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This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic
model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics
to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft
states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control
surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The
R. T. Jones’ method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are
conducted with simulated continuous and discrete gust loads.

I. Introduction

The aircraft industry has been responding to the need for energy-efficient aircraft by employing light-weight ma-
terials for aircraft structures and incorporating more energy-efficient aircraft engines. Reducing airframe operational
empty weight (OEW) using advanced composite materials is one of the major considerations for improving energy ef-
ficiency. Modern light-weight materials can provide less structural rigidity while maintaining sufficient load-carrying
capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments can alter
aircraft aerodynamics and flight dynamics significantly, thereby potentially degrading aerodynamic efficiency, stability
and control.

The general motion of a rigid-body aircraft is unconstrained in three-dimensional space as the aircraft possesses
all six degrees of freedom in translation and rotation. This motion is highly influenced by all the aerodynamic forces
and moments as well as the propulsive and gravity forces. The motion can exhibit stability which enables the aircraft
to return to its equilibrium or trim state, or instability if the motion diverges when it is subjected to a disturbance. The
general equations of motion are nonlinear, even though the aerodynamic characteristics of the aircraft are modeled as
linear. It is important to recognize that a flight dynamic model is only a mathematical representation of approximate
dynamics of an aircraft in flight. Many factors can cause a flight dynamic model to deviate from an observed model
of an aircraft. Some of these factors are:

• Nonlinear aerodynamics - Many assumptions are usually built in the derivation of aerodynamic force and mo-
ment parameters such as coefficients and derivatives. A linear approximation is usually employed in most
aerodynamic models of an aircraft. In reality, aerodynamic coefficients are not always linear and can exhibit
nonlinearity at high angle of attack and sideslip angle. The linear aerodynamic approximation can provide a
reasonable prediction of aircraft flight dynamics. However, in certain flight regimes, such an approximation
may no longer be valid.

• Aeroelasticity - Aircraft is an elastic body which experiences stresses and strains under applied aerodynamic,
propulsive, and gravity forces and moments. Elastic deformation of an aircraft results in changes in aerody-
namic characteristics. Therefore, aeroelasticity is a significant effect that contributes to aircraft flight dynamics.
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A rigid-body flight dynamic model is usually an initial aircraft model that an analyst develops to provide a pre-
liminary understanding of aircraft dynamics. When a structural design is carried out, the effect of aeroelasticity
must be incorporated into the rigid-body flight dynamic model in order to properly predict applied loads.

• Atmospheric disturbances - Atmospheric turbulence, wind gust, and localized weather phenomena can signif-
icantly affect aircraft dynamics. The angle of attack depends not only on the aircraft velocity vector but also
the wind velocity vector. Changes in the wind velocity vector can also affect aircraft acceleration and applied
loading which can cause aeroelastic responses.

The notion of a rigid-body aircraft is idealized. When aircraft structures are designed to maintain their intended
aerodynamic shapes in-flight without significant deformation under aerodynamic loading, aircraft is thought of as
being a rigid body and its flight characteristics are described by a six degrees of freedom flight dynamic model. As
aircraft structures become increasingly more flexible, the influence of aeroelasticity becomes more pronounced. Flight
control under aeroservoelastic interactions can be challenging. The mishap of the NASA Helios aircraft illustrates
the complex aeroservoelasticity of flexible flight vehicles. Flight dynamics of flexible flight vehicles are intimately
coupled with structural dynamics of the aircraft.

This paper describes the development of an aeroservoelastic (ASE) flight dynamic model of the NASA Generic
Transport Model (GTM).1 The GTM represents a notional single-aisle, mid-size, 200-passenger transport aircraft
generically approximating a Boeing 757, as shown in Fig. 1. The GTM had been extensively tested in the 14-foot–by-
22-foot wind tunnel at NASA Langley Research Center. Thus, wind tunnel test data are available that can be used to
validate computational models. The GTM model also has been used extensive in flight control research.

Figure 1. NASA Generic Transport Model

The aircraft has a mid-cruise weight of 210,000 lbs for a typical operating load (gear up, flap up) that includes
cargo, fuel, and passengers. Fuel weighs about 50,000 lbs for a range of about 3,000 nautical miles. At the design
cruise condition of Mach 0.797 at 36,000 ft, the design lift coefficient is 0.51.

Under the Advanced Air Vehicles Program of the NASA Aeronautics Research Mission Directorate, the Advanced
Air Transport Technology (AATT) Project is conducting multidisciplinary research to investigate advanced concepts
and technologies for future aircraft systems. A NASA study entitled “Elastically Shaped Future Air Vehicle Concept”
was conducted in 20102, 3 to examine new concepts that can enable active control of wing aeroelasticity to achieve
drag reduction. This study showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight
by active control of wing twist and bending deflection in order to optimize the local angles of attack of wing sections
to improve aerodynamic efficiency through drag reduction during cruise and enhance lift performance during take-off
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and landing. One concept resulting from this study is the Variable Camber Continuous Trailing Edge Flap (VCCTEF)
developed initially by NASA.2 Initial study results indicate that the VCCTEF system may offer a potential pay-off in
drag reduction that could provide fuel savings.

NASA and Boeing have jointly developed the VCCTEF further under a research program from 2012 to 2014.5, 6, 16

This research program was built upon the initial development of the VCCTEF system for the NASA GTM in 2010.
The resulting VCCTEF system developed under this program employs light-weight Shape Memory Alloy (SMA)
technology for actuation and three separate chordwise segments shaped to provide a variable camber to the flap. This
cambered flap has greater potential for drag reduction as compared to a conventional straight, plain flap. The flap is
also made up of individual 2-foot spanwise sections, which enable different flap settings at each flap spanwise position.
This results in the ability to actively control the wing twist shape as a function of span, resulting in a change to the
wing twist to establish the best lift-to-drag ratio L/D at any aircraft gross weight or mission segment. Wing twist on
traditional commercial transport designs is dictated by the aeroelastic deflection of a fixed “jig twist” shape applied
at manufacture. The design of this jig twist is set for one cruise configuration, usually for a 50% fuel loading or
mid-point on the gross weight schedule. The VCCTEF offers different wing twist settings, hence different spanwise
loadings, for each gross weight condition and also different settings for climb, cruise and descent, a major factor in
obtaining best L/D conditions. The second feature of VCCTEF is a continuous trailing edge flap. The individual
2-foot spanwise flap sections are connected with an elastomer transition material, so as to produce no gaps in between
the spanwise sections. This continuous trailing edge flap can potentially help reduce viscous drag and airframe noise.
Two wind tunnel experiments were conducted for the flexible GTM wing at the University of Washington Aeronautical
Laboratory in 2013 and 2014.7, 8 The experimental results confirm the aerodynamic benefits of the VCCTEF.

The VCCTEF is a multi-functional flap system envisioned to be:

• A wing shaping control device to twist the flexible wing and change the span-load distribution to reduce cruise
drag throughout the flight envelope,

• A high-lift device for take-off, climb-out, let-down and final approach by using the full span cambered flap,

• A full span roll control effector in lieu of traditional ailerons using the aft section of the cambered flap, and

• An aeroservoelastic (ASE) control device to compensate for reduced flutter margins of flexible wings and pro-
vide load alleviation control.

The VCCTEF is divided into 14 sections attached to the outer wing and 3 sections attached to the inner wing, as shown
in Fig. 2.5 Each 24-inch section has three chordwise cambered flap segments that can be individually commanded.
These cambered flaps are joined to the next section by a flexible and supported material (shown in blue) installed with
the same shape as the camber and thus providing continuous trailing edge flaps throughout the wing span with no drag
producing gaps.

A major goal of the program is to develop a light-weight flap control system that has a significant weight advantage
as compared to current flap screw-jack actuators. Hydraulic, electric and Shape Memory Alloy (SMA) torque rod
actuation were evaluated with the result that the SMA actuation has the best weight advantage. Moreover, the use
of hinge line actuation eliminates the large and heavy externally mounted actuators, and permits all actuators to be
interior to the wing and flap mold lines, thus contributing to the overall drag reduction goal.

Figure 3 shows a schematic representation of an outboard wing flap section having three cambered flap segments.5

SMA actuators drive the first and second cambered flap segments and a faster acting electric actuator drives the third
cambered flap segment. SMA actuators can deliver large hinge moments, but generally move at a slow rate. The
outboard wing flap uses the full-span third cambered segment as a roll command effector and as a control device
for suppressing aeroelastic wing structural dynamic modes, both requiring high rates which can be met by electric
actuators.

Using the camber positioning, a full-span, high-lift configuration can be activated that has no drag producing gaps
and a low flap noise signature. This is shown in Fig. 4. To further augment lift, a slotted Fowler flap configuration is
formed by an air passage between the wing and the inner flap that serves to improve airflow over the flap and keep the
flow attached. This air passage appears only when the flaps are extended in the high lift configuration.

In the high-lift configuration, the outer wing flap uses the third cambered segment for roll control, as shown in Fig.
5. This provides rolling moment that is equivalent to aileron control. It is somewhat similar to deflecting the ailerons in
a droop position to act as flaps, a common procedure used on tactical aircraft and on some transport aircraft. The high-
lift configuration distributes the required flap hinge moment throughout the span of the wing while using actuation
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components that are all located interior to the wing and flap. This can be achieved by the use of SMA hinge line torque
rods, sized to meet the hinge moment requirements at each spanwise location on the wing.

Figure 2. Wing Configured with the Variable Camber Continuous Trailing Edge Flap

Figure 3. Variable Camber Flap Control Uses Shape Memory Alloy Torque Rod and Electric Drive Actuation

4 of 32

American Institute of Aeronautics and Astronautics



Figure 4. Cruise and High Lift VCCTEF Configurations

Figure 5. Three-Segment Variable Camber Flap

Figure 6. GTM with with Variable Camber Continuous Trailing Edge Flap
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Figure 6 illustrates the GTM equipped with the VCCTEF for wing shaping control. By actively shaping the wing
aerodynamic surface using the VCCTEF, optimal aerodynamic performance could potentially be realized at any point
in the flight envelope, thereby enabling a mission adaptive capability. It is a key enabling feature of the research area
Performance Adaptive Aeroelastic Wing (PAAW) in the AATT project. The term “performance adaptive aeroelastic”
distinguishes itself from the familiar term “mission adaptive” in that the effect of aeroelasticity on aerodynamic perfor-
mance must be fully accounted for as is the case for modern transport design. The VCCTEF relies on two mechanisms
to improve aerodynamic performance: 1) wing twist optimization for flexible wing design, and 2) variable camber and
continuous trailing edge for improved aerodynamics. This technology could enable modern high-aspect ratio flexible
wing aircraft with significant flexibility to adaptively change wing shapes in-flight to achieve cruise drag optimization,
while at the same time satisfying operational constraints such as structural load limitations, flutter margins, gust and
maneuver load responses, and others by active aeroservoelastic controls.

To assess the effectiveness of wing shaping control for modern transport aircraft, the GTM wing is modeled with
a high degree of flexibility, similar to estimated flexibility distributions on state-of-the-art passenger aircraft wings.
The wing bending stiffness is tailored to achieve a 10% wing tip deflection at 1-g flight conditions, which results in
a bending stiffness about half that of older-generation transport wings, while the torsional stiffness is about the same.
This 10% wing tip deflection is about the same as that of a modern composite high-aspect-ratio wing design in modern
transport aircraft such as the Boeing 787.

II. Flight Dynamics of Rigid Aircraft

The development of a flight dynamic model of the GTM requires mass and inertia properties, and stability and
control (S&C) derivatives. The mass and inertia properties of the GTM are based on a Boeing’s report and are
modified to account for the reduced weight of the flexible wings. The S&C derivatives are estimated using three
different conceptual aerodynamic vortex-lattice codes along with analytical calculation. The three aerodynamic codes
are VORLAX, AVL, and VSPAERO. The results show reasonable agreement among the four sets of estimates. Because
VORLAX has the aeroelastic capability as well as transonic and boundary layer corrections,17 VORLAX results are
selected for the flight dynamic model.

A static aeroelastic trim for the flexible wing GTM is developed. The trim solution calculates the angle of attack,
engine thrust, and elevator deflections for various deformed GTM configurations at different fuel weight, altitude, and
airspeed. The fuel weight is modeled as an added weight to the wing weight which affects the static deflection shape of
the wings at 1-g cruise conditions. A finite-element model is developed to compute the static wing deflections. Once
the wing deflection shape is computed, the S&C derivatives are evaluated for the deformed aircraft.

The nonlinear 6-degree-of-freedom flight dynamic equations of motion in the aircraft body-fixed reference frame
are given by

ṗ = RV (1)

Φ̇ = Tω (2)

d (mV)

dt
+ ω̃mV = F (3)

d (Iω)

dt
+ ω̃Iω = M (4)

where p =
[

x y h
]>

is the position vector, V =
[

u v w
]>

is the velocity vector, Φ =
[

φ θ ψ

]>
is

the Euler angle vector, and ω =
[

p q r
]>

is the angular rate vector.
The angular rate matrix ω̃ is given by

ω̃ =

 0 −r q
r 0 −p
−q p 0

 (5)
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The inertia matrix of the aircraft about the aircraft roll axis X , pitch axis Y , and yaw axis Z is given by

I =

 ĪXX −ĪXY −ĪXZ

−ĪXY ĪYY −ĪY Z

−ĪXZ −ĪY Z ĪZZ

 (6)

R and T are the rotation matrices given by

R =

 cosθ cosψ −cosφ sinψ + sinφ sinθ cosψ sinφ sinψ + cosφ sinθ cosψ

cosθ sinψ cosφ cosψ + sinφ sinθ sinψ −sinφ cosψ + cosφ sinθ sinψ

sinθ −sinφ cosθ −cosφ cosθ

 (7)

T =

 1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ secθ cosφ secθ

 (8)

The force vector is given by

F =

 X +T −mgsinθ

Y +mgcosθ sinφ

Z +mgcosθ cosφ

1 (9)

where X =CX q∞S is the axial force, Y =CY q∞S is the side force, Z =CZq∞S is the normal force, and T is the engine
thrust. The force coefficients CX and CZ are related to the lift and drag coefficients as

CX =CL sinα−CD cosα (10)

CZ =−CL cosα−CD sinα (11)

The moment vector is given by

M =

 l
m+T ze

n

 (12)

where l is the rolling moment, m is the pitching moment about the aircraft center of gravity (CG), n is the yawing
moment about the aircraft CG, and ze as the engine thrust offset from the aircraft CG.

III. Inertial and Aeroelastic Forces and Moments of Flexible Wings

Consider an airfoil section on the left wing as shown in Fig. 7 undergoing bending and torsional deflections. Let
(x,y,z) be the undeformed coordinates of point Q on a wing airfoil section in the reference frame D defined by unit
vectors (d1,d2,d3). Let p0 = xd1 be a position vector along the elastic axis. Then, point Q is defined by a position
vector p = p0 +q where q = yd2 + zd3 defines point Q in the y− z plane from the elastic axis.

Figure 7. Left Wing Reference Frame of Wing in Combined Bending-Torsion
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Let Θ be a torsional twist angle about the x-axis, positive nose-down. Let W and V be flapwise and chordwise
bending deflections of point Q, respectively. Let U be the axial displacement of point Q. Then, the displacement and
rotation vectors due to the elastic deformation can be expressed as

r =Ud1 +V d2 +Wd3 (13)

φ = Θd1−Wxd2 +Vxd3 (14)

where the subscripts x and t denote the partial derivatives of Θ, W , and V .
Let (x1,y1,z1) be the deformed coordinates of point Q on the airfoil in the left wing reference frame D and p1 =

x1d1 + y1d2 + z1d3 be its position vector. Then, the coordinates (x1,y1,z1) are computed as10

p1 = p+ r+φ ×q (15)

where  x1

y1

z1

=

 x+U− yVx− zWx

y+V − zΘ

z+W + yΘ

 (16)

A. Inertial Forces and Moment

Let V = ub1 + vb2 +wb3 and ω = pb1 +qb2 + rb3 be the aircraft translational and rotational velocity vectors at the
aircraft center of gravity (CG) where (b1,b2,b3) are the unit vectors in the aircraft body-fixed reference frame B. Let
ra =−xab1− yab2− zab3 be the position vector of point Q in the aircraft body-fixed reference frame B relative to the
aircraft CG such that xa is positive when point Q is aft of the aircraft CG, ya is positive when point Q is toward the left
wing from the aircraft CG, and za is positive when point Q is above the aircraft CG. The velocity at point Q due to the
aircraft velocity and angular velocity in the reference frame D is then computed as

vQ = V+ω× ra = (ub1 + vb2 +wb3)+(pb1 +qb2 + rb3)× (−xab1− yab2− zab3)

= (u+ rya−qza)b1 +(v− rxa + pza)b2 +(w+qxa− pya)b3 = xtd1 + ytd2 + ztd3 (17)

where  xt

yt

zt

=

 −(u+ rya−qza)sinΛcosΓ− (v− rxa + pza)cosΛcosΓ− (w+qxa− pya)sinΓ

−(u+ rya−qza)cosΛ+(v− rxa + pza)sinΛ

(u+ rya−qza)sinΛsinΓ+(v− rxa + pza)cosΛsinΓ− (w+qxa− pya)cosΓ

 (18)

The transformation between (b1,b2,b3) and (d1,d2,d3) is given by b1

b2

b3

=

 −sinΛcosΓ −cosΛ sinΛsinΓ

−cosΛcosΓ sinΛ cosΛsinΓ

−sinΓ 0 −cosΓ


 d1

d2

d3

 (19)

 d1

d2

d3

=

 −sinΛcosΓ −cosΛcosΓ −sinΓ

−cosΛ sinΛ 0
sinΛsinΓ cosΛsinΓ0 −cosΓ


 b1

b2

b3

 (20)

The local velocity at point Q due to aircraft rigid-body dynamics and aeroelastic deflections in the left wing
reference frame D is obtained as11, 12

v = vQ +
∂∆p
∂ t

+ω×∆p = vxd1 + vyd2 + vzd3 (21)
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where ∆p = p1−p and  vx

vy

vz

=

 xt +Ut − yVxt − zWxt −ωz (V − zΘ)+ωy (W + yΘ)

yt +Vt − zΘt +ωz (U− yVx− zWx)−ωx (W + yΘ)

zt +Wt + yΘt −ωy (U− yVx− zWx)+ωx (V − zΘ)

 (22)

 ωx

ωy

ωz

=

 −psinΛcosΓ−qcosΛcosΓ− r sinΓ

−pcosΛ+qsinΛ

psinΛsinΓ+qcosΛsinΓ− r cosΓ

 (23)

The kinetic energy is formed by

T =
1
2

∫
ρv.vdA =

1
2

∫
ρ
(
v2

x + v2
y + v2

z
)

dA (24)

We use the method of separation of variables to express the displacements as U (x, t) = Φu (x)qu (t), V (x, t) =
Φv (x)qv (t), W (x, t) = Φw (x)qw (t), Θ(x, t) = Φθ (x)qθ (t). Then, the virtual work quantities due to the generalized
coordinates qu (t), qv (t), qw (t), and qθ (t) are computed in terms of the virtual displacements as12

− f i
xδU =

[
d
dt

(
∂T
∂ q̇u

)
− ∂T

∂qu

]
δqu =

∫
ρ

[
dvx

dt
− vy (ωz +Vxt)+ vz (ωy−Wxt)

]
δUdA (25)

− f i
yδV =

[
d
dt

(
∂T
∂ q̇v

)
− ∂T

∂qv

]
δqv =

∫
ρ

[
dvy

dt
+ vx (ωz +Vxt)− vz (ωx +Θt)

]
δV dA

+
∫

ρ

{
d [vx (−y−V + zΘ)+ vy (U− yVx− zWx)]

dt
+ vy (yωz + yVxt)− vz (yωy− yWxt)

}
δVxdA (26)

− fzδW =

[
d
dt

(
∂T
∂ q̇w

)
− ∂T

∂qw

]
δqw =

∫
ρ

[
dvz

dt
− vx (ωy−Wxt)+ vy (ωx +Θt)

]
δWdA

+
∫

ρ

{
d [vx (−z−W − yΘ)+ vz (U− yVx− zWx)]

dt
+ vy (zωz + zVxt)− vz (zωy− zWxt)

}
δWxdA (27)

−mxδΘ =

[
d
dt

(
∂T
∂ q̇θ

)
− ∂T

∂qθ

]
δqθ =

∫
ρ

{
d [vy (−z−W − yΘ)]

dt
+

d [vz (y+V − zΘ)]

dt

−vx (yωy + zωz + zVxt − yWxt)+ vy (yωx + yΘt)+ vz (zωx + zΘt)
}

δΘdA (28)

Let
∫

ydA = Aecg where A =
∫

dA is the mass area and ecg is the offset of the CG of a wing section from the
elastic axis, positive if the CG is aft of the elastic axis. We define Ixx =

∫ (
y2 + z2

)
dA, Iyy =

∫
z2dA, and Izz =

∫
y2dA.

Furthermore, We assume
∫

zdA ≈ 0 and Iyz = −
∫

yzdA ≈ 0. Integrating the integrals that contain δVx and δWx by
parts, we obtain the linear contributions of the aeroelastic deflections to the inertial forces and moment as12

f i
x = ρA

[
−xtt + ytωz− ztωy +

(
ω

2
y +ω

2
z
)

U +(ω̇z−ωxωy)V − (ω̇y +ωxωz)W +2ωzVt −2ωyWt + ytVxt

+ztWxt −Utt ]+ρAecg
[
−(ω̇y +ωxωz)Θ−

(
ω

2
y +ω

2
z
)

Vx−2ωyΘt +Vxtt
]

(29)

f i
y = ρA

[
−ytt − xtωz + ztωx− (ω̇z +ωxωy)U +

(
ω

2
x +ω

2
z
)

V +(ω̇x−ωyωz)W −2ωzUt +2ωxWt + ztΘt − xtVxt

−Vtt ]+ρAecg [(ω̇x−ωyωz)Θ+(ω̇z +ωxωy)Vx +2ωxΘt +2ωzVxt ]+
∂

∂x
[ρA(yttU− xttV + ytUt − xtVt)]

+
∂

∂x

{
ρAecg

[
−xtt + ytωz− ztωy +

(
ω

2
y +ω

2
z
)

U +(ω̇z−ωxωy)V − (ω̇y +ωxωz)W − yttVx +2ωzVt

−2ωyWt + ztWxt −Utt ]
}
+

∂

∂x

{
ρIzz

[
−(ω̇y +ωxωz)Θ−

(
ω

2
y +ω

2
z
)

Vx−2ωyΘt +Vxtt
]}

(30)
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f i
z = ρA

[
−ztt + xtωy− ytωx +(ω̇y−ωxωz)U− (ω̇x +ωyωz)V +

(
ω

2
x +ω

2
y
)

W +2ωyUt −2ωxVt − ytΘt − xtWxt

−Wtt ]+ρAecg
[(

ω
2
x +ω

2
y
)

Θ− (ω̇y−ωxωz)Vx−2ωyVxt −Θtt
]
+

∂

∂x
[ρA(zttU− xttW + ztUt − xtWt)]

+
∂

∂x
[ρAecg (−xttΘ− zttVx− xtΘt − ztVxt)]+

∂

∂x

{
ρIyy

[
−(ω̇z−ωxωy)Θ−

(
ω

2
y +ω

2
z
)

Wx−2ωzΘt +Wxtt
]}

(31)

mi
x = ρA(−zttV + yttW − ztVt + ytWt)+ρAecg [−ztt + xtωy− ytωx +(ω̇y−ωxωz)U− (ω̇x +ωyωz)V

+
(
ω

2
x +ω

2
y
)

W + yttΘ+2ωyUt −2ωxVt − xtWxt −Wtt
]
−ρIxxΘtt

+ρIyy
[(

ω
2
x +ω

2
z
)

Θ− (ω̇z +ωxωy)Wx−2ωzWxt
]
+ρIzz

[(
ω

2
x +ω

2
y
)

Θ− (ω̇y−ωxωz)Vx−2ωyVxt
]

(32)

In addition to the inertial forces and pitching moment acting on a wing section, the contributions of half of the
fuselage mass and inertias and the engine mass to the inertial forces and pitching moment without the rigid-body
aircraft inertial force coupling are given by

∆ f i
x = δ (x)

(
−1

2
m fUtt

)
+δ (x− xe)(−meUtt) (33)

∆ f i
y = δ (x)

[
−1

2
m fVtt +

∂

∂x

(
1
2

I f ,zzVxtt

)]
+δ (x− xe) [−meVtt −mezeΘtt ] (34)

∆ f f
z = δ (x)

[
−1

2
m fWtt +

1
2

m f y f Θtt +
∂

∂x

(
1
2

I f ,yyWxtt

)]
+δ (x− xe)(−meWtt +meyeΘtt) (35)

∆mi
x = δ (x)

(
1
2

m f y fWtt −
1
2

I f ,xxΘtt

)
+δ (x− xe)

[
meyeWtt −mezeVtt −me

(
y2

e + z2
e
)

Θtt
]

(36)

where m f , I f ,xx, I f ,yy, and I f ,zz are the mass and inertias of the fuselage; me is the mass of the engine; y f is the offset
of the fuselage CG from the elastic axis, positive if the fuselage CG is forward of the elastic axis; (xe,ye,ze) is the
coordinate of the engine CG in the left wing reference frame D, positive if the engine CG is below and forward of the
elastic axis; and δ (x−a) is the Dirac delta function which is defined as∫

δ (x−a) f (x)dx = f (a) (37)

B. Aeroelastic Forces and Moment

In order to compute the aeroelastic forces and moments, the velocity must be transformed from the left wing reference
frame D to the airfoil local coordinate reference frame defined by (µ,η ,ξ ) as follows: vµ

vη

vξ

=

 1 0 0
0 1 Θ

0 −Θ 1


 1 Vx 0
−Vx 1 0

0 0 1


 1 0 Wx

0 1 0
−Wx 0 1


 vx

vy

vz

≈

 vx + vyVx + vzWx

−vxVx + vy + vzΘ

−vxWx− vyΘ+ vz

 (38)

The local aeroelastic angle of attack on the airfoil section due to the velocity components vη and vξ in the left wing
reference frame D, as shown in Fig. 7, is computed as12

αc =
vξ

vη

=
v̄ξ +∆vξ

v̄η +∆vη

=
vξ

v̄η

−
v̄ξ ∆vη

v̄2
η

(39)

where  vx

vy

vz

=

 xt +Ut − yVxt − zWxt −ωz (V − zΘ)+ωy (W + yΘ)

yt +Vt − zΘt +ωz (U− yVx− zWx)−ωx (W + yΘ)

zt +Wt + yΘt −ωy (U− yVx− zWx)+ωx (V − zΘ)

 (40)

v̄ξ = zt (41)
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∆vξ =−xtWx− ytΘ+Wt + yΘt −ωy (U− yVx− zWx)+ωx (V − zΘ) (42)

v̄η =−ucosΛ (43)

∆vη = yt − v̄η − xtVx +Vt − zΘt +ωz (U− yVx− zWx)−ωx (W + yΘ)+ ztΘ (44)

The rigid-body angle of attack is computed as

αr (x) =−
zt

ucosΛ

(
2+

yt

ucosΛ

)
(45)

The elastic angle of attack is evaluated with z = 0 as

αe (x,y) =
(

ωy

ucosΛ
− ωzzt

u2 cos2 Λ

)
U− ωx

ucosΛ
V +

ωxzt

u2 cos2 Λ
W +

(
yt

ucosΛ
+

yωxzt − z2
t

u2 cos2 Λ

)
Θ

−
(

yωy

ucosΛ
− yωzzt + xtzt

u2 cos2 Λ

)
Vx +

xt

ucosΛ
Wx−

zt

u2 cos2 Λ
Vt −

1
ucosΛ

Wt −
y

ucosΛ
Θt (46)

Let y = ȳcosΛ where ȳ is the airfoil coordinate in the streamwise direction. For circulatory lift, the elastic angle
of attack is evaluated by setting ȳ = ec where ec is the offset of the three-quarter point from the elastic center in the
streamwise direction. The circulatory lift and pitching moment coefficients are given by

cLc = cLα
[αr +C (k)αe (x,ec cosΛ)]cosΛ (47)

cmc = cmac +
e
c

cLα
[αr +C (k)αe (x,ec cosΛ)]cosΛ (48)

where C (k) is the Theodorsen’s function,13 k = ωc
2u is the reduced frequency, cLα

is the lift curve slope, cmac is the
pitching moment coefficient about the aerodynamic center, c is the chord length in the streamwise direction, e is the
offset of the aerodynamic center from the elastic axis in the streamwise direction. Note that the the lift curve slope
cLα

also accounts for the transonic flow and viscosity in the model using a transonic small disturbance and integral
boundary layer correction method.14

The non-circulatory lift and pitching moment coefficients evaluated as12

cLnc =
πccosΛ

2V
∂αe (x,em cosΛ)

∂ t
(49)

cmnc =−2π cosΛ

[
c

16
∂αe

∂ ȳ
+

c2

128V
∂ 2αe

∂ ȳ∂ t
+

em

4V
∂αe (x,em cosΛ)

∂ t

]
(50)

where em is the offset of the mid-chord point from the elastic center in the streamwise direction.
The total lift and pitching moment coefficients are

cL = cLc + cLnc (51)

cm = cmc + cmnc (52)

The linear aeroelastic contributions to the total drag coefficient are given by

cD = cDc + cDnc (53)

cDc = cD0 + kc2
Lr +2kcLr (cLc − cLr) (54)

cDnc = 2kcLr cLnc (55)

where cLr = cLα
αr cosΛ, and cD0 and k are drag polar parameters for a quadratic drag polar relationship. Note that the

quadratic contributions of the circulatory and non-circulatory unsteady lift coefficients are assumed to be small and
therefore are neglected.

The incremental aerodynamic coefficients for the aircraft are computed as

∆CL =
2
S

∫ L

0
(cL− cLr)ccosΛdx (56)
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∆CD =
2
S

∫ L

0
(cD− cDr)ccosΛdx (57)

∆CY ≈ 0 (58)

∆Cl =
2

Sb

∫ L

0
[(cLc − cLr)yac + cLncym]ccosΛdx (59)

∆Cm =
2
Sc̄

∫ L

0
[cmncc− (cLc − cLr)xac− cLnc xm +(cDc − cDr)zac + cDnczm]ccosΛdx (60)

∆Cn =
2

Sb

∫ L

0
[−(cDc − cDr)yac− cDncym]ccosΛdx (61)

where cDr = cD0 + kc2
Lr

is the drag coefficient due to the rigid aircraft, (xac,yac,zac) is the location of the aerodynamic
center from the aircraft CG in the aircraft body-fixed reference frame B, and (xm,ym,zm) is the location of the mid-
chord point from the aircraft CG in the aircraft body-fixed reference frame B.

The incremental aerodynamic coefficients for the aircraft can be expressed in terms of the partial derivatives as

∆CL,D,Y,l,m,n =
∂∆CL,D,Y,l,m,n

∂U
U +

∂∆CL,D,Y,l,m,n

∂V
V +

∂∆CL,D,Y,l,m,n

∂W
W +

∂∆CL,D,Y,l,m,n

∂Θ
Θ+

∂∆CL,D,Y,l,m,n

∂Vx
Vx

+
∂∆CL,D,Y,l,m,n

∂Wx
Wx +

∂∆CL,D,Y,l,m,n

∂Ut
Ut +

∂∆CL,D,Y,l,m,n

∂Vt
Vt +

∂∆CL,D,Y,l,m,n

∂Wt
Wt +

∂∆CL,D,Y,l,m,n

∂Θt
Θt

+
∂∆CL,D,Y,l,m,n

∂Vxt
Vxt +

∂∆CL,D,Y,l,m,n

∂Wxt
Wxt +

∂∆CL,D,Y,l,m,n

∂Vtt
Vtt +

∂∆CL,D,Y,l,m,n

∂Wtt
Wtt +

∂∆CL,D,Y,l,m,n

∂Θtt
Θtt (62)

Note that ∆CL, ∆CD, and ∆Cm are non-zero for the symmetric motion while ∆Cl and ∆Cn are non-zero for the
anti-symmetric motion of the flexible wings.

The total aerodynamic forces and moments due to both circulatory lift and non-circulatory lift are

f a
x = cDq∞csinΛcosΛ (63)

f a
y = cDq∞ccos2

Λ (64)

f a
z = cLq∞ccosΛcosΓ (65)

ma
x =−cmq∞c2 cos2

ΛcosΓ (66)

ma
y = cmq∞c2 sinΛcosΛ (67)

ma
z = cmq∞c2 cos2

ΛsinΓ (68)

The aeroelastic equations of the wing structure are governed by

(EAUx)x =− f i
x− f a

x (69)

(GJΘx)x =−mi
x−ma

x−ρAecgg (70)

(EIyyWxx)xx = f i
z + f i

z +
∂ma

y

∂x
−ρAg (71)

(EIzzVxx)xx = f i
y + f a

y −
∂ma

z

∂x
(72)
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IV. Aerodynamic Forces and Moments due to Control Surfaces

The motion of a control surface will influence the overall motion of a flexible aircraft. The control surface generates
unsteady aerodynamic forces, pitching moment, and hinge moment as functions of the rigid-body aircraft states and
the wing elastic states. The unsteady aerodynamics of a control surface can be analyzed based on the Theodorsen’s
theory.13 A modification to the standard Theodorsen’s theory is developed for the non-circulatory hinge moment.

Consider a wing with a control surface as shown in Fig. 8. The control surface has a chord length of c f normal to
the hinge axis. The control surface deflection δ is measured about the hinge axis. Along the streamwise direction, the
control surface deflection is reduced to δ cosΛ f . This control surface deflection and its velocity generate a downwash
in the streamwise direction

∆w = uδ cosΛ f +
(
y− y f

)
δ̇ cosΛ f (73)

where Λ f is the sweep angle of the control surface hinge axis.
This downwash effectively changes the mean camber line in the streamwise direction which results in an incre-

mental section angle of attack as

∆α =
∆w
u

= δ cosΛ f +

(
y− y f

)
δ̇ cosΛ f

u
(74)

Figure 8. Wing Section with Control Surface

Let ξ be the shifted normalized airfoil coordinate with the origin at the mid-chord such that −1 ≤ ξ ≤ 1 corre-
sponding to 0≤ y≤ c . Then

y =
c
2
(1+ξ ) (75)

y f = c−
c f

cosΛ f
=

c
2
(1+ c∗) (76)

where ξ = c∗ is at the control surface hinge location

c∗ = 1−
2c f

ccosΛ f
(77)

Then

∆α = δ cosΛ f +
(ξ − c∗)cδ̇ cosΛ f

2u
(78)
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A. Lift and Drag

Based on the thin airfoil theory, we can compute the incremental section circulatory lift coefficient for incompressible
flow due to the control surface deflection as

∆cLc =
C (k)cLα

π

∫ 1

c∗
∆α

(1+ξ )dξ√
1−ξ 2

=
C (k)cLα

δ cosΛ f

π

∫ 1

c∗

(1+ξ )dξ√
1−ξ 2

+
C (k)cLα

cδ̇ cosΛ f

2πV∞

∫ 1

c∗

(1+ξ )(ξ − c∗)dξ√
1−ξ 2

(79)

Let ξ = cosθ . Then the incremental section circulatory lift coefficient is obtained as

∆cLc =C (k)

(
cLδ

δ + cL
δ̇

δ̇c
2u

)
(80)

where cLδ
and cL

δ̇
are the section circulatory lift control derivatives evaluated as

cLδ
=

cLα
cosΛ f

π
T10 (81)

cL
δ̇
=

cLα
cosΛ f

2π
T11 = cLδ

T11

2T10
(82)

with
T10 = cos−1 c∗+

√
1− c∗2 (83)

T11 = (1−2c∗)cos−1 c∗+(2− c∗)
√

1− c∗2 (84)

Let
y = ȳ+

c
4
+ e (85)

where ȳ = c
2 ξ +em is the shifted airfoil coordinate with the origin at the elastic axis, e is the offset of the quarter-chord

and em is the offset of the mid-chord from the elastic axis. Then,

∆α = δ cosΛ f +

(
ȳ+ c

4 + e− y f

u

)
δ̇ cosΛ f = ∆ᾱ + ȳ

∂∆α

∂ ȳ
(86)

where

∆ᾱ = δ cosΛ f +

( c
4 + e− y f

u

)
δ̇ cosΛ f = δ cosΛ f +

(−c+4e−2c∗c) δ̇ cosΛ f

4u
(87)

∂∆α

∂ ȳ
=

δ̇ cosΛ f

u
(88)

The velocity potential is given by

φ =
V∞c

2

(
∆ᾱ +

ȳ+ em

2
∂∆α

∂ ȳ

)√
1−ξ 2 (89)

The incremental section non-circulatory lift due to the control surface is computed as

∆lnc = ρ∞c
∫ 1

c∗

∂φ

∂ t
dξ =

ρ∞V∞c2

2

∫ 1

c∗

(
∂∆ᾱ

∂ t
+

ȳ+ em

2
∂ 2∆α

∂ ȳ∂ t

)√
1−ξ 2dξ (90)

The incremental section non-circulatory lift is evaluated as

∆lnc =
ρ∞V∞c2 cosΛ f

4

[
δ̇ +

(−c+4e−2c∗c) δ̈

4u

](
cos−1 c∗− c∗

√
1− c∗2

)
+

ρ∞V∞c3δ̈ cosΛ f

8u

(
1− c∗2

)√
1− c∗2

3
+

ρ∞V∞c2emδ̈ cosΛ f

4u

(
cos−1 c∗− c∗

√
1− c∗2

)
=−

ρ∞V∞c2δ̇ cosΛ f

4

(
−cos−1 c∗+ c∗

√
1− c∗2

)
−

ρ∞V∞c3δ̈ cosΛ f

8u

[
c∗ cos−1 c∗−

(
1+2c∗2

)√
1− c∗2

3

]
(91)
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The incremental section non-circulatory lift coefficient is then obtained as

∆cLnc =
∆lnc

q∞c
= c̄L

δ̇

δ̇c
2u

+ c̄L
δ̈

δ̈c2

4u2 (92)

where
c̄L

δ̇
=−cosΛ f T4 (93)

c̄L
δ̈
=−cosΛ f T1 (94)

with

T1 = c∗ cos−1 c∗−
(
2+ c∗2

)√
1− c∗2

3
(95)

T4 =−cos−1 c∗+ c∗
√

1− c∗2 (96)

The linear contributions to the incremental section drag coefficients are expressed as

∆cDc = 2kcLr ∆cLc =C (k)

(
cDδ

δ + cD
δ̇

δ̇c
2u

)
(97)

∆cDnc = 2kcLr ∆cLnc = c̄D
δ̇

δ̇c
2u

+ c̄D
δ̈

δ̈c2

4u2 (98)

B. Pitching Moment about Elastic Axis

The incremental section circulatory pitching moment coefficient about the elastic axis has two components according
to the Theodorsen’s theory.13 The first component is not dependent on the reduced frequency k and therefore could be
added to the non-circulatory pitching moment. The second component is dependent on the reduced frequency k and is
given by

∆cmc =
e
c

∆cL =C (k)

(
cmδ

δ + cm
δ̇

δ̇c
2u

)
(99)

where
cmδ

=
cLα

ecosΛ f

πc
T10 (100)

cm
δ̇
=

cLα
ecosΛ f

2πc
T11 = cmδ

T11

2T10
(101)

The incremental section non-circulatory pitching moment and the reduced frequency independent section circula-
tory pitching moment are given by

∆mnc =−
q∞c2∆cL

4
+ρ∞V∞c

∫ 1

c∗
φdξ −ρ∞c

∫ 1

c∗
ȳ

∂φ

∂ t
dξ =−q∞c2∆cL

4

+
ρ∞V 2

∞c2

2

∫ 1

c∗

(
∆ᾱ +

ȳ+ em

2
∂∆α

∂ ȳ

)√
1−ξ 2dξ − ρ∞V∞c2

2

∫ 1

c∗
ȳ
(

∂∆ᾱ

∂ t
+

ȳ+ em

2
∂ 2∆α

∂ ȳ∂ t

)√
1−ξ 2dξ (102)

The first term is the reduced frequency independent section circulatory pitching moment. Then, the incremental
section pitching moment coefficient due to the non-circulatory and reduced frequency independent section circulatory
pitching moments is obtained as

∆cmnc =
∆mnc

q∞c2 = c̄mδ
δ + c̄m

δ̇

δ̇c
2u

+ c̄m
δ̈

δ̈c2

4u2 (103)

where

c̄mδ
=−

cLα
cosΛ f

4π
T10−

cosΛ f

2
T4 =−

cLδ

4
+

c̄L
δ̇

2
(104)
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c̄m
δ̇
=−

cLα
cosΛ f

8π
T11−

cosΛ f

2
T1 +

cosΛ f

2

(
c∗+

2em

c

)
T4 +

cosΛ f

2
T8

=−
cL

δ̇

4
+

c̄L
δ̈

2
−
(

c∗

2
+

em

c

)
c̄L

δ̇
+

cosΛ f

2
T8 (105)

c̄m
δ̈
=

cosΛ f

2

(
c∗+

2em

c

)
T1 +

cosΛ f

2
T7 =−

(
c∗

2
+

em

c

)
c̄L

δ̈
+

cosΛ f

2
T7 (106)

with

T7 =−
(
1+8c∗2

)
cos−1 c∗

8
+

c∗
(
7+2c∗2

)√
1− c∗2

8
(107)

T8 = c∗ cos−1 c∗−
(
1+2c∗2

)√
1− c∗2

3
(108)

C. Hinge Moment

The section circulatory hinge moment coefficient about the elastic axis has two components according to the Theodorsen’s
theory.13 The first component is not dependent on the reduced frequency k and therefore could be added to the
non-circulatory hinge moment. The second component is dependent on the reduced frequency k and is given by
Theodorsen13 as

h =−q∞c2cLα
[α (x,ec)+∆α]

4π
C (k)T12 (109)

T12 = (2+ c∗)
√

1− c∗2− (1+2c∗)cos−1 c∗ (110)

The reduced frequency dependent section circulatory hinge moment coefficient is then obtained as

chc =C (k)

[
chα

α (x,ec)+ chδ
δ + ch

δ̇

δ̇c
2V∞

]
(111)

where
chα

=−cLα

4π
T12 (112)

chδ
=−

cLα
cosΛ f

4π2 T10T12 =−
cLδ

4π
T12 (113)

ch
δ̇
=−

cLα
cosΛ f

8π2 T11T12 =−
cL

δ̇

4π
T12 = chδ

T11

2T10
(114)

The elastic angle of attack in the streamwise direction is given by

∆α (x, ȳ) =
(

∂αe

∂U
U +

∂αe

∂V
V +

∂αe

∂W
W +

∂αe

∂Θ
Θ+

∂αe

∂Vx
Vx +

∂αe

∂Wx
Wx +

∂αe

∂Vt
Vt +

∂αe

∂Wt
Wt +

∂αe

∂Θt
Θt

)
cosΛ (115)

where αe is the elastic angle of attack in the normal direction to the elastic axis. Note that the contributions of the
rigid-body aircraft states such as aircraft angular rates p, q, r are implicitly included in the elastic angle of attack αe.
This allows the influences of the aircraft rigid-body motion to enter into the hinge moment expression. The elastic
angle of attack can be expressed as

∆α = ∆ᾱ + ȳ
∂∆α

∂ ȳ
(116)

The velocity potential is expressed as

φ =
V∞c

2

(
∆ᾱ +

ȳ+ em

2
∂∆α

∂ ȳ

)√
1−ξ 2 (117)
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The section non-circulatory hinge moment and the reduced frequency independent section circulatory hinge mo-
ment are evaluated as

hnc =
q∞c2cLα

∆α (x,ec)

4π
T4 +ρ∞V∞c

∫ 1

−1
φdξ −ρ∞c

∫ 1

−1

(
ȳ− em−

cc∗

2

)
∂φ

∂ t
dξ +∆hnc

=
q∞c2cLα

∆α (x,ec)

4π
T4 +

ρ∞V 2
∞c2

2

∫ 1

c∗

(
∆ᾱ +

ȳ+ em

2
∂∆α

∂ ȳ

)√
1−ξ 2dξ

− ρ∞V∞c3

4

∫ 1

c∗
(ξ − c∗)

(
∂∆ᾱ

∂ t
+

ȳ+ em

2
∂ 2∆α

∂ ȳ∂ t

)√
1−ξ 2dξ +∆hnc (118)

Without derivation, the contribution to the section non-circulatory hinge moment coefficient by the control surface
is given by Theodorsen as

chnc =
hnc

q∞c2 = c̄hδ
δ + c̄h

δ̇

δ̇c
2u

+ c̄h
δ̈

δ̈c2

4u2 (119)

c̄hδ
=

cLα
cosΛ f

4π2 T4T10−
cosΛ f

2π
T5 =

cLδ

4π
T4−

cosΛ f

2π
T5 =−chδ

T4

T12
−

cosΛ f

2π
T5 (120)

c̄h
δ̇
=

cLα
cosΛ f

8π2 T4T11 =
cL

δ̇

4π
T4 =−chδ

T4T11

2T10T12
(121)

c̄h
δ̈
=

cosΛ f

2π
T3 (122)

where

T3 =−
(
1+8c∗2

)(
cos−1 c∗

)2

8
+

c∗ (7+2c∗)
√

1− c∗2 cos−1 c∗

4
−
(
4+5c∗2

)(
1− c∗2

)
8

(123)

T5 =−
(
cos−1 c∗

)2
+2c∗

√
1− c∗2 cos−1 c∗−

(
1− c∗2

)
(124)

The total reduced frequency independent section hinge moment coefficient due to the section non-circulatory hinge
moment and the reduced frequency independent section circulatory hinge moment is then obtained as

chnc =
cLα

∆α (x,ec)

4π
T4−

1
2

∆ᾱT4 +
c
2

∂∆α

∂ ȳ
T9 +

c
4u

∂∆ᾱ

∂ t
T1−

c2

4u
∂ 2∆α

∂ ȳ∂ t
T13

=
T4cLα

∆α (x,ec)

4π
− T4

2

(
∆ᾱ− cT9

T4

∂∆α

∂ ȳ

)
+

T1c
4u

(
∂∆ᾱ

∂ t
− cT13

T1

∂ 2∆α

∂ ȳ∂ t

)
=

T4cLα

4π
∆α (x,ec)−

T4

2
∆α

(
x,−cT9

T4

)
+

T1c
4u

∂∆α

∂ t

(
x,−cT13

T1

)
+ c̄hδ

δ + c̄h
δ̇

δ̇c
2u

+ c̄h
δ̈

δ̈c2

4u2 (125)

where

p =−
(
1− c∗2

)√
1− c∗2

3
(126)

T9 =
1
2

(
−p− 2em

c
T4

)
(127)

T13 =
1
2

[(
1+8c∗2

)
cos−1 c∗

8
−

c∗
(
7+2c∗2

)√
1− c∗2

8
−
(

c∗+
2em

c

)
T1

]
=

1
2

[
−T7−

(
c∗+

2em

c

)
T1

]
(128)

For theoretical cLα
= 2π , then

chnc =
1
2
(T9c+T4ec)

∂∆α

∂ ȳ
+

T1c
4u

∂∆α

∂ t

(
x,−cT13

T1

)
+ c̄hδ

δ + c̄h
δ̇

δ̇c
2u

+ c̄h
δ̈

δ̈c2

4u2 (129)

Finally, the hinge moment about the hinge axis is evaluated as

h f = (hc +hnc)cosΛ f (130)
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The equation of motion of the control surface is described by

i f δ̈ − i f Θtt −m f e fWtt + c f δ̇ + k f δ = h f (131)

where m f , i f , c f , and k f are the mass inertia, damping, and stiffness per unit length of the control surface about the
hinge line, and e f is the offset of the control surface CG from the wing section CG, positive if the control surface CG
is aft of the wing section CG.

The contributions of the control surface to the inertial force and moment acting on a wing section are given by

∆ f i
z = m f e f δ̈ (132)

∆mi
x = i f δ̈ (133)

D. Aircraft Aerodynamic Coefficients due to Control Surfaces

The aircraft incremental lift and drag coefficients are evaluated as

∆CL,D =C (k)

(
CL,Dδ

+CL,D
δ̇

δ̇ c̄
2u

)
+C̄L,D

δ̇

δ̇ c̄
2u

+C̄L,D
δ̈

δ̈ c̄2

4u2 (134)

where

CL,Dδ
=

1
S

∫ x f +l f

x f

cL,Dδ
ccosΛdx (135)

CL,D
δ̇
=

1
Sc̄

∫ x f +l f

x f

cL,D
δ̇
c2 cosΛdx (136)

C̄L,D
δ̇
=

1
Sc̄

∫ x f +l f

x f

c̄L,D
δ̇
c2 cosΛdx (137)

C̄L,D
δ̈
=

1
Sc̄2

∫ x f +l f

x f

c̄L,D
δ̈
c3 cosΛdx (138)

where x f is the coordinate of the inboard flap edge station and l f is the flap length.
The aircraft incremental rolling moment coefficient is evaluated as

∆Cl =C (k)

(
Clδ +Cl

δ̇

δ̇b
2u

)
+C̄l

δ̇

δ̇b
2u

+C̄l
δ̈

δ̈b2

4u2 (139)

where

Clδ =
1

Sb

∫ x f +l f

x f

cLδ
yacccosΛdx (140)

Cl
δ̇
=

1
Sb2

∫ x f +l f

x f

cL
δ̇
yacc2 cosΛdx (141)

C̄l
δ̇
=

1
Sb2

∫ x f +l f

x f

c̄L
δ̇
ymc2 cosΛdx (142)

C̄l
δ̈
=

1
Sb3

∫ x f +l f

x f

c̄L
δ̈
ymc3 cosΛdx (143)

The aircraft incremental pitching moment coefficient is evaluated as

∆Cm =C (k)

(
Cmδ

δ +Cm
δ̇

δ̇ c̄
2u

)
+C̄mδ

δ +C̄m
δ̇

δ̇ c̄
2u

+C̄m
δ̈

δ̈ c̄2

4u2 (144)

where

Cmδ
=

1
Sc̄

∫ x f +l f

x f

(
−cLδ

xac + cDδ
zac
)

ccosΛdx (145)
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Cm
δ̇
=

1
Sc̄2

∫ x f +l f

x f

(
−cL

δ̇
xac + cD

δ̇
zac

)
c2 cosΛdx (146)

C̄mδ
=

1
Sc̄

∫ x f +l f

x f

(
−c̄Lδ

xm + c̄Dδ
zm
)

ccosΛdx (147)

C̄m
δ̇
=

1
Sc̄2

∫ x f +l f

x f

(
−c̄L

δ̇
xm + c̄D

δ̇
zm

)
c2 cosΛdx (148)

C̄m
δ̈
=

1
Sc̄3

∫ x f +l f

x f

(
−c̄L

δ̈
xm + c̄D

δ̈
zm

)
c3 cosΛdx (149)

The aircraft incremental yawing moment coefficient is evaluated as

∆Cn =C (k)

(
Cnδ

+Cn
δ̇

δ̇b
2u

)
+C̄n

δ̇

δ̇b
2u

+C̄n
δ̈

δ̈b2

4u2 (150)

where

Cnδ
=− 1

Sb

∫ x f +l f

x f

cDδ
yacccosΛdx (151)

Cn
δ̇
=− 1

Sb2

∫ x f +l f

x f

cD
δ̇
yacc2 cosΛdx (152)

C̄n
δ̇
=− 1

Sb2

∫ x f +l f

x f

c̄D
δ̇
ymc2 cosΛdx (153)

C̄n
δ̈
=− 1

Sb3

∫ x f +l f

x f

c̄D
δ̈
ymc3 cosΛdx (154)

V. Gust Models

Atmospheric gust disturbances are an important structural design consideration for flexible wing aircraft. Gust
load responses can result in structural loading issues as well as ride qualities issues relating to passenger comfort.
Gust load alleviation control can reduce the gust load responses in modern transport aircraft such as Boeing 787. Two
types of gust models are normally considered: discrete gust and continuous gust.

The unsteady lift due to a vertical gust velocity can be computed by the convolution integral as

lg = q∞cLα
c
[

αg (0)ψ (τ)+
∫

τ

0

dαg (σ)

dσ
ψ (τ−σ)dσ

]
(155)

where τ = 2V∞t
c is the distance in semi-chords traveled by the airfoil, αg is the effective instantaneous angle of attack

due to the vertical gust velocity, and ψ (τ) is the Küssner’s function.
The instantaneous angle of attack is computed from the thin airfoil theory as

αg (t) =
∫

π

0
wg

(
t− x

V∞

)
(1− cosθ)dθ (156)

where x = c
2 (1− cosϕ) is the chord distance with x = 0 at the leading edge and wg

(
t− x

V∞

)
is a gust profile.

A more practical approach to implement a gust model is to use a differential equation instead of the convolution
integral. Let s̄ = sc

2V∞
, then the Küssner’s function can be approximated in the frequency domain using the R. T. Jones’

method as15

ψ (s̄) = 1− 0.500s̄
s̄+0.130

− 0.500s̄
s̄+1

(157)

This can also be expressed as

ψ (s̄) =
a1s̄+a2

s̄2 +a3s̄+a2
(158)

19 of 32

American Institute of Aeronautics and Astronautics



where a1 = 0.565, a2 = 0.130, and a3 = 1.130.
The asymptotic values of the Küssner’s function are ψ (τ = 0) = ψ (s̄→ ∞) = 0 and ψ (τ → ∞) = ψ (s̄ = 0) = 1.
Then, the unsteady lift due to a vertical gust velocity is computed as

lg = q∞cLα
cαg (t)ψ (s̄) (159)

Let y(t) = αg (t)ψ (s̄). Then, y(t) is computed from the following differential equation

ÿ+a3

(
2V∞

c

)
ẏ+a2

(
2V∞

c

)2

y = a1

(
2V∞

c

)
α̇g +a2

(
2V∞

c

)2

αg (160)

A. Discrete Gust Model

For a one-minus cosine gust model, the gust vertical velocity profile is given by

wg

(
t− x

V∞

)
=

w0

[
1− cos 2π

tg

(
t− x

V∞

)]
0≤ t < tg, t− x

V∞
≥ 0

0 t ≥ tg, t− x
V∞

< 0
(161)

The instantaneously angle of attack can be approximated as

αg (τ) =
∫

π

0
wg

(
t− x

V∞

)
(1− cosθ)dθ ≈


w0
V∞

(
1− cos 2πcτ

2V∞tg

)
0≤ τ <

2V∞tg
c , τ ≥ 0

0 τ ≥ 2V∞tg
c , τ < 0

(162)

The incompressible Küssner’s function is also given by the following R. T. Jones’ approximation formula in the
time domain:

ψ (τ)≈ 1−0.500e−0.130τ −0.500e−τ (163)

The unsteady lift is then evaluated as

lg = q∞cLα
c
∫

τ

0

w0

V∞

(
1− cos

2πcσ

2V∞tg

)[
0.065e−0.130(τ−σ)+0.500e−(τ−σ)

]
dσ (164)

The analytical expression for the unsteady lift due to the one-minus cosine gust is obtained as

lg = q∞cLα
c

w0

V∞

1−0.500e−0.130 2V∞t
c −0.500e−

2V∞t
c −

0.065
(

0.130cos 2πt
tg

+ 2πc
2V∞tg

sin 2πt
tg
−0.130e−0.130 2V∞t

c

)
0.1302 +

(
2πc

2V∞tg

)2

−
0.500

(
cos 2πt

tg
+ 2πc

2V∞tg
sin 2πt

tg
− e−

2V∞t
c

)
1+
(

2πc
2V∞tg

)2

 (165)

for t < tg.

B. Continuous Gust Model

Two types of continuous gust models are considered: Dryden turbulence model and von Karman turbulence model.

1. Dryden Turbulence

The Dryden turbulence continuous gust model for the vertical velocity component is given by the power spectrum
density function according to MIL-F-8785C16

Φ(ω) = |H (ω)|2 = σ
2 L
V

1+3
(Lω

V

)2[
1+
(Lω

V

)2
]2 (166)
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where σ is the turbulence intensity, L is the characteristic length, V is the airspeed, and ω is the frequency of the
spectrum.

The turbulence intensity is given by
σ = 0.1w20 (167)

where w20 is the wind speed at an altitude of 20 ft and is equal to 15 knots or 25.3 ft/sec for light turbulence, 30 knots
or 50.6 ft/sec for moderate turbulence, and 45 knots or 76.0 ft/sec for severe turbulence. The characteristic length
above 2000 ft is equal to L = 1750 ft based on MIL-F-8785C.16

The response of the vertical gust velocity to a random input is computed from the transfer function H (ω) as
follows17

wg

win
= H (ω) = σ

√
L
V

1+
√

3 L
V iω(

1+ Liω
V

)2 (168)

Let s = iω . Then,
wg

win
= σ

√
L
V

1+
√

3 L
V s(

1+ L
V s
)2 (169)

The differential equation for the Dryden turbulence model is then given by

ẅg +2
V
L

ẇg +
V 2

L2 wg = σ
V
L

√
V
L

win +σ

√
3V
L

ẇin (170)

Let

wa = ẇg−σ

√
3V
L

win (171)

Then,

ẇa = ẅg−σ

√
3V
L

ẇin =−2
V
L

ẇg−
V 2

L2 wg +σ
V
L

√
V
L

win =−2
V
L

wa−
V 2

L2 wg +σ
V
L

√
V
L

(
1−2

√
3
)

win (172)

The state state form of the Dryden turbulence model is then expressed as[
ẇg

ẇa

]
=

[
0 1
−V 2

L2 −2V
L

][
wg

wa

]
+σ

√
V
L

[ √
3

V
L

(
1−2

√
3
) ]win (173)

The input forcing function win is a white noise signal which can be scaled to give a desired amplitude for the severe
gust case.

2. von Karman Turbulence

The von Karman turbulence model is described by the following transfer function for the vertical gust velocity:17

H (s) = σ

√
L
V

1+2.7478 L
V s+0.3398 L2

V 2 s2

1+2.9958 L
V s+1.9754 L2

V 2 s2 +0.1539 L3

V 3 s3
(174)

The differential equation for the Von Karman turbulence is

0.1539
L3

V 3
...wg +1.9754

L2

V 2 ẅg +2.9958
L
V

ẇg +wg = σ

√
L
V

win +2.7478σ
L
V

√
L
V

ẇin +0.3398σ
L2

V 2

√
L
V

ẅin (175)

or

...wg +12.8356
V
L

ẅg +19.4659
V 2

L2 ẇg +6.4977
V 3

L3 wg = 6.4977σ
V 2

L2

√
V
L

win +17.85445σ
V
L

√
V
L

ẇin

+2.2079σ

√
V
L

ẅin (176)
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Let

ẇg =−12.8356
V
L

wg +wa +2.2079σ

√
V
L

win (177)

ẇa =−19.4659
V 2

L2 wg +wb +17.85445σ
V
L

√
V
L

win (178)

ẇb =−6.4977
V 3

L3 wg +6.4977σ
V 2

L2

√
V
L

win (179)

Then,

...wg =−12.8356
V
L

ẅg + ẅa +2.2079σ

√
V
L

ẅin =−12.8356
V
L

ẅg−19.4659
V 2

L2 ẇg−6.4977
V 3

L3 wg

+6.4977σ
V 2

L2

√
V
L

win +17.85445σ
V
L

√
V
L

ẇin +2.2079σ

√
V
L

ẅin (180)

The state space form of the von Karman turbulence is then expressed as ẇg

ẇa

ẇb

=

 −12.8356V
L 1 0

−19.4659V 2

L2 0 1
−6.4977V 3

L3 0 0


 wg

wa

wb

+σ

√
V
L

 2.2079
17.85445V

L
6.4977V 2

L2

win (181)

C. Integrated Gust Loads

The gust model is implemented using a strip theory approach for each airfoil section of the wings and the horizontal
tails. The different arrival time of the gust front at the wings and horizontal tails are are accounted in the gust model
based on the wing and horizontal tail leading edge sweep angles and the distance between the quarter-chord points of
the wings and the horizontal tails.

For a wing section, the incremental aerodynamic force and pitching moment coefficients are computed by

∆cL = cLg =
lg

q∞c
(182)

∆cD = cDg = kc2
Lg (183)

∆cm = cmg =
e
c

cLg (184)

The integrated gust loads on the aircraft are computed as

Lg = q∞

∫ L

−L
cLgccosΛdx+q∞

∫ −Lh

−Lh

cLg,hch cosΛhdx (185)

Dg = q∞

∫ L

−L
cDgccosΛdx+q∞

∫ −Lh

−Lh

cDg,hch cosΛhdx (186)

lg = q∞

∫ L

−L
cLgyacccosΛdx+q∞

∫ −Lh

−Lh

cLg,hyac,hch cosΛhdx (187)

mg = q∞

∫ L

−L

(
−cLgxac + cDgzac

)
ccosΛdx+q∞

∫ −Lh

−Lh

(
−cLg,hxac,h + cDgzac,h

)
ch cosΛhdx (188)

ng =−q∞

∫ L

−L
cDgyacccosΛdx−q∞

∫ −Lh

−Lh

cDg,hyac,hch cosΛhdx (189)

The incremental aerodynamic coefficients are given by

∆CL =
Lg

q∞S
(190)
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∆CD =
Dg

q∞S
(191)

∆Cl =
lg

q∞Sb
(192)

∆Cm =
mg

q∞Sc̄
(193)

∆Cn =
ng

q∞Sb
(194)

VI. Integrated Aeroservoelastic Flight Dynamic Model

The aeroelastic equations can be discretized using the finite-element method (FEM). The FEM formulation results
in the following global matrix equation upon assembly

(Ms +Man) q̈+Meüe +[Cs +C (k)Cac +Can] q̇+[Ks +C (k)Kac]q = Qeẋr +Pexr +Fenüe

+[Een +C (k)Eec] u̇e +[Den +C (k)Dec]ue + feg (195)

where xr =
[

x y h φ θ ψ u v w p q r
]>

is the rigid-body aircraft state vector, q is the gener-

alized coordinate vector, ue =
[

δ1 δ2 . . . δN

]>
is a vector of the VCCTEF deflections of the trailing edge

cambered segments along each of the wings, the subscript s denotes a structural matrix, the subscript an denotes a
reduced frequency independent non-circulatory aerodynamic matrix, the subscript ac denotes a reduced frequency
dependent circulatory aerodynamic matrix, the subscript en denotes a reduced frequency independent non-circulatory
matrix associated with the control surface motion, and the subscript ec denotes a reduced frequency dependent circula-
tory matrix associated with the control surface motion. Note that the aerodynamic mass matrix Man, damping matrices
Cac and Can, and stiffness matrix Kac are functions of the rigid-body state vector xr and its derivative ẋr due to the
inertial coupling to the aeroelastic deflections. The aeroelastic equations also include the generalized force due to the
gust feg. Thus, the equation is nonlinear with respect to the rigid-body states even though the aeroelastic equation is
linear in terms of structural deflections.

The circulatory matrices are functions of the reduced frequency parameter k. This form of equations is useful for
flutter analyses since k is usually computed from a flutter solution. For flight dynamic modeling, when a wing is excited
by multiple frequencies such as gust loads, the reduced frequency dependent equations is generally inconvenient since
the Theodorsen’s function can only handle a single value of the reduced frequency. Therefore, the R. T. Jones method
of unsteady aerodynamic approximation can be used to convert the reduced frequency dependent matrix equation into
a reduced frequency independent form. The R. T. Jones method is a second-order rational fraction approximation of
the Theodorsen’s function according to18

C (k)≈ C̄ (s̄) =
0.5s̄2 +a1s̄+a2

s̄2 +a3s̄+a2
(196)

where C̄ (s) is an approximate Theodorsen’s function C (k) which is equal to unity at s = 0 and 0.5 as s→ ∞, a1 =
0.2808, a2 = 0.01365, a3 = 0.3455, and s̄ = sc̄

2u is a dimensionless Laplace transform variable.
Then,

C (k)q =
0.5s̄2 +a1s̄+a2

s̄2 +a3s̄+a2
q = 0.5q+

a4s̄+0.5a2

s̄2 +a3s̄+a2
q (197)

C (k) q̇ =
0.5s̄3 +a1s̄2 +a2s̄

s̄2 +a3s̄+a2

2u
c̄

q = 0.5q̇+a4

(
2u
c̄

)
q+

a5s̄+a6

s̄2 +a3s̄+a2

(
2u
c̄

)
q (198)

where
a4 = a1−0.5a3 (199)

a5 = 0.5a2−a1a3 +0.5a2
3 (200)

a6 =−a1a2 +0.5a2a3 (201)
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The R. T. Jones’ unsteady aerodynamic approximation results in the following global matrix equation

(Ms +Man) q̈+Meüe +(Cs +Can +0.5Qac) q̇+

[
Ks +0.5Kac +a4

(
2u
c̄

)
Cac

]
q+Kacy+

(
2u
c̄

)
Cacz = Qeẋr

+Pexr +Fenüe +(Een +0.5Eec) u̇e +

[
Den +0.5Dec +a4

(
2u
c̄

)
Eec

]
ue +Decv+

(
2u
c̄

)
Eecw+ feg (202)

ÿ+a3

(
2u
c̄

)
ẏ+a2

(
2u
c̄

)2

y = a4

(
2u
c̄

)
q̇+0.5a2

(
2u
c̄

)2

q (203)

z̈+a3

(
2V
c̄

)
ż+a2

(
2V
c̄

)2

z = a5

(
2V
c̄

)
q̇+a6

(
2V
c̄

)2

q (204)

v̈+a3

(
2u
c̄

)
v̇+a2

(
2u
c̄

)2

v = a4

(
2u
c̄

)
u̇e +0.5a2

(
2u
c̄

)2

ue (205)

ẅ+a3

(
2u
c̄

)
ẇ+a2

(
2u
c̄

)2

w = a5

(
2u
c̄

)
u̇e +a6

(
2u
c̄

)2

ue (206)

where y and z are the unsteady aerodynamic lag state vectors, and v and w are the unsteady aerodynamic lag state
vectors for the control surfaces.

The nonlinear flight dynamic equations can be cast in a vector form as

Mrrẋr = f(xr, ẋr,ur)+Vrnq̈+[Trn +C (k)Trc] q̇+[Srn +C (k)Src]q+Frnüe +[Ern +C (k)Erc] u̇e

+[Drn +C (k)Drc]ue + frg (207)

where ur =
[

δe δr

]>
is the rigid-body aircraft control vector with δe as the elevator deflection and δr as the rudder

deflection, and frg is the vector of the aerodynamic forces and moments due to the gust.
The nonlinear flight dynamic equations can be linearized and separated into longitudinal dynamics and lateral-

directional dynamics. The equations for the aircraft position x and y are uncoupled to the other equations. The lon-

gitudinal dynamics include the rigid-body aircraft state vector xr =
[

h u w q θ

]>
and the lateral-directional

dynamics include the rigid-body aircraft state vector xr =
[

v p r φ ψ

]>
. The linearized equations of motion

can be expressed as

Mrẋr = Qrẋr +Prxr +Drur +Vrnq̈+(Trn +0.5Trc) q̇+

[
Srn +0.5Src +a4

(
2u
c̄

)
Trc

]
q+Srcy+

(
2u
c̄

)
Trcz

+Frnüe +(Ern +0.5Erc) u̇e +

[
Drn +0.5Drc +a4

(
2u
c̄

)
Erc

]
ue +Drcv+

(
2u
c̄

)
Ercw+ frg (208)

The actuator dynamic equation of the rigid-body aircraft control is assumed to be a first-order model

u̇r =−Λ(ur−urc) (209)

where Λ = Λ
> > 0 is the actuator rate vector and urc is the command vector of the rigid-body aircraft control.

The control surfaces contribute to both the rigid-body aircraft flight dynamics and wing aeroelasticity. The dynam-
ics of the control surfaces are governed by the mass, damping, and stiffness of the control surfaces and their backup
structures and the unsteady aerodynamic hinge moment. The contributions to the unsteady aerodynamic hinge mo-
ment of a control surface come from the control surface deflection and its velocity and acceleration, rigid-body aircraft
states, and the wing elastic states.
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The general equation of motion of the control surfaces can be written as

Mδ üe +Meq̈+Cδ u̇e +Kδ ue = Qδ ẋr +Pδ xr +Vδnq̈+(Tδn +0.5Tδc) q̇+

[
Sδn +0.5Sδc +a4

(
2u
c̄

)
Tδc

]
q

+Sδcy+
(

2u
c̄

)
Tδcz+Fδnüe +(Eδn +0.5Eδc) u̇e +

[
Dδn +0.5Dδc +a4

(
2u
c̄

)
Eδc

]
ue +Dδcv

+

(
2u
c̄

)
Eδcw+ τδ (210)

where τδ is the control torque vector.
The servo-dynamic equation for the control surfaces is based on a proportional-integral-derivative (PID) feedback

control law as follows:
ė = ue−uec (211)

τδ = kp (ue−uec)+kie+kd u̇e (212)

where e is the integral error of the aeroelastic control command uec.

Let xe =
[

q> y> z> q̇> ẏ> ż>
]>

, xδ =
[

u>e v> w> u̇>e v̇> ẇ>
]>

, xs =
[

u>r e>
]>

, and

u =
[

u>rc u>ec

]>
. Then, the integrated ASE flight dynamic equation can be expressed in the state space form

ẋ = Ax+Bu+wg (213)

where x =
[

x>r x>e x>
δ

x>s
]>

, A = M−1S, B = M−1T, and wg = M−1F.
The mass, stiffness, and control force matrices M, S, and T are given by

M =



Mr−Qr 0 0 0 −Vrn 0 0 0 0 0 −Frn 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
−Qe 0 0 0 Ms +Man 0 0 0 0 0 Me−Fen 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0 0 0 0
−Qδ 0 0 0 Me−Vδn 0 0 0 0 0 Mδ −Fδn 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I



(214)
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S =



Pr Srn +0.5Src +a4
( 2u

c̄

)
Trc Src

( 2u
c̄

)
Trc Trn +0.5Trc

0 0 0 0 I
0 0 0 0 0
0 0 0 0 0
Pe −

[
Ks +0.5Kac +a4

( 2u
c̄

)
Cac
]

−Kac −
( 2u

c̄

)
Cac −(Cs +Can +0.5Cac)

0 0.5a2
( 2u

c̄

)2 I −a2
( 2u

c̄

)2 I 0 a4
( 2u

c̄

)
I

0 a6
( 2u

c̄

)2 I 0 −a2
( 2u

c̄

)2 I a5
( 2u

c̄

)
I

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Pδ Sδn +0.5Sδc +a4
( 2u

c̄

)
Tδc Sδc

( 2u
c̄

)
Tδc Tδn +0.5Tδc

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 Drn +0.5Drc +a4
( 2u

c̄

)
Erc Drc

( 2u
c̄

)
Erc

0 0 0 0 0
I 0 0 0 0
0 I 0 0 0
0 0 Den +0.5Dec +a4

( 2u
c̄

)
Eec Dec

( 2u
c̄

)
Eec

−a3
( 2u

c̄

)
I 0 0 0 0

0 −a3
( 2u

c̄

)
I 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −Kδ +Dδn +0.5Dδc +a4

( 2u
c̄

)
Eδc +kp Dδc

( 2u
c̄

)
Eδc

0 0 0.5a2
( 2u

c̄

)2 I −a2
( 2u

c̄

)2 I 0
0 0 a6

( 2u
c̄

)2 I 0 −a2
( 2u

c̄

)2 I
0 0 0 0 0
0 0 I 0 0

Ern +0.5Erc 0 0 Dr 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Een +0.5Eec 0 0 0 0
0 0 0 0 0
0 0 0 0 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0

−Cδ +Eδn +0.5Eδc +kd 0 0 0 ki

a4
( 2u

c̄

)
I −a3

( 2u
c̄

)
I 0 0 0

a5
( 2u

c̄

)
I 0 −a3

( 2u
c̄

)
I 0 0

0 0 0 −Λ 0
0 0 0 0 0
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T =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 −kp

0 0
0 0
Λ 0
0 −I



(216)

F =



frg

0
0
0

feg

0
0
0
0
0
0
0
0
0
0



(217)

The output is assumed to be an acceleration measurement at a given location (xc,yc,zc) on the wing which is
computed as

z̈a =Wtt + ycΘtt = Φq̈ (218)

where Φ is a modal transformation vector.
Then,

z̈a = ΦIq̈ẋ = ΦIq̈ (Ax+Bu+wg) (219)

where Iq̈ =
[

0 0 0 0 I 0 0 0 0 0 0 0 0 0 0
]

such that q̈ = Iq̈ẋ.
Let y = z̈a be the output, then

y = Cx+Du+Ewg (220)

where C = ΦIq̈A and D = ΦIq̈B.

VII. Simulations

A finite-element model (FEM) of the flexible wing is constructed using 33 elements. The FEM computes the mode
shapes and displacements of the wing. The generalized coordinates are constructed from the FEM and are coupled to
the aircraft nonlinear flight dynamics.
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The flexible wing GTM simulations are conducted at Mach 0.797 and 36,000 ft with 80% fuel loading. Figures
9 and 10 show the aeroservoelastic (ASE) pole locations of the first 198 symmetric and anti-symmetric modes of the
flexible wing GTM. All the ASE poles are stable at this flight condition.
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Figure 9. Pole Locations of Symmetric Modes of Flexible Wing GTM
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Figure 10. Pole Locations of Anti-Symmetric Modes of Flexible Wing GTM

Table 1 shows the eigenvalues of the ASE coupled and uncoupled rigid-body aircraft modes of the GTM. The ASE
coupling does not seem to significantly alter the rigid-body aircraft modes.

Table 2 shows the eigenvalues of the symmetric and anti-symmetric ASE modes of the flexible GTM wing. The
fundamental frequency of the first bending symmetric ASE mode is 9.4109 rad/sec or 1.4978 Hz. The fundamental
frequency of the first bending anti-symmetric ASE mode is 13.2072 rad/sec or 2.1020 Hz. A flutter analysis is con-
ducted and shows that the first flutter mode is associated with the second bending symmetric ASE mode which occurs
at Mach 0.958 corresponding to a flutter frequency of 17.8167 rad/sec or 2.8356 Hz.
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Rigid-Body
Mode

ASE Coupled
Eigenvalues

Uncoupled
Eigenvalues

Phugoid −0.0064±0.0837i −0.0047±0.0828i

Short Period −0.5328±1.6576i −0.5071±1.3590i
Dutch-Roll −0.2939±1.5059i −0.2663±1.5492i

Roll −1.0472 −1.0845
Spiral −0.0202 −0.0219

Table 1. Eigenvalues of ASE Coupled and Uncoupled Rigid-Body Modes of the Flexible Wing GTM

ASE
Mode

Symmetric ASE Mode
Eigenvalues

Symmetric Structural
Dynamic Mode

Eigenvalues

Anti-Symmetric ASE
Mode Eigenvalues

Anti-Symmetric
Structural Dynamic
Mode Eigenvalues

1 −0.8426±9.3731i −0.0729±7.2936i −0.8009±13.1829i −0.1116±11.1569i
2 −0.2818±18.6759i −0.1907±19.0694i −0.7932±21.2460i −0.2107±21.0691i
3 −1.0351±22.8182i −0.2153±21.5297i −0.7716±31.7682i −0.3117±31.1694i
4 −0.2903±24.0005i −0.2401±24.0042i −0.3090±34.8691i −0.3485±34.8473i
5 −1.0543±42.3144i −0.4192±41.9200i −1.7224±47.5924i −0.4991±49.9050i
6 −1.9655±47.5078i −0.5160±51.5980i −0.8172±50.1101i −0.5174±51.7423i
7 −0.7339±70.6620i −0.7065±70.6513i −0.7575±72.9492i −0.7294±72.9370i
8 −1.8622±78.2028i −0.7900±78.9950i −2.0143±80.6593i −0.8188±81.8763i
9 −1.8256±85.0657i −0.8735±87.3478i −1.6216±85.7461i −0.8760±87.5923i
10 −2.3754±122.32i −1.2318±123.17i −2.3030±128.34i −1.2332±123.31i

Table 2. Eigenvalues of ASE and Structural Dynamic Modes of the GTM Flexible Wing

Three types of gust models are incorporated in the ASE flight dynamic simulations of the GTM: a discrete one-
minus-cosine gust model, and two continuous gust models based on the Dryden turbulence model and the von Karman
turbulence model. Three types of simulations are performed: linear flight dynamics with linear ASE by neglecting
the coupling of the rigid-body aircraft states in the aeroelastic partial derivatives, nonlinear flight dynamics with linear
ASE, and nonlinear flight dynamics with nonlinear ASE due to the coupling of the rigid-body aircraft states in the
aeroelastic partial derivatives. These simulations do not include the coupling of the coupling of the rigid-body aircraft
states in the inertial forces and moment.

Figure 11 shows the longitudinal response of the flexible wing GTM due to a doublet elevator input with an
amplitude of 1◦ under a discrete gust load with a gust amplitude of 10 ft/sec which represents a moderate gust. The
aircraft angle of attack and pitch angle are shown in Figure 11. Both the nonlinear and linear flight dynamics with
linear ASE produce aircraft responses that are in very good agreement with each other. However, the nonlinear flight
dynamics with nonlinear ASE shows a significant discrepancy in the aircraft response particularly in wing tip bending
deflection. This discrepancy illustrates the influence of nonlinear ASE on flexible aircraft flight dynamics due to the
coupling of the rigid-body aircraft states with aeroelasticity.

Figure 12 shows the longitudinal response of the flexible wing GTM due to a doublet elevator input under a
continuous Dryden gust load with a moderate gust amplitude. The aircraft response with the nonlinear flight dynamics
and nonlinear ASE also exhibit differences from the responses with the other two simulation models as seen with the
discrete gust simulations.
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Figure 11. Longitudinal Response of Flexible Wing GTM with 1-Cosine Discrete Gust
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Figure 12. Longitudinal Response of Flexible Wing GTM with Dryden Gust

VIII. Conclusions

This paper describes the development of an integrated nonlinear aeroservoelastic flight dynamic model of the
NASA Generic Transport Model (GTM) equipped with flexible wings. The integrated ASE model provides the capa-
bility for flight control development and simulations of a highly flexible wing transport aircraft equipped with a new
type of distributed flight control surfaces called the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The
flexible wing is modeled to be half as stiff as a conventional wing to achieve a wing tip deflection of about 10% of the
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wing semi-span. The nonlinear aeroservoelasticity in the modeling approach is due to the coupling of the rigid-body
aircraft states in the inertial forces and moment as well as in the aeroelastic angle of attack. The unsteady aerody-
namics is modeled using the Theodorsen’s theory and is corrected for the transonic flow and viscous effect using a
transonic small disturbance and integral boundary layer correction method. To construct the aeroservoelastic model,
the R. T. Jones method is used to approximate the Theodorsen’s function. A proportional-integral-derivative control
law is implemented for the flight control surfaces in the integrated aeroservoelastic model. Gust models include the
discrete one-minus cosine gust model and the continuous Dryden and von Karman turbulence models.

Simulations of the flexible wing GTM at Mach 0.797 and 36,000 ft with 80% fuel loading are conducted. The
simulations show that the rigid-body aircraft modes are not significantly influenced by the aeroservoelastic coupling.
Three types of simulations are performed: linear flight dynamics with linear aeroelasticity by neglecting the coupling
of the rigid-body aircraft states in the aeroelastic partial derivatives, nonlinear flight dynamics with linear aeroservoe-
lasticity, and nonlinear flight dynamics with nonlinear aeroservoelasticity due to the coupling of the rigid-body aircraft
states in the aeroelastic partial derivatives. The aircraft responses to the one-minus cosine gust and the continuous
Dryden gust show that the nonlinear aeroservoelastic model produces significantly different responses than both lin-
ear aeroservoelastic models. Future work will further include the nonlinear aeroelasticity due to the coupling of the
rigid-body aircraft states in the inertial forces and moment acting on the wing.
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