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Abstract: The MMS mission is an ambitious space physics mission that will fly 4 spacecraft in a 
tetrahedron formation in a series of highly elliptical orbits in order to study magnetic reconnection 
in the Earth's magnetosphere. The mission design ls comprised of a combination of deterministic 
orbit adjust and random maintenance maneuvers distributed over the 2.5 year mission life. Formal 
verification of the requirements is achieved by analysis through the use of the End-to-End (ETE) 
code, which is a modular simulation of the maneuver operations over the entire mission duration. 
Error models for navigation accuracy (knowledge) and maneuver execution (control) are 
incorporated to realistically.simulate the possible maneuver scenarios that might be realized These 
error models, coupled with the complex formation flying physics, lead to non-trivial effects that 
must be taken into account by the ETE automation. Using the ETE code, the MMS Flight Dynamics 
team was able to demonstrate that the current mission design satisfies the mission requirements. 
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1. Introduction 

The Magnetospheric Multiscale mission (MMS) is an ambitious space physics mission that is 
designed to fly four identical spin-stabilized spacecraft in a tetrahedral formation in a set of highly 
elliptical orbits. The aim of the mission is to increase our understanding of the phenomena of 
magnetic reconnection in the Earth's magnetosphere and to determine some of the underlying 
physical mechanisms that bring it about. · 

Magnetic reconnection is a plasma process tliat converts magnetic energy into kinetic energy 
through the acceleration of charged particles. It occurs when magnetic field lines in a plasma 
approach each other close enough that they can be broken and rejoined. The resulting change in the 
field topology gives rise to unbalanced J x B forces that cause a conversion of magnetic energy to 
kinetic energy [l]. Since plasmas make up the majority of the observed matter in the universe, an 
understanding of magnetic reconnection has implications for our understanding of physical 
processes that occur in stellar evolution, the production of solar flares, laboratory fusion research, 
and, in particular for MMS, the interaction of the Earth's magnetosphere with the magnetic field 
and solar wind from the Sun. 

The plasma processes that take place in the Earth's magnetosphere have a variety of effects on 
human life. They are responsible for the auroras, can disrupt power grids and communication 
networks, and can pose serious threats to spacecraft electronics. Data from spacecraft have revealed 
a complex and highly dynamic set of plasma behaviors within the Earth's magnetic field. The 
structures that develop during reconnection .can move at speeds ranging upwards of thousands of 
kilometers per second relative to the Earth. These high speeds make precise in situ measurements 
from a single spacecraft challenging because there is very little information to separate temporal 
and spatial variations. 
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As a result, the trend in space physics m1ss10ns in the past two decades has been towards 
simultaneous measurements from several spacecraft. The THEMIS mission [2], launched in 
February of 2007, flew five spacecraft in a set of co-planar, co-aligned highly elliptical orbits, with 
apogee altitude differing by many Earth radii (Re) and periods designed to have the constellation 
come into phase every four days. The orbital separations allowed different spacecraft to bracket a 
region where reconnection occurs and to observe how the structures move as they flow outward. 
These observations have been instrumental in determining large scale structure in the 
magnetosphere but cannot resolve what is happening locally as reconnection occurs. To address this 
need, spacecraft need to be flown in formation with spacing comparable to the size of the plasma 
processes of interest. The European Space Agency's Cluster Mission [3], launched in 2000, is 
comprised of four spacecraft flying in formation about a highly elliptical orbit with a 4xl9.6 Re size 
(i.e., perigee/apogee radius of 4/1916 Re). The formation is designed so that the spacecraft 
approximately fall on the vertices of a regular tetrahedron at apogee with a characteristic spacing 
between them, called the formation scale size, of about 100 km at apogee. 

The MMS Mission, which is slated for launch- in the late summer to early fall of 2014, aims to 
improve on the Cluster mission is several ways. Like Cluster, MMS will deploy a formation of four 
spacecraft moving in a close tetrahedral formation about a highly elliptical orbit with each of the 
spacecraft carrying a suite of instruments for in situ measurements of electric and magnetic fields 
and charged particle composition. The orbit selection and relative spacing are quite different with 
the mission intending to fly two distinct science phases each with multiple formation scale sizes. In 
the first phase, the formation flies with a relative spacing ranging from 10-160 km in a l.2xl2 Re 
orbit. Primary science is taken when the tetrahedron is at distances greater than 9 Re from the Earth 
and is within 30 degrees of the Earth-Sun line, on the sunward side. In the second phase science, the 
relative spacing is 30-400 km in a 1.2x25 Re orbit: Primary science is taken when the tetrahedron is 
at distances greater than 15 Re from the Earth and is within 30-40 degrees of the Earth-Sun line on 
the night-ward side. A transfer phase connects the two science phases by the execution of a series of 
maneuvers to raise each spacecraft's apogee while keeping the formation from drifting too far apart. 
The variable distances from Earth and inter-spacecraft spacing allows the MMS formation to act as 
a science instrument (see Fig. 1), with the inter-spacecraft distances being chosen to match the scale 
sizes of the physics occurring at different locations in the Earth's magnetosphere. 

Execution of the basic mission design requires that both deterministic and random maneuvers be 
performed in operations. The deterministic maneuvers are used to change the overall orbital 
characteristics of the formation and the random maneuvers arise from the need to maintain the 
formation against the relative drift that builds up over time. The number, size, and direction of these · 
maintenance maneuvers are unknown a priori and are very dependent on the realization of a number 
of error sources (natural and man-made) in the system. Earth's J2 term in the geopotential causes 
differential evolution of the orbit states of each spacecraft and is the largest natural perturbation. 
Lunar gravitational affects also play a significant role in Phase 2, because of the large apogee, 
causing both relative drift and, on occasion, a secular lowering of the perigee altitude below 
acceptable limits. Taken as a whole, these natural perturbations are well understood and predictable, 
depending deterministically on the initial orbital state and its subsequent evolution. The formation 
lifetime, defined as the time between maintenance maneuvers, in the presence of these natural 
perturbations, is on the order of 40-70 days. In contrast, the man-made perturbations due to 
knowledge and execution errors in the maneuver process generically dominate the natural 
perturbations. Taken together, this combination of knowledge and execution error causes a post
maneuver evolution that.is different from the one desired. The situation is further complicated by 
the fact that each spacecraft experiences its own realizations of these errors with no correlation 
between them. The man-made error sources associated with maneuver operations generally lower 
the formation lifetime to a range of 5-20 days. 
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The variable nature in the number of and type of maneuvers coupled with the 'cooperative effect' of 
the errors makes pre-launch planning and operational support of the MMS formation flying problem 
very difficult. Questions associated with the stability of the design, such as how much fuel to 
budget, how maneuvers will be performed, and when to schedule ground assets to support the 
maneuvers, cannot be answered with simple analytical models. It was to address this need that the 
MMS flight dynamics group developed the End-to-End (ETE) code. The ETE code is designed to 
perform Monte Carlo simulations of the entire MMS operations phase from launch until the end of 
Phase 2 science. It combines high-fidelity orbit propagation, realistic models of the propulsion 
system, and models for navigation knowledge and maneuver execution errors into an event-driven 
framework that allows it to produce different maneuver scenarios in response to the different errors . 
it encounters. Statistical reduction of the resulting data is then used to allocate resources for the 
actual launch campaign. 

Sun 
Formation scale 

matches science scale 

Figure 1: Schematic of the MMS formation as a science instrument concept. 

Section 2 of this paper presents the operations concept for MMS, including a brief discussion of the 
spacecraft hardware, the requirements that impact the mission design, the mission phases and 
timeline, the quality factor that defines acceptable formations, how maneuvers are to be executed 
and how contacts with Tracking, Telemetry, and Command (TT &C) assets are used in their support. 
,Section 3 describes how the End-to-End code simulates the MMS operations. Included are the 
architecture of the code, how the orbital propagation and requirement checking is performed, how 
the maneuver targets are selected and how the maneuver planning and execution are modeled, and 
how knowledge and execution errors are applied. The results from a recent set on Monte Carlo trials 
are presented in Section 4 along with the implications to the mission as a whole. Section 5 discusses 
the remaining work and future direction of the End-to-End code as MMS transitions from the 
design phase to implementation. 

2.· MMS Operations Concepts 

Each MMS spacecraft is spin-stabilized, with the nominal spin rate at 3.0 ± 0.2 rpm. Each 
spacecraft deploys 8 booms: 4 spin-plane double probe· (SOP) instruments on wire booms in the 
spin-plane for measuring the electric fields; 2 magnetometer instruments, also on booms in the spin
plane, for measuring the magnetic field; and 2 axial double probe (ADP) instruments on rigid 
booms parallel to the spin-axis for measuring electric fields. The propulsion system for each 



spacecraft consists of 8 radial 4-lbf ,thrusters oriented parallel to the spin plane, with sets of 4 on 
opposite sides of the spacecraft, and 4 axial 1-lbfthrusters. Each spacecraft is also equipped with a 
suite of guidance, navigation, and control sensors including a digital sun sensor, a star camera, an 
accelerometer, and a Navigator GPS receiver with GEONS navigation software built-in. Onboard 
controllers process data from this sensor suite to actuate the thrusters to the desired accuracy in the 
orbit and attitude maneuvers while ensuring the stability and safety of the deployed booms. Figure 2 
shows a diagram of the spacecraft showing the deployed booms and a schematic of the propulsion 
system. 

From the flight dynamics perspective, the MMS operations concept is best understood by dividing 
the driving requirements, into two categories. The first category, called the baseline, holds all of the 
requirements related to how the formation as a whole moves with respect to the magnetosphere. The 
second category, called formation flying, holds all of the requirements related to the relative orbital 
evolution of the formation. 

(a) (b) 

Figure 2: (a) MMS spacecraft showing the 8 booms for the electric and magnetic fields 
deployed and (b) MMS spacecraft with propulsion system with the location of the 4-lbf radial 

thrusters shown in red and the location of the 1-lbf axial thruster shown in yellow (with 
symmetric placement of the other 6 thrusters on the opposite faces). 

2.1 Baseline Requirements 

Figure 3 shows a visual summary, in geocentric solar ecliptic (GSE) coordinates, of the baseline 
requirements, starting just after launch into the Commissioning Phase (Phase 0) and ending just 
after completion of the Phase 2b science campaign. The GSE coordinate system is a rotating 
coordinate frame whose z-axis is parallel to the ecliptic north pole and whose x-axis is parallel to 
the instantaneous line joining the Earth to the Sun pointing sunward. In Fig. 3, the GSE z-axis 
comes out of the page and the x-axis runs along the horizontal from right-to-left. In this frame, 
inertially-fixed orbits rotate clockwise and the evolving relative geometry between the orbit and the 
Earth-Sun tine is apparent. The four cardinal directions along the x- and y-axes are label~d by the 
GSE times 00:00, 18:00, 12:00, and 06:00 corresponding to the -x-axis, +y-axis, +x-axis, and -y
axis, respectively. Many of the MMS baseline requirements, most notably the transitions between 
mission phases, are expressed in terms of the apogee GSE time. The apogee GSE time is 
determined by projecting the apogee vector, defined as the line from the center of the Earth to the 
orbit apogee, onto the GSE x-y plane and then assigning it the time corresponding to where it falls 
rp,fotiw~ to thP. timP. ~onvP.ntion nc.P.n to h:1hPl thP. Y- anti v.ayp,c. 



The Commissioning Phase (Phase 0) starts with the launch of the four MMS spacecraft aboard an 
Atlas V 421 launch vehicle - the 421 designation meaning that the rocket is equipped with the 4.2 
meter fairing, two additional strap-on solid boosters, and only one RLlO engine in the Centaur 
upper stage. The inclination of the orbit is 28.5 degrees and the apogee distance is 12 Re. The initial 
perigee altitude is 240 km, corresponding to a perigee radius of 1.04 Re. The launch and coast times 
are chosen so that the apogee GSE time at mission start is approximately 02:00 and that no MMS 
spacecraft enters a shadow longer than 1 hour for the first 2 weeks after launch. The MMS Flight 
Dynamics team, working with United Launch Alliance (ULA), designed the separation event so that 
the spacecraft safely clear the launch vehicle and continue to drift apart from each other during the 
first 20 days. During the Commissioning Phase, each spacecraft must execute a set of perigee 
raising maneuvers to increase perigee distance to 1.2 Re, precess their spin axis to mission attitude, 
deploy science instruments on booms, check-out and calibrate the instrument suite, and certify the 
onboard controllers for formation flying. At 98 days after launch, the spacecraft will be put into a 
formation with a scale size of 160 km. Approximately 22 days later the first science phase, Phase l, 
begins with an apogee GSE time of approximately 18:00. · 
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Figure 3: A visual summary of the baseline MMS mission design, in GSE coordinates, and the 
high level baseline flight dynamics requirements. 

Phase 1 consists of three segments, only two of which have formation flying science requirements. 
The orbital period of each orbit in Phase 1 is approximately one sidereal day. Phase la starts at 
18:00 and lasts until 06:00 apogee GSE time. The only baseline science requirement is that the GSE 
latitude of apogee (defined in the usual way) should be between± 20 degrees during the time when 
the apogee is day-ward (GSE time between 14:00 and 10:00). Phase Ix begins when the apogee 
GSE time reaches 06:00 and lasts until 18:00. During this night-ward passage of the orbit apogee 
through the Earth's geomagnetic tail there are no baseline science requirements. Phase lb begins at 
apogee GSE time of 18:00 and lasts until 10:00. The only baseline science requirement is that the 



GSE latitude of apogee should be between ±25 degrees when the apogee GSE time is between 
14:00 and 10:00. 

Phase 2 consists of two segments, the first being Phase 2a, the apogee raising campaign, and the 
second being Phase 2b, the prime night-ward science collection. Phase 2a begins at an apogee GSE 
time of 10:00 and ends when the projection of the apogee vector onto the GSE x-axis is no greater 
than -15 Re. The current design, allowing for margin, sets the end to occur when the projection of 
the apogee vector onto the GSE-x-axis is equal to -10 Re. This design consideration is reflected in 
Figure 3. During this phase, each spacecraft performs a set of 8 maneuvers in a coordinated fashion 
that raises the apogee of the entire formation in fuel-efficient way without allowing the spacecraft to 
drift too far apart that reforming the formation becomes difficult. The paper by.Roberts, et. al. [4] 
presents details of the approach. Phase 2b then begins the orbit after Phase 2a ends. The orbital 
period of a Phase 2b orbit is approximately 2.85 civilian days. This phase lasts approximately 60 
days as the apogee passes through the night-side region. The baseline science requirement for this 
phase is that the dwell time in the neutral sheet [5] be at least 100 hours when the spacecraft are not 
in shadow. The Fairfield model [6] is used for all simulations to compute the neutral sheet dwell 
time in all pre-launch verifications by simulation. 

Three additional baseline requirements apply to all phases: 1) the maximum duration of the 
combined umbra shadow of the Earth and Moon for any 20-hour window must be less than 216 
minutes, 2) the maximum duration of the combined shadow (umbra + 50% of penumbra) of the 
Earth and Moon for any 20-hour window must be less than 231 minutes, and 3) the minimum 
perigee height in any phase must be greater than 900 km. The first two requirements are for power 
considerations and the last one is for the protection of the instrument suite from the effects of 
atomic oxygen in the upper atmosphere.· 

2.2 Formation Flying Requirements 

The goodness of a formation at any time is determined by the quality factor Q(t), which depends on 
the instantaneous relative positions of the MMS formation through the product of a function Q17(t) 
that depends on the volume of the tetrahedron and Qs(t) that depends its size. Figure 4 shows a 
schematic snapshot of one such configuration with the side lengths, si, between the six pairs of 
spacecraft. Defining the average side length as 

1 6 

L = 6_1 St, (1) 

i=l 

the volume function Q17(t) is then defined by 

(2) 

which is the ratio of the volume of the formation to the volume of a regular tetrahedron of side 
length L (and where the Sf are the vectors corresponding to the appropriate side lengths). Likewise, 
the size function Qs(t) is defined as 
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0,L <f1 

(L-f1)2(L + f1 - 2f2)2/(f2 -f1)4.f1 < L < f2 
Qs(L) = 1,f 2 < L < f 3 (3) 

(L - l3)2 (L + /4 - 2/3)2 /(/4 - l3)4,l3 < L < l4 
O,L >f4 

where the scale parameters are given in Tab. 1. The product of Eqs. 2 and 3, guarantee that Q(t) 
takes on values between O and 1. Details of the derivations and the formation design considerations 
can be found in [7]. 

Figure 4: Schematic representation of an instantaneous MMS Formation 

a e . ca e parameters as a unc 10n o orma 10n sea e size or ;q. . . T bl 1 S I f f f ti f 1 . ti E 3 
Formation Scale Size (km1 

Scale 10 25 40 60 160 400 
Parameters 

l1 4 15 25 45 135 250 
f2 6 20 30 50 140 300 
f1 18 35 55 75 190 550 
f.t 24 40 65 80 210 600 

Basics orbital mechanics precludes the formation from holding a constant shape, similar to the one 
shown in Fig. 4, f~r the entire orbit. In fact, the formation has to 'invert' twice an orbit with 
spacecraft that are closer to the Earth exchanging with those starting further and the same for 
spacecraft starting above and below with respect to the Earth's equator. To account for this physics, 
the MMS quality factor requirement is written in terms of a related parameter called TQwhich is a 
weighted average of the quality factor over the science region-of-interest (ROI). To evaluate TQ, 
imagine each spacecraft's trajectory represented by a set of ephemeris points listed at times ti. 
Selecting the number of points, NRoi, that fall into the science of region of interest, TQ takes on the 
form 

NROl 

100 I {Mi = 1 if Q(ti) 2: 0.7 
TQ = -N Mi where 

ROI i=l Mi = 0 if Q(tt) < 0.7' 
(4) 



The MMS design threshold is to have T Q be greater than 80 at all times formation science is being 

collected in the science ROI, which is defined as the portion of the orbit where the spacecraft are 
greater than 9 Re and 15 Re from the Earth for Phases 1 and 2b, respectively. 

During the course of the mission, the formation will be resized as a method to determine the scale
size that best matches the science objectives. In Phase 1, the initial formation starts at 160 km and 
decreases once every 15 days to 60 km, 25 km, and 10 km. In Phase 2b, the initial formation starts 
at 400 km and decreases once every 15 days to 160 km, 60 km, and 30 km. After reaching the 
minimum scale-size in either phase, the formation will then be resized to an intermediate value 
based on analysis of the science data seen. · , 

Establishing a formation, either initially for a mission phase or subsequently re-establishing it with 
a new scale size requires the execution of what is termed a resize maneuver. In the absence of 
perturbations (natural or man-made), after a formation is established with a resize maneuver it will 

repeat itself periodically, and the value of T Qin one orbit will be the same for all subsequent orbits. 

Once any perturbations are introduced, the value of T Q generally will degrade over time and 

occasionally, the perturbations will also cause the formation, or some subset of the spacecraft, to 
begin to come too close. At this point a maintenance maneuver is required to reestablish the desired 
formation behavior. For MMS, the same type of maneuver is used for both resizing and maintaining 
a formation. 

A formation resize or maintenance maneuver is performed in pairs of orbital maneuvers for each 
spacecraft on the inbound leg and the subsequent outbound leg on a given orbit. Since each 
spacecraft has the same frequency and communications are required during all bums, maneuvers 
must be done one at a time in a process called staggering. Usually, one spacecraft is chosen as the 
reference and the other three adjust their trajectories to get into formation around it. The targets for 
the maneuver are obtained at a time boundary (set at or after the final maneuver) from the 
Formation Design Algorithm (FDA). The FDA selects the orbital conditions for each spacecraft 

based on one of several criteria, including those that maximize the time that T Q stays above the 80 

threshold [7,8] or those that minimize the delta-V required to establish the formation [9]. Regardless 
of exactly which flavor of the FDA is employed, once the targets are obtained a Lambert solver 
determines the maneuver magnitudes and directions that bring the spacecraft back into formation. A 
downlink of the onboard navigation solution just after perigee provides the insight into maneuver 1 
execution that is needed for replanning maneuver 2. 

Figure 5 shows a representation of the maneuver events for the formation during a Phase l orbit. 
The timeline starts on the inbound leg with a degraded formation that is trending to either go below 

the T Q threshold of 80 in the next orbit or to bring two spacecraft into too close an approach, or 

both. The instrument suite (IS) is saf ed and a maneuver is performed by at least three of the 
spacecraft during the segment of the orbit labeled 'Maneuver # 1 '. These maneuvers adjust the 
trajectories to achieve the desired positions at maneuver 2. As the formation comes through perigee, 
the onboard navigation system picks up 4 GPS space vehicles allowing it to have a highly accurate 
post-maneuver estimated trajectory. The onboard solution is downlinked at the segment of the orbit 
labeled 'R/f GEONS TLM'. These updated orbital states allow the ground to replan maneuver 2. 
Due to operational considerations in Phase 1, maneuver 2 is performed around apogee to allow the 
ground sufficient time to ensure that the updated command load is ready for execution. 
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The situation for Phase 2b is very similar with the only differences being: 1) the region-of-interest is 
defined as orbital distances greater than 15 Re; 2) maneuver 2 is performed before entry to the ROI; 
and 3) the onboard navigation solution is not available during the entire orbit. These variations 
change only the location in true anomaly of the maneuvers and the accuracy of the downlinked 
onboard navigation solution. 

The final requirement, pertaining to formation maintenance and resizing, limits the time between 
maneuvers (i.e. from maneuver 2 of one to maneuver I of the following) to be on average 14 days 
to allow for reasonable operations tempo and more science collection time. 

Desked 
Tetnhtdton I 

i 
( Maneuver #1 ) 

[ R/TGEONS 
TLM 

GPS available entire orbit 

Figure 5: A day in the life ofMMS with formation maintenance maneuvers for Phase 1. 

3. End-to-End Code Simulation Approach 

Standard best practices at Goddard Space Flight Center call for an accurate estimate of the fuel 
required to meet a missions operations concept taking into account a variety of 3-sigma error 
sources, including launch vehicle dispersions, maneuver execution errors based on propulsion and 
attitude control system, and related flight dynamics error sources. The complexity of the MMS 
mission design results in an operational support that will produce different maneuver scenarios in 
response to the different realization of these error sources. The number of formation maintenance 
maneuvers, each one dependent on the maneuvers that came before, can only be determined by a 
detailed model of how operations would respond to a given set of outcomes. 

For this reason, the MMS Flight Dynamics group developed the End-to-End (ETE) code as a 
simulation that mimics, as best as possible, what will happen in over two years of operations. The 
ETE is built on a multi-component architecture that is designed to allow testing and changes on a 
given component without affecting the others. All the components are hosted in either FreeFlyer or 
GMA T and use a high-fidelity force model including the JGM-2 Earth geopotential, Sun and Moon 
point-mass gravity, solar radiation pressure, atmospheric drag, and a .blow-down model of the 
onboard . propulsion system. The components are run in succession with a Matlab driver 
coordinating the exchange of data between the components via an HDF5 file data repository. 
Common propulsion system and error models, for fuel usage, launch vehicle dispersions, maneuver 



execution errors, and navigation accuracy, are shared across the system to facilitate Monte Carlo 
(MC) analyses. Customization of each component is done to balance execution time against 
modeling fidelity. For example, the Phase O component models maneuver execution and navigation 
errors but omits the detailed finite maneuver modeling since the perigee raising maneuvers are 
performed at orbit apogee where the impulsive approximation is sufficient. In contrast, the apogee 
raising campaign, simulated in the Phase 2a component, models the maneuvers as finite burns since 
they are executed around perigee, where gravity-loss and finite burn effects are expected to be 
significant. 

Reproducibility of a given MC trial is guaranteed by having a pre-determined list of random 
numbers that is managed by the Matlab driver. Initial conditions for a specific launch date and time 
and the corresponding modeling parameters are obtained from the Reference Orbit, which is a 
lower-fidelity realization of the trajectory of the fictitious center of the formation. The ETE code 
propagates these initial conditions based on a deterministic schedule of known events such as 
launch and the transition between mission phases based on absolute or GSE times or maneuver 
events that include the perigee raising in Phase 0, the apogee raising in Phase 2a, and the cadence of 
formation re-sizing maneuvers in Phases 1 and 2b. As the random error sources from earlier events 
are realized, additional events are required in the form of unscheduled formation maintenance 
maneuvers. To be able to respond to the dynamic scheduling present in each Monte Carlo trial, the . 
ETE code has an event-driven framework where it decides how and when to perform maneuvers to 
best meet mission requirements. Figure 6 shows the End-to-End architecture. 

Ref. 
Orbit 

Inputs 
Nominal 

MC1 
MC2 
MCN 

PhaseO 

Local End-to-End Driver 

Phase 1 Phase 2a Phase 2b Post.Process 

Qylmll! 
Nominal 

MC1 
MC2 
MCN 

Figure 6: The End-to-End architecture. Separate components are denoted by the 'chevron 
shape'. Letter code: 'F' -finite burn capable, 'E' - maneuver execution errors, 'N' -

Navigation uncertainty. 

The variation in the maneuver history between different Monte Carlo trials due to the random errors 
makes it difficult to find an event-driven framework that makes intelligent decisions in all 
circumstances. To appreciate some of the· complexities that resulted, the application of the error 
models that were major factors are first presented followed by some of the design choices that were 
made before the production runs used to support the recent mission Critical Design Review in 
August of 2010 were performed. 

3.1 Application of the Error Models 

Three separate error models are used in the End-to-End code to account for I) launch vehicle 
dispersion, associated with uncertainty in the burnout state and separation events, 2) the uncertainty 
in the n~vigation solution, and 3) the maneuver execution error. Since the launch vehicle error 
model is used only on the initial state, the following discussion will be confined to the navigation 
and maneuver execution error models, which are used frequently in the ETE. 



The uncertainty in the navigation solution is based on an orbit determination error analysis using the 
ground based version of the GEONS software used onboard. A run of the End-to-End code with all 
the errors turned off is used to provide needed ephemeris data. Models (?f the onboard Navigator 
receiver, accelerometer, and clock characteristics are used with the ephemeris data to generate 
simulated tracking measurements that are consistent with visibility of the OPS constellation and 
Navigator's weak-signal tracking capabilities. Tfiese data are then processed by GEONS with the 
output being the state covariance matrix, expressed in the local RIC (radial, in-track, cross-track) 
frame, for each spacecraft at key points in the orbit. 

The maneuver execution error model is based on the analysis of the onboard control algorithms 
performed by the MMS Attitude Control System and Guidance, Navigation, and Control groups. 
The model specifies the magnitude error as a zero mean normally distributed random variable with 
a standard deviation equal to a percentage of the size of the maneuver plus an absolute offset. 
Pointing error is specified in terms of the off-pointing, a, which is defined as the angle between the 
commanded and achieved directions and the azimuth, cp, which is the angular location of the 
achieved direction on the cone of half angle a about the commanded direction. The off-pointing is a 
zero mean normally distributed random variable with a standard deviation also equal to a 
percentage of the size of the maneuver plus an absolute offset. The azimuth is a uniform random 
number between O and 21t and negative values of the off-pointing are interpreted as simply moving 

the value of cp by 1t. 

The application of these error models in a Monte Carlo trial requires the use of two sets of MMS 
spacecraft. One set corresponds to the truth trajectories, which are unknown in operations but 
available in the simulation, and the other set to the known trajectories, which in operations are 
comprised of the definitive trajectories estimated from the orbit determination process and the 
predicted trajectories that come from the maneuver planning process. The method the ETE code 
uses to apply the error models is best explained by referring to Fig. 7, which illustrates the approach 
for one spacecraft performing a pair of maneuvers for a formation resize or maintenance. The code 
starts by assuming a truth trajectory ( solid black line). At the point labeled by the 'l' an estimated 
state is derived from the truth by applying the navigation error model. This estimated state is 
propagated forward (solid red line) to the maneuver 1 start time (point labeled '2') where maneuver 
I is targeted to achieve the desired formation conditions. The truth state is then propagated to the 
same time where both the maneuver and the maneuver execution error are applied. The realized 
change in the truth trajectory is different from the planned change due to a combination knowledge 
error (the planned maneuver was targeted using a different state than the truth) and control error 
(the achieved maneuver was different from the commanded maneuver). A new navigation update is 
obtained at '3' and this state is propagated to '4' where the process of planning and execution are 
repeated for maneuver 2. Finally, a navigation update is taken from the truth at '5' and the 
corresponding state now represents the best idea that operations will have about the post maneuver 
state of the spacecraft. This process is applied to every maneuver that the ETE code models in its 
simulation of approximately 2Vz years ofMMS operations. 

3.2 Design Choices in the End-to-End Code 

Combining the error models described in Sec. 3.1 with the MMS mission operations concept, one 
may be tempted to conclude that the automation of the maneuver planning process should be 
straightforward. After all, the MMS mission design can be thought of as a series of campaigns 
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executing a set of deterministic maneuvers punctuated by periods of stationkeeping. For a number 
of reasons, such a conclusion is wrong. The primary reasons for this are that the navigation and 
maneuver execution errors are uncorrelated across the formation and that, because the maneuver 
directions for the resize and maintenance maneuvers are arbitrary, even relatively small errors can 
be combined to give undesired fuel usage and/or maneuver frequency. 

Truth trajectory 

> 

Planned change 

~ • • 
Reo/izeThange (!;.,. ___ > ____ )• 

Estimated trajectory Navigation Update 
) c=> 

Figure 7: A schematic of the way the navigation (knowledge) and maneuve~ execution 
(control) error models are applied in the End-to-End code. 

As an example, consider the formation control. The formation quality is expressed in terms of the 
parameter TQ which measures the time between formation maintenance maneuvers. As written, the 
requirement on formation quality suggests that between the. maintenance maneuvers the value of 
TQ should be above 80 for every orbit and the planning process takes this into account by targeting 
individual maneuvers for the three maneuvering spacecraft (recall one is used as a reference) to 
achieve a formation that starts with TQ at or near 100 and that slowly degrades over time. However, 
the combination of navigation and maneuver errors results in a set of maneuvers that fail to give 
exactly the planned change in the orbital states and the requirement on TQ must be interpreted 
statistically with the expectation that a percentage of the orbits will have TQ values less than 80. The 
next decision is to determine what value of TQ triggers a formation maintenance maneuver. Earlier 
analysis showed that TQ rapidly degrades when it nears 80 and the expectation was that trigger 
values below 80 would not be beneficial. However, the results from the ETE code showed that 
lowered values significantly improved the fuel usage. Figure 8 shows a comparison of the TQ values 
for the Phase 1 orbits from a Monte Carlo trial with the TQ trigger value set at 80 compared with on 
set at 60. The percentage of orbits with TQ < 80 marginally rises .from 6.2 to 8.0 percent with the 
average value ofTQ over Phase 1 dropping from 93.2 to 91.3. The average fuel usage per spacecraft 
significantly dropped by 25-30 kg and the time between formation maintenance maneuvers went 
from an average of 9 days with a minimum of 4 days to an average of 16 days with a minimum of 
10 days. Based on this analysis, the MMS science community has agreed to operate the mission 
with the tower TQ value. 

, 

In addition to the selection of design and operating parameters, there is a degree of intelligence that 
will be exercised with a human in the loop in operations that can't be trivially encoded to an 
automated simulation. As an example, consider the possibility of a maintenance maneuver 
occurring a day or two before a scheduled resize. In operations, a number of options would be 



considered with possible outcomes including 1) that the maintenance maneuver would be executed 
and the resize delayed, 2) that the maintenance maneuver would be waived and the resize executed 
as scheduled, and 3) that the maintenance maneuver would be waived and the resize execution 
moved up to that time. The ETE code has some simple control logic designed to handle this 
situation but it 
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Figure 8: A comparison ofTq trigger values for two separate ETE Monte Carlo Runs. 

is not equipped with a sophisticated decision engine that can mimic human intelligence. As a result, 
the simulations 'sometimes show the execution of an unwanted maneuver which must be taken into 
account when using the simulations results to verify the mission requirements. Additional examples 
that fall into this category include how the non-maneuver reference is chosen (e.g., the one.with the 
least fuel or the one that results in the smallest fuel consumption over the whole formation) and 
which flavor of the Formation Design Algorithm should be used for a given resize or maintenance 
maneuver. Clearly trying to adapt an automation algorithm to be more intelligent in the face of so 
many choices is a difficult undertaking. 

4. ETE Results 

Once the operating parameters and design considerations for the End-to-End code had been settled 
upon, production runs in support of the MMS Mission CDR were made. Each Monte Carlo run 
takes between 6-8 hours on a modem Windows-based machine, limiting the number of trials that 
could be reasonably performed. For the results presented here, 102 cases for a November 1st 2014 
launch date were logged, with the production runs distributed over 7 machines. 

Table 2 shows a comparison of the v.alues for the six baseline requirements between the Reference 
Orbit ephemeris that was used to provide the initial conditions and the ensemble minima and 
maximum over the Monte Carlo samples. The comparisons for the GSE latitude requirements are 
close and none of the cases showed any shadows during the first 2 weeks of the mission. The 
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maximum shadow and the neutral sheet dwell time for the ETE generally were larger than those of 
the Reference Orbit but in all cases met the requirements with ample margin. Since the largest 
shadows in the MMS mission generally fall in Phase 2b, when the orbit period is longest and the 
apogee is away from the Sun the correlation is expected. Overall, the agreement between the 
Reference Orbit and ETE results demonstrates that the MMS formation can be flown without the 
need to control the entire formation to a fictitious spacecraft that follows a reference path. 

Table 2: Comparison of the baseline requirements between the Reference Orbit and ETE 
· Monte Carlo Runs for a Nov. 1st launch date 

Phase I b GSE Latitude, lb 
(deg) 

Neutral sheet dwell time, 
1NS (hours) 

Maximum umbra duration, 
MU (minutes) 

Maximum umbra + 50% 
penumbra, MUP (minutes) 

Max. shadow in the first 2 
weeks, MS (minutes) 

1NS:?: 100 

MUS216 

MUPS231 

MS::::;60 

As far as the formation requirements are concerned, the ensemble average over all the Monte Carlo 
trials show comparable behavior to those shown in Fig. 8. Specifically, the ensemble average of the 
time averages for Tq were 94.4 and 84.9 for Phases 1 and 2b, respectively. In addition, the average 
time between maneuvers across the mission is approximately 16 days, exceeding the 14-day 
requirement. Figure 9 shows the ensemble statistics for mean, maximum, minimurit and 3-sigma 
low for fuel remaining. The average fuel usage per spacecraft is 33 7 kg out of the 410 kg allocation, 
leaving 73 kg of fuel remaining. However there is a fairly large statistical variation in fuel 
remaining across the Monte Carl~ ensemble. This variation is attributable to the effects of 
maneuver execution error and navigation uncertainty and for this reason these models are carefully 
tracked as MMS evolves. 

5. Conclusions and Future Work 

Currently, the ETE code serves as the primary MMS flight dynamics requirements verification tool. 
It is arguably the most complex and sophisticated flight dynamics simulation that has been 
produced at GSFC and, using it, the Flight Dynamics team has verified that the mission design 
requirements can be met with the current operations concept and fuel loading. Despite this success, 
the ETE code has its limitations particularly in the amount of intelligence that is currently built in to 
handle various maneuver scenarios. 

As the MMS mission moves from design into fabrication and testing, the ground system is 
beginning development of the operational systems. The ETE code will become the primary 

,,. prototype and regression test system for a new system that is envisioned to have a more powerful 
decision engine and a fully integrated navigation and maneuver planning simulation capability. 
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