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1. INTRODUCTION 30 

It has long been recognized that mechanical stimulation (MS; stress), such as wind action, rubbing, 31 

constriction, shaking, and encounters with physical barriers can have a dramatic influence on 32 

plant morphological development1-5.  Jaffe (1973) demonstrated that daily MS to partially 33 

mature internode tissue, applied by rubbing stem tissue between two fingers, could induce 34 

dramatic reductions in internode length resulting dwarf phenotypes in a range of crop species. 35 

Jaffe (1973) coined the term thigmomorphogenesis, (thigma being the Greek word for touch) to 36 

describe these long term morphological responses to touch. Over the ensuing 40 years many 37 

others have followed up on Jaffe’s work, most notably Cary Mitchell’s group at Purdue (West 38 

Lafayette, IN, USA) and Janet Braam at Rice University (Houston, TX, USA). It is now known that 39 

thigmomorphogenesis includes a wide range of responses including, but are not limited to, 40 

shortening of internodes, stem thickening, reduced leaf expansion, changes in chlorophyll 41 

content, and alterations in plant hormone levels5-11.   42 

 43 

A significant amount of thigmomorphogenesis research conducted during the 1980s-90s was 44 

sponsored by the National Aeronautics and Space Administration (NASA)1,4,10,12,13. Given the 45 

physical rigours of spaceflight it is important to understand how mechanical and vibrational 46 

stimuli affected plant growth, and importantly, how MS could be used to counter the absence of 47 

a gravity vector that may otherwise result in plants with leggy growth or being susceptible to 48 

breakage14. The research findings were fairly consistent, at least in terms of the effects of MS on 49 

plant architecture; MS results in shorter more compact plants3,11,13,15. These findings were 50 

significant in that mass and volume are major limiting factors in the design and development of 51 

bioregenerative life-support systems. Taking advantage of thigmomorphogenesis to produce 52 

dwarf plant architectures, thereby reducing mass and volume requirements, is of interest.   53 

 54 

Crops selected for use in bioregenerative systems need to conform to the many constraints of 55 

spaceflight. As noted, a major constraint are the extremely limited real estate available for plant 56 

production. Unlike most terrestrial agricultural applications that strive to optimize the use of a 57 

given area of arable land, spaceflight agriculture requires researchers to maximize volume use 58 



efficiency (VUE). This can be achieved through genetic manipulations, chemical interventions 59 

(e.g., exogenous growth regulators), the selection of dwarf cultivars, and through specific 60 

horticultural management practices utilizing standard crop species16-20.  These dwarfing 61 

mechanisms are now being combined with advances in light emitting diode (LED) systems which, 62 

due to their cool operating temperature, allows for close proximity of the crop and light source, 63 

enabling significant improvements in VUE.  Volume use efficiencies have improved to the point 64 

that viable stacked or vertical agricultural production industries have emerged, in addition to 65 

other applications such as molecular farming that often employ multi-layered or vertical 66 

production architectures (Goto, 2012).  67 

 68 

Public and private efforts are rapidly advancing both the notion and the technology required to 69 

send humans to the Moon and Mars for extended periods. Bio-regenerative or advanced life-70 

support (ALS) systems utilizing plants and other biological machinery to sustain human life have 71 

long been considered critical for such extended missions beyond low Earth orbit21. The plants and 72 

associated microbial communities in these bio-regenerative systems provide, in whole or in part, 73 

critical life-support services including food production, air revitalization (oxygen production and 74 

carbon dioxide removal), and wastewater recycling22,23. Modifying the architecture of any given 75 

crop, through such responses as thigmomorphogenesis, could help reduce the equivalent system 76 

mass (ESM) of bio-regenerative systems ultimately leading to viable ‘agriculture in space’ 77 

(Drysdale et al, 2003). 78 

 79 

The objective of the presented study was to re-examine thigmomorphogenesis as a tool for 80 

improving VUE in bioregenerative life-support and vertical agriculture system designs, while 81 

adding to the knowledge base in this domain. The data obtained from the fruiting study were also 82 

used to generate a rudimentary VUE model for vertical agriculture applications, given recent 83 

advances (lighting) in controlled environment system technology.  84 

 85 

2. MATERIALS & METHODS 86 



Two experiments were conducted to determine the vegetative response, and fruiting response 87 

of Capsicum annum ‘California Wonder’ to mechanical stimulation (MS). Response data were 88 

used as a baseline for volume utilization efficiency calculations for hypothetical spaceflight and 89 

vertical agriculture applications. 90 

 91 

2.1 Vegetative Response Study 92 

2.1.1 Plant Material Preparation and Growth Conditions: Four seeds of Capsicum annum 93 

‘California Wonder’ (Lake Valley Seed Company Inc., Boulder, CO) were sown in each of 18, 1.67L 94 

pots containing a standard potting media (Fafard ProMix 2B, Sun Gro Horticulture Distribution 95 

Inc., Agawam, MA), in which 8.3 g/L of 18-6-8 slow release fertilizer (Nutricote Total, Florikan 96 

E.S.A. Corp., Sarasoda, FL) was incorporated. Plants were hand watered daily with deionized 97 

water and supplemented with a half strength Hoagland’s solution twice per week for the duration 98 

of the trial. The chamber was maintained at a 23/20°C day/night temperature profile, a 16-h 99 

photoperiod, 400 µmol·m-2·s-1 PPF, constant relative humidity of 65%, and 800 ppm CO2.  100 

 101 

2.1.2 Layout: Pots were randomly assigned to positions in a 3 x 6 grid within the growth chamber. 102 

Treatment levels (1-control; 2-mechanically stimulated) were randomly assigned to each grid 103 

position in a completely randomized design structure. The experiment was replicated to validate 104 

the results. 105 

 106 

2.1.3 Treatment Application: Mechanical stimulation (MS) was initiated after a 1-week 107 

acclimation period following transplanting into pots. Tightly wrapped cotton-tipped inoculation 108 

sticks (InoculatorZ™, Biolog Inc., Hayward, CA) were used to apply gentle but firm strokes along 109 

each side of the most recently developed internode at an application rate of 10 stroke per side 110 

(total of 40). The internode was supported during the treatment by the placing two fingers on the 111 

internode opposite to the point of MS. The MS was applied twice daily on weekdays and once 112 

daily on weekends. Treatments were applied in the morning between 09:00-10:00 (2-3 h after 113 

lights came on) and in the evening (16:00-17:00), for the duration of the experiment.  In order 114 

to avoid confounding the MS dwarfing effect with the amount of incident light between the 115 



treatments, the MS plants were placed on vertical risers, as needed, to ensure that the top of 116 

each of the 18 plants was at the same height.  The treatments were applied for seven weeks 117 

after which the plants began to flower and the experiment was ended. 118 

 119 

2.1.4 Measurements:  After the seven-week treatment period plants were destructively 120 

harvested. Shoot fresh mass (SFM), shoot dry mass (SDM), root dry mass (RDM), leaf area (LA), 121 

number of leaves, height to first bifurcation, number of nodes to first bifurcation, total height, 122 

stem diameter at the cotyledon and sixth nodes, relative chlorophyll levels (SPAD), and number 123 

of flower initials were all measured the day of harvest. 124 

 125 

2.2 Fruit Production Study 126 

2.2.1 Plant Material Preparation: Seeds of Capsicum annum ‘California Wonder’ (Lake Valley 127 

Seed Company Inc., Boulder, CO) were sown in mineral wool starter plugs (Grodan AO, Rockwool 128 

BV, Roermond, NL), placed in a germination tray, covered with a humidity dome, and placed in a 129 

controlled environment growth chamber (Environmental Growth Chambers, Chagrin Falls, OH. 130 

USA). The chamber was maintained at a constant 26°C during the germination period, with a 16-131 

h photoperiod, relative humidity of 65%, and ambient CO2 (chamber had CO2 monitoring but no 132 

active control; levels ranged between 380-420 ppm). After two weeks, 10 seedlings were selected 133 

for uniformity and transplanted into 1.67L pots with media prepared as described in section 2.1.1. 134 

After 8 weeks’ growth in the pots, all plants were pruned to open up the center of the plant to 135 

allow proper air movement.  The leaf area, fresh mass, dry mass, and flowers on the removed 136 

tissue were measured and included in the final tally for each plant. 137 

 138 

2.2.2 Layout: The light distribution in the chamber used for this study varied significantly along 139 

the long axis of the chamber, ranging from 240 -350 µmol·m-2·s-1 photosynthetically active 140 

radiation (PAR) at canopy height; blocking on light intensity was implemented to accommodate 141 

the lack of uniformity. Pots were randomly assigned to one of five block positions within the 142 

growth chamber. Treatment levels (1-control; 2-mechanically stimulated) were randomly 143 



assigned to one of the two positions within each block in a randomized complete block design 144 

structure. 145 

 146 

2.2.3 Treatment Application: Mechanical stimulation (MS) was initiated after a 1-week 147 

acclimation period following transplanting into 1.67 L pots. The MS was applied once daily in the 148 

morning within 2-3 hours of the lights coming on for the duration of the experiment (11-weeks). 149 

Once the plants had bifurcated, each of the most recently matured internodes on each branch 150 

received MS, with the application per internode reduced to 10 strokes.  In order to avoid 151 

confounding the MS dwarfing effect with the amount of incident light between the treatments, 152 

the MS plants were placed on scissor lifts (Fisherbrand Lab Jacks, Fischer Scientific) to ensure that 153 

the top of the MS plant was at the same canopy height as the control plant in each block. As the 154 

plants began to branch, the uppermost internode on each primary branch received the MS. The 155 

MS was only applied once daily during this trial, with treatments applied between 09:00-10:00 156 

for the 11-week duration (12-weeks total in pots) of the trial. 157 

 158 

2.2.4 Measurements:  After 12 weeks the plants were destructively harvested.  Similar to the 159 

previous experiment SDM, LA, height to first bifurcation, number of nodes to first bifurcation, 160 

total height, diameter at first true leaf node, and SPAD readings were recorded. Additional fruit 161 

number, total fruit fresh mass, total fruit volume, and total fruit dry mass data was recorded for 162 

each plant.  Resources were insufficient to allow leaf counts or root measurements during this 163 

study. Plants from each block were placed on a black drop cloth and photographed from above.  164 

A 100-cm ruler was included in the frame to allow post-harvest measurement of shoot diameters 165 

(ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA). 166 

 167 

3. RESULTS 168 

3.1 VEGETATIVE STUDY 169 

Significant reductions were observed for all growth metric, although the shoot to root dry mass 170 

ration did not differ (Fig. 1 A-H). The relative chlorophyll levels (SPAD) were significantly greater 171 



in MS leaves (Fig. 2). The stem thickness of MS plants increased at the first node, relative to the 172 

control plants, but the difference was reversed at the sixth node (Fig. 3) 173 

 174 

3.2 FRUITING STUDY 175 

The reductions in plant metrics observed in the vegetative study were not observed at the time 176 

of harvest of mature, fruit bearing plants, with the notable exception of total plant height (Fig. 4).  177 

The reduced number of flowers observed in the vegetative study was also noted in the fruiting 178 

study with significantly fewer fruit being produced by the MS plants (Fig.5 A). Although there were 179 

fewer flowers and resulting fruit produced, the total fruit volume, fresh mass and dry mass were 180 

not significantly different between the control and MS groups (Fig. 5 B-D) 181 

 182 

4. CALCULATIONS 183 

Data from the fruiting trial were used as the basis for volume use efficiency (VUE) calculations.  184 

The calculations focus on vertical components of VUE as crown diameter (area utilization), 185 

reductions, although statistically significant, were not considered practically significant except on 186 

extremely large scales; scales not likely to be realized in any practical spaceflight application.  It 187 

is assumed that the vertical use improvements are additive with respect to VUE. It is accepted 188 

that the following calculations are relatively simplistic in that they assume static interactions 189 

between plants in terms of light competition and other environmental factors.  In the growth 190 

study from which the data were gathered, care was taken to ensure a uniform access to light 191 

although neighbour shading did occur. In less regulated systems some plants height 192 

heterogeneity will increase resulting in further variation through shading and other competitive 193 

effects.  Regardless, the exercise is valuable for highlighting the potential for using MS as a tool 194 

for improving VUE in controlled environment agricultural systems. 195 

 196 

4.1 Vertical Use Calculations 197 

The mean shoot heights for the control and MS plants were 59.0 ± SD 1.4 cm and 47.2 ± SD 1.5 198 

cm respectively (Figure 4C), which translates to a 20% plant height reduction. For the purposes of 199 

this calculation the mean plus the standard deviation will be used in order to buffer the crop 200 



variance. Assuming that in a stacked plant production system there is a total fixed height 201 

requirement for lighting and rooting hardware of 30 cm, then the total vertical distance required 202 

for control and MS plants is approximately 90.4 cm (60.4 + 30 cm) and 78.7 cm (48.7 + 30 cm) 203 

respectively.  This represents an overall reduction in system height of 12.9% under MS. Carrying 204 

this calculation forward, in the total height required to accommodate six stacked trays of control 205 

plants (6 x 90.4 cm = 542.4 cm; round to 555 cm), one additional layer could conceivably be 206 

included, if MS were employed (7 x 78.7 cm = 550.9 cm; Figure 6). Clearly this example is not 207 

feasible in current spaceflight scenarios given the nearly 6 m vertical distance required to realize 208 

the additional layer of plants; however, it is relevant to vertical farming in terrestrial settings 209 

where significant production increases could be achieved. Recognizing this spaceflight limitation, 210 

it still may be possible to grow plants otherwise unsuited for spaceflight production systems (e.g., 211 

Lada, Veggie, or proposed “salad machine” concepts) based on their crown architecture under 212 

conditions where MS is absent24. Applying MS to these plants may prevent them from outgrowing 213 

the plant production hardware, making them viable test species.  214 

 215 

5. DISCUSSION 216 

Mechanical stimulation of Capsicum annum (cv California Wonder) resulted in significant 217 

reductions in overall plant height in both the vegetative and fruiting study (Fig. 1H, 4C).  The 218 

reductions were sufficient enough to realize improved VUE potential in life-support and other 219 

vertically integrated production systems (Fig. 6), although the mode of that improvement differs 220 

between terrestrial and spaceflight applications. The potential for improving VUE is greatest in 221 

terrestrial settings where large volumes (e.g., warehouse scale production facilities) can be 222 

exploited, such as the scales modelled in Fig. 6.  Long term space applications, such as a growth 223 

chamber system on the Lunar or Martian surface, could also realize these VUE improvements. In 224 

the near-term, spaceflight cropping system applications will be tightly constrained in the vertical 225 

dimension, as well as the horizontal.  This said, MS in concert with other interventions such as 226 

root restriction18 or on its own, could be used to expand the species options for existing plant 227 

production hardware (e.g., Veggie) by reducing the vertical space requirements for typically taller 228 

crops such as Capsicum spp.  229 



 230 

Crown diameter was also significantly reduced in the presented fruiting study, but unlike other 231 

horticultural interventions (e.g., root restriction) examined by the authors18, the reductions were 232 

not sufficient in terms of area utilization to justify an increased planting density under conditions 233 

of MS. The observed crown diameter reductions would only result in improved plant densities on 234 

scales currently impractical for both terrestrial and spaceflight applications (e.g., 12 m wide 235 

production benches; calculations not shown).  236 

 237 

Other vegetative production metrics were reduced under the MS treatment during the vegetative 238 

experiment (Figure 1-3); however, those vegetative differences did not persist or become evident 239 

in the fruiting trial (Fig. 4), with the notable exceptions of total height and stem thickness (Fig. 4H 240 

and E). Some of the discrepancy between the vegetative and fruiting studies may lie in an increase 241 

in light competition/shading effects.  During the fruiting study, there was insufficient room at 242 

maturity to exclude all incidence of shading between neighbouring plants.  This increased light 243 

competition may have dampened some of the thigmomorphogenic effects through shade 244 

adaptation responses which tend to elongate plants and increase leaf area25,26.    245 

 246 

In addition to being able to squeeze crop plants into a smaller volume and still maintain 247 

productivity, MS could also be used as a countermeasure to ensure crop plants develop 248 

structurally sound support tissue under microgravity conditions. Humans require significant 249 

countermeasure interventions to reduce the negative impacts of microgravity of bone and muscle 250 

tissue 27; it stands to reason that crop plants making up part of a bioregenerative life-support 251 

system may also benefit from microgravity countermeasures. In the absence of a significant 252 

gravity vector plant cell walls and, by elaboration, supporting tissues (e.g., branches supporting 253 

fruit) can be modified, although consensus on the degree and direction of the modifications is 254 

elusive14,28-32.  Very little (if any) research has examined the effects of direct mechanical stimuli 255 

on crop plants in a microgravity setting. Having said this, it should be noted that the vibrational 256 

environment of space research platforms, such as the International Space Station (ISS), do impose 257 

a certain baseline level of mechanical stimulation to all plant experiments, but it is low—typically 258 



< 0.001 g acceleration. Cleary the approach taken for this study required human intervention for 259 

each plant, which would translate into “crew time” in space.  But automated systems for 260 

applying thigmo- or seismic- stimuli might be envisioned.  For example, allowing canopies to 261 

growth through a grid and mechanically shaking the grid each day to stimulate all the plants at 262 

once But such approaches would require validation for efficacy. 263 

 264 

Given the importance that crop plants will play in the future of human exploration, it is imperative 265 

that attention be directed to all the various spaceflight environment parameters that will 266 

influences the ability of the crops to deliver their life-support functions. Concurrently, potential 267 

interventions, such as MS, that could contribute to improvements in VUE as well as providing 268 

countermeasures to the rigours of the spaceflight environment should be considered. 269 

 270 

6. CONCLUSIONS 271 

Thigmomorphogenesis can be utilized to improve volume utilization efficiency in peppers 272 

(Capsicum annum cv. California Wonder), a candidate crop for fresh food production in space. 273 

The effect occurred primarily through a reduction in average plant height.  Reductions in 274 

vegetative growth metrics during the juvenile growth phase (growth leading up to and including 275 

early anthesis) were not observed during the mature or fruiting phase, with the notable exception 276 

of reduced plant height. Early flower production and fruit set was reduced under MS; however, 277 

the total edible biomass was not reduced, with MS plants producing fewer but larger fruits. The 278 

overall reduction in plant height due to MS was sufficient to realize theoretical improvements in 279 

VUE for large vertical farming systems.  The reduced heights observed could improve VUE in 280 

single tier spaceflight hardware (e.g., Veggie; Massa 2016 (this issue)) in that crops that would 281 

not normally fit in these spaceflight systems may be accommodated if MS can be applied. 282 

Although the potential for using MS to induce thigmomorphogenic phenotypes has long been 283 

appreciated, it is only recently that the growth systems themselves could take advantage of the 284 

modified crop architecture associated with MS. It is with this in mind that renewed attention 285 

should be given to developing procedures for environmentally modifying crops for spaceflight 286 

applications.  287 
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Figure 1: Plant growth response to mechanical stimulation during juvenile and early anthesis growth stages: (A) Shoot fresh mass; 363 

(B) Shoot dry mass; (C) Leaf area; (D) Root dry mass; (E) Flower production; (F) Shoot to root dry matter ratio; (G) Height at the 364 

first stem bifurcation; (H) Total height. Columns with the same letter appearing above do not differ at p≤0.05. Error bars are the 365 

SEM. 366 

 367 

Figure 2: Relative chlorophyll levels (SPAD) in the last fully expanded leaf under control and mechanical stimulation treatments. 368 

Columns with the same letter appearing above do not differ at p≤0.05. Error bars are the SEM. 369 

 370 

Figure 3: Stem diameter at the first and sixth node for control and mechanically stimulated pepper plants. Bars within each grouping 371 

(e.g., first node) with the same letter do not differ at p≤0.05. Error bars are SEM. 372 



 373 

Figure 4: Vegetative shoot metrics for control and mechanically stimulated pepper plants during fruit set and maturation: (A) Shoot 374 

dry mass; (B) Leaf area; (C) Total height; (D) Crown diameter; (E) Stem diameter at the first node; (F) Relative chlorophyll level 375 

(SPAD). Columns with the same letter appearing above do not differ at p≤0.05. Error bars are the SEM. 376 

 377 



 378 

Figure 5: Fruit production metrics for control and mechanically stimulated pepper plants: (A) Average number of mature fruit per 379 

plant; (B) Mean total fruit volume per plant; (C) Mean total fruit mass per plant; (D) Mean total fruit dry mass per plant. Columns 380 

with the same letter appearing above do not differ at p≤0.05. Error bars are the SEM. 381 

 382 

 383 

Figure 6: Theoretical Volume Utilization Efficiency improvement potential in stacked crop production system based on the mean 384 

height reductions observed in the fruiting experiment presented. 385 


