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ABSTRACT 

The General Mission Analysis Tool (GMAT) is a soft­
ware system for trajectory optimization, mission analy­
sis, trajectory estimation, and prediction developed by 
NASA, the Air Force Research Lab, and private indus­
try. GMAT's design and implementation are based on 
four basic principles: open source visibility for both the 
source code and design documentation; platfonn inde­
pendence; modular design; and user extensibility. The 
system, released under the NASA Open Source Agree­
ment, runs on Windows, Mac and Linux. User exten­
sions, loaded at run time, have been built for optimiza­
tion, trajectory visualization, force model extension, and 
estimation, by parties outside of GMAT's development 
group. The system has been used to optimize maneu­
vers for the Lunar Crater Observation and Sensing Satel­
lite (LCROSS) and ARTEMIS missions and is being used 
for fonnation design and analysis for the Magnetospheric 
Multiscale Mission (MMS). 

In this paper, we discuss two primary topics: GMAT's 
current feature set; and how to write plug-in libraries 
written outside of the main development code. The ex­
isting feature set is broken down into two principal cat­
egories, called resources and commands. GMAT's re­
sources consist of models of the components used to 
build a mission timeline: celestial objects, spacecraft and 
ground stations, hardware components, propagators, nu­
merical solvers, variables and arrays, and output com­
ponents. The commands are used to tie these resources 
together in a time ordered sequence, and are used to de­
scribe how the resources interact. 

We present several examples of extensions to GMAT that 
have been built to support mission specific goals using 
custom plug-in libraries. The key elements required for 
a GMAT plug-in are presented, along with an overview 
of the class structure for the system that makes these ele­
ments work. 
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l. PROJECT AND SYSTEM OVERVIEW 

t.l. Objectives and Goals 

The goal of the GMAT project is to develop new astro­
dynamics technologies and provide software for opera­
tional mission design and navigation support by working 
inclusively with individuals, universities, businesses, and 
other government organiza~ions. A second and important 
goal is to share that technology in an open and unhin­
dered way. GMAT has been approved for release under 
the NASA Open Source Agreement (NOSA). You, your 
business, or your organization can' get involved in the 
GMAT project in numerous ways. We use an open source 
model to encourage collaboration and to maximize tech­
nology transfer. rndividuals, universities, industry, and 
other government organizations can contribute and col­
laborate in ways that meet their respective goals, needs, 
and interests. 

1.2. Contributors 

GMAT contributors include volunteers and those paid 
for services they provide. We welcome new contribu­
tors to the project, either as users providing feedback 
about the features of the system, or as developers inter­
ested in contributing to the implementation of the system. 
Current U.S. government participants include NASA and 
the Air Force Research Lab (AFRL). Past and present 
industry contributors to GMAT include Thinking Sys­
tems, Inc. (system architecture and all aspects of de­
velopment), a.i.-solutions (testing), Boeing (algorithms 
and testing), The Schafer Corporation (all aspects of de­
velopment), Honeywell Technology Solutions (testing), 
and the Computer Sciences Corporation (requirements). 
The NASA Jet Propulsion Laboratory (JPL) is providing 
funding for integration of their SPICE toolkit into GMAT. 
Additionally , the European Space Agency's (ESA) ad­
vanced concepts team has developed optimizer plug-ins 
for the Non-Linear Programming (NLP) solvers SNOPT 
(Sparse Nonlinear OPTimizer) and IPOPT (Interior Point 
OPTimizer) using the process described in the later half 
of this paper. 
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The Navigation and Mission Design Branch at NASA's 
Goddard Space Flight Center performs project m~nage­
ment activities and is involved in most phases of the de­
velopment process including requirements, algorithms, 
design, and testing. The Ground Software Systems 
Branch performs design. implementation, and integration 
testing. The Flight Software Branch contributes to de­
sign and implementation. AFRL is involved in all de­
velopment areas but primarily in the areas of require­
ments specification, mathematical and algorithmic speci­
fications, system prototyping, and testing. 

1.3. Platforms 

GMAT is written to run on Windows, Linux and Macin­
tosh platforms, using the wxWidgets cross platform UI 
Framework, and can be built using either commercial de­
velopment tools or the GNU Compiler Collection (GCC). 
The system is implemented in ANSI standard Ct+ (ap­
proximately 250,000 non-comment source lines of code) 
using an Object Oriented methodology, with a rich class 
structure designed to make new features simple to incor­
porate. 

On Windows and Linux, GMAT does not call any oper­
ating system unique functions or methods. Calls to the 
operating system are standard calls for reading and writ­
ing data fi les and for writing data to the screen. On the 
Mac, GMAT makes a call to the operating system to open 
XI I, which is required to run MATLAB on the Mac. 

1.4. User Interfaces 

GMAT has three user interfaces. The graphical user inter­
face (GUI) illustrated in Figs. (l), (2), and (3) allows the 
user to set up and execute all aspects ofGMAT. The script 
interface is textual and also allows the user to set up and 
execute all aspects ofGMAT. The MATLAB interface is 
a secondary textual interface for running the system via 
calls from GMAT to MATLAB. 

1.5. Status 

While GMAT has undergone extensive testing and is ma­
ture software, at the present time we consider the soft­
ware to be in Reta fonn. GMAT is not yet sufficiently ver­
ified to be used as a primary operational analysis sytem. 
GMAT has been used to optimize maneuvers for flight 
projects such ns NASA's LCROSS and ARTEMIS mis­
sions, and for formation optimization and analysis for the 
MMS mission. However, for flight planning, we indepen­
dently verify solutions generated in GMAT in the primary 
operational system. 

The GMAT Team is currently working on several activi­
ties including maintenance, bug fixes, and the implemen­
tation of estimation components. The objective of the 
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Fig11re I. Screen Capture of Resource Tree 

current development cycle is to provide a stable, non-beta 
release in the fall of 2010. 

2. FEATURES 

GMAT is designed to model, optimize, and estimate 
spacecraft trajectories in flight regimes ranging from low 
Earth orbit to lunar applications, interplanetary trajecto­
ries, and other deep space missions. 

Analysts model space missions in GMAT by first creating 
resources such as spacecraft, propagators, estimators, and 
optimizers. A figure of the resource tree for a lunar trans­
fer application is shown in Fig. ( I). Resources can be 
configured to meet the needs of specific applications and 
missions. GMAT contains an extensive set of available 
Resources that can be broken down into physical model 
Resources and analysis model Resources. Physical Re­
sources include spacecraft, thruster, tank, transmitter•, 
transponder• , antenna•, receiver•, ground station, forma­
tion, impulsive bum, finite bum, planet, comet, asteroid, 
moon, barycenter, libration point, measurement model*, 
and measurement simulator*. Analysis model Resources 
include differential corrector, propagator, optimizer ,es­
timator•, 3-0 graphic, x-y plot, report file, ephemeris 
file, user-defined variable, array, and string, coordinate 
system, custom subroutine, MATLAB function, and data 
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Figure 2. Screen Captu~ of the Mission Tree 

file•. (Items with ..... are currently under development 
and not available in the public repository at the time of 
this writing as they have pot been reviewed for ITAR and 
other release issues.) 

After the resources are configured, they are used in the 
mission sequence, as shown in Fig. (2) to model space­
craft motion and simulate events in a mission's time evo­
lution. Users employ built-in Commands that simulate· 
trajectory dynamics or apply numerical methods such 
as estimators, optimizers, and boundary value solvers. 
The mission sequence supports the following commands: 
propagate, impulsive maneuver, finite maneuver, target, 
optimize, estimate, simulate measurements, non-linear 
constraint, minimize, call functions, inline math, vary pa­
rameter, achieve parameter, if/else, for, and while, and 
report. 

The system can display trajectories in space, plot param­
eters against one another, and save parameters to fi les for 
later processing. The trajectory and plot capabilities are 
fully interactive, plotting data as a mission is run and al­
lowing users to zoom into regions of interest. 

Trajectories and data can be viewed in any coordinate 
system defined in GMAT, and GMAT allows users to ro­
tate the view and set the focus to nny object in the display. 
The trajectory view can be animated so users can watch 
the evolution of the trajectory over time. A screen capture 
of the graphics after computing a lunar transfer is shown 
in Fig. (3). 

3. SYSTEM ARCHITECTURE 

GMAT's System Architecture, described in the GMAT 
Architectural Specification[l], can be broken into three 
types of components: the Model, consisting of all of the 
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Figure 3. Screen Capture of Lunar Transfer in GMAT 

elements required for simulating a spacecraft mission; 
the Engine, responsible for managing and connecting to­
gether the model elements; and interfaces, consisting of 
the scripting and graphical user interfaces, the MATLAB 
interface, and a simple console based interface. Users 
interact with GMAT through any of these interfaces to 
control the engine, and by controlling the engine, create 
a model that simulates specific spacecraft missions. 

GMAT's architecture was designed so that the elements 
of the engine simulate spacecraft missions by operating 
on objects through fairly abstract classes. Specializa­
tion of these classes results in the ability to create ob­
jects that specialize these abstract interfaces into detailed 
elements of the spacecraft simulation. In other words, 
GMAT models a spacecraft mission by specializing high 
level classes into subclasses responsible for numerically 
simulating spacecraft and their environment, orbital com­
putations, and the timeline defining the evolution of these 
elements. These specialized subclasses are the architec­
tural components that a user sees as resources and ~om­
mands, as described earlier in this paper. 

While the system contains subclasses that simulate most 
of the components anticipated by the project team, we 
also recognized from the start that GMAT could not con­
tain everything that every user would need. The philoso­
phy of starting from abstract classes defining interfac~s 
that are specialized to meet mission needs provides a 
powerful mechanism for extending these classes through 
subclasses that meet the needs of the user community. 
The GMAT development team has used this approach re­
peatedly to add new capabilities to the system. 

The user configurable components of GMAT are all de­
rived from a general purpose base class, GmatBase, 



which defi nes interfaces used throughout the system to 
access common properties of the user classes. This 
base class defines a framework used by GMAT's engine 
to ·manage the objects used when modeling a mission. 
Classes derived from GmatBase are specialized to model 
different aspects of the mission. Classes located deeper 
in the GmatBase class hierarchy are, in general, more 
specialized than those at the higher levels. Details of 
GMAT's class structure can be found in the GMAT Archi­
tectural Specification[I], or by running GMAT's source 
code through the Doxygen source code documentation 
generator[2). 

These subclasses ofGmatBase provide the framework for 
extension of GMAT's capabilities, either through work 
directly in GMAT's source code, or through plug-in mod­
ules loaded by GMAT at runtime. The remaining pages 
of this article explain the design of GMAT's plug-in ar· 
chitecture, and include an overview of a simple plug-in 
available in source form that illustrates the key elements 
of a GMAT plug-in extension. 

4. GMAT PLUG-INS 

Builds of GMAT made using development source code 
after June 25, 2008 have the ability to load shared li­
braries at run time and retrieve new user objects from 
these libraries. The approach taken for this capability 
was built on a prototype extension implemented at Think­
ing Systems in April, 2008 to meet specific needs of the 
LCROSS mission, and documented as an extension to 
GMAT[3). The following paragraphs explain how to use 
the plug-in extensions to add new capabilities to GMAT. 
A specific example - the addition of a new force for 
GMAT's force model - is described in some detail, with 
emphasis on the features necessary for incorporation into 
GMAT at run time. 

GMAT has been extended through the incorporation of 
new capabilities, loaded at run time using shared li­
braries, that incorporate a variety of features. These li­
braries, called GMAT plug-ins, have been used to add 
new optimizers, to develop estimation capabilities, to 
drive proprietary visualization elements, and to support 
ephemeris generation. 

We'll begin this section by looking at the steps needed to 
construct a GMAT plug-in. Once these steps have been 
described, the design of the example plug-in code - a 
basic solar sail model for GMAT's force model - is de­
scribed, along with descriptions of the pieces needed to 
incorporate the new model through the plug-in interface. 
Finally, we present the steps needed to tell GMAT about 
the new plug-in. 

4.1. The Plug-in Development Process 

GMAT's Plug-in capabilities let developers extend the 
c lasses derived from the GmatDase class. Instances of 

these classes are constructed using GMAT's Factory sub­
system. Plug-in authors capitalize on this design by cre­
ating custom factories designed to support the new com­
ponents that they are adding to the system. 

A GMAT plug-in is a shared library, linked against a 
shared library build of GMAT's base code, that con­
tains the class code for the new capability, one or more 
supporting Factories for the new components, and a set 
of three C-style interface functions that are accessed by 
GMAT to load the plug-in. In the fo llowing paragraphs, 
we describe how to use each of these plug-in interfaces, 
starting from the build requirements for GMAT, proceed­
ing through the interface functions and factory require­
ments, and finishing with the actual new component that 
is being added. The next section of this document de­
scribes a sample plug-in which illustrates the process. 

4.2. Preparing GMAT for Plug-In Use 

GMAT plug-ins create classes that are derived from 
classes in GMAT's base code. The plug-in needs to be 
linked against that code in order to use the capabilities of 
the base classes, and to build the complete derived ob­
jects. In order to do this, the plug-in library needs to be 
linked agair.ist the base code that will be run when GMAT 
runs. 

One option for a plug-in developer when compiling is to 
build the plug-in using all of the required classes as part 
of the plug-in library. That approach makes the plug­
in much larger than necessary, and makes the prospect 
of incompatibility between the plug-in and the evolv­
ing GMAT codebase likely. The preferred approach to 
plug-in development is to build GMAT's base code as 
one or more shared libraries. GMAT's build control file, 
DuildEnv.mk, has a setting for ~ is option. A developer 
that is building a plug-in need only add this line to the 
file: 

SHARED_BASE = l 

and then clean and build GMAT. The build process will 
build the base code as a shared library- named libGmat­
Base or libGmatBaseNoMatlab, depending on the MAT­
LAB build nags - that can be used for plug-in develop­
ment. Once GMAT has been built this way, the plug-in 
developer is ready to start coding the plug-in. 

4.3. The Plug-in Interface Functions 

GMAT accesses new user classes contained in plug-in li­
braries by calling th ree methods in the plug-in library: 
GetFactoryCount(), GetFactoryPointer(), and SetMes­
sageReceiver(). GMAT uses these functions as the entry 
point into the plug-in components. They are dcfine.d as 
follows: 



.. • Integer GetFactoryCountO: This function reports 
the number of Factory classes that are contained in 
the plug-in. The current implementation of GMAT 
requires that factories only support a single core type 
because of an implementation limitation in the Fac­
toryManager, so larger plug-in libraries may need 
more than one supporting factory. 

• Factory* GetFactoryPointer(lnteger index): This 
function retrieves Factory pointers from the plug-in. 
Once GMAT knows the number of factories in the 
library, it calls this function to retrieve the contained 
factories one at a time. 

• void SetMessageReceiver(MessageReceiver* m): 
Messages posted in GMAT are all sent to a Mes­
sageReceiver. This optional function is used to set 
the MessageReceiver for a plug-in if the developer 
incorporated GMAT's base code in the plug-in li­
brary, rather than linking against a shared library. 

4.4. The Custom Factory 

GMAT's Factory subsystem is described in some detail in 
the Architectural Specification[!]. GMAT uses this sub­
system to create user objects that are needed to run a mis­
sion. The class diagram for the subsystem is· shown in 
Figure 4. 

The Factory base class defines the interface used to create 
user objects. It includes subclass specific interfaces for 
the core user class types, as can be seen from this portion 
of the class definition: 

claaa GMAT_API Factory 
{ 
public: 

// Return objects ae generic type 
virtual CmatSase• CreateObject( 

conat std::atring &ofType, 
const atd::atrlng &withName • '' )1 

// return objects as specified types 
virtual SpaceObject•CreateSpacecraft( 

const atd::string &ofType, 
const atd::string &withName • ••); 

virtual Propagator• CreatePropagator( 
conat std::string &ofType, 
const atd::string &withName • ••); 

virtual ForceModel • createForceModel( 
const atd::atring &ofType, 
const atd::atring &withName • ''); 

When the programmer has decided what type of new 
component needs to be implemented, she creates a 
new factory that implements the corresponding factory 
method from this group and calls the new component's 
constructor. Each of the factory classes shown in Figure 4 
is available for browsing in the src/base/factory folder of 
GMAT's source tree, so the developer should be able to 
select an appropriate Factory as a starting point for the 
custom Factory. The sample code includes code for a 
Factory supporting a new Physical Model class. 

• 

4.5. The New Feature 

The purpose of all of the support code described above is, 
of course, the implementation of a new user component. 
GMAT provides a rich set of classes that can be used as a 
starting point for the new component. Programmers use 
one of the existing classes as the base class for the new 
feature. That approach guarantees that GMAT has sup­
port for most or all of the plug-in component in the core 
GMAT engine, significantly reducing integration efforts. 
The next section describes the design and implementation 
of one such component: a custom force used in GMAT's 
force model. 

5. AN EXAMPLE 

This section presents the design for a complete GMAT 
plug-in library. The example shown here is a new force 
for the force model. The new force used for this example 
is a directed solar radiation pressure force, appropriate for 
solar sailing, as described in Montenbruck and Gi11[5]. 
The complete source code for this plug-in library, along 
with make files, is available from the Plug-in project on 
SourceForge(6]. 

For the purposes of this example, the spacecraft attitude 
will be used to calculate the direction of the normal to the 
reflecting surface, and thus the direction of of the force 
vector. More specifically, for this example the space­
craft's x-axis, as specified by its attitude, will be treated 
as the normal, n, to the surface that the light hits. The 
spacecraft's coefficient of reflectivity, 1 <= Cr <= 2, 
determines the amount of light that reflects o ff of the 
spacecraft; Cr = 1 means that all of the incident light 
is absorbed, while Cr = 2 means that the light is all re­
flected. 

The following sections define the new force, describe the 
class used to model the force, and then present the code 
needed to add the new force to GMAT using the plug-in 
architecture. 

5.1. The Physics of the SolarSail Model 

We'll begin by describing the model implemented in the 
code. The vector from the spacecraft to the Sun, es, 
makes an angle () with the surface normal ii. The ab­
sorbed radiation applies a force f,. directed opposite to 
the sun vector. The reflected radiation applies a force di­
rected anti-parallel to the normal vector, ii. 

The magnitude of each of these forces is equal to the in­
cident radiation pressure, Pr, multiplied by the incident 
surface area, A. and then adjusted to take into account 
the amount of light reflected or absorbed. The force for 
absorbed light is given by 
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Figure 4. The Factory Subsystem 

Faba = - (1- e )PrA cos(O)e8 ( I ) 

while that of the reflected light is given by 

(2) 

The constant c in these equations is the percentage of the 
incident light that is reflected from the surface, and is re­
lated to the coefficient of reflectivity through the equation 

Cr = 1 +c (3) 

Finally, the factor of2 in equation 2 accounts for the re­
flectance effect of Newton's third law. The cosine term 
in this equation is squared because the reflected light ap­
plies its force exclusively in the anti-normal direction; the 
force components parallel to the reflecting surface from 
the incoming and outgoing light cancel out. 

The incident radiation pressure, Pr, is a function of the 
distance from the Sun to the spacecraft. Spacecraft closer 
to the Sun experience a larger incident radiation pressure 
than those further away. This effect follows an inverse 
squa~e relationship; if the solar radiation pressure at one 

astronomical unit from the Sun, RAu, is written as PAu, 
the radiation pressure at an arbitrary d istance r. is given 
by 

(4) 

Putting all of these pieces together, the force imple­
mented in this plug-in is g iven by 

Fsait = - PrAcosO{(l - e)e., + 2ceos0fi} (5) 

GMAT's equations of motion are expressed in terms 
of derivatives of the position vectors. That means 
that the function that models a force in GMAT, 
GetDeri vati ves (), needs to express the effect of the 
force in terms of an acceleration. The Spacecraft model 
contains a refl ectivity coefficient, Cr, which matches the 
coefficient in equation 3. Using equation 3 and the rela­
tionship F = ma, the resulting acceleration is 

asait = - Pr A cos0{(2 - Cr)e. +2(Cr - l)cosllfi} 
m 

(6) 
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Figure 5. The Solar Sail Model Components. The plug-in 
components are shown in blue. 

This equation is encapsulated in the class, SolarSail, de­
scribed below. 

S.2. The SolarSall Class 

GMAT's force model classes are all implementations of 
a base PhysicalModel class. The SolarSail plug-in uses 
many of the features and structures already implemented 
in the SolarRadiationPressure class, one of the members 
of the force model subsystem. The SolarSail class uses 
its own factory, implemented as the Factory component 
of the plug-in library. These additions are shown in the 
ForceModel class hierarchy, shown in Figure 5. 

The solar sail force uses many of the same calculations 
as are performed for GMAT's solar radiation pressure 
model. For that reason, the SolarSailForce class is de­
rived from the SolarRadiationPressure class. The new 
class does need to implement a different acceleration 
model, so it overrides the GetDerivativesO method to 
provide accelerations as described above. It also pro­
vides implementations for the four C++- default methods: 
the constructor, copy constructor, destructor, and assign­
ment operator. The new force has data structures that 
need to be initialized, so the Initialize() method is over­
ridden (and calls the SolarRadiationPressure::Initialize() 
method internally). GMAT's ForceModel class contains 
a method, IsUserForce(), which is called to determi~e 
how to handle scripting for forces added by users. This 
method is overridden to report the new force as a user 
force. Finally, the Clone() method is overridden so that 
GMAT can make copies of the new force from a Gmat-
Base pointer. · 

The fu ll source code for the SolarSailForce class is avail­
able from SourceForge[6] in the trunk/SolarSail folder of 
the project's Subversion repository. 

S.3. The SallFactory and Interface code 

The SailFactory is used to create new instances of the So­
larSailForce. The code is identical to many of the core 
factories found in GMAT's src/base/factory fi le folder. 
There are three sections specific to the SolarSailForce: 
the CreatePhysicalModel() method: 

PhysicalMadel• SailFactary:: 

} 

CreatePhysicalMadel( . 
canst std::string &afType, 
canst std::string &withName) 

if (afType == "SailFarce") 
return new SalarSailFarce( 

withName) ; 

return NULL; 

and the code in the constructor and copy constructor that 
populates the list of creatable object names. That code 
has this form: 

if (creatables.empty()) 
{ 

creatables.push_back( 
"SailFarce") ; 

The rest of the factory code fi lls out the required ele­
ments: the constructors, assignment operator, and de­
structor, as required in GMAT's coding standards[4]. 

The code in the interface functions is nearly as transpar­
ent. There are two C-style functions that are used in the 
plug-in implementation: GetFactoryCount() and GetFac-­
toryPointer(). The GetFactoryCount() method returns the 
number of factories in the plug-in- one ( 1) for th is exam­
ple. GetFactoryPointer() creates an instance of the Sail­
Factory and returns it to GMAT when it is called with 
an input index of O (indicating the first factory in the 
plug-in), and returns NULL for calls with other factory 
indices. More complicated plug-in libraries use this fea­
ture to support multiple factories that are loaded by call­
ing GetFactoryPointer for each factory in the library. 

Once the code described above is in place, it can be 
compiled into a shared library that meets GMAT's plug­
in requirements. GCC make files for the solar sail li­
brary plug-in are included in the SourceForge reposi­
tory, along with a configuration file, SolarSailEnv.mk, for 
each of our supported platforms. The build process com­
piles the source files into object files, links those obj~t 
files with references to the GMAT base code shared li­
brary (libGmatBase or libGmatBaseNoMatlab, described 
above), and produces a shared library compatible with 
your GMAT build. 



5.4. Adding the Plug-in to GMAT 

Once you have built the plug-in library described above, 
place the resulting code in the folder that contains your 
GMAT executable. The plug-in will become available in 
GMAT if you add a lirie to your GMAT startup file iden­
tifying the library as a plug-in. The required line looks 
like this for a plug-in named libSolarSail: 

PLUGIN = libSolarSail 

The actual plug-in file name depends on your operating 
system - on Windows, the file name would be " libSolar­
Sail.dll"; on Linux, it would be " libSolarSail.so", and on 
Mac, "libSolarSail.dylib". GMAT manages the file exten­
sion internally based on the operating system, so the line 
in the startup file does not explicitly specify the shared 
library extension. 

On~e this line is in place in your startup file, GMAT will 
attempt to load the plug-in when it is started. On success, 
the capabilities of the plug-in code - in this case, the new 
solar sail model - will be available for use from a GMAT 
script. 

5.5. Upcoming Capabilities 

The current plug-in capability provides new components 
to GMAT's model, along with the factory code that 
GMAT uses in its engine 10 make that capability avail­
able through GMAT's scripting language. At this writ­
ing, GMAT does not yet have the ability to generate com­
plete user interface elements that extend the wxWidgets 
based graphical user interface. The plug-in interfaces for 
that capability are currently being designed, and should 
be ready for use in the second quarter of 201 O. 

6. SUMMARY 

This paper provided an overview of the General Mission 
Analysis Tool, GMAT, and then provided some detail 
about how GMAT can be tai lored through plug-in com­
ponents loaded at run time. The discussion of the plug­
in capabilities described the elements that GMAT expects 
for a plug-in module: the new functionality itself, the sup­
porting factory or factories that make the module visible . 
in GMAT's engine, and the interface code used to load 
the plug-in features. An example, implemented in code 
available for free download, was described that illustrated 
the addition ofa force for GMAT's force model. Finally, 
the steps needed to tell GMAT about the new functional­
ity were provided. 

Groups or individuals interested in GMAT can ob­
tain a copy of the system from the GMAT web­
site at NASA's Goddard Space Flight Center, 

http://gmat.gsfc.nasa.gov. The code for GMAT can 
be downloaded from SourceForge using the project 
address: http://sourceforge.net/projects/gmat. The 
GMAT plug-in example described in this paper can be 
downloaded from the GMAT plug-in project at Source­
Forge, https://sourceforge.net/projects/gmatplugins. 
Finally, GMAT's developer and user communities can be 
found at our forum and wiki sites, http://gmat.ed­
pages.com/forum/index.php and http://gmat.ed­
pages.com/wiki/tiki-index.php, respectively. 
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