estimates from China are also 211 

crippled with uncertainties (Smith et al., 2011). The lack of nitrate particles in the simulation is much 212 

more troublesome in Taiwan given that [PM2.5] is mostly composed of anthropogenic particles. This 213 

would certainly explain a significant portion of the underestimation. Another possible explanation for 214 

the wintertime discrepancy, one that’s also been highlighted by Provençal et al. (2016) for the evaluation 215 

in Europe, is local sources of pollution unresolved by MERRAero. While MERRAero’s simulation takes 216 

into account urban sources of pollution, its resolution is too coarse to capture the urban core of cities. 217 

Some monitoring stations in Taiwan (Fig. 1) are located in or around large cities, but none of them are 218 

located in their downtown core. We therefore don’t expect them to be overly influenced by local sources 219 

of pollution. Nevertheless, some influence of unresolved sources should be anticipated. The springtime 220 



10 

 

maximum observed in Fig. 5 is the likely contribution of long range transport of DS, well captured by 221 

MERRAero. 222 

 223 

CONCLUSION 224 

 225 

We evaluated version 1 of the MERRA Aerosol Reanalysis’ ability to simulate the concentration 226 

of PM2.5 in two regions of the world with relatively high levels of PM concentration but with profoundly 227 

different PM composition. Israel is characterized by a high concentration of PM2.5 due to its proximity 228 

to major deserts and to the highly saline Mediterranean Sea. Its PM2.5 load is composed mostly of natural 229 

particles (mineral dust and sea salt) with some contribution of anthropogenic particles (sulfate) 230 

originating from Israel’s urban activities and advection from Europe. Taiwan’s high PM2.5 concentration 231 

is mostly anthropogenic in nature due to Taiwan’s own industrial activities and to advection of polluted 232 

air from China with some contribution of dust particles originating from east Asian deserts. 233 

The evaluation reproduced favorable results in Israel where MERRAero slightly overestimated 234 

actual PM2.5 concentration by 6% on average. Although there is scatter within the distribution, most of 235 

the simulation is reasonably accurate with over 75% of the simulated data falling within a factor of 2 of 236 

measurements. Given that most of PM2.5 in Israel is mineral dust, this evaluation supports the assumption 237 

that MERRAero performs well in simulating the concentration of fine dust originating from local and 238 

regional sources throughout the year. 239 

The evaluation is not as favorable in Taiwan where MERRAero significantly underestimated 240 

measured PM2.5 concentration by 42% on average. Given that PM2.5 in Taiwan is mostly composed of 241 

anthropogenic particles, many of which originate from China, two likely reasons explain this outcome: 242 

the uncertainty with respect to Chinese emissions and the lack of nitrate particles in the simulation. The 243 
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simulation was indeed better during the summer when Taiwan is least impacted by advection of polluted 244 

air from China. 245 
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Table 1. Performance statistics for the ensemble of locations in Israel and Taiwan. AOC stands for 366 

“average observed concentration”. 367 

 Israel Taiwan 

n 1,016,778 1,024,992 

AOC (µg m–3) 22.5 29.8 

F 1.06 0.70 

B  (µg m–3) 1.4 –8.8 

SD-B (µg m–3) 23.8 22.7 

Blog  0.07 –0.27 

SD-Blog 0.66 0.83 

R 0.56 0.27 

Rlog 0.50 0.30 
FAC2 0.76 0.59 

 368 

  369 
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Table 2. Average concentration simulated by MERRAero for the ensemble of locations in Fig. 1 over 370 

the study period. 371 

Species 

Israel Taiwan 

Average concentration 

(µg m–3) 

Proportion of PM2.5 

concentration (%) 

Average concentration 

(µg m–3) 

Proportion of PM2.5 

concentration (%) 

PM2.5 24.0 – 20.9 – 

(NH4)2SO4 4.5 18.7 9.3 44.3 

POM 1.3 5.4 3.0 14.1 

BC 0.4 1.7 0.7 3.4 

DS2.5 13.9 57.9 2.0 9.3 

SS2.5 3.9 16.3 6.1 28.9 

 372 

  373 
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Table and figure captions 374 

 375 

Table 1. Performance statistics for the ensemble of locations in Israel and Taiwan. AOC stands for 376 

“average observed concentration”. 377 

Table 2. Average concentration simulated by MERRAero for the ensemble of locations in Fig. 1 over 378 

the study period. 379 

Fig. 1. Location of monitoring stations. 380 

Fig. 2. Density scatter plot for (a) observed and simulated [PM2.5], and (b) log transformed observed 381 

and simulated [PM2.5] for the ensemble of locations in Israel. 382 

Fig. 3. (a) Yearly and (b) monthly average of [PM2.5] observation, simulation and bias, and (c–d) 383 

similarly for the SD and FAC2, for the ensemble of locations in Israel. 384 

Fig. 4. Density scatter plot for (a) observed and simulated [PM2.5], and (b) log transformed observed 385 

and simulated [PM2.5] for the ensemble of locations in Taiwan. 386 

Fig. 5. (a) Yearly and (b) monthly average of [PM2.5] observation, simulation and bias, and (c–d) 387 

similarly for the SD and FAC2, for the ensemble of locations in Taiwan. 388 
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 390 

Fig. 1. Location of monitoring stations. 391 
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 393 

 394 

Fig. 2. Density scatter plot for (a) observed and simulated [PM2.5], and (b) log transformed observed 395 

and simulated [PM2.5] for the ensemble of locations in Israel. 396 
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 399 

 400 

Fig. 3. (a) Yearly and (b) monthly average of [PM2.5] observation, simulation and bias, and (c–d) 401 

similarly for the SD and FAC2, for the ensemble of locations in Israel. 402 
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 404 

 405 

Fig. 4. Density scatter plot for (a) observed and simulated [PM2.5], and (b) log transformed observed 406 

and simulated [PM2.5] for the ensemble of locations in Taiwan. 407 
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 409 

 410 

 411 

 412 

Fig. 5. (a) Yearly and (b) monthly average of [PM2.5] observation, simulation and bias, and (c–d) 413 

similarly for the SD and FAC2, for the ensemble of locations in Taiwan. 414 
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