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Abstract 

 

Weather radar measurements from airborne or satellite platforms can be an effective 

remote sensing tool for examining the three-dimensional structures of clouds and 

precipitation. This chapter describes some fundamental properties of radar measurements 

and their dependence on the particle size distribution (PSD) and radar frequency. The 

inverse problem of solving for the vertical profile of PSD from a profile of measured 

reflectivity is stated as an optimal estimation problem for single- and multi-frequency 

measurements. Phenomena that can change the measured reflectivity Zm from its intrinsic 

value Ze, namely attenuation, non-uniform beam filling, and multiple scattering, are 

described and mitigation of these effects in the context of the optimal estimation 

framework is discussed. Finally, some techniques involving the use of passive microwave 

measurements to further constrain the retrieval of the PSD are presented. 

 

[[H1]] Introduction 

The ability of weather radar to measure the location and intensity of precipitation was rapidly 

realized in the late 1940s following World War II. However, ground-based radars are limited in 

their ability to directly detect precipitation close to the ground far from the radar site due to 

ground clutter, refraction of the radar beam, and the curvature of the earth. Beam blockage by 

terrain also poses problems for radar coverage in mountainous areas. Coverage over oceans and 

other remote areas, where maintaining a ground radar would be difficult and costly, is also 

impractical, yet the precipitation that falls in these regions has important impacts on the global 
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atmospheric circulations via latent heating (e.g., Hoskins and Karoly, 1981, Hartmann et al., 

1984, Matthews et al., 2004) and can have a profound influence on weather patterns thousands of 

kilometers away. Likewise, knowledge of precipitation over land, particularly in the form of 

snow, is a crucial component of the mass balance equation for glaciers and ice sheets, which 

must be properly characterized for realistic climate simulations (Shepherd et al., 2012).  

 

Airborne radar systems can provide high sensitivity and finely resolved vertical profiles to 

characterize precipitation microphysics for the benefit of model parameterizations and process 

understanding (e.g., Reinhardt et al, 2010, Heymsfield et al., 2013, Rauber et al., 2016). 

However, in order to achieve true global coverage, it had been proposed from nearly the 

beginning of the space age to put a weather radar in space (Kreigler and Kawitz, 1960), and 

efforts to do so began in earnest in the late 1970s and 1980s with the planning of the Tropical 

Rainfall Measuring Mission satellite (TRMM; Simpson et al., 1987, Okamoto et al., 1988) with 

its Ku-band Precipitation Radar (PR; Table 1), which was launched in 1997. TRMM was 

followed in 2014 by the Global Precipitation Measurement (GPM; Hou et al., 2014) misson with 

its Ku- and Ka-band Dual-frequency Precipitation Radar (DPR; Table 1), which provides 

increased accuracy, sensitivity, and extension to higher latitudes.  Both the TRMM PR and GPM 

DPR were intended not only to estimate precipitation directly from the radar data but also to 

construct a database of precipitation profiles to unify precipitation retrievals from passive 

microwave radiometers (Hou et al., 2014, Kummerow et al., 2015), enabling more frequent 

coverage than is possible from a narrow-swath on a single satellite. Meanwhile, in 2006, the 

CloudSat mission (Stephens et al., 2002) with a W-band Cloud Profiling Radar (CPR; Table 1), 



was launched into polar orbit, complementing TRMM and GPM by providing estimates of light 

precipitation at high latitudes (Behrangi et al., 2014). 

<<Table 00-01>> Key parameters of spaceborne weather radars launched prior to 2016. The 

GPM DPR consists of two radars with matched beams: the KuPR and KaPR. 

[begin box] 

In radar engineering and meteorology, it is common to refer to specific frequency ranges 

(bands) by letter designation. This table lists bands commonly used for meteorological radars 

according to the IEEE Standard 521-2002. Some of these bands contain gas absorption lines, 

where atmospheric extinction can be orders of magnitude higher than the surrounding “window” 

regions. However, it has been proposed to use radars operating at two or more closely-spaced 

frequencies near some of these bands to estimate vertical profiles of water vapor (e.g., 

Meneghini et al., 2005, Lebsock et al., 2015) by taking advantage of the differential attenuation. 

<<Table 00-02>> Band designations, frequency ranges, and significant absorption lines in each 

band. 

[end box] 

In order to minimize size and weight, which strongly correspond to the cost of a satellite mission, 

it is necessary to use higher frequencies (Ku-, Ka-, or W-band) than are typical for ground radar 

systems. With increasing frequency, power and antenna size requirements for a desired 

sensitivity and horizontal resolution are reduced, but attenuation and multiple scattering, which 

can lead to ambiguity in converting reflectivity to precipitation rate, increase. Even at higher 

frequencies, the distance from low earth orbit results in ground footprints that are large relative 

to the scale of variability in most precipitation systems and this non-uniformity must also be 



considered in precipitation retrieval algorithms. This chapter is intended to provide an overview 

of the theoretical basis and some practical implementations of precipitation retrieval algorithms 

for nadir (or near-nadir) looking airborne and spaceborne weather radars at attenuating 

frequencies, without consideration of polarimetric quantities or Doppler velocity. While dual-

polarimetric radars are widely used from ground-based platforms to identify preferentially-

oriented, non-spherical hydrometeors, at near-nadir incidence angles these measurements are of 

limited utility although the linear depolarization ratio measurements can be useful for identifying 

melting layers and non-spherical ice particles (Pazmany et al., 1994; Galloway et al., 1997). 

Doppler velocities are useful for inferring hydrometeor fall speeds and at multiple frequencies 

can be highly effective in discerning cloud liquid from rain (e.g., Kollias et al., 2007) as well as 

identification of ice particle habits (Kneifel et al., 2016), but obtaining them from rapidly-

moving satellite platforms is a difficult engineering challenge that will first be attempted in the 

EarthCARE mission (Illingworth et al., 2015). 

Table 1 – Characteristics of TRMM, GPM, and CloudSat Spaceborne Weather Radars  

 

 [[H1]] Radar Precipitation Measurement Fundamentals 

The earliest attempts to measure rainfall with radar (Marshall et al., 1947) found that, in general, 

a power law relationship between radar reflectivity factor Z and rainfall rate R existed: 

 𝑍 = 𝑎𝑅𝑏.          (1) 

The coefficient a and exponent b of this power law were later provided by Marshall and 

Palmer (1948), whose values are still in wide use today. Despite this common usage, it was 

quickly recognized (e.g., Atlas and Chmela 1957) that these parameters varied widely and 

seemed to be associated with synoptic conditions. It is now recognized (e.g., Brandes et al., 



2006) that the power law of Marshall and Palmer (1948) is more representative of frontal 

stratiform rainfall, which is the predominant rainfall type in Ontario, Canada where the radar and 

rainfall observations upon which this power law was based were taken. Convective and tropical 

rainfall, for example, is observed to have a smaller coefficient a (Tokay and Short, 1996). A 

more comprehensive review of varying power law relations is given by Battan (1973). For the 

purposes of this chapter, is sufficient to recognize that the non-uniqueness of the Z-R relationship 

is a fundamental result of the general equations for radar reflectivity and rainfall rate: 

𝑍 = ∫ 𝑁(𝐷)𝐷6𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
𝑑𝐷,         (2) 

𝑅 =
𝜋

6
∫ 𝐷3𝑁(𝐷)𝑉(𝐷)𝑑𝐷,
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
        (3) 

where v(D) is the drop fall speed. Owing to the fact that vertical air motions are small near the 

ground and that raindrops achieve terminal fall velocity within about 100m (Section 10.3.6, 

Pruppacher and Klett, 1997) formulae relating terminal fall speed to drop size are often used. A 

simple power law such as v(D)=17.67D0.67 (where V is in m s-1 and D is in cm; Atlas and 

Ulbrich, 1977) is convenient for calculation of Z-R power law coefficients by combining (2) and 

(3), especially when an analytic form of the drop size distribution N(D) is assumed. Slightly 

more accurate piecewise power laws such as the one given by Beard (1976) account for different 

hydrodynamic regimes as drops grow in size, and this is the relationship used for all rain rate 

calculations in this chapter.  

 In (2), there is no dependence of Z on the radar wavelength. This is only valid when the 

particle size is much smaller than the wavelength. For larger sizes, the equivalent reflectivity 

factor Ze is used instead: 

 

𝑍𝑒 =
𝜆4

𝜋5|𝐾|2
∫ 𝑁(𝐷)𝜎𝑏
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
(𝐷, 𝜆)𝑑𝐷,       (4)  



where K is a function of the complex index of refraction, λ is the radar wavelength in mm, σb is 

the backscattering cross section (in mm2), and N(D) is the number concentration of raindrops (in 

m-3) per size interval, resulting in units of mm6m-3 for Ze. Note that (3) and (4) are also valid for 

frozen and melting particles, however, the definition of particle size (and fall speeds) becomes 

ambiguous for non-spherical particles, and even large raindrops exhibit some departures from 

sphericity. For the remainder of this chapter, the convention will be that D represents the 

diameter of an equal-mass homogeneous (solid or liquid) sphere, so that N(D) is equivalent to a 

mass distribution, and N(D) will be referred to as the particle size distribution (PSD). 

 

The backscattering cross section describes the amount of electromagnetic radiation that is 

scattered towards the source of incident radiation. For particles much smaller than the 

wavelength, the individual dipoles that comprise the particle can be treated as coherent 

scatterers, and the Rayleigh approximation holds: 

𝜎𝑏 =
𝜋5|𝐾|2𝐷6

𝜆4
           (5) 

and (4) becomes (2). As the size parameter πD/λ approaches one, the Rayleigh approximation 

breaks down and Mie theory, which provides exact results for spheres, should be used.. For 

particles that are rotationally symmetric about one axis (such as oblate or prolate spheroids, 

cylinders, or cones), σb can be calculated from the T-Matrix (Mishchenko and Travis, 1998). 

Finally, σb for arbitrarily-shaped particles can be calculated with the discrete-dipole 

approximation (Draine and Flatau, 1994), a method often used for realistically-shaped 

snowflakes (e.g., Liu (2004), Kim (2006), Petty and Huang (2010), Kwo et al. (2016)) and 

melting particles (Johnson et al.,  2016). Plots of σb from all of these approximations can be 



found in Figure 1 for spherical and oblate raindrops and spherical, cylindrical, and synthetically-

grown ice particles and aggregates. 

<<Figure 1: Backscattering efficiencies calculated at Ku-, Ka-, and W-band frequencies for rain 

and ice particles. Spheroidal raindrops were modeled according to aspect ratio and canting angle 

distributions given in Beard et al., 2010. The cylindrical snow particles, which are an effective 

representation of hexagonal plates (Adams et al., 2012), were modeled with an aspect ratio (D/h) 

= 6 and effective density of 0.6 g/cm3. The DDSCAT particles (color indicates relative density) 

are from the database of Kwo et al. (2016). >> 

Although the departures of reflectivity from Rayleigh theory are important, particularly for 

multi-frequency radars, it is still the case that while Z is approximately proportional to the 6th 

moment of the DSD, rain rate is proportional to a much lower 3.67th  moment. This is illustrated 

in Figure 2, which shows the relative contribution of different drop sizes to reflectivity and rain 

rate for a typical exponential DSD. Thus the fundamental problem is radar meteorology is that 

multiple values of R can be associated with a single value of Z. 

 

<<Figure 2: Relative contribution (in 0.1 mm bins) to reflectivity (Z) and rainfall rate (R) of an 

exponential drop size distribution with a median volume-weighted diameter of 1.5 mm. >> 

 

Aside from backscatter, another characteristic of precipitation particles that is critical for 

understanding radar measurements is the extinction cross-section σe. This quantity describes the 

amount of electromagnetic radiation absorbed and scattered by the particle, and like σb depends 

on the dielectric constant, particle size, and shape (for size parameters close to or great than one). 

Figure 3 shows the extinction efficiency for the same particle types in Figure 1. 



<<Figure 3: Extinction efficiencies calculated at Ku-, Ka-, and W-band frequencies for rain and 

ice particles. Particle type description can be found in the Figure 1 caption.>> 

For particles with small size parameters, σe is given by: 

𝜎𝑒 =
𝜋2𝐷3

𝜆
ℑ(

𝑚2−1

𝑚2+2
),         (6) 

where m is the complex index of refraction and ℑ(𝑥) denotes the imaginary part of x. The bulk 

extinction coefficient, kext, can be calculated by integrating σe over the particle size distribution: 

𝑘𝑒𝑥𝑡 = ∫ 𝜎𝑒𝑁(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
.        (7) 

Note that in addition to precipitation particles, atmospheric gases such as oxygen and water 

vapor can have non-negligible contributions to kext at some wavelengths common to airborne and 

spaceborne radars (Li et al., 2001; Tanelli et al., 2006, Ellis and Vivekanandan, 2010). Cloud 

water, which has a negligible contribution to radar reflectivity at Ka-band and lower frequencies, 

nevertheless can contribute significantly to kext at these frequencies as well (Grecu and Olson, 

2008). Note the independence of kext with respect to Dm in the limit of small Dm in Figure 5. This 

follows from (6) and shows that in the limit of small particles, kext is directly proportional to the 

water/ice content. The effect of bulk extinction on the measured reflectivity can be calculated by 

integrating kext along the two-way radar propagation path: 

𝑍𝑚(𝑟) = 𝑒−0.2ln(10)∫ 𝑘𝑒𝑥𝑡(𝑠)𝑑𝑠
𝑟
0 𝑍𝑒(𝑟)       (8) 

Note that while Ze is an intrinsic property of the PSD at a given location, Zm also depends on the 

integrated bulk extinction between the source of the radar signal and that location, creating 

another source of uncertainty when converting from Z to R. Therefore, understanding the vertical 

profile of the PSD, on which Z, kext, and R depend, is fundamental to the radar-precipitation 

profiling algorithms that are described in this chapter. 

 



[[H1]] The Particle Size Distribution 

The previous section demonstrated that knowledge of the particle size distribution (PSD) is 

needed to convert Z to the physical integrated quantities such as precipitation rate R and water 

content W. It is often convenient to assume an analytical form of the PSD that describes the 

shape with a few (relative to a discrete bin representation) free parameters. Although PSD 

models with as many as eight free parameters have been proposed (Kuo et al., 2004), most often 

the modified gamma distribution with three free parameters (Ulbrich, 1983) is used: 

𝑁(𝐷) = 𝑁0𝐷
𝜇exp(−Λ𝐷).       (9) 

The free parameters are often referred to as the intercept (N0), slope (Λ), and shape (μ). These 

names describe the mathematical form of the distribution moreso than physical quantities, and it 

is difficult to impart any physical meaning to a value for anyone one of the parameters given in 

isolation. However, it is possible to re-cast these parameters in terms of physical quantities 

through the following relationships (Testud et al., 2001; Williams et al., 2014): 

𝐷𝑚 =
4+𝜇

Λ
,         (10)  

𝑁𝑤 = 𝑁0𝐷𝑚
𝜇 Γ(4+𝜇)

Γ(4)

256

(4+𝜇)4+𝜇
,       (11) 

𝜎𝑚 =
𝐷𝑚

√4+𝜇
,         (12) 

where Dm is the mass-weighted mean diameter (also defined as the ratio of the 4th to 3rd moment 

of the PSD),  Nw is the normalized intercept parameter defined such that it is equal to N0 for an 

exponential (μ=0) PSD of the same water content and Dm (Bringi and Chandrasekhar 2001), and 

σm is the mass spectrum standard deviation. The median volume diameter, D0, describes the 

particle size such that ∫ 𝐷3𝑑𝐷 =
𝐷0

𝐷𝑚𝑖𝑛
∫ 𝐷3𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷0
, and for a gamma distribution 𝐷0 =

3.67+𝜇

4+𝜇
𝐷𝑚.Note that these expressions are only valid for a PSD where particle density is constant 



with size. For realistic frozen particles, this is often not the case, and formulae to convert PSD 

parameters from observed to solid-sphere-equivalent particle sizes can be found in Petty and 

Huang (2011). 

 

Analysis of disdrometer observations has shown that neither the three free parameters in (9) nor 

the physical quantities in (10)-(12) are statistically independent in rain (e.g., Haddad et al., 1996; 

Zhang et al., 2003; Munchak and Tokay, 2008; Williams et al., 2014.) and relationships between 

the parameters can be formulated to reduce the degrees of freedom in (9). This is particularly 

useful for radar precipitation retrieval algorithms because it allows for a common basis from 

which to compute Z-R and Z-kext relationships, and, when joint probability distribution functions 

(pdfs) of PSD parameters are known, these a priori statistics can be used to constrain the 

retrieval of PSD parameters from radar profiles of reflectivity and other information.  

 

To demonstrate the relationship between PSD parameters and radar reflectivity Z, Figures 4 and 

5 show reflectivity and extinction coefficients integrated over PSDs with Dm ranging from 0.1 to 

3 mm and μ ranging from -1 to 3 for snow and following the σm-Dm relationships given by 

Williams et al. (2014) for rain. The integrated water content of all PSDs was normalized to W=1 

g m-3 to emphasize the importance of the shape of the PSD in terms of its mean and dispersion 

on the reflectivity and extinction. For these PSDs, the equivalent intercept Nw can be calculated 

from Dm and W (Testud et al., 2001): 

𝑁𝑤 =
256

𝜋𝜌𝑤

𝑊

𝐷𝑚
4 .          (13) 



<<Figure 4: Reflectivity for rain and ice PSDs at Ku-, Ka-, and W-band as a function of mass-

weighted mean particle diameter Dm for various shape parameter assumptions. All PSDs contain 

1 g m-3 of water content.>> 

 

<<Figure 5: Bulk extinction coefficient at Ku-, Ka-, and W-band for the same PSDs represented 

in Figure 4.>> 

While analytic expressions relating Z, Dm, W, and R can be derived from the gamma distribution 

(Ulbrich and Atlas, 1998), statistical relationships can also be derived directly from disdrometer 

measurements without any assumptions of the PSD shape. In Figure 6, scatter plots of kext, W, R, 

Dm, and Nw versus Z at Ku-band are shown for rain PSDs measured during the IFLoodS field 

experiment (Ryu et al., 2016). Most of these parameters (except Nw) have a strong correlation to 

reflectivity. As will be shown later in this chapter, it is particularly useful for radar-based 

precipitation retrievals to modify a parameter that is uncorrelated to reflectivity, and 

measurements from IFLoodS and other field experiments suggest that Nw is a strong candidate 

for such a parameter. However, any integral parameter may be transformed to one that is 

uncorrelated with reflectivity by deriving a reflectivity power law relationship (such as equation 

1) and converting a to ‘normalized’ quantities k’, W’, R’, Dm’, and Nw’, e.g. (for R): 

𝑅′ =
𝑅

𝑎𝑍𝑏
.           (14) 

The correlation plots and coefficients between the normalized parameters are shown in Figure 7. 

Each panel shows the correlation between a pair of normalized parameters, and it is notable that 

the squared correlation coefficients are large, in many cases over 0.8. This has strong 

implications for radar retrievals because it implies that, for a given Z, if a normalized parameter 



such as W’, Dm’, Nw’ (or just Nw), is known, then the other integral parameters, including 

attenuation, can be predicted to a high degree of accuracy. 

<<Figure 6: Ku-band reflectivity power laws and squared correlation coefficient derived from 

Parsivel2 disdrometer measurements in Iowa during the IFloodS field experiment for the integral 

parameters: attenuation coefficient at Ku-band (kext), liquid water content (W), rain rate (R), mean 

mass-weighted diameter (Dm), and normalized intercept parameter (Nw). >> 

 

<<Figure 7: Scatter diagrams for pairs of normalized integral quantities (equation 14) from the 

IFloodS disdrometer measurements. The squared logarithmic correlation coefficient is labeled in 

each panel. >> 

 

[[H1]] Single-Frequency Methods 

Since many airborne and spaceborne radars operate at frequencies where attenuation by rain is 

significant, a correction for this attenuation must be made. A radar algorithm that corrects for 

attenuation was first described by Hitschfeld and Bordan (1954). If a Z-kext power law of the 

form 

𝑘𝑒𝑥𝑡 = 𝛼𝑍𝑒
𝛽
,          (15) 

and β is constant with respect to range, then the path-integrated attenuation (PIA), which is the 

integral in the exponential term of (8), can be solved for analytically: 

PIA(𝑟) = 
−1

0.1ln(10)𝛽
ln(1 − 0.2ln(10)𝛽 ∫ 𝛼(𝑠)𝑍𝑚

𝛽 (𝑠)𝑑𝑠
𝑟

0
).    (16) 

However, this method is numerically unstable because small changes in the Z-kext relationship 

can lead to large changes in path-integrated attenuation (PIA) at far range gates. This can be 

inferred from (15) if the values of α, β, and Zm are such that the argument of the logarithm is near 



or less than zero, in which case the PIA is undefined. An example, illustrated in Figure 6, 

provides a physical interpretation of how linear increased in α lead to nonlinear increases in PIA. 

In physical terms, if the estimated attenuation is too large at a given range gate, then attenuation-

corrected reflectivities will be overestimated in subsequent range gates. These overestimated 

reflectivities will produce an even larger attenuation correction in further range gates, which will 

result in reflectivity and attenuation estimates that can increase to unphysical values. 

 

<<Figure 8: An example attenuation-correcting radar profiling algorithm. The true effective 

reflectivity (solid) is attenuated to the measured signal (dashed). An attenuation correction is 

applied assuming $Z-k$ relationships that are have been multiplied by factors ranging from 0.5 

to 1.5.>> 

While attenuation is a potential source of error if not accurately corrected, it can also be an 

additional source of information. Equation 8 includes a term describing the PIA. If a reflector of 

known effective cross section is placed at the end of the path, then the apparent decrease in this 

cross section from its known value is equal to the PIA. Fortuitously, a downward-looking radar 

has exactly such a reference cross section in the earth's surface itself. This fact was recognized 

by Meneghini et al. (1983) and forms the fundamental basis for the Surface Reference Technique 

(SRT). 

[begin box] 

The Surface Reference Technique is a method for obtaining an estimate of the path-integrated 

attenuation from a downward-looking radar that is independent of the reflectivity profile. 

Variations of this method have been used to obtain PIA estimates for use in the TRMM rain-

profiling algorithm (Meneghini et al. ,2000), CloudSat’s rain profile product (Haynes et al., 



2009; Mitrescu et al., 2010, Lebsock et al., 2011), GPM DPR products (Meneghini et al., 2015), 

as well as from airborne radars (Tanelli et al., 2006). 

The SRT requires a reference value for the normalized surface backscatter cross-section (σ0) that 

is unattenuated by precipitation. Then, the PIA can be calculated by taking the difference of the 

observed σ0 (in dB units) from the reference: 

𝑃𝐼𝐴 = 𝜎0,𝑁𝑅 − 𝜎0,𝑅.         (17) 

The key to this process is obtaining an accurate estimate of the unattenuated cross-section σ0,NR. 

In practice, methods for obtaining this reference value include the along-track, across-track, 

temporal, and geophysical model function. The along-track reference is particularly useful 

because σ0 varies strongly with incidence angle, thus σ0,NR can be estimated by averaging σ0 in 

precipitation-free observations surrounding a precipitation observation at the same incidence 

angle. In the event that a precipitation feature happens to be long in the along-track direction but 

narrow in the cross-track direction, it may be preferable to use the cross-track reference. In this 

case, a quadratic function is fit to the precipitation-free σ0 observations to obtain estimates of 

σ0,NR and PIA in the precipitation feature. The along-track and cross-track spatial methods are 

most applicable when the surface type does not vary from the region where σ0,NR estimates into 

the precipitation feature. This can be true over ocean surfaces, but over land or mixed water-land 

surfaces, σ0,NR can be highly variable, adding considerable uncertainty to the PIA estimate and 

often producing unphysically negative PIA values. In these cases, the temporal reference can be 

used. The temporal reference is a gridded average of σ0,NR and its standard deviation over 

multiple previous observations. In order to minimize the standard deviation of σ0,NR, thus 

providing more accurate PIA estimates, it is necessary to reduce the grid size to a size 

approaching the radar footprint (Meneghini and Jones, 2011). However, this is a challenge for 



spaceborne radars without a repeating ground track because the number of samples in such a 

small grid cell at each incidence angle can be small and therefore not representative of changing 

surface conditions. Meneghini and Kim (2016) suggest optimally including neighboring grid 

cells in the σ0,NR calculation such that the standard deviation of σ0,NR is minimized. 

An alternate method for calculation σ0,NR is the use of a geophysical model function (GMF). This 

method treats σ0,NR as a function of physical parameters. In general, σ0 depends on the earth 

incidence angle, surface roughness, and dielectric constant. Over ocean surfaces, σ0 can be 

largely explained by the surface wind speed and direction (relative azimuth to the radar look 

angle) and incidence angle (Li et al.,2002; Frielich and Vanhoff, 2003; Munchak et al., 2016). 

Over land surfaces, no such simple relationships exist but the behavior of σ0 has been found to 

vary as a function of roughness, soil moisture, and vegetation coverage (Stephen et al., 2010; 

Puri et al., 2011). The advantage of using a GMF is that the representativeness of the spatial or 

temporal reference is not an issue; however, the GMF must be well-calibrated, and a source for 

the physical parameters is required, which itself introduces some uncertainty even for a 

theoretically perfect GMF. Finally, there is the effect of precipitation on the surface itself (Iguchi 

and Seto, 2007), which by definition cannot be accounted for by the spatial or temporal 

references but could be included in a GMF.  

Another innovative technique which is made possible with a dual-frequency radar is the dual-

frequency SRT (dSRT; Meneghini et al., 2012). This technique determines the differential PIA at 

two frequencies by taking a difference of differences from (16). If there is a positive correlation 

between σ0,NR at the two frequencies in the reference dataset, which is often the case, then the 

error in the differential PIA will be reduced from the single-frequency error using the same 

reference data. Regardless of the source for the surface reference, it is critical that it can also 



provide an estimate of the standard deviation of σ0,NR, which from (16) can be considered to be 

the standard deviation of the PIA. The larger the PIA is relative to this standard deviation, the 

more useful it is to constrain the precipitation PSD via the Z-kext relationship.  

[end box] 

With an independent estimate of the PIA, it is possible to constrain the precipitation profiles to 

those that produce the same or similar PIA, given the uncertainty that comes from the SRT. The 

observed profile of Zm, in conjunction with a vertical profile model of the Z-kext relationships, can 

be used to apportion the PIA vertically. As shown earlier in this chapter (Figures 4 and 5), the Z-

kext relationships depend on the PSD and precipitation phase, and so by modifiying the  Z-kext 

relationship to produce a profile that matches the SRT PIA, the PSD is also implicitly modified. 

The vertical profile model is also used to extend the PSD into the range gates near the surface tht 

are contaminated by ground clutter. This layer can be 1km deep or more for a spaceborne radar 

depending on the beam width, pulse width, and incidence angle (Takahashi et al., 2016), and 

presents a difficulty in obtaining precipitation rates for shallow clouds either by failing to detect 

them entirely or by missing much of the growth of rain drops if it occurs within the clutter-

affected gates (Shimizu et al., 2009). Sidelobe clutter presents a more severe problem in that it 

can contaminate range gates far from the surface at off-nadir angles. A thorough description of 

sidelobe clutter mitigation techniques for the GPM DPR is given by Kubota et al., 2016. 

Returning to the nomenclature in (14), and assuming that the normalized PSD parameter is 

constant in the vertical (implying that all vertical variability is represented by Z), k’ can be 

inserted into (16) as a multiplier to α, and a value for k’ can be obtained that exactly matches the 

observed PIA. However, because there is always some uncertainty in the SRT PIA (which may 

even be negative in some cases), and very large or small values of k’ may imply unphysical 



PSDs, it is valuable to derive a solution that considers both the error characteristics of the PIA 

and prior knowledge of the joint pdfs of PSD parameters (Figure 7). With this knowledge, a 

maximum likelihood estimate can be found along with a pdf of solutions to the observed radar 

profile. Various PSD models and vertical profile models have been applied to TRMM (Iguchi et 

al., 2000, 2009), GPM (Seto et al., 2015), CloudSat (L’Ecuyer and Stephens, 2002, Mitrescu et 

al, 2010), and airborne radar (Amayenc et al., 1996, Grecu et al., 2011) data in some form of a 

probabilistic framework. 

In a general form, probabilistic, or optimal estimation, retrieval frameworks seek to minimize an 

objective function of the form: 

𝐽 = (𝒚 − 𝑓(𝒙))
𝑇
𝑺𝒚
−𝟏(𝒚 − 𝑓(𝑥)) + (𝒙 − 𝒙𝒂)

𝑇𝑺𝒂
−𝟏(𝒙 − 𝒙𝒂),    (18) 

where y is the observation vector, x is the retrieval parameter (or state) vector, f(x) is the forward 

model, xa is the a priori state vector, Sy is the observation and model error covariance matrix, and 

Sa is the state error covariance matrix. Methods of finding the minimum of such objective 

functions include Gauss-Newton iterative minimization (Rodgers, 2000, Boukabara et al., 2011) 

and ensemble filter approaches (Eversen, 2006, Grecu et al., 2016). For the radar retrieval 

problem, y may be broadly defined as a set of observed reflectivites Zm along a ray or even in 

three-dimensional space. Likewise, x can consist of multiple PSD parameters at each range gate. 

However, since single-frequency radar retrievals are underconstrained with respect to multiple 

PSD parameters, it is often more efficient to consider only a single column at a time and include 

to Zm in the forward model, so that y contains only the PIA and x is reduced to a normalized 

parameter of the PSD (such as the k’, Dm’, W’, R’, or Nw’ shown in Figure 7). Implicit in this 

formulation is that the vertical behavior of the normalized PSD parameter is constant. Owing to 

the difficulty in making direct measurements of the PSD instantaneously over a vertical column, 



such an assumption is difficult to verify. Analyses of measurements made with multi-parameter 

radars (Bringi et al., 2016) and profilers (Williams, 2016) suggest that the vertical decorrelation 

lengths of normalized PSD parameters are on the same order as the vertical extent of 

precipitation, implying that, absent any other measurements, the column-averaged normalized 

PSD parameter should be representative of the surface value. 

In summary, the fundamental process of converting from a vertical profile of radar reflectivity to 

precipitation physical parameters is the correction of attenuation via a vertical profile model of 

the PSD and associated Z-kext relationships, and making adjustments to this model to achieve 

agreement with independent estimates of the PIA. The equations and assumptions presented so 

far are valid for uniform beam filling and no multiple scattering, which can greatly impact SRT 

PIA, Z-kext, and Z-R relationships. These issues will be discussed later in this chapter. 

 

 [[H1]] Multi-Frequency Methods 

The frequency dependence of backscattering efficiency (when size parameter becomes similar to 

the wavelength) and extinction efficiency have motivated the development of radar systems 

operating at two or more frequencies (e.g., Sadowy et al., 2003, Li et al., 2008) or separate radars 

with matched beams (e.g., Chandrasekhar et al., 2010, Battaglia et al., 2016) so that these 

differences can be used to further constrain the range-resolved parameters of the PSD. For any 

pair of frequencies υ1 and υ2, where υ1 < υ2, the dual-frequency ratio (DFR) is defined as: 

𝐷𝐹𝑅 = 10𝑙𝑜𝑔10 (
𝑍1

𝑍2
) = 𝑑𝐵𝑍1 − 𝑑𝐵𝑍2.      (19) 

When a gamma distribution PSD is assumed (9), and the equation for effective reflectivity (4) is 

inserted into (19), the DFR has the convenient property of only depending on the shape and slope 

(or alternatively, Dm and σm) parameters of the gamma PSD. In principle, then, it is possible to 



retrieve Dm from the DFR (after attenuation correction has been performed) and an assumption 

regarding μ, such as a constant value (Liao et al., 2014), reflectivity-dependent value (Munchak 

and Tokay 2008), μ-Λ relationship (Zhang et al., 2003), or σm-Dm relationship (Williams et al., 

2014). At some frequency pairs, such as Ku-Ka, there is an ambiguity in that two values of Dm 

can be associated with the same DFR for a given μ (Figure 9). In these cases, a probabilistic 

framework and additional observations (such as PIA) can be useful to determine which of these 

solutions is a better fit to all of the measurements. When the size parameter is small compared to 

both wavelengths, DFR will be close to zero and invariant with size, necessitating higher 

frequencies or differential attenuation to determine the PSD parameters. 

<<Figure 9: Dual-frequency ratio vs. Dm for Ku-Ka (left) and Ka-W (right) frequency pairs. 

Different values for μ (ice) or σm’ (rain) are indicated by different shades of each color, as in 

Figures 4 and 5.>> 

 

The impact of adding a frequency on improving the accuracy of the retrieved rainfall rate can be 

examined with the IFloodS disdrometer dataset. Figure 10 shows the output of a simple Bayesian 

retrieval using different frequencies individually and in combination. This framework predicts 

the rainfall rate based on a weighted average of all rainfall rates in the database, where the 

weights are based on the difference between observed reflectivity and reflectivity at n 

frequencies (divided by the measurement error σn) in the database: 

𝑅𝑖 =
∑ 𝑅𝑗𝑤𝑗𝑗

∑ 𝑤𝑗𝑗
,          (20) 

where 

𝑤𝑗 = exp(−∑
(𝑍𝑛,𝑖−𝑍𝑛,𝑗)

2

𝜎𝑛
2 )𝑛 .        (21) 



Although the exact values in Figure 10 should not be considered representative of all 

precipitation regimes, and represent the ideal case (perfect attenuation correction, no multiple 

scattering or nonuniform beam filling), the impact of additional frequencies is clear in the 

improved correlation and reduced relative error. It is also apparent that little additional 

information is provided by extra frequencies at very low rainfall rates, where backscattering 

follows the Rayleigh approximation for Ku, Ka, and W band. 

<<Figure 10: Observed vs. predicted rainfall rate from equation (20) from the IFloodS PSD 

database for different combinations of Ku, Ka, and W-band reflectivity measurements, assuming 

a perfect attenuation correction is made and 1 dB measurement error. The squared correlation 

coefficient (r2) and mean relative error (mre) are given for each combination.>> 

Multiple-frequency measurements are also particularly useful in the melting layer and ice phase 

of precipitation. Le and Chandrasekhar (2013) describe a method to identify the melting layer via 

the measured (non-attenuation-corrected) DFR. According to this method, the top of the melting 

layer is at a peak in the slope (-dDFR/dZ), a DFR peak occurs within the melting layer due to 

Mie scattering by large aggregates, and as these collapse into raindrops a local minimum in the 

DFR signifies the bottom of the melting layer before differential attenuation begins to increase in 

the rain layer. Within the ice phase, multi-frequency measurements are useful not only for 

determining mean particle size, but with three frequencies some indication of particle shape can 

also be discerned (Leinonen et al., 2012; Kulie et al., 2014; Kneifel et al., 2015). The basis for 

this can be seen when the DFR curves in Figure 9 are plotted against each other in Ku-Ka vs. Ka-

W space (Figure 11). In these scattering models, for example, aggregates have much larger Ka-

W DFR than pristine plates. Leinonen and Szyrmer (2015) also found that rimed particles tend to 

have a lower Ka-W DFR for a given Ku-Ka DFR than non-rimed aggregates. 



How can the ample information provided by radar measurements at multiple frequencies be 

incorporated into the probabilistic estimation framework (18)? Because actual reflectivity 

measurements are noisy, and attenuation in even moderate rainfall can be enough to overwhelm 

the PSD effect on DFR, strict bin-by-bin PSD retrievals and attenuation correction can be error-

prone. One approach to mitigate these errors formulated by Grecu et al. (2011) is to assign only 

the higher-frequency reflectivities to the observation vector y and retrieve n-1 range-resolved 

PSD parameters in x, where n is the number of radar frequencies. This range-resolved parameter 

should be independent of Z (Nw or a ‘normalized’ PSD parameter such as Dm’ are good 

candidates) and should have a vertical constraint imposed, either via positive off-diagonal values 

in Sa or by retrieving this parameter at a reduced set of nodes within the profile and interpolating 

values between the nodes. Then, the forward model calculates the profile of Zm at the higher 

frequency from a PSD that matches the lower-frequency reflectivity. PIA at multiple frequencies 

can also be included in the observation vector, or if the dSRT is used to reduce noise, the 

difference in PIA can be obtained from the forward model instead. 

As with the single-frequency methods, under some circumstances multiple frequency methods 

can be prone to error if the forward model does not account for non-uniform beam filling and 

multiple scattering. These phenomena will be discussed in subsequent sections. 

 

[[H1]] Effects of non-uniform beam filling 

So far, it has been assumed that the PSD is uniform throughout a radar range gate, and thus the 

integral parameters such as Z, R, and kext do not depend on the horizontal resolution of the radar. 

Strictly speaking, it is questionable whether “uniform” PSDs exist in nature (Jameson and 

Kostinksi, 2001), and analyses with networks of disdrometers reveal spatial variability on sub-



100m scales (e.g., Jameson et al., 2015). Practically, any nonuniformity will result in error when 

Z-R and Z-kext power laws are used to correct for attenuation and retrieve rainfall. As shown by 

Iguchi et al. (2000, 2009), even if everywhere in a volume, R=aZb is strictly followed, if Z is not 

uniform within the volume then the volume mean value of R will be less than that implied by the 

volume mean value of Z: 

�̅� = 𝑎𝑍𝑒
𝑏̅̅ ̅̅ ̅ ≤ 𝑎𝑍𝑒̅̅ ̅

𝑏
,          (22) 

because b is less than one, following Jensen’s inequality. Likewise, because the exponent in the 

Z-kext relationships is also less than one, kext will also have a low bias relative to the true volume 

mean. This has further implications for the conversion of Zm to Ze and the interpretation of the 

SRT PIA. At any range gate, the measured reflectivity will be the average of the attenuated 

reflectivities, with the attenuation summed along each infinitesimally narrow pencil beam 

direction (θi,ϕi), weighted by the antenna gain pattern; 

𝑍𝑚(𝑟) = 𝑍𝑒(𝑟, 𝜃𝑖, 𝜙𝑖)𝑃𝐼𝐴(𝑟, 𝜃𝑖, 𝜙𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.        (23) 

The Chebyshev sum inequality for two ordered pairs, which states that if 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 and 

𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑛, then 𝑎𝑏̅̅ ̅ ≤ �̅��̅�, can be used in this context if we let a represent Ze(𝑟, 𝜃𝑖 , 𝜙𝑖) 

and b represent the pencil-beam PIA(𝑟, 𝜃𝑖 , 𝜙𝑖). If Ze and PIA are ordered accordingly within a 

radar footprint, then it follows that 

𝑍𝑚 ≤ (𝑍𝑒)̅̅ ̅̅ ̅̅ (𝑃𝐼𝐴̅̅ ̅̅ ̅)          (24) 

Thus the effective attenuation, that is, Zm/Ze, is less then or equal to the SRT PIA (assuming a 

uniform surface backscatter cross section within the radar field-of-view) if the Chebyshev 

condition is met. 

To further illustrate the effects of nonuniform beam filling (NUBF), two scenarios will be 

considered: one in which each range gate is composed of varying proportions of empty space and 



a uniform PSD, and one in which the shape of the PSD (Dm, μ) is constant but the concentration 

follows a lognormal distribution within each range gate. An analysis of high-resolution airborne 

data convolved to lower-resolution satellite footprints by Tanelli et al. (2012) found that these 

two scenarios fit the vast majority of observations. 

For the first scenario, the effect of NUBF on the measurements and retrievals are illustrated in 

Figure 12 for the sample profile shown in Figure 8. The fraction of beam containing precipitation 

was varied from 10% to 100% while scaling the PSD such that the column-averaged Ze and R are 

equal to the uniform case. The measured reflectivity near the surface increases from the uniform 

case as precipitation fraction decreases as long as the vertical autocorrelation is not high. This is 

because the PIA along each pencil beam is more evenly distributed than Ze at any given level. 

When the profiles become highly vertically correlated, the attenuation is able to reach higher 

values and 𝑍𝑚̅̅ ̅̅  is reduced from the uniform case. Regardless of the precipitation fraction or 

vertical correlation structure, the SRT PIA is always reduced from the uniform case. This can be 

inferred from the beam-integrated equation for the normalized surface backscatter cross section: 

𝜎0,𝑅 = ∬𝜎0,𝑁𝑅(𝑟, 𝜃)𝑒
−0.1 ln(10)𝑃𝐼𝐴(𝑟,𝜃)𝑑𝑟𝑑𝜃.       (25) 

If 𝜎0,𝑁𝑅 is constant, then the reduction in 𝜎0,𝑅 (in dB units) is equal to 

𝑃𝐼𝐴𝑆𝑅𝑇 = 10𝑙𝑜𝑔10(𝑒−0.1 ln
(10)𝑃𝐼𝐴(𝑟,𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ≤ 𝑃𝐼𝐴(𝑟, 𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .      (26) 

by Jensen’s inequality. The reduction is most severe as precipitation fraction decreases and 

vertical correlation increases, effectively exposing more unattenuated surface, which dominates 

the measured σ0. 

When a Hitchfeld-Bordan attenuation correction is applied to these profiles under the assumption 

of uniform beam filling and no adjustment to the intrinsic Z-k and Z-R relationships to match the 

PIA, the errors in Ze and R near the surface correspond to the difference in Zm near the surface 



compared to the uniform case. When the SRT PIA is used to adjust the Z-k and Z-R relationships, 

Ze and R are biased low due to the low bias of the SRT PIA when NUBF occurs. 

<<Figure 12: Non-uniform beam filling scenarios for the Ze profile presented in Figure 8. These 

scenarios vary the fraction of the beam containing precipitation at each level on the vertical axis 

and the autocorrelation of precipitation from one vertical level to the next on the horizontal axis. 

In these scenarios, the precipitation is uniform where present and scaled such that the average 

non-attenuated reflectivity is constant at each level. The difference in measured reflectivity from 

a uniform beam, SRT PIA, and errors in corrected reflectivity and retrieved rainfall rate near the 

surface (using default relationships and the SRT PIA to adjust the PSD) are shown.>> 

The same set of plots for the second scenario, a filled beam with lognormally-varying Ze, is 

shown in Figure 13. The behavior with respect to the standard deviation of dBZe is similar to the 

behavior with respect to precipitation fraction in the first scenario, although reversed in sign 

(with larger dBZe variability corresponding to smaller precipitation fractions). The behavior with 

respect to vertical correlation structure is also similar, except that the reduction in reflectivity and 

SRT PIA occurs only when the precipitation structure is almost perfectly aligned with the radar 

look vector. When the standard deviation of dBZe is only a few dB, the errors from the H-B 

algorithm are small when the SRT PIA is used, but increase for large variability of dBZe and very 

large or small vertical autocorrelation. The bias of the unmodified Hitschfeld-Bordan retrieval is 

closer to zero in these examples, but it must be remembered that variability in the Z-k 

relationship was not considered when generating the synthetic profiles, which would add 

additional random error to the Hitchfeld-Bordan results.  

The cases presented in Figures 12 and 13 are not meant to be a universal guide to NUBF biases, 

since such a guide would require analysis of several different profile shapes, patterns of 



nonuniformity, and PSD perturbations. These examples do serve to illustrate the mechanics of 

NUBF and its dependence on the structure of the horizontal and vertical variability. Although a 

low bias in the SRT PIA relative to the effective PIA was always present in these examples, one 

can imagine a scenario where this is not the case. If a beam is slanted with respect to a 

precipitation shaft, then it is possible to violate the Chebyshev condition, i.e., the near-surface 

reflectivity can become anti-correlated with the pencil-beam PIA. Given this complex behavior, 

how can precipitation retrieval algorithms accurately account for NUBF under all circumstances 

where it may occur? 

In the TRMM PR radar profiling algorithm (Iguchi et al., 2009), an analytical solution to the 

NUBF problem is derived under the assumption that kext follows a gamma distribution within 

each range gate and that the nonuniformity is range-independent (perfectly correlated in the 

beam direction). This requires an estimate of the coefficient of variation, σn. Similarly, the GPM 

combined radar-radiometer algorithm subdivides a beam into components with lognormally-

varying reflectivities, but this method requires an estimate of the variability as well. Universal 

estimates can be used, but these can introduce regional and seasonal biases since the scale of 

variability of precipitation is often storm-dependent (Tokay and Bashor, 2010). A desirable 

alternative is to use some local context, such as the convective/stratiform classification of the 

profile and the horizontal variability of SRT PIA estimates at the large scale, which can be used 

to inform the estimate of the local variability (Kozu and Iguchi 1999). Oversampling of the radar 

beam can produce finer-scale estimates of the SRT PIA that may be useful for this purpose as 

well (Takahashi et al., 2016). Since the SRT PIA is sensitive to NUBF, the probabilistic 

framework (18) can include a parameter describing the NUBF variability, which can aid in 



fitting SRT PIA and multi-frequency radar measurements that cannot be easily explained with 

uniform beam filling. 

 

[[H1]] Multiple Scattering 

Another phenomenon that can hinder the straightforward interpretation of radar reflectivity 

profiles is multiple scattering (MS). As the name suggests, this occurs when a sufficient amount 

of energy from the radar pulse undergoes multiple scattering events before returning to the 

receiver (Figure 14). Because the range of the scatterer to the radar is resolved via the time delay, 

echoes associated with MS enhances the reflectivity at range gates further from the radar than 

where the MS occurs (one indicator of MS is echo resolved below the surface). While MS is 

ubiquitous for radars with a finite beamwidth, it becomes important for the interpretation of radar 

measurements when the multiply-scattered signal becomes comparable to the single-scattered 

signal. 

<<Figure 14: Schematic depiction of the multiple scattering process. The path of a multiple-

scattered photon (black) is interpreted as echo from lower levels of the cloud following a single 

scattering event (red).>> 

An extensive review of MS in the context of meteorological radars is given by Battaglia et al. 

(2010), and only a short summary is presented here focusing on 1) causes of MS, 2) simulations 

of MS, and 3) mitigation of MS in precipitation profiling algorithms. For the purposes of this 

section, “photon” refers to an infinitesimally small parcel of energy transmitted by the radar. 

Three properties of the radar system and scatterer (hydrometeors) are important in determining if 

MS will be significant: 



1. Radar fields-of-view of comparable or larger size relative to the photon mean free path, 

which is inversely proportional to kext. 

2. High single-scatter albedo, which increases the probability of a scattering event instead of 

an absorption event each time a photon interacts with the scatterer. 

3. Phase functions that are peaked in the forward direction, keeping photons within the radar 

beam. 

Analytical expressions quantifying MS have been derived by Kobayashi et al. (2005, 2007) for 

continuous wave and by Ito et al. (2007) for a time-dependent (pulse) wave. Hogan and Battaglia 

(2008) developed a computationally-efficient time-dependent two-stream approximation for 

plane-parallel atmospheres. Although computationally expensive, Monte Carlo simulations are 

well-suited to examining the MS problem by sampling the probabilities of scattering and 

absorption events within a three-dimensional scattering medium (Battaglia et al., 2005, 2006).  

To illustrate the effect of different radar parameters (frequency, beamwidth) under a large 

dynamic range of hydrometeor concentrations, Monte Carlo MS radar simulations were 

performed for a tropical mesoscale convective system simulated by the Weather Research and 

Forecasting model with 2-moment microphysics (Morrison et al., 2009) representing cloud 

water, cloud ice, snow, graupel, and rain (Figure 15).  

<<Figure 15: Cross sections of water vapor mixing ratio (Qv), cloud water mixing ratio (Qc), rain 

mixing ratio (Qr) and number concentration (Nr), graupel mixing ratio (Qg) and number 

concentration (Ng), cloud ice mixing ratio (Qi) and number concentration (Ni), and snow mixing 

ratio (Qs) and number concentration (Ns) along a synthetic flight line over a WRF simulation of a 

tropical mesoscale convective system. The 0°C isotherm is indicated by the blue line. >> 

 



Observations were simulated from a flight line that passed directly over a deep convective core 

as well as a broad stratiform anvil overspreading some shallow cumulus cells at Ku-, Ka-, and 

W-band from an altitude of 20km (Figure 16) and 400km (Figure 17) to represent high-altitude 

airborne and satellite observation, respectively. Both sets of simulations at all frequencies were 

assuming a 1-degree half-power beamwidth, which corresponds to a ground footprint size of 

350m for the airborne simulation and 7 km for the satellite simulation. While this generally 

underestimates the beamwidth of airborne radars and overestimates the beamwidth of satellite-

based radars presently in operation (Table 1), this is helpful for providing lower and upper 

bounds of expected MS effects from both vantage points. From the airborne perspective, MS 

enhancement is mostly limited to regions of extreme attenuation in the convective core between 

50 and 100 km along track. Magnitudes vary from a few dB at Ku-band, 10-20 dB at Ka-band, to 

30-40 dB at W-band. The stratiform region between 100 and 150 km, which contains significant 

amounts of ice aloft and little to no absorbing cloud water (resulting in high single-scatter 

albedo), also exhibits a few dB of MS enhancement at Ka-band and significant MS (> 10 dB) at 

W-band. From the satellite perspective, the wider beam width results in greater MS effects that 

reach to higher levels of the cloud than the airborne simulation. Significant echo that appears to 

be originating below the surface is also evident. 

<<Figure 16: Nadir-viewing high-altitude airborne radar simulations of the tropical MCS in 

Figure 15 for a radar at 20km altitude with a 1-degree half-power Gaussian beamwidth. The top 

row shows single-scattering simulations at Ku-, Ka-, and W-band, the middle row shows Monte 

Carlo multiple-scattering simulations, and the bottom row shows the difference (multiple 

scattering enhancement) at each frequency. >> 

 



<<Figure 17: Same as Figure 16 for a nadir-viewing satellite radar at 400km altitude with a 1-

degree half-power Gaussian beamwidth. >> 

 

For the retrieval framework (18), MS can be represented with a forward model that considers it, 

such as the Monte Carlo methods or Hogan and Battaglia (2008) plane-parallel model. Since it is 

evident from Figures 16 and 17 that MS does not significantly affect many profiles, it can be 

useful to first identify MS effects before invoking a computationally expensive forward model. 

Battaglia et al. (2014) argue that the differential slope (dZm/dh) at a pair of frequencies should 

equal the differential attenuation plus the change in DFR that is mediated by changes in the PSD 

(Figure 9) with respect to height, which can be seen by combining equations (8) and (19): 

𝐷𝐹𝑅𝑚(𝑟) = 10𝑙𝑜𝑔10 (
𝑍𝑒,1(𝑟)

𝑍𝑒,2(𝑟)
) − 2∫ 𝑘𝑒𝑥𝑡,1(𝑠) − 𝑘𝑒𝑥𝑡,2(𝑠)𝑑𝑠

𝑟

0
.   (27) 

Differentiating with respect to r, 

 
𝑑𝐷𝐹𝑅𝑚

𝑑𝑟
=

𝑑(𝑑𝐵𝑍𝑒,1−𝑑𝐵𝑍𝑒,2)

𝑑𝑟
+ 2(𝑘𝑒𝑥𝑡,2(𝑟) − 𝑘𝑒𝑥𝑡,1(𝑟)).     (28) 

Because Ze is often nearly constant with height, particularly below the melting layer, and 

attenuation increases predictably with frequency (Equation (6) and Figure 5), MS effects that 

reduce the differential slope to values that cannot be explained by any physical PSD can be a 

clear sign of multiple scattering that can “trigger” a MS-enabled forward model.  

When the SRT PIA is used, MS effects must also be considered. If MS is weak compared to the 

surface return, it may safely be ignored. If MS is dominant, then there will be no peak in the 

surface return at the expected range gates (e.g., W-band in Figure 17) , and SRT algorithms 

should be able to identify these cases and fail to provide a meaningful PIA value. However, 

when the MS effect is of comparable magnitude to the surface return, the result will be an 



enhancement of 𝜎0,𝑅 that must be accounted for to avoid a low bias in the SRT PIA (Haynes et 

al., 2009). 

 

[[H1]] Radar-Radiometer Methods 

Many times, airborne and spaceborne radars measurements are taken simultaneously with 

passive microwave measurements of the same scene. Passive microwave measurements can 

provide independent estimates of precipitation profiles (Evans et al., 1995, Kummerow et al., 

1996) and, from a satellite perspective, can provide greatly enhanced coverage relative to radars 

(Hou et al., 2014). The placement of radar and radiometer on the same platform provides an 

opportunity for radiometer precipitation retrievals to be built from radar profiles (Kummerow et 

al., 2011, Kummerow et al., 2015). The radiometer measurements can also be used more directly 

to provide additional constraints to the radar profile (Haddad et al., 1997; Grecu et al., 2004; 

Munchak and Kummerow, 2011; Grecu et al., 2016). This section will provide a brief overview 

of the types of constraints that are provided by common frequencies on passive microwave 

instruments and how these can be integrated into the probabilistic retrieval framework (18).  

 

The upwelling radiance measured by a passive microwave radiometer (commonly expressed in 

units of brightness temperature - Tb) is a complex function of processes along the radiometer 

line-of-sight described by the vector radiative transfer equation: 

     (29) 

which, in order of the terms on the right hand side, states that the radiance is reduced by 

extinction (absorption plus scattering), increased by emission (proportional to absorption) and 

increased by scattering into the path. In precipitation at microwave frequencies, none of these 



terms can be ignored and the sensitivity of Tb to the PSD profile depends on whether 

absorption/emission (1st and 2nd term) or scattering (1st and 3rd term) is dominant and on the 

surface type, which determines the background against which the precipitation “signal” is 

superimposed (Munchak and Skofronick-Jackson, 2012). From Figures  4 and 5 it can be 

inferred that absorption is more important in the liquid phase, particularly at small size 

parameters, whereas scattering becomes dominant in the ice phase and at higher size parameters. 

The surface type plays a role because water surfaces are highly reflective, polarized, and to a 

good approximation, reflections can be treated as specular (Meissner and Wentz, 2012). Thus, at 

low frequencies, where absorption dominates, the Tb increases with the liquid water path (first 

row of Figure 18). Over land, which is less reflective, the emission from the surface is closer to 

the physical temperature of the surface and so the additional emission by hydrometeors in the 

atmosphere has little effect on Tb (second row of Figure 18). However, at higher frequencies, 

particularly when ice is present, extinction by scattering reduces the Tb significantly (lower right 

panels of Figure 18 and top left of Figure 19). Several radiative transfer models exist that can 

solve (27) under assumptions of a plane-parallel atmosphere (e.g., Wiscombe, 1977, Evans and 

Stephens, 1991, Heidinger et al., 2006) or for three-dimensional atmospheres (Evans 1998, Davis 

et al., 2005).  

<<Figure 18: Two-dimensional histograms of radar-derived integrated liquid and ice water path 

and vertically-polarized observed brightness temperature from one day of GPM data at 

10.65,18.7,36.64,89, and 166 GHz, separately for land and water surfaces. >> 

In the framework of a radar retrieval, these models can be used to convert PSD profiles derived 

from single- or multi-frequency measurements to Tb at any frequency for which the hydrometeor 

scattering properties, absorption by atmospheric gases, and surface emissivity are known. The 



problem then becomes one of how to represent the radiometer measurements in y and f(x) in 

(18). If the radiometer line-of-sight and beamwidth are identical to the radar, the Tb in f(x) can 

be computed directly from the radar profile if three-dimensional effects are ignored. However, 

this is rarely the case, as passive microwave radiometers often have wider fields-of-view and are 

offset at an oblique angle (Figure 19) in order to take advantage of polarization differences that 

arise from surface and precipitation scattering (e.g., Prigent et al., 2005, Wang et al., 2012, 

Adams and Bettenhausen, 2012, Gong and Wu, 2017). One solution to this dilemma, and the one 

that is used by the GPM combined radar-radiometer algorithm (Grecu et al., 2016), is 

deconvolution, which weights Tbs in an oversampled field in such a way as to achieve a 

common resolution while conserving the observed Tb (Petty and Bennartz, 2016) over the scene. 

Another option is to expand y and x to present observations and state variables describing 

multiple radar columns so that the slant path and native resolution radiometer observations can 

be more accurately modeled (Munchak and Kummerow, 2011), but since finding the minimum 

of (18) involves iterative matrix multiplication and inversion (Rogers et al., 2000), which scale 

as the third power of the length of y and x, this can be computationally expensive unless there 

are only a few state variables (e.g., Dm’ at a few vertical levels) per radar column. Despite these 

challenges, the additional information provided by combining passive and active measurements 

of precipitation can better constrain surface properties such as wind over the ocean (Munchak et 

al., 2016) and precipitation profiles, particularly when ice is involved (Olson et al., 2016) than 

multi-frequency radar profiles alone. 

<<Figure 19: Correlations between precipitation water content (PWC; left) or aggregate/pristine 

fraction (right) and 89/166 GHz brightness temperatures (top) and polarization difference 

(bottom) along a 53° slant path through an approximately uniform stratiform precipitation field. 



These correlations were calculated from an ensemble of retrievals all consistent with measured 

Ku-band reflectivity profiles during the OLYMPEX field experiment on 3 December 2015.>> 

 

[[H1]] Summary (1 page) 

The placement of weather radar on airborne and satellite platforms has proven to be of great 

utility for precipitation monitoring and the understanding of microphysical processes from sub-

kilometer to global scales. While these platforms provide a unique vantage point from ground-

based radars, they also present some challenges and limitations. The primary challenges for a 

these platforms are limitations on weight, antenna size, and power consumption, all of which can 

be mitigated to some extent by the use of higher frequencies (Ku through W-band) than are 

typical for ground systems (S- or C-band). While these higher frequencies can provide sufficient 

sensitivity and angular resolution, they are much more prone to attenuation and multiple 

scattering, which respectively decrease and increase the measured reflectivity from that which is 

intrinsic to the precipitation PSD. A third phenomenon, non-uniform beam filling, can also cause 

departures in reflectivity from the uniform case and, like multiple scattering, its severity 

increases with the beamwidth. 

In order to accurately retrieve the profile of precipitation PSD parameters from reflectivity 

profiles at one or more frequencies, optionally augmented by independent estimates of 

attenuation and/or passive microwave radiances, an optimal estimation framework has been 

described which minimizes a cost function consisting of normalized differences between 

observed and simulated measurements plus differences between the retrieved and a priori state 

vector. This framework is most robust when used with a forward model capable of simulating all 

aspects of the measurements that are relevant to the instrument, depending on frequency and 



beamwidth (e.g., polarization, multiple scattering, non-uniform beam filling), and 

characterization of the PSD in the state vector using parameters that are uncorrelated to 

reflectivity.  

As the capabilities of airborne and satellite-based radars continue to increase in the future, this 

framework can be used to understand new measurements as well as to critically evaluate the 

forward model. As an example of this iterative process, the inability of homogenous spherical 

models of ice to represent multi-frequency radar measurements led to advances in particle 

scattering models for realistically shaped crystals and crystal aggregates, and as these models 

become widely available they should be considered the standard for use in retrievals. It is by this 

iterative process that retrieval uncertainty becomes better-defined and is reduced by the 

additional of multiple, co-located measurements. 
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<<Table 00-01>> Key parameters of spaceborne weather radars launched prior to 2016. The 

GPM DPR consists of two radars with matched beams: the KuPR and KaPR. 

 

Name Frequency Half-power 

beamwidth & 

nominal 

ground 

footprint 

Nominal 

altitude 

Orbital 

Inclination 

Vertical 

resolution 

Minimum 

detectable 

signal 

TRMM PR 13.8 GHz 0.71° 

4.3 km 

(1997-2001) 

5.0 km 

(2001-2014) 

350 km 

(1997-2001) 

402 km 

(2001-2014) 

 

35° 250m 17 dBZ 

(1997-2001) 

18 dBZ 

(2001-2014) 

CloudSat 

CPR 

94 GHz 0.108° 

1.4 x 1.7 km 

705 km 98.2° 480m -30 dBZ 

(2006-2011) 

 

GPM KuPR 13.6 GHz 0.71° 

5 km 

407 km 65° 250m 14 dBZ 

GPM KaPR 35.55 GHz 0.71° 

5 km 

407 km 65° 250m (MS) 

500m (HS) 

18 dBZ (MS) 

12 dBZ (HS) 

 

 



<<Table 00-02>> Band designations, frequency ranges, and significant absorption lines in each 

band. 

Designation Frequency range (GHz) Significant Gas Absorption lines 

S 2-4  

C 4-8  

X 8-12  

Ku 12-18  

K 18-27 H2O (22.235 GHz) 

Ka 27-40  

V 40-75 O2 (several lines 49-70 GHz) 

W 75-110  

G 110-300 O2 (118.75 GHz), H2O (183.31 

GHz) 

 

 

 

 

 

 

 



<<Figure 1: Backscattering efficiencies calculated at Ku-, Ka-, and W-band frequencies for rain 

and ice particles. Spheroidal raindrops were modeled according to aspect ratio and canting angle 

distributions given in Beard et al., 2010. The cylindrical snow particles, which are an effective 

representation of hexagonal plates (Adams et al., 2012), were modeled with an aspect ratio (D/h) 

= 6 and effective density of 0.6 g/cm3. The DDSCAT particles (color indicates relative density) 

are from the database of Kwo et al. (2016). >> 

 



<<Figure 2: 

Relative contribution (in 0.1 mm bins) to reflectivity (Z) and rainfall rate (R) of an exponential 

drop size distribution with a median volume-weighted diameter of 1.5 mm. >> 

 

  



<<Figure 3: Extinction efficiencies calculated at Ku-, Ka-, and W-band frequencies for rain and 

ice particles. Particle type description can be found in the Figure 1 caption.>> 

 

<<Figure 4: Reflectivity for rain and ice PSDs at Ku-, Ka-, and W-band as a function of mass-

weighted mean particle diameter Dm for various shape parameter assumptions. All PSDs contain 

1 g m-3 of water content.>> 

 



 

<<Figure 5: Bulk extinction coefficient at Ku-, Ka-, and W-band for the same PSDs represented 

in Figure 4.>> 

 

<<Figure 6: Ku-band reflectivity power laws and squared correlation coefficient derived from 

Parsivel2 disdrometer measurements in Iowa during the IFloodS field experiment for the integral 

parameters: attenuation coefficient at Ku-band (kext), liquid water content (W), rain rate (R), mean 

mass-weighted diameter (Dm), and normalized intercept parameter (Nw). >> 

 



 

<<Figure 7: Scatter diagrams for pairs of normalized integral quantities (equation 14) from the 

IFloodS disdrometer measurements. The squared logarithmic correlation coefficient is labeled in 

each panel. >> 

 



 

<<Figure 8: An example attenuation-correcting radar profiling algorithm. The true effective 

reflectivity (solid) is attenuated to the measured signal (dashed). An attenuation correction is 

applied assuming Z-kext relationships that are have been multiplied by factors ranging from 0.5 to 

1.5.>> 



<<Figure 9: Dual-frequency ratio vs. Dm for Ku-Ka (left) and Ka-W (right) frequency pairs. 

Different values for μ (ice) or σm’ (rain) are indicated by different shades of each color, as in 

Figures 4 and 5.>> 

 



 

<<Figure 10: Observed vs. predicted rainfall rate from equation (20) from the IFloodS PSD 

database for different combinations of Ku, Ka, and W-band reflectivity measurements, assuming 

a perfect attenuation correction is made and 1 dB measurement error. The squared correlation 

coefficient (r2) and mean relative error (mre) are given for each combination.>> 



 

<<Figure 11: Dual-frequency ratio at Ka and W bands vs. dual-frequency ratio at Ku-Ka bands 

for the hydrometeor PSDs used in Figures 4,5, and 9.>> 



 

<<Figure 12: Non-uniform beam filling scenarios for the Ze profile presented in Figure 8. These 

scenarios vary the fraction of the beam containing precipitation at each level on the vertical axis 

and the autocorrelation of precipitation from one vertical level to the next on the horizontal axis. 

In these scenarios, the precipitation is uniform where present and scaled such that the average 

non-attenuated reflectivity is constant at each level. The difference in measured reflectivity from 

a uniform beam, SRT PIA, and errors in corrected reflectivity and retrieved rainfall rate near the 

surface (using default relationships and the SRT PIA to adjust the PSD) are shown.>> 



 

<<Figure 13: Non-uniform beam filling scenarios for the Ze profile presented in Figure 8. These 

scenarios vary the standard deviation of dBZe at each level (scaled such that the average non-

attenuated reflectivity is unmodified from the original profile) on the vertical axis and the 

autocorrelation of precipitation from one vertical level to the next on the horizontal axis. The 

difference in measured reflectivity from a uniform beam, SRT PIA, and errors in corrected 

reflectivity and retrieved rainfall rate near the surface (using default relationships and the SRT 

PIA to adjust the PSD) are shown.>> 



<<Figure 14: Schematic depiction of the multiple scattering process. The path of a multiple-

scattered photon (black) is interpreted as echo from lower levels of the cloud following a single 

scattering event (red).>> 



<<Figure 15: Cross sections of water vapor mixing ratio (Qv), cloud water mixing ratio (Qc), rain 

mixing ratio (Qr) and number concentration (Nr), graupel mixing ratio (Qg) and number 

concentration (Ng), cloud ice mixing ratio (Qi) and number concentration (Ni), and snow mixing 

ratio (Qs) and number concentration (Ns) along a synthetic flight line over a WRF simulation of a 

tropical mesoscale convective system. The 0°C isotherm is indicated by the blue line. >> 



<<Figure 16: Nadir-viewing high-altitude airborne radar simulations of the tropical MCS in 

Figure 15 for a radar at 20km altitude with a 1-degree half-power Gaussian beamwidth. The top 

row shows single-scattering simulations at Ku-, Ka-, and W-band, the middle row shows Monte 

Carlo multiple-scattering simulations, and the bottom row shows the difference (multiple 

scattering enhancement) at each frequency. >> 

 

 



<<Figure 17: Same as Figure 16 for a nadir-viewing satellite radar at 400km altitude with a 1-

degree half-power Gaussian beamwidth. >> 



 

<<Figure 18: Two-dimensional histograms of radar-derived integrated liquid and ice water path 

and vertically-polarized observed brightness temperature from one day of GPM data at 



10.65,18.7,36.64,89, and 166 GHz, separately for land and water surfaces. >>

 

<<Figure 19: Correlations between precipitation water content (PWC; left) or aggregate/pristine 

fraction (right) and 89/166 GHz brightness temperatures (top) and polarization difference 

(bottom) along a 53° slant path through an approximately uniform stratiform precipitation field. 

These correlations were calculated from an ensemble of retrievals all consistent with measured 

Ku-band reflectivity profiles during the OLYMPEX field experiment on 3 December 2015.>> 

 

 

 

 


