
Modular Autonomous Systems Technology
Framework: A Distributed Solution for
System Monitoring and Control

Julia M. Badger1 Chuck Claunch2 Frank Mathis2

Abstract The Modular Autonomous Systems

Technology (MAST) framework is a tool for building

distributed, hierarchical autonomous systems. Originally

intended for the autonomous monitoring and control of

spacecraft, this framework concept provides support for

variable autonomy, assume-guarantee contracts, and

efficient communication between subsystems and a

centralized systems manager. MAST was developed at

NASA’s Johnson Space Center (JSC) and has been applied

to an integrated spacecraft example scenario.

Introduction
Future human space mission planned for exploring

beyond low Earth orbit are in the conceptual design

stage presently. These missions describe habitats in cis-

lunar orbit that are visited by crew periodically (such as

the Deep Space Gateway, or DSG) or even missions to

Mars (possibly using the Deep Space Transport, DST).

These missions have one important thing in common-

the need for autonomy of the spacecraft from ground

control will be required due to the latency and

bandwidth constraints on communications. This

autonomy will be needed whether the spacecraft has

crew on board or not. Another similarity is that each of

these missions feature periods where the human

spacecraft is uninhabited (sometimes called dormant,

though this may be a misnomer given the number of

processes and functions that will be required).

Spacecraft are complex systems that are generally

engineered as a collection of subsystems. These

subsystems, such as Power Management and

1 NASA JSC, julia.m.badger at nasa.gov
2 GeoControl Systems

Distribution (PMAD), Guidance, Navigation, and Control

(GNC), and Environmental Control and Life Support

Systems (ECLSS), work together to control the overall

state of the spacecraft. Subsystems are designed and

built somewhat independently, and so, typically have

dedicated avionics and software. A more integrated

approach to building spacecraft may have benefits,

however, due to the complexity of the system, it is

typically something that is out of reach.

As such, solutions that increase the autonomy of the

spacecraft (called autonomous functions) should respect

both the independence and interconnectedness of the

spacecraft subsystems. This distributed yet centralized

approach to system monitoring and control is a key idea

in the Modular Autonomous Systems Technology

framework that will be presented here.

NASA has so far been reticent to incorporate

autonomous functions on spacecraft when not

absolutely needed based on the time to criticality of the

reaction to a fault or failure (i.e., reactions that are faster

than crew or ground controllers can react). Since the

time to criticality that must be automatically handled

increases significantly for the conceptual future

exploration missions, so must the incorporation of

autonomous functionalities into the spacecraft. Barriers

to adding autonomous functions include the ability to

apply the same rigor in testing, verification, and

validation as is customary for flight software on human

spacecraft. In large part, these methods do not yet exist

for the types of autonomous functions that will be

https://ntrs.nasa.gov/search.jsp?R=20170012516 2019-08-30T16:41:57+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/154738706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

needed (such as adaptive models, learning-based

control, and planners using random search techniques).

Similarly for human spacecraft, the ability of the

autonomous function to share control with the crew or

even with ground controllers is an important barrier. If

the autonomous function cannot effectively explain its

model or its actions, trust will not be present, and the

autonomous function will not be used.

This paper will describe how the MAST framework fits in

with NASA’s needs for autonomous system development

and deployment. The next section will give a concept

overview. The developments achieved thus far as well as

results from the experiments conducted will be

presented. Finally, future work will be discussed.

Concept
The MAST framework is a component-based system

that provides interfaces and structure to developing

autonomous technologies. The categories of

technologies are broken into several “buckets” (see

Figure 1) that are based on the OODA loop (Observe,

Orient, Decide, Act). The various buckets will have

different requirements, but this section will expound

upon three main reasons for creating this architecture:

1. Using products from autonomy across levels of
abstraction,

2. Creating systems that are straight-forward to
verify, or are constructed with guarantees, and

3. Allowing for variable autonomy.

Figure 1: Open-loop Framework Diagram

There are three types of autonomous systems that will

be defined:

1. Spacecraft subsystem - operates independently
both nominally and in response to fault

detection, isolation and recovery; examples are
Power, Communications, Life Support.

2. Mechanical events & processes – examples
include docking of spacecraft (i.e., Automated
Rendezvous and Docking), grappling with
robotic manipulators.

3. System-level Intelligence – onboard ability for
system-level planning, health monitoring, and
mission management; example is the Vehicle
System Manager (VSM).

Figure 2 gives an illustration of an example spacecraft

that has several autonomous modules, where each

autonomous module contains an instance of the

component-based architecture shown in the Figure 1

above.

Figure 2: Example Autonomous Spacecraft Diagram

Consistency over Abstraction
Several products of autonomous systems could be used

to provide data or plans on multiple levels. For

example, picture that a power system has local

autonomy that allows it to accommodate load balancing

given an environment model. The model used by the

power system should be able to be reused by the

communications system as well as for the plan creation

in the overall spacecraft intelligence system. Specific

requirements include the following:

 The architecture shall enforce consistency of
model definition.

 The variables in the models shall self-enforce
units and assumptions (units and assumptions
should be explicit in variable definition).

 The architecture shall ensure visibility and
query-ability of variables and products as a rule
(truly internal variables should be discouraged).

Design for Verification
Autonomous systems are complex, difficult to test, and

nearly impossible to conduct formal analysis with

guarantees. However, the use of autonomous systems

technology for human spacecraft will require convincing

validation and verification; for systems with emergent

behaviors, this requirement becomes even further out

of reach of the state-of-the-art. This architecture will

be built with a path to formal analysis, and will have the

potential of creating guarantees as long as the

autonomous technology components can be verified

individually. Specific requirements include the

following:

 The architecture shall have the ability to
interface with temporal logic specifications.

 The architecture components shall require
specific definitions for the incoming and
outgoing data.

o Data ports could have thresholds
defined as part of it, for example,
power data input can only be from 0-
100. Errors would be thrown if data is
out of range.

Variable Autonomy
Because this architecture is meant to be used with

human spacecraft that will see both crewed stages as

well as uncrewed dormant stages, there is a range of

autonomy that will be required for operation. For

example, the communications system may need to be

fully autonomous during dormancy, but can be crew-

controlled during critical stages in Mars orbit

insertion. A key assumption for this feature is that the

"reasoning" part of the autonomous system will not

need to be variable- there should always be data

analysis, planning, and state description. However, the

important parts of the system to have an "autonomy

dial" are the command and action-based

components. So, requirements for this feature are

given more on a component-by-component basis.

Development
Initial work on the MAST framework involved the

development of the structure, message passing

protocols, and connection framework. Though

autonomy components are constrained to some

similarities given the framework, the intent was also to

give each component as much flexibility as possible to

create the correct autonomous functions for the use

case. For the first iteration of this framework, all

buckets are derived from the same class object,

3 https://developers.google.com/protocol-buffers/
4 http://zeromq.org/

whether the autonomous function inside the bucket

was the Model, Command Intent Interpreter, Planner,

or Action Determiner (and so on). These buckets are

separated in order to group technologies that provide

similar functions. However, to increase the flexibility of

the framework, each type of bucket can occur zero to

multiple times in an autonomous component. The

buckets can also be connected in a user defined manner

for a data driven architecture.

Messages are encoded using Google Protocol Buffers3

and distributed using the ZeroMQ4 messaging library.

These provide the flexibility for the designer to create

custom messages without the overhead of having to

worry about the method of transport. Each bucket is

equipped with functions that can attach callback

functions to message ports and will publish data to its

output port. The framework is equipped with Core

Flight Software (CFS)5 integration in order to seamlessly

communicate with the flight software.

An example autonomous system was implemented in

this framework and tested using realistic spacecraft

software and hardware simulations. Three subsystem

autonomy components were designed, for the managed

power system (AMPS), the Environmental Control and

Life Support System (ECLSS), and for the Automated

Rendezvous and Docking (ARD) process. Additionally,

an Intelligent Spacecraft Manager (ISM) autonomy

component was designed to oversee the entire

spacecraft.

The scenario involved the transition of the dormant

spacecraft to a crewed state. As the crew is

approaching (via ARD), the ECLSS is transitioning the

habitat to a viable atmospheric state. During this

transition, a power fault occurs, taking down part of the

ECLS system. The AMPS autonomy component

attempts to reset the relay, but is unable to. At that

point, the ISM takes over, sending a request to the

Multi-Purpose Crew Vehicle (MPCV) to stationkeep at

the next hold point due to the uncertainty in the

habitat’s atmosphere. The ISM then diagnoses the fault

as an overcurrent condition, choses to turn off a science

experiment that derives part of its power from the

same relay as the ECLSS component that is needed to

determine atmospheric state, and finally, resets the

tripped relay. Once the relay successfully closes, the

5 https://cfs.gsfc.nasa.gov/

ISM checks verifies telemetry coming back from the

ECLSS autonomy component and once it is within the

appropriate conditions, the ISM signals the MPCV to

continue its approach.

This experiment was successfully tested as part of a

broader habitat test using both just the habitat

software simulation and the AMPS power hardware in

conjunction with the ARD and ECLSS simulation. The

distributed hierarchical approach to shared control was

promising in that each autonomy component was

relatively simple, yet complex behaviors could be

derived from their interconnected execution. This test

was able to prove out the basics of this autonomy

framework and provided the foundation upon which

many of the other ideas presented in the previous

section can be developed.

Future Work
Many future directions are possible for this modular

autonomy framework. First, the concept of buckets will

be revisited, and distinctions in the capabilities of each

of the buckets for its particular function will be

explored. Data is core to any autonomous system, and

so the collection, annotation, and logging of data that is

processed and generated by the framework must be

considered. A data architecture must be designed and

integrated with this framework. Likewise, verification

and validation of autonomous systems will be essential

to their ultimate adoption on critical spacecraft

systems. Exploring the assume-guarantee contracts in

this bucket/component-based architecture that this

framework enforces will be a step in that direction.

Technologies that are useful in individual buckets are

also important to study. Models may feature strongly in

future autonomy solutions- these models could be used

in many places (i.e., State Analysis, Planning) but in

slightly different ways. It is important to learn how to

encode the various abstraction levels that may be

needed for the overall autonomous system into one

place so that consistency and optimization of resources

is achieved. Likewise, determining state or creating

plans across the hierarchical layers of control will be an

essential ability. The constrained nature of spacecraft

will dictate that optimal solutions be used for

processing, data storage, and power costs. As such, the

algorithms that fill the buckets of this framework will

require investment and technology development as

well.

Though there is plenty of work to be done in this field,

focusing on a framework that can be used to collect

autonomous system technologies and functionality will

aid the overall integration and technology readiness

level advancement of this effort. This framework will

provide dividends on the systems engineering that will

be required to design, integration, test, and operate the

autonomous exploration spacecraft of the future.

