
THE GENERAL MISSION ANALYSIS TOOL (GMA1): CURRENT FEATURES AND
ADDING CUSTOM FUNCTIONALITY

Darrel J. Conway• and Steven P. Hughes2

1 Thinking Systems, Inc., Tucson. AZ. USA
2NASA Goddard Space Flight Center. Greenbelt, MD, USA

ABSTRACT

The General Mission Analysis Tool (GMAT) is a soft­
ware system for trajectory optimization, mission analy­
sis, trajectory estimation, and prediction developed by
NASA, the Air Force Research Lab, and private indus­
try. GMAT's design and implementation are based on
four basic principles: open source visibility for both the
source code and design documentation; platfonn inde­
pendence; modular design; and user extensibility. The
system, released under the NASA Open Source Agree­
ment, runs on Windows, Mac and Linux. User exten­
sions, loaded at run time, have been built for optimiza­
tion, trajectory visualization, force model extension, and
estimation, by parties outside of GMAT's development
group. The system has been used to optimize maneu­
vers for the Lunar Crater Observation and Sensing Satel­
lite (LCROSS) and ARTEMIS missions and is being used
for fonnation design and analysis for the Magnetospheric
Multiscale Mission (MMS).

In this paper, we discuss two primary topics: GMAT's
current feature set; and how to write plug-in libraries
written outside of the main development code. The ex­
isting feature set is broken down into two principal cat­
egories, called resources and commands. GMAT's re­
sources consist of models of the components used to
build a mission timeline: celestial objects, spacecraft and
ground stations, hardware components, propagators, nu­
merical solvers, variables and arrays, and output com­
ponents. The commands are used to tie these resources
together in a time ordered sequence, and are used to de­
scribe how the resources interact.

We present several examples of extensions to GMAT that
have been built to support mission specific goals using
custom plug-in libraries. The key elements required for
a GMAT plug-in are presented, along with an overview
of the class structure for the system that makes these ele­
ments work.

Key words: GMAT; Astrodynamics; Open Source.

l. PROJECT AND SYSTEM OVERVIEW

t.l. Objectives and Goals

The goal of the GMAT project is to develop new astro­
dynamics technologies and provide software for opera­
tional mission design and navigation support by working
inclusively with individuals, universities, businesses, and
other government organiza~ions. A second and important
goal is to share that technology in an open and unhin­
dered way. GMAT has been approved for release under
the NASA Open Source Agreement (NOSA). You, your
business, or your organization can' get involved in the
GMAT project in numerous ways. We use an open source
model to encourage collaboration and to maximize tech­
nology transfer. rndividuals, universities, industry, and
other government organizations can contribute and col­
laborate in ways that meet their respective goals, needs,
and interests.

1.2. Contributors

GMAT contributors include volunteers and those paid
for services they provide. We welcome new contribu­
tors to the project, either as users providing feedback
about the features of the system, or as developers inter­
ested in contributing to the implementation of the system.
Current U.S. government participants include NASA and
the Air Force Research Lab (AFRL). Past and present
industry contributors to GMAT include Thinking Sys­
tems, Inc. (system architecture and all aspects of de­
velopment), a.i.-solutions (testing), Boeing (algorithms
and testing), The Schafer Corporation (all aspects of de­
velopment), Honeywell Technology Solutions (testing),
and the Computer Sciences Corporation (requirements).
The NASA Jet Propulsion Laboratory (JPL) is providing
funding for integration of their SPICE toolkit into GMAT.
Additionally , the European Space Agency's (ESA) ad­
vanced concepts team has developed optimizer plug-ins
for the Non-Linear Programming (NLP) solvers SNOPT
(Sparse Nonlinear OPTimizer) and IPOPT (Interior Point
OPTimizer) using the process described in the later half
of this paper.

https://ntrs.nasa.gov/search.jsp?R=20180000083 2019-08-30T13:36:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/154738629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Navigation and Mission Design Branch at NASA's
Goddard Space Flight Center performs project m~nage­
ment activities and is involved in most phases of the de­
velopment process including requirements, algorithms,
design, and testing. The Ground Software Systems
Branch performs design. implementation, and integration
testing. The Flight Software Branch contributes to de­
sign and implementation. AFRL is involved in all de­
velopment areas but primarily in the areas of require­
ments specification, mathematical and algorithmic speci­
fications, system prototyping, and testing.

1.3. Platforms

GMAT is written to run on Windows, Linux and Macin­
tosh platforms, using the wxWidgets cross platform UI
Framework, and can be built using either commercial de­
velopment tools or the GNU Compiler Collection (GCC).
The system is implemented in ANSI standard Ct+ (ap­
proximately 250,000 non-comment source lines of code)
using an Object Oriented methodology, with a rich class
structure designed to make new features simple to incor­
porate.

On Windows and Linux, GMAT does not call any oper­
ating system unique functions or methods. Calls to the
operating system are standard calls for reading and writ­
ing data fi les and for writing data to the screen. On the
Mac, GMAT makes a call to the operating system to open
XI I, which is required to run MATLAB on the Mac.

1.4. User Interfaces

GMAT has three user interfaces. The graphical user inter­
face (GUI) illustrated in Figs. (l), (2), and (3) allows the
user to set up and execute all aspects ofGMAT. The script
interface is textual and also allows the user to set up and
execute all aspects ofGMAT. The MATLAB interface is
a secondary textual interface for running the system via
calls from GMAT to MATLAB.

1.5. Status

While GMAT has undergone extensive testing and is ma­
ture software, at the present time we consider the soft­
ware to be in Reta fonn. GMAT is not yet sufficiently ver­
ified to be used as a primary operational analysis sytem.
GMAT has been used to optimize maneuvers for flight
projects such ns NASA's LCROSS and ARTEMIS mis­
sions, and for formation optimization and analysis for the
MMS mission. However, for flight planning, we indepen­
dently verify solutions generated in GMAT in the primary
operational system.

The GMAT Team is currently working on several activi­
ties including maintenance, bug fixes, and the implemen­
tation of estimation components. The objective of the

c::, Grcu,d Station
8 t!) Spacecraft

t::I H«dlolare
¥ l1NtSat

. t::I Formotions

8081.fflS
4t ro1

El O Prcpaoators
· t' l1Nt58

t' MaanCertered
l!I e:, Sda,System

8 ~5<Mfs
s e> 8ouldrf vu Solvers

• 1 ~ OffCormtor
. : e:i Or,tim.s

s e SLosat>ers
' . E-,,thl~

' ; • MoonlnertlaMew
I '. flvR.~

I• Ep1emFle
l!I \:':) l!Urfeces
l!I c=:i Sa~
. e:, Ynties/Amrys[Strtrq;

8 e) Coordna S)'Stems
.)-E~q

J-~c
.)- E«ttflxed
I,)-~ot
.)- Moori'll20XlEq
; J-~ot

l!l I::) Ftrdlons

Fig11re I. Screen Capture of Resource Tree

current development cycle is to provide a stable, non-beta
release in the fall of 2010.

2. FEATURES

GMAT is designed to model, optimize, and estimate
spacecraft trajectories in flight regimes ranging from low
Earth orbit to lunar applications, interplanetary trajecto­
ries, and other deep space missions.

Analysts model space missions in GMAT by first creating
resources such as spacecraft, propagators, estimators, and
optimizers. A figure of the resource tree for a lunar trans­
fer application is shown in Fig. (I). Resources can be
configured to meet the needs of specific applications and
missions. GMAT contains an extensive set of available
Resources that can be broken down into physical model
Resources and analysis model Resources. Physical Re­
sources include spacecraft, thruster, tank, transmitter•,
transponder• , antenna•, receiver•, ground station, forma­
tion, impulsive bum, finite bum, planet, comet, asteroid,
moon, barycenter, libration point, measurement model*,
and measurement simulator*. Analysis model Resources
include differential corrector, propagator, optimizer ,es­
timator•, 3-0 graphic, x-y plot, report file, ephemeris
file, user-defined variable, array, and string, coordinate
system, custom subroutine, MATLAB function, and data

. RtsMIIS. Msslon I Ol.qu I : ·. ' . ;
8 0 Msslon S..-

! Ii?} Equation!
El O Taf9etl

O varvt
0 Vl/1'(2
~v Maneuver!

. f i' Propooate2
f i' Propooate3 -~· . • Achlsve2

: · .,I Endlaroett
8 0 TWQet2
: 0 Vary) .

~v Maneuver2
. . f i' Propooatri

. • Adieve3 ·
~ • ... EndT arvetZ
; I~. Repc,ti
' .f9s-1

Figure 2. Screen Captu~ of the Mission Tree

file•. (Items with are currently under development
and not available in the public repository at the time of
this writing as they have pot been reviewed for ITAR and
other release issues.)

After the resources are configured, they are used in the
mission sequence, as shown in Fig. (2) to model space­
craft motion and simulate events in a mission's time evo­
lution. Users employ built-in Commands that simulate·
trajectory dynamics or apply numerical methods such
as estimators, optimizers, and boundary value solvers.
The mission sequence supports the following commands:
propagate, impulsive maneuver, finite maneuver, target,
optimize, estimate, simulate measurements, non-linear
constraint, minimize, call functions, inline math, vary pa­
rameter, achieve parameter, if/else, for, and while, and
report.

The system can display trajectories in space, plot param­
eters against one another, and save parameters to fi les for
later processing. The trajectory and plot capabilities are
fully interactive, plotting data as a mission is run and al­
lowing users to zoom into regions of interest.

Trajectories and data can be viewed in any coordinate
system defined in GMAT, and GMAT allows users to ro­
tate the view and set the focus to nny object in the display.
The trajectory view can be animated so users can watch
the evolution of the trajectory over time. A screen capture
of the graphics after computing a lunar transfer is shown
in Fig. (3).

3. SYSTEM ARCHITECTURE

GMAT's System Architecture, described in the GMAT
Architectural Specification[l], can be broken into three
types of components: the Model, consisting of all of the

••••mm=:::ncea@~'l=1e:1=11=om1:::111::::i1a:::::~1.~1zQ~\Z<~..JmM ~---
l~U Y l , l'l> l fl t .. II a l "': ;i! IOQI • _ .,DA • • ~- ~g~r

.... g ;:. · · • • -.., ..,.,. aou ...,.,. ~ ,.-.&.e ..,. ·-­... -. .,_
'fl c.l......,.

""' . ~-• .:) -·­·­·--1\t ,._
..o..-.. ·­·-­... -.. ...__

o•~
"JL.JC....,_, .,.._ ,.,__ ,.,_ ,._ _,._
,._ ... -

Figure 3. Screen Capture of Lunar Transfer in GMAT

elements required for simulating a spacecraft mission;
the Engine, responsible for managing and connecting to­
gether the model elements; and interfaces, consisting of
the scripting and graphical user interfaces, the MATLAB
interface, and a simple console based interface. Users
interact with GMAT through any of these interfaces to
control the engine, and by controlling the engine, create
a model that simulates specific spacecraft missions.

GMAT's architecture was designed so that the elements
of the engine simulate spacecraft missions by operating
on objects through fairly abstract classes. Specializa­
tion of these classes results in the ability to create ob­
jects that specialize these abstract interfaces into detailed
elements of the spacecraft simulation. In other words,
GMAT models a spacecraft mission by specializing high
level classes into subclasses responsible for numerically
simulating spacecraft and their environment, orbital com­
putations, and the timeline defining the evolution of these
elements. These specialized subclasses are the architec­
tural components that a user sees as resources and ~om­
mands, as described earlier in this paper.

While the system contains subclasses that simulate most
of the components anticipated by the project team, we
also recognized from the start that GMAT could not con­
tain everything that every user would need. The philoso­
phy of starting from abstract classes defining interfac~s
that are specialized to meet mission needs provides a
powerful mechanism for extending these classes through
subclasses that meet the needs of the user community.
The GMAT development team has used this approach re­
peatedly to add new capabilities to the system.

The user configurable components of GMAT are all de­
rived from a general purpose base class, GmatBase,

which defi nes interfaces used throughout the system to
access common properties of the user classes. This
base class defines a framework used by GMAT's engine
to ·manage the objects used when modeling a mission.
Classes derived from GmatBase are specialized to model
different aspects of the mission. Classes located deeper
in the GmatBase class hierarchy are, in general, more
specialized than those at the higher levels. Details of
GMAT's class structure can be found in the GMAT Archi­
tectural Specification[I], or by running GMAT's source
code through the Doxygen source code documentation
generator[2).

These subclasses ofGmatBase provide the framework for
extension of GMAT's capabilities, either through work
directly in GMAT's source code, or through plug-in mod­
ules loaded by GMAT at runtime. The remaining pages
of this article explain the design of GMAT's plug-in ar·
chitecture, and include an overview of a simple plug-in
available in source form that illustrates the key elements
of a GMAT plug-in extension.

4. GMAT PLUG-INS

Builds of GMAT made using development source code
after June 25, 2008 have the ability to load shared li­
braries at run time and retrieve new user objects from
these libraries. The approach taken for this capability
was built on a prototype extension implemented at Think­
ing Systems in April, 2008 to meet specific needs of the
LCROSS mission, and documented as an extension to
GMAT[3). The following paragraphs explain how to use
the plug-in extensions to add new capabilities to GMAT.
A specific example - the addition of a new force for
GMAT's force model - is described in some detail, with
emphasis on the features necessary for incorporation into
GMAT at run time.

GMAT has been extended through the incorporation of
new capabilities, loaded at run time using shared li­
braries, that incorporate a variety of features. These li­
braries, called GMAT plug-ins, have been used to add
new optimizers, to develop estimation capabilities, to
drive proprietary visualization elements, and to support
ephemeris generation.

We'll begin this section by looking at the steps needed to
construct a GMAT plug-in. Once these steps have been
described, the design of the example plug-in code - a
basic solar sail model for GMAT's force model - is de­
scribed, along with descriptions of the pieces needed to
incorporate the new model through the plug-in interface.
Finally, we present the steps needed to tell GMAT about
the new plug-in.

4.1. The Plug-in Development Process

GMAT's Plug-in capabilities let developers extend the
c lasses derived from the GmatDase class. Instances of

these classes are constructed using GMAT's Factory sub­
system. Plug-in authors capitalize on this design by cre­
ating custom factories designed to support the new com­
ponents that they are adding to the system.

A GMAT plug-in is a shared library, linked against a
shared library build of GMAT's base code, that con­
tains the class code for the new capability, one or more
supporting Factories for the new components, and a set
of three C-style interface functions that are accessed by
GMAT to load the plug-in. In the fo llowing paragraphs,
we describe how to use each of these plug-in interfaces,
starting from the build requirements for GMAT, proceed­
ing through the interface functions and factory require­
ments, and finishing with the actual new component that
is being added. The next section of this document de­
scribes a sample plug-in which illustrates the process.

4.2. Preparing GMAT for Plug-In Use

GMAT plug-ins create classes that are derived from
classes in GMAT's base code. The plug-in needs to be
linked against that code in order to use the capabilities of
the base classes, and to build the complete derived ob­
jects. In order to do this, the plug-in library needs to be
linked agair.ist the base code that will be run when GMAT
runs.

One option for a plug-in developer when compiling is to
build the plug-in using all of the required classes as part
of the plug-in library. That approach makes the plug­
in much larger than necessary, and makes the prospect
of incompatibility between the plug-in and the evolv­
ing GMAT codebase likely. The preferred approach to
plug-in development is to build GMAT's base code as
one or more shared libraries. GMAT's build control file,
DuildEnv.mk, has a setting for ~ is option. A developer
that is building a plug-in need only add this line to the
file:

SHARED_BASE = l

and then clean and build GMAT. The build process will
build the base code as a shared library- named libGmat­
Base or libGmatBaseNoMatlab, depending on the MAT­
LAB build nags - that can be used for plug-in develop­
ment. Once GMAT has been built this way, the plug-in
developer is ready to start coding the plug-in.

4.3. The Plug-in Interface Functions

GMAT accesses new user classes contained in plug-in li­
braries by calling th ree methods in the plug-in library:
GetFactoryCount(), GetFactoryPointer(), and SetMes­
sageReceiver(). GMAT uses these functions as the entry
point into the plug-in components. They are dcfine.d as
follows:

.. • Integer GetFactoryCountO: This function reports
the number of Factory classes that are contained in
the plug-in. The current implementation of GMAT
requires that factories only support a single core type
because of an implementation limitation in the Fac­
toryManager, so larger plug-in libraries may need
more than one supporting factory.

• Factory* GetFactoryPointer(lnteger index): This
function retrieves Factory pointers from the plug-in.
Once GMAT knows the number of factories in the
library, it calls this function to retrieve the contained
factories one at a time.

• void SetMessageReceiver(MessageReceiver* m):
Messages posted in GMAT are all sent to a Mes­
sageReceiver. This optional function is used to set
the MessageReceiver for a plug-in if the developer
incorporated GMAT's base code in the plug-in li­
brary, rather than linking against a shared library.

4.4. The Custom Factory

GMAT's Factory subsystem is described in some detail in
the Architectural Specification[!]. GMAT uses this sub­
system to create user objects that are needed to run a mis­
sion. The class diagram for the subsystem is· shown in
Figure 4.

The Factory base class defines the interface used to create
user objects. It includes subclass specific interfaces for
the core user class types, as can be seen from this portion
of the class definition:

claaa GMAT_API Factory
{
public:

// Return objects ae generic type
virtual CmatSase• CreateObject(

conat std::atring &ofType,
const atd::atrlng &withName • '')1

// return objects as specified types
virtual SpaceObject•CreateSpacecraft(

const atd::string &ofType,
const atd::string &withName • ••);

virtual Propagator• CreatePropagator(
conat std::string &ofType,
const atd::string &withName • ••);

virtual ForceModel • createForceModel(
const atd::atring &ofType,
const atd::atring &withName • '');

When the programmer has decided what type of new
component needs to be implemented, she creates a
new factory that implements the corresponding factory
method from this group and calls the new component's
constructor. Each of the factory classes shown in Figure 4
is available for browsing in the src/base/factory folder of
GMAT's source tree, so the developer should be able to
select an appropriate Factory as a starting point for the
custom Factory. The sample code includes code for a
Factory supporting a new Physical Model class.

•

4.5. The New Feature

The purpose of all of the support code described above is,
of course, the implementation of a new user component.
GMAT provides a rich set of classes that can be used as a
starting point for the new component. Programmers use
one of the existing classes as the base class for the new
feature. That approach guarantees that GMAT has sup­
port for most or all of the plug-in component in the core
GMAT engine, significantly reducing integration efforts.
The next section describes the design and implementation
of one such component: a custom force used in GMAT's
force model.

5. AN EXAMPLE

This section presents the design for a complete GMAT
plug-in library. The example shown here is a new force
for the force model. The new force used for this example
is a directed solar radiation pressure force, appropriate for
solar sailing, as described in Montenbruck and Gi11[5].
The complete source code for this plug-in library, along
with make files, is available from the Plug-in project on
SourceForge(6].

For the purposes of this example, the spacecraft attitude
will be used to calculate the direction of the normal to the
reflecting surface, and thus the direction of of the force
vector. More specifically, for this example the space­
craft's x-axis, as specified by its attitude, will be treated
as the normal, n, to the surface that the light hits. The
spacecraft's coefficient of reflectivity, 1 <= Cr <= 2,
determines the amount of light that reflects o ff of the
spacecraft; Cr = 1 means that all of the incident light
is absorbed, while Cr = 2 means that the light is all re­
flected.

The following sections define the new force, describe the
class used to model the force, and then present the code
needed to add the new force to GMAT using the plug-in
architecture.

5.1. The Physics of the SolarSail Model

We'll begin by describing the model implemented in the
code. The vector from the spacecraft to the Sun, es,
makes an angle () with the surface normal ii. The ab­
sorbed radiation applies a force f,. directed opposite to
the sun vector. The reflected radiation applies a force di­
rected anti-parallel to the normal vector, ii.

The magnitude of each of these forces is equal to the in­
cident radiation pressure, Pr, multiplied by the incident
surface area, A. and then adjusted to take into account
the amount of light reflected or absorbed. The force for
absorbed light is given by

cd: The Factory Sl.tlsystem

factory

OlarcllnlleS,.nffl'lractary

ftapSetup raaary

f'undlanhdor,

<<Singleton>>
raaor,11-gs

Sohuraaor,

S1op01nc111anr11e1ary

SUbla lllaraaory

Hlrclewe raa or,

Figure 4. The Factory Subsystem

Faba = - (1- e)PrA cos(O)e8 (I)

while that of the reflected light is given by

(2)

The constant c in these equations is the percentage of the
incident light that is reflected from the surface, and is re­
lated to the coefficient of reflectivity through the equation

Cr = 1 +c (3)

Finally, the factor of2 in equation 2 accounts for the re­
flectance effect of Newton's third law. The cosine term
in this equation is squared because the reflected light ap­
plies its force exclusively in the anti-normal direction; the
force components parallel to the reflecting surface from
the incoming and outgoing light cancel out.

The incident radiation pressure, Pr, is a function of the
distance from the Sun to the spacecraft. Spacecraft closer
to the Sun experience a larger incident radiation pressure
than those further away. This effect follows an inverse
squa~e relationship; if the solar radiation pressure at one

astronomical unit from the Sun, RAu, is written as PAu,
the radiation pressure at an arbitrary d istance r. is given
by

(4)

Putting all of these pieces together, the force imple­
mented in this plug-in is g iven by

Fsait = - PrAcosO{(l - e)e., + 2ceos0fi} (5)

GMAT's equations of motion are expressed in terms
of derivatives of the position vectors. That means
that the function that models a force in GMAT,
GetDeri vati ves (), needs to express the effect of the
force in terms of an acceleration. The Spacecraft model
contains a refl ectivity coefficient, Cr, which matches the
coefficient in equation 3. Using equation 3 and the rela­
tionship F = ma, the resulting acceleration is

asait = - Pr A cos0{(2 - Cr)e. +2(Cr - l)cosllfi}
m

(6)

..
;

Figure 5. The Solar Sail Model Components. The plug-in
components are shown in blue.

This equation is encapsulated in the class, SolarSail, de­
scribed below.

S.2. The SolarSall Class

GMAT's force model classes are all implementations of
a base PhysicalModel class. The SolarSail plug-in uses
many of the features and structures already implemented
in the SolarRadiationPressure class, one of the members
of the force model subsystem. The SolarSail class uses
its own factory, implemented as the Factory component
of the plug-in library. These additions are shown in the
ForceModel class hierarchy, shown in Figure 5.

The solar sail force uses many of the same calculations
as are performed for GMAT's solar radiation pressure
model. For that reason, the SolarSailForce class is de­
rived from the SolarRadiationPressure class. The new
class does need to implement a different acceleration
model, so it overrides the GetDerivativesO method to
provide accelerations as described above. It also pro­
vides implementations for the four C++- default methods:
the constructor, copy constructor, destructor, and assign­
ment operator. The new force has data structures that
need to be initialized, so the Initialize() method is over­
ridden (and calls the SolarRadiationPressure::Initialize()
method internally). GMAT's ForceModel class contains
a method, IsUserForce(), which is called to determi~e
how to handle scripting for forces added by users. This
method is overridden to report the new force as a user
force. Finally, the Clone() method is overridden so that
GMAT can make copies of the new force from a Gmat-
Base pointer. ·

The fu ll source code for the SolarSailForce class is avail­
able from SourceForge[6] in the trunk/SolarSail folder of
the project's Subversion repository.

S.3. The SallFactory and Interface code

The SailFactory is used to create new instances of the So­
larSailForce. The code is identical to many of the core
factories found in GMAT's src/base/factory fi le folder.
There are three sections specific to the SolarSailForce:
the CreatePhysicalModel() method:

PhysicalMadel• SailFactary::

}

CreatePhysicalMadel(.
canst std::string &afType,
canst std::string &withName)

if (afType == "SailFarce")
return new SalarSailFarce(

withName) ;

return NULL;

and the code in the constructor and copy constructor that
populates the list of creatable object names. That code
has this form:

if (creatables.empty())
{

creatables.push_back(
"SailFarce") ;

The rest of the factory code fi lls out the required ele­
ments: the constructors, assignment operator, and de­
structor, as required in GMAT's coding standards[4].

The code in the interface functions is nearly as transpar­
ent. There are two C-style functions that are used in the
plug-in implementation: GetFactoryCount() and GetFac-­
toryPointer(). The GetFactoryCount() method returns the
number of factories in the plug-in- one (1) for th is exam­
ple. GetFactoryPointer() creates an instance of the Sail­
Factory and returns it to GMAT when it is called with
an input index of O (indicating the first factory in the
plug-in), and returns NULL for calls with other factory
indices. More complicated plug-in libraries use this fea­
ture to support multiple factories that are loaded by call­
ing GetFactoryPointer for each factory in the library.

Once the code described above is in place, it can be
compiled into a shared library that meets GMAT's plug­
in requirements. GCC make files for the solar sail li­
brary plug-in are included in the SourceForge reposi­
tory, along with a configuration file, SolarSailEnv.mk, for
each of our supported platforms. The build process com­
piles the source files into object files, links those obj~t
files with references to the GMAT base code shared li­
brary (libGmatBase or libGmatBaseNoMatlab, described
above), and produces a shared library compatible with
your GMAT build.

5.4. Adding the Plug-in to GMAT

Once you have built the plug-in library described above,
place the resulting code in the folder that contains your
GMAT executable. The plug-in will become available in
GMAT if you add a lirie to your GMAT startup file iden­
tifying the library as a plug-in. The required line looks
like this for a plug-in named libSolarSail:

PLUGIN = libSolarSail

The actual plug-in file name depends on your operating
system - on Windows, the file name would be " libSolar­
Sail.dll"; on Linux, it would be " libSolarSail.so", and on
Mac, "libSolarSail.dylib". GMAT manages the file exten­
sion internally based on the operating system, so the line
in the startup file does not explicitly specify the shared
library extension.

On~e this line is in place in your startup file, GMAT will
attempt to load the plug-in when it is started. On success,
the capabilities of the plug-in code - in this case, the new
solar sail model - will be available for use from a GMAT
script.

5.5. Upcoming Capabilities

The current plug-in capability provides new components
to GMAT's model, along with the factory code that
GMAT uses in its engine 10 make that capability avail­
able through GMAT's scripting language. At this writ­
ing, GMAT does not yet have the ability to generate com­
plete user interface elements that extend the wxWidgets
based graphical user interface. The plug-in interfaces for
that capability are currently being designed, and should
be ready for use in the second quarter of 201 O.

6. SUMMARY

This paper provided an overview of the General Mission
Analysis Tool, GMAT, and then provided some detail
about how GMAT can be tai lored through plug-in com­
ponents loaded at run time. The discussion of the plug­
in capabilities described the elements that GMAT expects
for a plug-in module: the new functionality itself, the sup­
porting factory or factories that make the module visible .
in GMAT's engine, and the interface code used to load
the plug-in features. An example, implemented in code
available for free download, was described that illustrated
the addition ofa force for GMAT's force model. Finally,
the steps needed to tell GMAT about the new functional­
ity were provided.

Groups or individuals interested in GMAT can ob­
tain a copy of the system from the GMAT web­
site at NASA's Goddard Space Flight Center,

http://gmat.gsfc.nasa.gov. The code for GMAT can
be downloaded from SourceForge using the project
address: http://sourceforge.net/projects/gmat. The
GMAT plug-in example described in this paper can be
downloaded from the GMAT plug-in project at Source­
Forge, https://sourceforge.net/projects/gmatplugins.
Finally, GMAT's developer and user communities can be
found at our forum and wiki sites, http://gmat.ed­
pages.com/forum/index.php and http://gmat.ed­
pages.com/wiki/tiki-index.php, respectively.

ACKNOWLEDGMENTS

Numerous individuals have contributed to GMAT and
the system would not exist without their contributions.
The authors of this paper are only two among many.
While a complete list is too lengthy, additional contrib­
utors include Russell Carpenter (GSFC), Edwin Dove
(GSFC), Dunn Idle V (The Shafer Corp.), Moriba Jah
(AFRL), Linda Jun (GSFC), Tom Kelecy (Boeing), LaM­
ont Ruley(GSFC), Wendy Shoan (GSFC), Gene Stillman
(The Shafer Corp.), Phil Silvia (The Shafer Corp.), Matt
Wilkins (The Shafer Corp.),

REFERENCES

[I] The GMAT Development Team, The GMAT Archi­
tectural Specification, (March 2008).

[2] Dimitri van Heesch, Doxygen, Available for free
download at http://www.stack.nV dimilri/doxygen/.

(3] Darrel J. Conway, An Approach to Plug-in Coding in
GMAT, (May 2008).

(4] Wendy Shoan and Linda Jun, C+ r Coding Standards
and Style Guide, as modified for the GMAT project
(March 2010).

[5] Oliver Montenbruck and Eberhard Gill, Satellite Or­
bits, Springer-Verlag, 2000.

[6] Darrel J. Conway (Administrator), Publicly
available GMAT plug-in code is available from
https://sourceforge.net/projects/gmatplugins/

