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FAILURE BOUNDING AND SENSITIVITY ANALYSIS APPLIED TO 
MONTE CARLO ENTRY, DESCENT, AND LANDING SIMULATIONS 

John A. Gaebler· and Robert H. Tolsont 

In the study of entry. descent, and landing, Monte Carlo sampling methods are 
often employed to study the uncertainty in the designed trajectory. The large 
number of uncertain inputs and outputs, coupled with complicated non-linear 
models, can make interpretation of the results difficult. Three methods that pro­
vide statistical insights are applied to an entry, descent, and landing simulation. 
The advantages and disadvantages of each method are discussed in terms of the 
insights gained versus the computational cost. The first method investigated was 
failure domain bounding which aims to reduce the computational cost of assess­
ing the failure probability. Next a variance-based sensitivity analysis was stud­
ied. for the ability to identify which input variable uncertainty has the greatest 
impact on the uncertainty of an output. Finally, probabilistic sensitivity analysis 
is used to calculate certain sensitivities at a reduced computational cost. These 
methods produce valuable information that identifies critical mission parameters 
and needs for new technology, but generally at a significant computational cost. 

INTRODUCTION 

In the study of entry, descent, and landing (EDL), Monte Carlo sampling (MCS) methods are 
employed to study the effects of input variable uncertainties on trajectory output variables. The 
MCS method involves the assembly of input cases by generating thousands of random input sam­
ples using estimated probability distributions. These input cases are then simulated with an EDL 
simulation yielding numerous output cases, one for each input case. Statistics are then accumu­
lated for the output variables. Analyzing and gaining physical insight from these output statistics 
is often a difficult task given that there are often many input and output variables. 

Complications can arise when there are failed cases that need to be understood. An example of 
such a failed case may be parachute deployment at an altitude below some minimum allowable 
value, which may lead to a reduced time between parachute deployment and landing. Another 
situation that can arise is a request for certain mission requirements, such as a smaller landing 
footprint, so that a lander will be close to a location of high scientific value. Reducing the uncer­
tainty in an input can be a costly endeavor as it may require adding additional capability, develop­
ing new technology. etc. Given these issues, methods are sought that can provide insights into the 
statistical sensitivities of simulation outputs 'with respect to inputs of the EDL trajectories. 
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Three methods that provide statistical insights were identified and applied to an EDL simula­
tion. The first technique studied was failure domain bounding. •.2 If during an analysis a case fails 
it is imperative to understand the cause. This method can allow the generation of more failed 
cases with less simulations than typical MCS. Next a global variance-based sensitivity analysis 
was tested.3

•
4
•
5 This method identifi~s which input variable uncertainty will have the greatest im­

pact on reducing the variance on an output. This method has the additional benefit of identifying 
which inputs are interacting. Finally a method that provides local probabilistic sensitivities was 
studied.6 These are sensitivities of an output mean or variance with respect to an input mean or 
variance. Leibniz's rule is introduced to evaluate certain part.ial derivatives with the benefit of 
requiring fewer simulations than finite differencing. These benefits are realized when calculating 
the sensitivities to uncorrelated inputs with probability distributions having infinite bounds. The 
advantages and disadvantages of each method are discussed in terms of the insights gained versus 
the computational cost. 

EDL SIMULATION 

A simplified simulation was needed that would be representative of an EDL mission, yet re­
quire less computer resources than a full simulation. The simulation created for the present study 
is a simplified model of a lander mission encompassing all phases of EDL including atmospheric 
entry, a parachute aided descent, and a thruster controlled landing. The equations of motion were 
limited to two dimensions and integrated with a Runge-Kutta fourth order algorithm.· The two 
dimensional ballistic EDL simulation included a temperature dependant atmosphere model, a ro­
tating atmosphere with wind, and correlated entry states configured for Mars. 

EDL Simulation Inputs 

The EDL simulation had seventeen uncertain input variables that can be organized into three 
groups: initial states7

, vehicle properties8
•
9

, and atmospheric parameters10
•
11

• The most compli­
cated inputs from an analysis standpoint are the correlated initial states. Atmospheric variables 
have large uncertainties due to limited direct measurements of the Martian environment. Table I 
shows for each uncertain input the uncertainty and the probability distribution function (PDF) 
used:Uncertainty for a normal PDF is the 3a value, while for a uniform PDF it is the bounds. The 
uncertainties of the initial states are omitted since they are correlated based on a prescribed co­
variance matrix. 

EDL Simulation Outputs 

Outputs from the EDL simulation include the states, vehicle mass, heat rate, total heat load, 
parachute deployment altitude, parachute deployment maximum acceleration, and propellant 
mass. After reviewing the output statistics from the simulation, six failure constraints were placed 
on five of the outputs. The constraints were arbitrarily chosen to give a low probability of failure, 
around 1.37% (i.e., a constraint violation of any one output constitutes failure). 

• The derivation of the equations of motion, the required models. and the definition ofthe example system were pro­
vided by Dr. Juan R. Cruz. 
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Table 1. Uncertain inputs to the EDL simulation. 

Input Symbol Uncertainty PDF 
inertial position r10 NIA Normal 

ft~ inertial speed Vio NIA Normal 
;; --i:I .... inertial flii!ht path angle Y10 NIA ! Normal ,..Cl.) 

inertial longitude A,o NIA Normal 
drag coefficient of lander Ct1ae ±5% Normal 

t'! drag coefficient of aeroshell C,1ae ±5% Normal 
~ ~ drag coefficient of parachute C,1n ± 15% Uniform - .... u ~ :a a parachute opening load factor Cx ± 10% Uniform 
,:. E terminal descent rocket engine specific impulse 1.~p ± 10% Normal = =- entry mass mE ±0.2% Normal 

parachute reference area Sp ±3% Uniform 

u wind speed at surface V,m ± 100% Uniform 
·ct'! wind speed in upper atmosphere Vw,.«, ±60% Uniform ~ ~ -= .... altitude above which wind has constant speed hvwiso ± 16.7 % Uniform =- ~ ! a atmospheric density at surface Po ± 15% Normal a E .... = atmospheric surface temperature To ±6.7% Normal < =- atmospheric isothermal temperature above 57 km Ts1 ± 12.9 % Normal 

FAILURE DOMAIN BOUNDING 

To estimate the failure probability MCS can be applied. However, if the probability of failure 
is very small, MCS can be computationally expensive. Instead of sampling the entire input space, 
failure domain bounding (FDB) identifies an upper bound on a risky region. 1 Only cases within 
this risky region need to be sampled when approximating the probability of failure. Sample sets 
generated in the complement success region do not need to be simulated as they can be assumed 
to have only successful output cases (i.e. non·failures ). Simulating input cases only from the risky 
region is an efficient means of generating failed cases for study and to increase the confidence in 
the failure pr~bability estimation. 

The following is a brief description of the FDB methodology. To find the upper bound on the 
risky region, the uncertain input variables PDFs are mapped into standard normal distributions 
with a mean of zero and variance of one. An optimization routine is then used to find the most 
probable point (MPP) of failure, which represents the point of the failure domain that is 'closest' 
to the nominal design. The distance from the nominal design to the MPP can be interpreted as the 
radius of a hypersphere. 

Figure 1 illustrates this idea with a two dimensional example. The hatched area is the failure 
region. The design space within the hypersphere can be.considered a success region, while every· 
thing beyond is a risky region that could have a failure. After the optimizer locates the MPP and 
the radius of the hypersphere, the failure probability can be estimated by sampling outside the 
hypersphere as represented by the dots. Typically FDB is applied to scenarios with a very small 
probability of failure. 

3 



• • 
0 

• 
/o • 

' ' Hypersphere Samples 

Figure 1. Example of success region defined by hypersphere ra~ius. 

A MCS analysis can now be performed on the parameters in the space beyond the hypersphere 
radius by not simulating cases generated within the hf persphere radius1 or by conditional sam­
pling, so as to never generate cases within the radius1 

• This method has the potential to greatly 
reduce the number of model evaluations needed to estimate the probability of failure, by assum­
ing cases within the hypersphere are successful. Ignoring cases generated within the hypersphere 
frees up resources for more cases to be simulated within the risky regi~n. Thus a better approxi­
mation of the failure probability can be obtained with fewer computations. 

Application to EDL Simulation 

Table 2 shows the radius for each constraint as they are optimized separately. The final result 
is the minimum hypersphere radius of all the constraints. Application of this method returned a 
hypersphere radius of 2.5541 a. Also shown is the number of simulations the optimizer required. 
The high number of simulations is caused by the large number of inputs and the use of a gradient 
based optimizer. Each time the optimizer takes a step toward the optimum, 18 simulations are 
required, once at the current point, and 17 times to perturb each input. 

Table 2. Hypersphere radius found for each constraint in the EDL simulation 

Constraint Radius Simulations 
Peak heating> 26 W/cmz 2.5729a 1705 

Altitude at parachute deployment> 9.5 km 2.7949a 859 
Maximum acceleration at parachute deployment > 13 g 2.5441a 221 

Final longitude < 14.5° 2.6970a 348 
Final longitude> 15.5° 3.2909a 909 

Percentage fuel consumed > I 00% 2.6307a 1712 
Final 2.5441a 5754 

Each radius presented in Table 2 is the Euclidian norm of a vector pointing to the MPP of fail­
ure for each constraint. Plotting the components of this vector for the MPP associated with the 
altitude ·at parachute deployment as a bar graph gives Figure 2. This plot indicates which vari­
ables are affecting failure. The inputs defining the upper atmosphere and the drag force acting on 
the vehicle are the most influential. Those variables that have no effect on parachute deployment 
altitude are zero, such as the lsp. From the equation for drag, the sensitivity to p0 and CJae should 
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be equivalent. The sensitivities differ in Figure 2 by a factor of three because p0 has an uncer­
tainty value of± I 5% that is three times greater than the uncertainty on C,1ae at ±5%. 

cr 

Figure 2. Vector components to the MPP of failure from parachute deployment altitude. 

The next step is to start generating input cases and identifying those cases that can be assumed 
successful. Generating 30,000 random input cases gave 309 cases in the success region, which is 
only - I%. The remaining 29 ,69 I risky cases had 4 I 6 failures. There are no benefits to using this 
method since 99% of the design space must still be simulated. The percentage of failed cases 
generated increases by the inverse of the percentage of cases in the risky region. 

Observations 

An investigation into the short comings of FBD applied to the EDL simulation identified two 
complications. First was the assumption that a hypersphere, which encompasses the success re­
gion, would contain a significant portion of the design space. The second complication was with 
the minimization of the hypersphere over all inputs. 

Further investigation of the first complication shows that the hypersphere does not contain a 
significant portion of the input design space due to how a large number of input dimensions 
spread the design space PDF. This spreading undermines the usefulness of minimizing a hyper- · 
sphere around the nominal design. Since the inputs have standard normal distributions, a radius 
around the origin should encompass a large portion of the sample set. For example a standard 
normal distribution of a single variable with a hypersphere radius of 2u would encompass -95% 
of the design space . .With two variables, the 2a circle only contains -86% of the design space. A 
third variable reduces the 2a sphere·to 74%. This trend continues as more dimensions are consid­
ered.· 

The second complication involves minimization of the hypersphere radius vector over all in­
puts. The vector component for any input with minimal influence on the failure region will have a 
distance near zero. However this input can have any value without affecting failure. Thus includ­
ing the component unnecessarily reduces the number of cases in the success region. 

To get around this complication, components of the output hypersphere radius vector with 
values less than some tolerance were ignored in defining the success region. It is desirable to ig­
nore insensitive inputs since it increases the success region, while also reducing the dimensional­
ity of the problem alleviating the spreading effect. When identifying whether a case is a success 
or not, only the inputs affecting failure are considered. However, now each constraint must be 
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considered in defining the success region. An input that does not influence one failure constraint 
may be important to another. If that variable were ignored there could be failed cases in the suc­
cess region due to the other constraints. In essence this new approach identifies separate success 
regions, or individual hyperspheres, for each constraint, where each hypersphere has minimal di­
mensions. 

The original methodology would have had a single 17 dimensional hypersphere radius that 
should in theory touch the MPP of failure. The new methodology proposed has six hyperspheres, 
of only 4-6 dimensions each. The tolerance used to ignore a component was set to 0.20'. Only 
cases common to all six hyperspheres are considered successful. The effect is to increase the suc­
cess region from containing 1 % to over 42% of the sample set. Of the 30,000 simulations, no 
failed cases were identified in the success region at this tolerance. Figure 3 shows the conver­
genc~ of the estimated failure probability by performing typical MCS versus using FDB. The 
FDB plot starts at 5754 model runs, since those were required by the optimizer to find the MPP. 
Both methods have similar convergence. The benefits would increase if the dimensionality of the 
hyperspheres could be reduced further, or if there were less failure constraints. 

Typical Convergence 
~a-~.-.-~---~.~.~.~.~.~ .. ----.~.~ .. ~.w.---.~.~.~.~ .. -. 
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FDB Convergence 

Figure 3. Convergence of EDL simulation failure probability for MCS vs. FOB. 

GLOBAL VARIANCE-BASED SENSITIVITIES 

In the literature this method is often referred to as Sobol's method. It provides a way of repre­
senting a global type of sensitivity based on the variance of the output.3 Advances to the original 
method that reduce the required computations are incorporated in this work.4 Global sensitivity 
measures the effect input variance, for a specific input V, or combination of inputs V,1, has on the 
output variance. This method works on the premise that the total variance of an output variable 
can be segmented into components caused by individual or combinations of input variables. Thus 
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allowing the comparison of the variance due to any input variable with the total variance on the 
output, giving a sensitivity as shown in Equation (1). 

S = V, or S = V,1 

I V I] V 
(1) 

The sensitivity can be found for each input separately or in any combination with other input 
variables. Sensitivities due to individual variables are considered main or 1st order effects. Cou­
pling or 2nd order effects comprise all possible combinations of two variables. Combinations of 
variables can be up to order ,i, where n is the total number of input variables. All the sensitivities 
sum to a value of one. Stated another way, the portion of the output variance attributed to each 
input and combination of inputs must add up to the total variance. Another parameter of interest 
is the total effect sensitivity. 13 Summing sensitivities, such as the main effect and all higher order 
terms involving the variable of interest, gives the total effect. These ideas are portrayed in Equa­
tions (2) and (3) for a 3 input model, where the number of subscripts represents the order (1st, 
2nd ... ) and the superscript Tis for total effect. · 

(2) 

(3) 

Conceptually Figure 4 shows what type of information Sobol's method provides. The left plot 
shows the output of a function with two inputs sampled 20 times. When the first input set is re­
sampled, while leaving the second set the, same, the center plot is generated. Hence each output 
would change since one of the inputs is different. Next the right plot is produced by resampling 
the second variable and using the original sample for the first. Again the outputs would change. 
The original outputs were left in the plot for reference. By taking this new variance and compar­
ing it to the original, an idea of the influence from each variable has is obtained. In Figure 4 it is · 
obvious that the second variable has a larger effect on the output variance. Hence the second vari-
able would have a larger sensitivity. · 

• y = J(x" .x2 ) A Y = f(x,R ,xz) • y = J(xi,x:) 

• • ,. •• • • • ' • • • • .. I • • •• • • • • I • • • • •• • ' .. .J. • • •• • • • • 
• • • ,,. • ••• - • • I ,.1 • • • • ... • I • • •• • • " ... • t t • • " •• 

Figure 4. Visualization of Sobol's method, resampled sets have superscript R. 
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To isolate the variance of a specific input i all the inputs are varied via MCS to approximate 
the total variance V, then the complimentary variablesj 'I- i are resampled to approximate the vari- . 
ance caused by i. The required integrals for calculating the variance are approximated by MCS. 
The equations in approximate form are: 

l .v . 
lo ~-r1<x> 

N ,=1 
(4) 

(5) 

i,: + J/ ~ _!_ f f(x)f(x, ,x:> 
N l=I 

(6) 

Here x is an array of the n inputs with N samples and x1 is the 1 by N set of samples of the 

input for which the sensitivity is desired. Finally x: is the set of(n-1) by Nsamples that are re­

sampled. The function/() represents the simulation withfo being the mean of the output vari­
ables. Choice of sampling method can be important. Low discrepancy sequences, or quasi­
random number generators, get better results than pseudo-random number generators by picking 
numbers in a manner that attempts to guarantee uniformity across the design sEace. 14 Two such 
quasi-random number generators available to use are Halton sequence leaped 4 and Sobol' se-

• quence generators . 

The most influential variable can be identified. by comparing the individual effects of each · 
variable on the output variance. Such knowledge helps in deciding where to focus efforts to re- . 
duce the uncertainty on the output to obtain the most benefit. Considering combinations of vari­
ables, as opposed to individual variables, gives an indication of the coupling between inputs. 

One drawback is that a large sample set is required to obtain reliable statistics. Each input re­
quires N runs times the number of terms involving that input sought. Equations (7) and (8) show 
the simulations required to obtain the desired sensitivities where Tis the number of terms sought. 
Thus for each individual or coupled sensitivity desired, the model must be evaluated with a sepa­
rate sample set. 

main effects cost= N(T + 1) 

main + total effects cost = N(T + 2} 

(7) 

(8) 

There are some requirements on the input parameters such as the inputs must be uncorrelated 
and transformed to uniform distributions on the unit hypercube. In addition, to evaluate the accu­
racy of the results, there are methods to obtain confidence intervals.~ 

• Available at http://wv.w.broda.co.uk accessed September 2008. 
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Application to EDL Simulation 

Due to the large number of inputs for the simulation, which increases the samples needed for 
convergence, only main effects and total effects were sought. To give an idea of the sensitivities 
obtained, one output will be investigated. Figure 5 shows the main effect or 1st order sensitivities 
of the parachute deployment altitude. 

0.5 

a- 0.4 

~ 
'iii 0.3 
15 
en 0.2 

0.1 

Figure 5. Global sensitivities on parachute deployment altitude. 

The uncertainty in.' the parachute deployment altitude comes mainly from the surface density 
and temperature which determine the atmospheric model. These terms affect the density in the 
upper atmosphere, which affects the drag acting on the vehicle. The entry configuration drag co­
efficient is the other primary contributor. The values make physical sense and match the two 
analyses presented thus far. In this case however, the sensitivity to Po is roughly nine times higher 

than that on CJae, due to this method giving sensitivities based on the variance ( V = u 2 
). 

A large number of runs were required to obtain these sensitivities. Figure 6 shows an example 
of the convergence for the sensitivity of parachute deployment altitude to surface temperature. If 
based on this plot N is chosen to be 6,000, then using Equation (7) with T = 17 inputs, it would 
take I 08,000 runs to obtain the main effect sensitivities. An additional 6,000 runs will provide the 
total effect sensitivity terms, which should indicate which variables have higher order couplings. 
An investigation of these terms does not indicate any significant couplings for this output. 

Observations 

Sobol's method had difficulty approximating the sensitivities to outputs with small output 
variances. Less than half of the output variables converge,d on a solution. If convergence to an 
accurate sensitivity isn't required, but instead the relative sensitivities are acceptable, a smaller 
sample set could be run. After N = 2,000 runs (for each sensitivity) the top three contributors re­
mained relatively constant. For example the top three contributors to the maximum acceleration at 
parachute deployment were CJp, Cx, and Sp in that order. Increasing N does not change that order. 
The actual sensitivity values haven't converged in 2,000 runs, but the relative values have. 
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Figure 6. Parachute deployment altitude sensitivity convergence to surface temperature. 

LOCAL PROBABILISTIC SENSITIVITIES 

The goal of the probabilistic sensitivity analysis (PSA) is to approximate the partial deriva­
tives of the output statistics with respect to the input statistics.6 The results of PSA can be consid­
ered local in that they are evaluated at a particular value, as compared to Sobol's method which 
considered the whole range of the statistics. These probabilistic sensitivities are found by taking 
the partial derivative of the mean or variance of the output with respect to the mean or variance of 

a specific input variable: aµuut/fJµm' aµou,javm' avou,/aµm' or avou/ /avm. 

Calculation of the mean or variance can be found with the expected value operator in Equation 

(9), where y( ) is an output function and X is the array of input parameters with known PDFs 

represented jointly as p( ) . Two methods are proposed by Crespo6 to obtain the sensitivities, the 

first of which is finite differencing of the expected output in Equation (I 0), where 0, is either the 

mean, µx , or variance, v. , of the input vector x, for a single input i. Since X represents a 
I •1 

sample set there is a mean and variance associated with each input. The variable of interest X; 

can be transformed to reflect a perturbation of ~ to the µx or v x , which is incorporated into 
I I 

X d with all other inputs unchanged. 

E[y(.x)] = J y(X)p(.x)dx 

aE~x)] ~ ! (E[y(xd)]-EG,(x)D 
I 

(9) 

(10) 

The second method applies Leibniz's rule to find the derivative of the integral in the expected 
value operator in Equation (9). Calculating the sensitivity requires moving the derivative inside 
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the integral and simplifying to Equation (11). In this equation p, ( ) is the PDF for x,. The mul­

tidimensional integral in the expected value operator in Equation (9) is integrated over the bounds 

of each input PDF. Equation (11) includes the bounds of x, as a and b. Sample set X" has the 

input vector x, replaced with the boundary value a for all samples, while leaving all other vari­

ables unchanged. Similarly X 6 has b replacing the input vector x,. It is assumed that the partial 

derivatives of p, ( ) can be found analytically. 

aE~(x)] = E[ y(~) op,(x,)]+~ p,(b)E[v(xJ]-~ p,(a)E[y(x.,)] (I I) 
ao, · P, (x,) ae, ao, ao, 

At first glance there is no apparent benefit over finite differencing in terms of computational 

expense: y(X) must be evaluated, then for each partial y(X1:,) and y(Xu} must also be evalu­

ated via numerical integration. However for PDFs with bounds at infinity, the second and third 
terms in equation (11) become zero (e.g. for a normal distribution p(oo) = 0) reducing the num­
ber of cases simulated. If a set of cases are simulated to obtain the mean and variance of the out­

puts, e.g. E[y(x)], the partial derivatives with respect to inputs having normal distributions can 

be obtained at no additional computational cost (i.e., no additional samples), since y{X\) and 

y(X u} need not be simulated. Similarly, equations can be defined for the sensitivity of the vari-

ance v[y(x)]: 

av[v(x)]=e[(y(x)-E~(x)D
2 

op,(x,)]+~ (b)vL·(x )~-~ (a)vL·(x )~ ci 2> ae c- ) ae ae P, LY h 1 ae P1 LY " 1 
I P, x, I I I 

To provide a fair comparison between the derivatives, the outputs are given as percent deriva­
tives. Calculation of percent derivatives requires defining step sizes. The step A is used as a per­
centage of the statistic to be perturbed. In this work A is set to I% of the input variable mean if 
the partial derivative is with respect to the mean (similarly for the variance). If the input mean is 
zero, then A is taken as 0.5% of the standard deviation. When using Leibniz's rule the step size 
is used to scale the results of the method. Sample sets, for the calculation of the sensitivities, can 
be generated by several methods such as: Sobol sequence generator", pseudo-random number 
generator, or Halton sequence generator'-'. 

Obtaining the sensitivity of an output to each input mean allows for the identification of the 
largest contributing .input variable. Calculating the sensitivity to the variance on the inputs would 
show where the most benefits could be gained by performing further experimentation (such as 
analysis or hardware changes, etc) to reduce uncertainty on an input. Application of Leibniz's 
rule is promising because it requires the evaluation of only one sample set of N samples to obtain 
numerous sensitivities when the bounds of the input PDFs are infinite such as in a normal distri­
bution. 

• Available at hUp://www.broda.co.uk accessed September 2008 
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There are some limitations to this method. The analytic partial derivative of the PDF is re­
quired for the Leibniz approach. For this work there were no issues with deriving the analytic par­
tial derivatives, however there may be PDFs where this can be a concern. While no additional 
simulations are required to obtain sensitivities for uncorrelated normal distributions beyond a first 
set, there is an additional computational cost for PDFs having bounds that are functions of 6, such 
as uniform distributions. Equation (13) shows the computations required where U is the number 
of input variables with PDFs having bounds dependent on 9. For the worst case scenario, where 
none of the input PDFs are normal, the computational cost of using Leibniz's rule is equivalent to 
that required for finite differencing when calculating also the possible terms. Therefore the entire 
analysis can be performed via the Leibniz's rule with the benefit of fewer simulations if there are 
input variables with normal distributions. 

Leibniz Cost= N(2U + t) (13) 

Application to EDL Simulation 

A large amount of information is provided by PSA. For each output there are four partial de­
rivatives per input. Thus for the EDL simulation there are 68 partial derivatives for each output 
( 4* 17 inputs). The parachute deployment altitude output is analyzed here. Four bar charts are pre­
sented, one for each set of sensitivities. 

First the sensitivities to the parachute deployment altitude mean with respect to the input 
means are shown in Figure 7. The initial states were omitted from the following plots because 
they were correlated, which will be discussed later. The sensitivities are scaled to show how a 1 % 
change in the mean surface temperature causes a 2.63% change in the mean parachute deploy­
ment altitude for example. This plot suggests that the mean surface temperature, surface density, 
and initial mass have the greatest influence on the mean parachute deployment altitude. These 
results make physical sense since the first two terms dictate the atmospheric density, while the 
last term will control how fast the vehicle is traveling. 

3...-,,----.---.----..---.--,.---....--....--,,---,.--.--, 

2 

1 

i o-~---------­
ci:, 
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Figure 7. Sensiti'Vity of parachute deployment altitude mean to each input mean. 

Next the sensitivity of the output mean with respect to the input variance can be investigated. 
Figure 8 shows that a change to the variance of any input has little effect on the output mean. The 
largest term only causes a 0.002% change to the output mean. While the larger terms in this plot 
are those that define the upper atmospheric conditions, this plot appears to be influenced by nu­
merical noise due to running a limited sample set. 
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Figure 8. Sensitivity of parachute deployment altitude mean to each input variance. 

The sensitivity of the output variance due to the input mean is shown in Figure 9. Here the ma­
jor influence is from the initial mass with a small effect from the surface temperature. Increasing 
the mass of the vehicle should reduce the effect of the aerodynamic forces acting upon it. 
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Figure 9. Sensitivity of parachute deployment altitude variance to each input mean. 

Finally the output variance sensitivity to input variance is shown in Figure I 0. Again the at­
mospheric variables, surface temperature and density, are the main contributors. In addition there 
is some influence from the coefficient of drag for the aeroshell. These results again match with 
those found by the previous two methods in this report. The sensitivity in this chart is based on 
the uncertainty, thus if there are different uncertainties assigned to the inputs Cdae and Po, this 
variation will appear in the sensitivities. Again the sensitivity to Po is roughly nine times greater 
than that of C"u•· 
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Figure 10. Sensitivity of parachute deployment altitude variance to each input variance. 

To give accurate results, the sample size for these results was set at 15,000. Figure 11 shows 
an example of the typical convergence. Choosing N = 5,000 using Equation (13) with U = 6, 
since there are six inputs with uniform distributions, gives 65,000 total simulations. Calculating 
these sensitivities using finite differencing would have required 175,000 simulations to obtain the 
same results. 
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Figure 11. Convergence of parachute deployment altitude to surface temperature. 

Observations 

As previously mentioned, the initial states were ignored in this section. The analytic partial de­
rivative of the PDF required by Leibniz's rule is difficult to calculate for correlated variables. 
Since the four ignored inputs are correlated, the joint PDF is difficult to separate when calculating 
the analytic partial derivatives as can be done with independent inputs. The results found match 
with what is calculated by finite differencing. Given a situation where partial derivatives of the 
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statistics to an input set having several normally distributed inputs are desired, application of 
Leibniz's rule has clear advantages. 

CONCLUSION 

This study analyzed the merits of three methods that provide insights into the statistics of EDL 
simulations. The failure domain bounding method promised to provide a more· accurate approxi­
mation of the failure probability with less runs than a typical MCS analysis. Global variance­
based sensitivities and probabilistic sensitivity analysis are methods that provide the sensitivity of 
the output statistics to the input statistic~. These three methods were applied to a 2D EDL simula­
tion for assessment. 

When the FOB method was applied to the EDL simulation an optimizer required 5,754 runs to 
find a hypersphere radius defining the success region. For the variables that dictate failure, the 
radius vector also gives a sense of the sensitivities to the inputs. The success region was found to 
encompass an insignificant portion of the design space due to a spreading effect of increasing the 
input dimensions. A modification was implemented to partially fix the problem. Instead of identi­
fying one small success region, several regions are found, and then combined to give a larger suc­
cess region. With the given failure constraints convergence to the probability of failure was 
equivalent to typical MCS. FOB gives better results when there are fewer constraints, smaller 
failure probability, or fewer input variables. 

Sobol's method successfully gave the sensitivities to each input variable. Accurate results re­
quired 108,000 runs for main effect sensitivities. Variance-based sensitivities also have the ad­
vantage of providing sensitivities to the interactions between inputs. Inspection of the total effect 
sensitivities did not indicate many significant couplings for the output studied. It was found that 
the method did not work well if the output variance was small. This method works better with 
large output variances and less input variables. l 

The PSA method also successfully gave the sensitivities to the input statistics. While it does 
not provide a direct sense of couplings that may be present, it does provide sensitivities to both 
the mean and variance. It required 65,000 runs for accurate results, providing similar information 
to Sobol's method at a fraction of the simulations. PSA provides the same information as finite 
differencing, again with fewer simulations. The method requires the analytic partial derivatives of 
the PDFs with respect to the mean and variance, which was not an issue for the situation studied, 
but could be for other PDFs. Application of Leibniz's rule to variables that are correlated requires 
further study. Sensitivities of the failure probability or to correlated inputs can be obtained via 
finite differencing. The benefits of PSA are augmented with an increase in the number of input 
variables defined with normal distributions, or other distributions with infinite bounds. 
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