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This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models

of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space.

Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order

models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced

truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally

optimal realization and “weak” fulfillment of state consistency across the entire parameter space. Therefore,

aeroservoelasticity reduced-ordermodels at any flight condition canbe obtained simply throughmodel interpolation. The

methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at

NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate

that the reduced-ordermodelwithmore than 12× reduction in the number of states relative to the originalmodel is able to

accurately predict system response among all input–output channels. The genetic-algorithm-guided approach exceeds

manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced-

order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions,

which verifies consistent state representation obtained by congruence transformation. The presentmodel order reduction

framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.

Nomenclature

A = state matrix
B = input matrix
C = output state matrix
D = input transition
fl = individual fitness value
i = index for grid points in the parameter space
Jl = individual objective function value
M = matrices in state-space model
~P = generalized controllability gramian
~Q = generalized observability gramian
R = common subspace for reprojection
S = singular value matrix
u = input signals
~V = transformation matrix in balanced realization
~W = transformation matrix in balanced realization
y = response measurements
x = system state
Γ = transformation matrix for consistent state representation
ρ = vector of measurable parameters

Subscript

r = reduced system states and matrices without consistency

Superscript

* = reduced system states and matrices with consistence

I. Introduction

W ITH the fast-paced technological advances in this new era of
science, modern aerospace designs are able to incorporate

new flexible structures and lighter materials to achieve enhanced
maneuverability, endurance, and performance. As a result, they are
also more susceptible to issues such as complex dynamics and
interactions between the controller and the aerodynamic and
structural systems, which may lead to adverse events such as
flutter, limit-cycle oscillation, and gust loading. To design a
modern flexible aircraft that can attain a safe and acceptable flight
envelope, detailed modeling and high-fidelity simulations of
aeroservoelastic (ASE) systems must be performed before flight
tests to investigate the source of potential aeroelastic (AE) failures.
Although full-order models that couple the nonlinear aerody-
namics with structural models are capable of accurate prediction of
underlying AE phenomena and onset, their prohibitive computa-
tional cost, low speed, nonlinear nature, and difficulty to deploy
controllers with high-state-order models render them impractical
for integration in the design environment involving concurrent
ASE analysis and control synthesis and design.
To combat these challenges, various model order reduction

(MOR) techniques have been developed in the context of linear
parameter-varying (LPV) formulation. In LPV, the fully coupled
nonlinear aircraft model is represented as an ensemble of linearized
models at the grid points within the parameter space, and the model
parameters vary across the flight envelope. Models at any location
within the domain can be obtained by interpolating those at the grid
points. MOR aims to reduce the full-order LPVASE model into a
reduced state-space form while retaining the dominant dynamics
of the system in the target frequency range where AE may be
involved. MOR can be classified into nontransformation (e.g.,
truncation and residualization) and transformation-based techniques,
such as modal reduction, balanced truncation, Krylov subspace
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projection, hybrid singular value decomposition (SVD)–Krylov
approaches [1], etc. Although yielding reduced-order models
(ROMs) with consistent states amenable to direct model
interpolation, the former typically is a trial-and-error and/or
empirical process that manually examines and selects unimportant
states to eliminate from the original systems in an iterative manner.
On the other hand, for the transformation-based MOR techniques,
although more efficient and accurate given tight state budgets,
the optimal transformation is flight-parameter-dependent, leading
to different state meanings of the ROMs at various locations in
the flight envelope, which leads to state inconsistency of the
LPV system and makes facile interpolation impossible. To form
LPV ROMs encompassing the entire parameter space, several
techniques have been proposed for consistent state representation
and ROM interpolation. Hjartarson et al. [2] proposed to apply the
transformation matrix obtained by balanced truncation at a single
flight condition to the LPV model sets within the entire flight
envelope. Although maintaining state consistency, the approach is
suboptimal because balancing transformation by nature changes
with flight parameter. Moreno et al. [3] used a contractive right
coprime factorization approach to attain consistent controllability
and observability gramians throughout the flight envelope, which
can be balanced to achieve state consistency. This approach suffers
from several inherent limitations, such as challenges in use over
broad and high-dimensional parameter space as well as numerical
issues associated with large state numbers. Panzer et al. [4]
proposed two methods, respectively, based on reprojection onto a
common subspace and optimization-based matrix matching to
achieve identical state meanings among local models for
interpolation. The former was employed for interpolating LPV
ROMs of industrial flexible aircraft [5]. The common subspace in
[4] is obtained by SVD of the ensemble of transformation matrices
at various parameters and, hence, is ill-suited for use in broad flight
envelope including dramatically varying parameters. Poussot-
Vassal and Demourant [6] compared several MOR techniques and
their application to aircraft systems, including balanced truncation,
iterative tangential interpolation algorithm, and iterative SVD-
tangential interpolation algorithms along with a modal form-based
coordinate transformation to achieve state consistency. Theis et al.
[7] developed a newmodal matching technique, which casts ROMs
into a modewise canonical form and matches modes with similar
dynamic properties at neighboring grid points to minimize state
inconsistency.
In spite of seminal works in MOR of ASE systems, there still

exist several challenges to be addressed to propagate the
application of these techniques. For example, automated selection
of physical states within various aircraft components for reduction
without trial-and-error or prior knowledge of the model is needed
to render the approach directly applicable to a completely new
aircraft model. In order to obtain consistent state representation
among local ROMs, capabilities need to be developed to tackle
more complex scenarios, such as inherently unstable ASE systems
in two-dimensional (2-D) or even high-dimensional flight
parameter space involving pole conversion (i.e., real poles change
into conjugate pairs or vice versa).
In this context, this paper presents the development of LPVASE

reduced-order models (ROMs) of flexible aircraft based on a
combination of automated model reduction, consistent state
representation, and model interpolation approaches. The X-56A
MUTT vehicle with flexible wings currently being tested at NASA
Armstrong Flight Research Center for flutter suppression and gust
load alleviation was used for analysis, verification, and
demonstration. In the MOR, the truncation and residualization
methods were first applied to the states of sensors, actuators,
aerodynamic lags, rigid bodies, and elastic structures of the full-order
X-56A Multi-Use Technology Testbed (MUTT) ASE model on the
grid points in the flight parameter space. In contrast to previous
efforts [2,3,8], for the first time, a process based on genetic algorithm
(GA) and globally averaged objective function was developed for
automated selection of unimportant states in the aerodynamic lag and
the elastic modes to truncate/residualize, which not only eliminates

the manual, trial-and-error process for state screening but also
improves MOR accuracy and performance given state budgets. The
balanced truncation for unstable systems was also used to further
reduce states with minor contribution to the input/output energy of
the system in the local ROMs. Finally, the method of congruence
transformationwas exploited to remedy the issue of inconsistent state
representation among local ROMs caused by flight-parameter-
dependent transformation (caused by balanced truncation). Different
from previous approaches of modal matching [7], modal canonical
form [6], and reprojection onto a common subspace [4,5,8], the
congruence transformation harnesses basis information in the
transformation matrices and allows weak fulfillment of the modal
assurance criterion (MAC), rendering ROM interpolation possible to
construct a unified LPV ROM feasible across a broader flight
envelope.

II. Linear Parameter-Varying Aeroservoelastic
Models of Aircraft

Linear parameter-varying (LPV) models are state-space models
whose mathematical descriptions are functions of time-varying
parameters, i.e., �

_x
y

�
�

�
A�ρ� B�ρ�
C�ρ� D�ρ�

��
x�t�
u�t�

�
(1)

where A�ρ� is the state matrix; B�ρ� is the input matrix; C�ρ� is the
output state matrix; D�ρ� is the input transition matrix; ρ ∈ ℜnp is a
vector of measurable parameters, e.g., fuel weights and knots
equivalent airspeed (KEAS) in the present work; and u ∈ ℜnu and
y ∈ ℜny are, respectively, the vector of the control inputs and
measurement outputs. There are several methods to represent
parameter dependence in the preceding LPV models, such as linear
fractional transformation, polytopic dependence of the state matrix
on the parameters, linearization on a gridded domain, etc. This paper
targets the MOR of LPV models based on the gridded domain, in
which the nonlinear dynamics in the ASE system of the flexible
aircraft is linearized around various flight conditions, also termed
grid points or parameter locations hereafter. The resulting set of
original, full-order linear time-invariant (LTI) state-space models at
grid points are then reduced using our MOR techniques, followed by
constructing LPV-ROM via model interpolation that is applicable to
the entire flight parameter space. Eventually, the ROM can be used
for real-time ASE simulation, system-level analysis, and controller
synthesis.

III. Model Order Reduction for Linear Parameter-
Varying Aeroservoelastic Models of Flexible Aircraft

Figure 1 illustrates ourMORmethodology for LPVASEmodels of
flexible aircraft. A prerequisite of the approach is to first have a set of
full-order LTI state-space models describing coupled ASE behavior
at grid points in the flight parameter space. The full model can be
generated from relevant modeling tools (see Sec. IV). The entire
MOR process includes two key steps.
1) Local MOR (the middle column in Fig. 1): the original,

full-order LTI model set is first reduced and transformed onto a
low-dimension subspace yielding a set of local ROMs. Several
techniques can be used, including truncation and residualization,
and transformation and truncation (e.g., modal reduction and
balanced realization and truncation, Krylov methods, and their
combinations). Because the transformation/projection matrices
used depend on the location of the grid points, measures need to
be taken to ensure that all ROMs are cast in a consistent state
representation (or coordinates) before model interpolation.
2) ROM interpolation: the ROM at any location within the flight

envelope is then obtained by interpolating the system matrices of the
local ROM set obtained in the previous step.

1444 ZHU ETAL.

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
R

M
ST

R
O

N
G

 F
L

IG
H

T
 R

E
S 

C
E

N
T

E
R

 o
n 

A
ug

us
t 3

0,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

41
29

 



Equation (2) summarizes the MOR process:

"
_x

y

#
�

"
Ai Bi

Ci Di

#"
x�t�
u�t�

#
›

MOR

Consistent State

Represenation

"
_x�

y

#

�
"
A�
i B�

i

C�
i Di

#"
x�

u�t�

#
›

LPVROM

Interpolation

"
_x�

y

#

�
"
APV�ρ� BPV�ρ�
CPV�ρ� DPV�ρ�

#"
x�

u�t�

#
(2)

where i denotes the ith grid point in the parameter space; the asterisk
� denotes the reduced system with consistent state representation;
and the subscript PV denotes the parameter-varying ROM
encompassing the entire parameter space and obtained via model
interpolation. Note that, because of the flight dynamics of X-56A and
consistent transformation matrices following congruence trans-
formation (later), the parameter rate _ρ is assumed to be negligible.
Two techniques are used primarily in our framework for local

MOR, namely, truncation and residualization and balanced
truncation for unstable systems, as described in Secs. III.A and III.
C, respectively. The truncation and residualizationwill be first used to
remove unimportant states in common among all grid points without
altering state consistency and to eliminate the states around the
imaginary axis to further improveMOR performance downstream. It
is then followed by balanced truncation to further refine the model
from the input/output channel energy perspective. There are three
facets that distinguish the current effort from the previous.
1) Rather than relying on heuristics and trial-and-error, a genetic

algorithm (GA)-based procedure is developed to “intelligently”
determine which states to retain (or remove) in the aforementioned
truncation and residualization.
2) In contrast to previous research [7,8], including ours, the modal

reduction approach based on the real and ordered eigenstructure
decomposition was not used herein. This is because the modal
frequency varies significantly across the broad 2-D flight parameter
space, and the full models at various grid points may have a different
number of complex and real poles. It was found in our investigation
that the use of modal reduction causes substantial state inconsistence
among local ROMs.
3) Instead of using the modal matching [7] or the canonical modal

form [6] to achieve consistent state representation, congruence
transformation appears more promising in handling LPV models in
2-D parameter space involving the issue of pole conversion (i.e., real
poles change into conjugate pairs or vice versa) [7].

A. Truncation and Residualization

MOR by truncation and residualization essentially partitions the
state vector x in the model into two components �x1x2�T , where x1 are
the states to keep and x2 are those to eliminate. Therefore, the system
matrices A, B, and C can be partitioned as

A �
�
A11 A12

A21 A22

�
; B �

�
B1

B2

�
; C � �C1 C2 � (3)

The ROM is obtained by truncating all the terms associated with
x2. Truncation preserves the ROM accuracy at high frequencies.
When the steady-state gain of a system needs to be retained, a
residualization procedure is implemented, in which the state
derivatives for x2 are set to zero, leading to a more accurate
approximation of the original system at low frequency.
The residualized ROM is then given by

"
_x1

y

#
�

"
�A11 − A12A

−1
22A21� �B1 − A12A

−1
22B2�

�C1 − C2A
−1
22A21� �D − C2A

−1
22B2�

#"
x1�t�
u�t�

#
(4)

B. Genetic-Algorithm-Guided Truncation and Residualization

The preceding truncation and residualization will be employed to
reduce states under various categories, such as sensors, actuators,
rigid body, aerodynamic lag, elastic states, etc., of the ASE system
[2,3,8–10]. The challenge is to determine which states to keep or
remove. Previously, this was performed based on the understanding
of the vehicle dynamics [3,9], iterative process [2], retention of the
states corresponding to leading modes [8], etc., which are mostly
empirical. In this paper, a global optimization approach based on the
genetic algorithm was developed for automatic state selection and
reduction with minimal reliance on the user’s experience and
trial-and-error process while maintaining dynamics of the original
system.
A genetic algorithm (GA) is a stochastic global search method

designed to mimic evolution and natural selection. GAs use a
multitude of initial potential solutions (often called a population) to
sample the entire solution space and then use the process of natural
selection to evaluate the population based on the individual fitness
levels of its chromosomes (member of the population) to better
approximate the optimal solution [11]. This process takes many
generations to converge, and at each generation, a new population is
created based on the fitness level of the previous generation. As
shown in Fig. 2, most GA applications have four key aspects:
crossover, mutation, objective function, and fitness function/
selection. The process starts with an initial population. A population
is a set of binary strings (often called genotypes or chromosomes),
each of which is a potential solution to the optimization problem. The
chromosomes must be altered in a certain way to approach the
optimal solution, which in our case is the most important states to
retain. In all stochastics-based algorithms, there is a tradeoff between
exploration (sampling the solution space) and exploitation (fixing the
solution on the global minimum). In GA, the role of the exploitation
falls on the crossover operator and that of the exploration on the
mutation operator [11]. The crossover operator is used as an
exploitation tool and combines portions of two parent chromosomes
that are already “good”, with the goal to generate offspring
approaching closer to the global minimum. Only using crossover

Fig. 1 Organization of LPV MOR framework.
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within a GA is prone to be trapped with a local minimum [12,13]. For

binary encoding, the mutation operator typically uses bit inversion to

accomplish its task. Each gene is altered independently of others,

typically with a probability of 1∕L, whereL is bounded by the length

of the population size and the length of the chromosome. The

probability of mutation is usually very low because its main

purpose is to maintain diversity within the population and ensure

that the solution does not prematurely converge. We also devised a

way to decode the binary strings carried by chromosomes into a

physical solution. An index of 1 indicates that the state would be

kept, and 0would be removed. For example, consider a systemwith

state vector x � �x1 x2 x3 x4 x5�T that has the binary representation

� 1 1 0 1 0 �, indicating that the reduced system has the

configuration xr � �x1 x2 x4�T with x3 and x5 eliminated.
Similar to any optimization problem, one key aspect of GA is the

objective/cost function. The goal of MOR is to reduce the number of

states in the ASE system while preserving system responses along

target input–output channels. Hence, in this paper, the objective

function is the difference in the infinity norm H∞ between the

original model and the ROM:

J � k�G�jω� −Gr�jω��k∞ (5)

whereG andGr, respectively, represent the dynamic system before and

after the truncation and residualization. GA essentially locates the most

important states and keeps them in the reduced system to approximate

the original one with minimal error. To evaluate the fitness level of the

candidate population, a fitness function is defined, which yields high

fitness values fl, whereas the objective function value J is low:

fl � �c∕Jl�n and Pl � fl∕
Xng
l�1

fl (6)

wherec andn are constantweights, l is the lth genome in thepopulation,

andng is the total number of genome for interrogation in the population.

Then, the roulette wheel method is used to select which genomes to

move onto the next generation. Specifically, each genome is assigned a

probability of survival Pl based on its individual fitness value in the

population. It is clear that the higher the fitness value is, the more likely

the genome is to survive to the next generation. The flowchart of theGA

for state selection is summarized in the top inset of Fig. 2.

Note that, in a gridded LPV system, the optimal states identified by
the GA may vary across flight parameters, which, however, is
undesired because it causes mismatch in state representation among
local ROMs and difficulties for model interpolation downstream.
Instead, we use the four most-extreme flight conditions, viz.,
� 50 100 �KEAS × � 0 80 � lb as probes or representative grids for
the 2-D flight parameter space. Given a budget of the number of
states, the GA determined a common set of states that are applied
simultaneously to reduce the full model at these four grid points.
Correspondingly, the objective function value was taken to be the
average of the individual objective function values at these points.
Thus, the identified states represent a globally optimal selection
among various flight conditions. Moreover, calculating individual
objective function values is an independent process for each of the
selected flight conditions, and hence, the parfor loop in MATLAB’s
Parallel Computing Toolbox was used in lieu of the standard for loop
to accelerate the GA process that involves many generations to
converge to the global state selection. The objective function
evaluation is independent from each other, leading to salient linearity
in speedup ∼4×. Figure 2 summarizes the work flow of the state
truncation and residualization in conjunction with the genetic
algorithm (GA). TheGAstartswith a populationwith initial genomes
encoding the state indices for reduction. The objective function
values quantifying the difference in infinity norm between the
originalmodel and the reducedmodel are then evaluated and returned
to the GA for determining optimal genomes and its encoded state
indices for the next iteration/generation. Although only four extreme
flight conditions are used as the performance probes in this paper
(furthest dots at the four corners in Fig. 2), more parameters at critical
regions can be incorporated for preferential local consideration.

C. Balanced Residualization and Truncation for Unstable System

The presence of parameter-dependent unstable states in the ASE
model of flexible aircraft causes formidable challenges and
complexities for MOR and consistent state representation. The
unstable states should be retained in the reduced-order system to
perform controller synthesis for stabilization and damping
augmentation of the ASE system. Traditionally, a stable/antistable
separation is carried out before balanced truncation, and the
balancing transformation is only applied to the stable parts, whereas
the unstable part remains intact (e.g., functions balreal and balancmr
in Matlab). In the present effort, the balanced truncation for unstable

Fig. 2 Schematic of truncation and residualization along with the generic algorithm for automated state selection.
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systems based on generalized representation of the gramians

proposed byZhou et al. [14] is employed. The generalized gramian of

unstable systems is well-defined when there are no poles on the

imaginary axis and is given as

~P ≔
1

2

Z
−∞

−∞
�jωI − A�−1BB 0�−jωI − A 0�−1 dω and

~Q ≔
1

2

Z
−∞

−∞
�−jωI − A 0�−1C 0C�jωI − A�−1 dω (7)

Using a linear transformation T for separating the stable (As, Bs,

Cs, Ds) and antistable (Ans, Bns, Cns, Dns) parts of the system, the

generalized controllability ~P and observability ~Q gramians defined in

Eq. (7) can be constructed:

~P � T−1
�
Ps 0

0 Pns

�
�T−1� 0; ~Q � T 0

�
Qs 0

0 Qns

�
T (8)

wherePs andQs are the controllability and observability gramians of

(As,Bs,Cs), andPns andQns are those of (−Ans,Bns,Cns), which can

be computed by solving the Lyapunov equations. The balancing

transformationmatrix for both the stable and antistable parts then can

be calculated as

~V � UZΣ−1∕2 and ~W � LYΣ−1∕2 (9)

where ~P � UUT and ~Q � LLT ; and Z, Σ, and Y can be obtained

from singular value decomposition (SVD) of UTL � ZΣYT . Note

that ~WT ~V � I. Applying the balancing transformation to the state-

space model yields

�
_xb
y

�
�

�
~WTA ~V ~WTB
C ~V D

��
xb�t�
u�t�

�
(10)

The state-space model in the new coordinate xb in Eq. (10) is

balanced, and hence, its controllability and observability gramians

are equal and diagonal and are sorted in the descending order of the

Hankel singular values. By retaining the states corresponding to

salient Hankel singular values (e.g., σ1; : : : ; σr) and corresponding

columns ( ~Wr and ~Vr) in ~W and ~V, a ROMwithout appreciably losing

important input/output information can be obtained:

�
_xr
y

�
�
�
Ar�ρ� Br�ρ�
Cr�ρ� D�ρ�

��
xr�t�
u�t�

�
and

�
Ar� ~WT

r A ~Vr; Br� ~WT
r B

Br�C ~Vr

(11)

Note that all unstable modes in X-56A are retained because they

contribute to aeroservoelasticity and impose significant impacts to all

the input–output channels. Our main consideration of using balanced

truncation for unstable systems is that it manipulates stable and

unstable modes in the same framework and may offer an opportunity

of identifying smooth balancing transformation across the fight

envelope and consistent state representation [10].

D. Congruence Transformation and Reduced-Order Model
Interpolation

The aforementioned MOR steps are applied to the full-order ASE

model at each grid point in the flight envelope, yielding a set of local

ROMsGr;i � �Ar;i; Br;i; Cr;i; Dr;i�, i.e., Eq. (10), where the subscript i
again denotes the ith grid point in the parameter space, and Gr is the

reduced system. Given the fact that transformation matrices used in

MOR vary along grid points, the physical meaning of the states in each

local ROM is not consistent across the flight envelope (i.e., xr;i, ~Wr;i,

and ~Vr;i in the precedingbalanced truncation all dependongrid index i).
It renders impossible direct interpolation ofGr;i to construct ROMs for

ASEbehavior prediction at arbitrary locations in the parameter space. In

otherwords, states of the reduced systemxr;i andof theoriginal systemx
are related by ~VT

r;ix � xr;i, and ~Vr;i is grid-dependent. Therefore, xr;i
in local ROMs cannot be interpolated directly.

To mitigate the issue, one of the most widely used methods is to
reproject the individual ROMsonto a common subspace, followed by
matrix interpolation, as discussed in [4,8,15]. The common subspace
R shared by all local ROMs can be obtained by SVD of
the concatenated right projection subspace Vi at grid points
(i.e., RSΦT ≈ �V1; : : : ; Vns�, where Vi is the column subspace
spanning ~Vr;i in balanced truncation). However, our studies indicate
that, because of the broad parameter space and distinctly different
dynamic behavior associated with very flexible aircraft, R of a low
dimension from SVD cannot effectively capture key bases contained
in allVi [8], leading to poorROMperformance. Therefore, a different
approach based on congruence transformation [15] was used. Its
principle is to set the right subspace Vn0 at a grid point n0 as the
reference and then minimize the difference between the subspace Vi

at other grid points relative to Vn0 through the modal assurance
criterion (MAC) and changes of basis Γi. In other words, a
transformation Γi at a grid point i is determined to minimize the
difference in the Frobenius norm between the ViΓi and Vn0:

Γi � arg min
Γi∈O�r�

kViΓi − Vn0k2F (12)

or equivalently:

Γi � arg max
Γi∈O�r�

tr�ΓT
i V

T
i Vn0� (13)

This is the orthogonal Procurstes optimization problem [16], and a
straightforward and analytical solution to computing Γi is to take
SVD of the relative configuration matrixMi constructed by the local
transformation matrices Vi with respect to the reference matrix Vn0.
The procedure starts with selecting the right subspace at one
parameter as the reference (e.g.,Vn0) and then iterating on computing
the congruence transformation Γi at the other parameters relative
to the reference [15]. The algorithm is capable of automatically
detecting situations where mode crossing and mode veering occurs.
Detailed interpretation and comparison of both methods is given in
[16]. In this paper, the grid point at the center of the flight parameter
space (e.g., 100 KEAS and 40 lb) was selected as the reference point.
The congruence transformation is summarized next [15].
Following congruence transformation, the spline interpolationwas

performed on each individual element in the A�
i , B

�
i , C

�
i , and D�

i
matrices at grid points to obtain those at nongrid points simply using
MATLAB’s interp2 function with the option of spline.

IV. Results and Discussion

The LPV state-space models of the X-56A MUTT airframe were
used as the example ASE system in our study. They were developed
using the generalized mass, stiffness, and aerodynamic matrices
obtained by MSC/Nastran** and ZAERO.†† There are 10 control

Algorithm 1: Congruence transformation Γi at parameters
i�i ≠ n0�

Input: Right subspace matrices Vi and the reduced system after balanced
truncation Gr;i � �Ar;i; Br;i; Cr;i; Dr;i�
1) Select a reference point n0 in i � 1, 2, and : : : , ns and its associated
subspace Vn0

2) For i � 1; 2; : : : ; ns and i ≠ n0
Compute Mi � VT

i Vn0

Compute Mi � UiΣiZ
T
i via singular value decomposition (SVD)

Compute Γi � UiZ
T
i

Compute A�
i � ΓT

i Ar;iΓi, B
�
i � ΓT

i Br;i, C
�
i � Cr;iΓi, D

�
i � Dr;i

End for
Output: Transformed system with consistent state representation
G�

i � �A�
i ; B

�
i ; C

�
i ; D

�
i �

**Data available online at http://www.mscsoftware.com/product/
msc-nastran [retrieved July 2016].

††Data available online at http://www.zonatech.com/ZAERO.htm [re-
trieved July 2016].
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surfaces on the vehicle, five on each wing, and two throttle controls
for engine dynamics, as shown in Fig. 3. The five actuator inputs for
control surfaces on the left wing are labeled as BFL, WF1L, WF2L,
WF3L, andWF4L, starting from the inner body to the outer wing tip
with units of degrees. Likewise, the actuators on the right wing are
labeled asBFR,WF1R,WF2R,WF3R, andWF4Rbased on the same
convention. The rigid-body state sensors are located around the
center of the vehicle, whereas the ASE accelerometer locations are
placed at the front of the vehicle (ASESNSR100), at the rear
(ASESNSR1000), at the leading and trailing edge of the left wing
(ASESNSR400 and ASESNSR600), and at the leading and trailing
edge of the right wing (ASESNSR1100 and ASESNSR1300).
In this paper, the plant model of X-56A MUTT that captures the

dynamics and ASE behavior associated with the pitch axis was used.
A set of 357 (21 × 17) models were generated at M � 0.16 on grid
points of a 2-D parameter space across the flight envelope. The two
parameters are knots equivalent airspeed (KEAS), which ranges from
50 to 150 KEAS in 5 KEAS increments, and fuel weight, which
ranges from0 to 80 lb in 5 lb increments. Themodel at each grid point
has 192 states, including 56 states corresponding to the second-order
sensors (28 sensors in total), 12 rigid body states, 14 elastic structural
modes and 14 derivatives (modal velocity), 60 aerodynamic lag
states, and 36 states for the third-order actuators (10 control surfaces
and two engine throttles). According to the V − g and V − f plots of
the X-56A baseline model at M � 0.16 [17], the normalized flutter
frequencies for symmetric body freedom flutter (SBFF), symmetric
wing bending torsion flutter (SWBTF), and antisymmetric wing
bending torsion flutter (AWBTF) modes are, respectively, at 1, 3.68,
and 3.912 (all the flutter frequencies are normalized by the one for
SBFF due to ITAR requirement). The target normalized frequency
range ω for X-56A model reduction is determined to be 0.01 < ω <
5.37 to ensure full coverage of the instability of interest and system
response.
Instead of using raw inputs and outputs, composite inputs and outputs

relevant to pitch dynamics constructed by the raw oneswere included in
the model to facilitate controller synthesis. Specifically for input
channels, the control surfaces were symmetrically combined to form
new inputs to the pitch plant model, e.g., BFL and BFR coupled as
�BFL� BFR�∕2, and the same is applied to all other inputs. Similarly
in addition to qb, the pitch rate of the aircraft, three composite outputs
(i.e., ASE 1, ASE 2, and ASE 3) were constructed using raw sensor
outputs, specifically, ASE1 = (ASESNSR400+ASESNSR1100
−ASESNSR600−ASESNSR1300)/4; ASE2 = (ASESNSR400
+ASESNSR1100+ASESNSR600+ASESNSR1300)/4; and ASE3 =
(0.28× ASESNSR1000−0.72×ASESNSR100). All the labeling is
given in Fig. 3.
The MOR framework described in Sec. III was then applied to the

X-56AMUTTASE model. Truncation and residualization was used
to eliminate the states associated with sensors, actuators,
aerodynamic states, rigid-body states, and elastic states. The

aforementioned GA was employed to select states of aerodynamic

lags and elastic structural modes and modal velocities for reduction

due to their largest contribution to the total state numbers and the

difficulty of manual selection. It was then followed by

transformation-based MOR (balanced truncation for unstable

systems). Changes of basis based on congruence transformation

were then applied to ROMs to achieve the most state consistence

among local ROMs, rendering them ready for interpolation.

The matrix entries of ROMs were then interpolated using the spline

interpolation, yielding LPV ROM at any location in the 2-D flight

parameter space. The following studies include verifying the MOR

methodology by comparing ROMs against the full X-56A MUTT

model, examining consistence in state presentation, and evaluating

ROM interpolation. For sake of brevity, only four input–output

channels are shown, viz., from inner body �BFL� BFR�∕2 to pitch
rate (qb) and ASE1, and from wing tip �WF4R�WF4L�∕2 to pitch
rate (pb) and ASE1. The center grid point in the flight envelope

(100 KEAS and 40 lb) serves as the benchmark case.

A. Sequential Model Order Reduction

The sequential MOR including sensor reduction, actuator

reduction, aerodynamic lag reduction, rigid-body reduction, elastic

state reduction, and balanced truncation was performed in the

benchmark case.
1) Sensor reduction:Given independent nature of the sensors states

in the full-order model, we first truncated 42 states in the 56 sensor
states that have no contribution to pitch-axis observation. Then, the
remaining 14 states associatedwith the first- and second-order sensor
dynamics in study were fully residualized to match the dc gain of the
full model, leading to a ROM with 136 states.
2) Actuator reduction: The X-56A MUTT model includes 10

surface controls and two engine controls, and each is described by
third-order dynamics. Six states corresponding to engine throttle
controls that are not the object of our ASE studywere truncated. Next
the third-order states of the remaining 10 surface control actuators in
the study (i.e., BFL, WF1L–WF4L and BFR, WF1R–WF4R) were
residualized, yielding a ROM of 120 states with the second-order
approximation of actuator dynamics.
3) Aerodynamic lag reduction: The X-56AMUTTmodel includes

60 aerodynamic lag states in the full model. In contrast to the trial-
and-error approach in previous efforts, the GA-guided truncation and
residualization was used to reduce 36 aerodynamic states, yielding a
ROM of 84 states. The GA-guided approach will be compared
against the manual selection approach, whereas in the latter, the first
24 leading aerodynamic lag states were retained.
4) Rigid-body reduction: The X-56A MUTT model has 12 rigid

body states in the full-order model, which are x, y, ψ , h, ϕ, θ, u, β, α,
p, q, and r. Several comparative studies were carried out in which
various combinations of the rigid-body states were examined to

Fig. 3 Sensors and actuators deployment in the X-56A MUTT vehicle.
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determine the best set that has negligible impact to system dynamics,
resulting in a ROMwith 76 states with consistent performance across
the entire flight envelope.
5) Elastic state reduction: The X-56A MUTT model has 14

coupled elasticmodes, corresponding to 28 states. The first 14 states
were used to describe the modal displacements, whereas the rest
were used for the modal velocity. The GA-guided approach
suggested keeping five states each in modal displacement and
modal velocity in the ROM, that is, 18 states in total were
residualized, yielding a ROM with 58 states. The GA-guided
approach will be compared against the manual selection approach,
and in the latter, the first five leading states in the modal
displacement and velocity (10 in total) were kept.
6) Balanced truncation for unstable systems: It was used to

transform the 58-state ROMs into a balanced controllable and
observable form using the stable/antistable state separation and
generalized balancing transformation. The states in the model were
sorted according to the significance of their corresponding Hankel
singular values. Therefore, the states with the least controllability and
observability were removed to construct the minimal realization of
the model capable of capturing the dynamics between all input–
output pairs. In this study, 27 states with smaller Hankel singular
values were truncated, yielding a ROM with 16 states.

The sequential MOR and resulting model sizes are summarized in
Table 1. Figures 4 and 5 show the comparison of the magnitude and
phase in the frequency domain between the original full-order X-56A
and ROM for the benchmark case (100 KEAS 40 lb) during the
sequential MOR. It demonstrates that ROM accurately matches
the original model for all the selected input–output channels within
the desired frequency range, whereas the number of states is reduced
by 12×.
The results of truncation and residualization based on GA and

manual selection are compared in Fig. 4. Given a budget of 24 states
in aerodynamic lags and 10 elastic states, GA was used to
automatically determine the most important ones to preserve the
dynamics of the original system, whereas in manual selection, the
elastic states correspond to the first five modal displacements and
velocities, and the first 24 aerodynamic stateswere retained. TheGA-
ROM outperforms the manual ROM dramatically in all input–output
channels, in particular the input channel �BFL� BFR�∕2,
confirming the performance of GA in identifying important states
in the system. Figure 5 illustrates the comparison of the final ROM
obtained by balanced truncation against the original model. The
ROM of 58 states following elastic reduction was transformed into
the balanced form, and 42 states with smallest Hankel values were
then truncated, resulting in a final ROMwith only 16 states. It can be

Fig. 4 Magnitude and phase comparison between the original, full X-56A model (192 states) and the ROM after elastic state reduction.

Table 1 Sequential MOR and resulting model sizes

Reduction Original Sensor Actuator Aerodynamic Rigid body Elastic Balanced truncation

Model size 192 136 120 84 76 58 16
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clearly been seen that salient performance by theGAwas carried over

to the downstream analysis. TheGA-guidedROMresolves dynamics

among all channels very well, whereas the manually selected ROM

failed to capture the system response at all frequency regime in the

ASE1 channel as well as high-frequency regimes in qb channel.

B. Consistent State Representation and Reduced-Order Model
Interpolation

Consistent state representation based on congruence trans-

formation and ROM interpolation were then undertaken to achieve

LPVASE ROMs, as described in Sec. III. Figure 6 shows the pole

migration for both the original full (192 state) and reduced (16 state)

systems. Again, the real and imagery axes are normalized by the

flutter frequency of SBFF. In Figs. 6a and 6b, the fuel weight is fixed

at 40 lb, and the speed increases from 50 to 150 KEAS. The original

model and ROM at the grid points with a resolution of 5 KEAS are

directly available, whereas those between the grid points were

obtained by interpolating themodels at the grid points (at a resolution

of 2 KEAS). In Figs. 6c and 6d, the speed is kept constant at

100KEAS, and poles are shown for fuel weights between 0 and 80 lb

at a resolution of 2 lb. It is clear that the poles translate smoothly from

one parameter value to another, thus confirming the state consistence

at grid point achieved by congruence transformation. Comparison of

the left column against the right column also reveals that the unstable

modes of the original system in target frequency range are completely

preserved, and the ROM can be used for controller synthesis. It is

noted that the interesting phenomenon of pole conversion (i.e., real

poles change into conjugate pairs or vice versa) from a parameter to

another also occurs in the original model andROMofX-56AMUTT.
In the ROM, between 106 and 108 KEAS, the number of real poles
decreases from 2 to 0, whereas between 70 and 72 lb, the number of
real poles increases from 2 to 4. In all cases, the consistent state
representation is maintained well, as indicated by continuous pole
migration. This further substantiates that our MOR methodology is
capable of tackling the issue of pole conversion, which otherwise
may not be addressed by the modal matching method [7].
Figure 7 illustrates themagnitude of Bode diagram as a function of

airspeed (KEAS) at a fixed fuel weight of 40 lb. The left, middle, and
right columns, respectively, are the results for the interpolated
original model (192 state) and the interpolated ROM (16 state)
without and with congruence transformation. Figure 8 displays
similar results as a function of fuel weights (pounds)while airspeed is
kept constant at 100 KEAS. The interpolation was carried out on a
grid of 5 KEAS × 5 lb with a resolution of 1 KEAS × 1 lb for
enhanced visualization. The results produced by the interpolated
original model (i.e., Figs. 7a, 7d and Figs. 8a, 8d are used as the
baseline). Comparing the second column (i.e., Figs. 7b, 7e and
Figs. 8b, 8e) and the third column (i.e., Figs. 7c, 7f and Figs. 8c, 8f)
against the baseline results reveals the effects and necessity of using
congruence transformation before ROM interpolation. The
interpolated ROM based on consistent state representation (the third
column) resembles the dynamics of the original model (the first
column). The salient performance is most evident at around
100KEAS in Fig. 7 and 80 lb in Fig. 8,where the interpolation is even
able to capture the peak response. The ROM without state
consistence (the second column) exhibits significant discontinuities
and physicallymeaningless dynamics, resulting in poor interpolation

Fig. 5 Comparison in magnitude and phase between the original, full X-56A model (192 states) and the ROM after unstable balanced truncation.

1450 ZHU ETAL.

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
R

M
ST

R
O

N
G

 F
L

IG
H

T
 R

E
S 

C
E

N
T

E
R

 o
n 

A
ug

us
t 3

0,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

41
29

 



performance. A slight discrepancy between interpolated ROM
with congruence transformation and the baseline results at the
high-frequency regime is also observed in both figures, which is

expected because it is also present in the ROMon the grid (see Figs. 4
and 5) due to large reduction in the state number. Such behavior will
obviously translate to the interpolated results.

Fig. 6 Pole migration for original model (left) and ROM (right): a–b) fuel weight at 40 lb, and c–d) speed at 100 KEAS.

Fig. 7 Bode diagram as a function of speed at a fixed fuel weight of 40 lb.
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V. Conclusions

An automated model order reduction (MOR) framework based on

the genetic algorithm (GA) and congruence transformation has been

presented for linear parameter-varying (LPV) aeroservoelastic (ASE)

systemsof flexible aircraft.TheMOR includes twokey steps (i.e., local

model reduction and model interpolation). In the former, the full-scale

ASE model is first reduced through truncation and residualization of

unimportant states in the system under various categories, including

sensors, actuators, rigid body, aerodynamic lag, and elastic states. A

process relying onGAand globallymeaningful objective functionwas

developed to intelligently determine the optimal states across the

broader 2-D flight parameter space that could be removed while

imposing minimal impact on the system response within the target

frequency range. The GA-guided truncation and residualization

maintains the state consistence among the local ROMs. The resulting

local models then undergo balanced truncation for unstable system

based on the generalized gramians to further eliminate states with

minimal contribution to the system dynamics along input/output

channels. It is followed by congruence transformation for weak

fulfillment of state consistency across the entire flight parameter space.

Finally, all the local ROMs with consistent state representation are

amenable to spline interpolation of model matrices for constructing

ASE ROMs at any location in the parameter space.

TheMORmethodology was verified using NASA’s X-56AMUTT

model. The present investigations show that the original pitch plant

model of 192 states could be reduced down to 58 states by the

aforementioned GA-guided truncation and residualization and further

16 states by balanced truncation for unstable systems. The resulting

ROM with 12× reduction in the number of states is able to not only

match dynamics of the original ASE system with a high degree of

accuracy but also outperform the ROM involving manual selection of

states for reduction, clearly confirming the utility of the present GA-

guided method. The feasibility of consistent state representation

achieved by congruence transformation was also inspected by the pole

migration and Bode diagram of the interpolated ROMs and their

comparison against the originalmodel. The interpolatedROMs exhibit

smooth pole transition and continuously varying gains along different

fuel weights and air speed and hence are applicable to constructing

ASE ROMs at any location in the parameter space.

The reported research develops LPV ROMs with consistent state
representation in broad 2-D flight parameter space for unstable ASE
systems with pole conversion and enables robust and efficient ASE
controller synthesis for aircraft, novel vehicle design for flutter
suppression and gust load alleviation, and notable reduction in
development time and cost.
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