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Abstract

Modern aircraft design methods have produced acceptable designs for large conventional aircraft
performance. With revolutionary electronic propulsion technologies fueled by the growth in the small UAS
(Unmanned Aerial Systems) industry, these same prediction models are being applied to new smaller, and
experimental design concepts requiring a VTOL (Vertical Take Off and Landing) capability for ODM (On
Demand Mobility). A 50% sub-scale GL-10 flight model was built and tested to demonstrate the transition
from hover to forward flight utilizing DEP (Distributed Electric Propulsion)[1][2]. In 2016 plans were put
in place to conduct performance flight testing on the 50% sub-scale GL-10 flight model to support a NASA
project called DELIVER (Design Environment for Novel Vertical Lift Vehicles). DELIVER was
investigating the feasibility of including smaller and more experimental aircraft configurations into a NASA
design tool called NDARC (NASA Design and Analysis of Rotorcraft)[3]. This report covers the
performance flight data collected during flight testing of the GL-10 50% sub-scale flight model conducted
at Beaver Dam Airpark, VA. Overall the flight test data provides great insight into how well our existing
conceptual design tools predict the performance of small scale experimental DEP concepts. Low fidelity
conceptual design tools estimated the L/Dmax Of the GL-10 50% sub-scale flight model to be 16.
Experimentally measured L/Dmax for the GL-10 50% scale flight model was 7.2. The aerodynamic
performance predicted versus measured highlights the complexity of wing and nacelle interactions which
is not currently accounted for in existing low fidelity tools.

Introduction

The GL-10 flight model which was designed and built for demonstrating the feasibility of the tilt-
wing/tilt-tail VTOL concept provided NASA with an opportunity to collect experimental flight data to
use in verification of our current performance prediction models/tools. Performance flight research of the
GL-10 was conducted in June 2017 to support the DELIVER project. A total of 22 flights were conducted
which included: Functional Check Flights, Instrument Check Flights and Research Flights. In addition to
providing data for NDARC, testing provided detailed transition flight data which has not been previously
acquired for this unique phase of flight. After a series of ground system check-outs were completed, the
GL-10 was flown on a vertical tether at the NASA Langley Landing Loads Facility. Once a hover flight
was completed on tether, functional check flights and instrument check flights were conducted at Beaver
Dam Airpark located in Elberon Virginia to ensure all systems were ready to begin performance research
flights.



Nomenclature

AGL
Alpha
CAS
CG

DEP
DELIVER
ESC

GL
LaRC
L/D
MAC
NDARC
PWM
UAS
VTOL

Above Ground Level

Angle of Attack

Convergent Aeronautics Solutions

Center of Gravity
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Electronic Speed Controller
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y Flight Path Distance

o Fuselage Angle of Attack

owsal Wing Angle of Attack Stall
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Flight Model Specifications

The GL-10 flight model which can be seen in [Figure 1] is described in [Table 1].

i ‘Mﬁu&dl-

Figure 1 GL 10 N528NU Hovering During Fllght Tests

Table 1. NASA GL-10 N528NU Flight Model Specifications

SUAS Type VTOL, 10 Motor, Brushless Motor
Propellers Aeronaut CAM Carbon 16x8”
Motors Scorpion SI1-4020-360KV
Wingspan 124.8in

Wing Area 1141.7 in®

Mean Chord 9.67 in

MAC Leading Edge 25.9in

Datum Reference Nose

CG Station 32in

Allowable CG Envelope 30-33in

C.G. Relative to MAC

5.85 in Aft of Leading Edge (64%)

Maximum Take Off Weight

62 Ibs

Empty Weight 46 lbs
Flight Research Weight 57.11 Ibs
Flight Research CG in Forward | 31.75in

Flight




A side view perspective of the GL-10 can be seen in [Figure 2]. A rear view perspective can be seen in
[Figure 3]. A top view perspective can be seen in [Figure 4]. An isometric view perspective can be seen in
[Figure 5].

Figure 2. GL-10 CAD Side Model View

Figure 3. GL-10 CAD Rear Model View

Figure 4. GL-10 CAD Top Model View



Figure 5. GL-10 CAD Isometric Model View

The MAC and associated reference dimensions can be seen in [Figure 6]. Utilizing CAD software a
geometric method was used for determining the MAC [1].

Figure 6. GL-10 MAC



The total weight of the aircraft during testing is broken down into several components in [Table 2]. This
shows 13% of total take-off weight was used for batteries.

Table 2. GL-10 Weight Table

Empty Weight (Ibs) 46
Battery Weight (lbs) 7.2
Data System Weight (Ibs) 4.3
Take Off Weight (lbs) 57.5

The desired location of the CG along the longitudinal axis (CGy) can be seen in [Figure 7]. The actual CG
was measured by utilizing two weight scales. The permitted CG range was determined during the initial
design work which can be seen in [Table 3].

ME00-
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BRANDEBURY TOOL CO.

Figure 7. GL-10 CGy Forward Flight Target

Table 3. GL-10 Forward Flight CGx Range
CGx Forward Limit (in) 30

CGy Target Location (in) 32
CGx Aft Limit (in) 33




The naming convention for motors and control surfaces can be seen in [Figure 8]. The red areas indicate
the motor nacelles, and the blue areas indicate the control surfaces. This can be referenced to identify
the specific motors either in the flight data, or throughout this report.

M1. Port Cutboard Motor M10. Starboard Tail Motor
M2. Port Wing Motor F1. Port Outboard Flap
M3. Port Wing Motor F2. Port Middle Flap

M4. Port Inboard Motor F3. Port Inboard Flap

M5. Starboard Inboard Motor  F4. Starbeard Inboard Flap
M6. Starboard Wing Motor F5. Starboard Middle Flap
M7. Starboard Wing Motor F6. Starboard Outboard Flap
M3. Starboard Cutboard Motor E1. Port Elevator

M39. Port Tail Motor E2. Starboard Elevator

M1

E2

Figure 8. Top View of Motor and Control Surface Assignments
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Flight Test Overview

To support performance research, the GL-10 which had only been used as a tilt wing/tail DEP VTOL
demonstrator required instrumentation to be designed, fabricated, integrated, and tested to support data
requirements. The performance metrics to be measured were power required during various modes of
flight and L/D in forward flight. The data system also had the capability to record flight dynamics, which
was desired to help provide insight into the transition dynamics for future tilt wing concepts. The modes
tested included hover flight, outbound transition, powered straight and level forward flight, turning
maneuvers, unpowered glide forward flight, and inbound transition.

Research Data Sensors

Flight Data System hardware on the aircraft consisted mostly of low cost commercial components. For
propulsion data Castle Creations 50A Edge ESC’s [Figure 9] combined with Castle Creations Castle
Serial Links [Figure 10] were used to measure RPM and Battery Voltage. For power data Allegro
ACS770KCB-150U-PFF-T current sensors [Figure 11] were used to measure battery current. For airspeed
data a Honeywell HSCDRRDOO1PDAAGS pressure sensor was used to measure dynamic pressure. For air
data a SpaceAge Control Alpha/Beta Pitot Probe [Figure 12] was used to measure angle of attack and
angle of sideslip. For attitude, altitude and location data an Advanced Navigation Spatial INS was used to
measure position, attitude and time. Betatronics Inc 25413 Potentiometers as seen in [Figure 13] were
used to measure the wing and tail angle of incidence.

Figure 9. Motor 1 Nacelle w/Integrated ESC
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Figure 10. Motor 1 Nacelle w/Integrated Serial Link

Figure 11. Power Bus w/Integrated Allegro 150A Current Sensors



o 2Bt L)

Figure 12. SpaceAge Controls Alpha/Beta Pitot Tube

Figure 13. Tail Actuator Arm w/Integrated Potentiometer

Sensor Calibration

After installation of the data system, several data measurements were checked against calibrated sources
to verify the data recorded produced expected engineering values. The alpha and beta vanes were
calibrated using a 3D printed tool [Figure 14] which provided three reference points (-30°,0°,30°). The
airspeed was calibrated using a Mensor Automated Pressure Calibrator [Figure 15]. It is worth noting that
there is a low-end of airspeed around 22 kts, which was based on the sensor measured values below this
airspeed producing imaginary numbers due to signal noise. The wing and tail angle potentiometers were
referenced using a handheld digital angle meter application, a calibrated reference source was not
available. The battery current sensors were calibrated using a West Mountain Radio Computerized
Battery Analyzer [Figure 16]. The ESC RPM measurements were verified using a laser tachometer. The
ESC Voltage measurement was verified using a DC power supply. The Spatial measurements were
verified in the lab using an indoor GPS repeater and a handheld digital angle meter application.

13
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Flgure 15. Pitot Probe Callbratlon TooI (Statlc/Dynamlc)




Figure 16. 150A Current Sensor Calibration Tool

The following information in [Table 4] shows the measured data compared to the calibrated sources. It is
worth noting that airspeed data was not filtered, so the measured value is the top of the noise band. This
band was due to the supply voltage noise. The airspeed data used in plots throughout this report were

smoothed and adjusted to compensate for the measured offset. The current data is only accurate when a
load was being measured above 20A.

Table 4. Research Data Compared to Calibrated Sources

Calibrated Source Measured Accuracy
Airspeed (kts) 45 46 +-1*
Current (A) 150 150 +/-1**
Voltage (V) 29 28.9 +/- 0.1
AOA (deg) 0 0 +/-1
AOS (deg) 0 0 +/-1
RPM 3248 3628 +/-25%**

* Recorded airspeed data not filtered, the top of the noise band measured 46 kts
** Recorded current accuracy valid above 20A

***Recorded RPM accuracy varied, this is valid during steady or small
command signals changes




Test Site Location

Prior to DELIVER research activities the GL-10 had only conducted flights in restricted airspace at Fort
A.P. Hill VA. To enable more flexibility in scheduling the research flights for DELIVER, a COA
(Certificate of Authorization) was established at Beaver Dam Airpark, Elberon Virginia [Figure 17].
[Figure18] shows Beaver Dam is located about 1 hours from Langley Research Center. Local testing
allowed for schedule flexibility based on personnel availability, weather, system availability, and UAS
operations support equipment. It is worth noting that Beaver Dam Airpark offers a Class-G ceiling of
1,200 ft AGL, which can be seen in [Figure 19].
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Figure 18. 'G\oogle Earth View of Test Site Location Relative to NASA Langley
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Figure 19. FAA Sectional Chart of Test Site

Support for flight operations required several personnel on-site, personnel in [Figure 20] from left to right
included: Gregory Howland (GL-10 Technician), Dave Hare (GL-10 Technician), Robert McSwain (GL-
10 Test Engineer), Lou Glaab (GL-10 External Pilot), Josh Carbonneau (GL-10 Software Engineer),
Mark Agate (Intern), and Ryan Hammitt (Range Safety Officer).

Figure 20. Group Plcture Taken at Beaver Dam Alrpark VA

17



Flight Test Cards

During the initial planning of the project, data was labeled as required vs. desired. The primary factor
which determined if the data was required was based on resources, schedule and minimum success
criteria. The performance data required for the research activity was determined by the DELIVER project
and the following test cards were conducted:

Required:

o Hover Mode: Hover - Power required to sustain a constant altitude hover.

e Hover Mode: Climb — Power required during a various climb rates.

o Hover Mode: Descent — Power required during at various descent rates.

e Hover Mode: Forward Translation — Power required during forward translation in hover at various
ground speeds.

e Fast Forward Flight Mode: Straight and Level — Power required during forward flight holding altitude
with wings level at various airspeeds.

e Fast Forward Flight Mode: Climb — Power required during a climb at various airspeeds.

e Fast Forward Flight Mode: Descent — Power required during a descent at various airspeeds.

The performance data desired for the research activity was determined by the DELIVER project and the
following test cards were conducted:

Desired:
e Fast Forward Flight Mode: Unpowered Glide — Glide with all motors off and propellers folded at
various airspeeds.

It is worth noting that for Hover Mode, the wing and tail are at a 90° angle of incidence; For Fast Forward
Flight Mode the wing is at a +4° angle of incidence, the tail neutral point is +2°, and the external pilot
could command the tail +/- 12°.

Data requirements established by the project which were referenced in generating the flight test cards
included:

Required:

e Airspeed

e Angle of Attack

e Angle of Sideslip

e Battery Current

e Power Bus Voltage

e Altitude
e Geographic Position
o Attitude

e Acceleration

e Angular Acceleration

e Aircraft Velocity

e Propeller RPM (4 Required, All Desired)



e Motor Power (4 Required, All Desired)

Desired:
e Wing Angle
e Tail Angle

e Wing Actuator Current
e Tail Actuator Current
e ESC Temperature

e Pilot Input

e Controller Output

Flight Data System
The flight data system consisted of the following hardware:

o Labjack T7

e Advanced Navigation Spatial INS

e Odriod XU4

e Odriod Shield

o Atmel XMEGAA3BU-XPLD-ND

e Castle Creations Phoenix Edge 50A ESC

e Castle Creations Serial Link

o Freewave MM2-T Radio

e Allegro 150A Current Sensor

e Allegro 50A Current Sensor

e SpaceAge Controls Alpha/Beta & Pitot Probe

o Honeywell Differential Pressure Sensor (HSCDRRDO01PDAAS)
o Honeywell Static Pressure Sensor (SSCDANNO15PAAADS)

A data system diagram is provided in [Figure 21]. This diagram is accurate with the exception of the
airspeed and altitude air pressure sensors. The 12C pressure sensors were replaced with Honeywell analog
sensors to allow the 12C bus to only deliver motor ESC data. This was based on the difficulties
implementing the 12C bus throughout the vehicle, and not wanting to rely on the 12C bus for airspeed data
in the event we had bandwidth issues.
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Figure 21. Data System Diagram

Flight Model Hybrid Electric Development

The full scale GL-10 concept was based on utilizing a hybrid electric propulsion system in
conjunction with DEP. Although the GL-10 50% Scale flight model was originally built to demonstrate
DEP and VTOL transitions of this concept, a generator was designed and built via a NASA Small
Business Innovative Research Project based on GL-10 requirements. Launchpoint Technologies
developed a 1.5kW generator [Figure 22] called a “Genset”. This generator was designed for the GL-10 to
be used in forward flight to enable long endurance missions. The Genset was delivered to Langley
Research Center on November 2016. DELIVER GL-10 performance flight testing provided
experimentally measured power requirements for the GL-10, which can be referenced for making future
decisions to integrate and develop the GL-10 50% Scale flight model into a hybrid electric testbed.

Figure 22. LaunchPoint Technologies 1500W Hybrid UAV Power System
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Results

Transitions Flight Dynamics

A large amount of data were collected during flight testing which can be used to better understand the
transition corridor and provide improvements in future tilt wing/tail DEP VTOL research activities. The
transitions are handled by a flight controller through the use of RC control signal mixing and a
programmed schedule for the wing and tail rotation between two modes of flight. The flight controller
provides closed-loop feedback control utilizing body-axis angular rates and attitudes to help control the
vehicle. During hover there are PID gains assigned, and there are separate PID gains assigned during
forward flight. The settings to control the feedback gains for hover and FFF are blended linearly during
transition. During hover the pilot input is mixed to assigned motor and servo outputs which correspond to
a “Y-copter” multi-rotor configuration. During forward flight the pilot input is assigned as per the normal
RC airplane configuration (aileron, elevator, throttle, and rudder). The scheduled rotation of the wing and
tail [Figure 23] are set to a 10 second transition period where the mixing is slowly transferred from the Y-
copter control (Mode 1) to the wing-borne forward flight control (Mode 2). The transition time of 10
seconds was based on the maximum speed of the main wing actuator, which required at least 10 seconds
to translate the wing from 90° to 4°. Since the tail actuators could rotate faster than the wing actuators, the
tail rotation schedule was adjusted to account for balancing pitch moments during transition. [Table 5]
provides a high level summary of the controller outputs for the two different flight modes.

Table 5. Flight Controller Output RC Mixing

Controller OuT1 ouT2 OouT3 OuUT4  OUTS ouT6 ouT7 ouT8

Output

Channel

Signal Tail Elevator Tail Rotation  Aileron  Port Wing Starboard  Rudder

Destination Motors  Servos Servos Servos  Motors  Rotation Motors Servos
Actuator

RC Input for | Throttle  Not Programmed Rudder Throttle Programmed  Throttle Not

Hover Mode | Elevator Used Schedule* Aileron  Schedule* Aileron Used

RC Input Throttle  Elevator Programmed  Aileron Throttle Programmed  Throttle Rudder

for Forward Schedule* Schedule*

Flight Mode

*See [Figure 22] for schedule
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Figure 23. Wing/Tail Rotation Schedule

During research flights the most dynamic transitions were observed during outbound transitions. This can
be seen in [Figure 24-25] where inbound transitions have a nice consistent slope indicating a controlled
decrease in airspeed while wing angle of attack increased. The wing angle of attack is the sum of the air
data probe angle of attack measurement and the wing angle of incidence measurement. During outbound
transitions there is an uncontrolled variability in airspeed which is likely due to motor thrust not being
adequate to overcome drag during segments of the transition. This deceleration would lead to stalls in the
last half of transition. For analysis one method of comparison was to look at the differences between
inbound and outbound initial conditions. Inbound transitions the wing angle of attack is low and airspeed
is high. The motors primary function is attitude control during this transition since drag is providing the
needed deceleration. The opposite case is observed during outbound transitions where motors have to
provide thrust to overcome the drag to continue accelerating throughout the transition. The net moment
from the motors needs to be carefully balanced to achieve smooth outbound transitions. This can be seen
on the Flight 14 (Cyan Color) outbound transition as the airspeed begins to decrease, then the airspeed
increases after a significant decrease in the wing angle of attack. Given the DEP, propulsion integration
effects were significant.
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Figure 25. Outbound Transition Comparisons

Two reference lines are provided in the transition comparison plots: Wing stall alpha (ouwstait), and stall
speed (Vstan). These values are based on wind tunnel data in [Figure 26] from a 30% sub-scale model
shown in [Figure 27]. Specifically the ouwsai Was determined from an angle of attack of 14° at a Cj max Of
1.37 plus 4° due to the wing angle of incidence totaling 18°. Wind tunnel data also provides a reference
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for comparison with aerodynamic performance later in this report. The wind tunnel test conducted was
during the previous research activity [4][5][6] which was focused on demonstrating the GL-10 concept
transition. Test 164 run 175 in this figure was used as a baseline reference to compare the DELIVER data
results with.

cHDBE

cAD AR 3,... D

]

i ‘2 i i i
30 35 4006 04 02 0.0 0.2 0.4

o, de C
 deg .
TEST RUN Q BETAR wing tilt tail tilt L aileron r aileron power
Q@ 164 175 3.2 0.0 Q 0 o
g 164 124 3.2 0.0 0 0 0 0 10, 000rpm

Figure 26. Wind Tunnel Model Aerodynamic Performance Reference (Q~30.7Kkts)

Figure 27. Design of Experiments GL-10 Controls 30% Scale Wind Tunnel Model
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The aircraft stall alpha was based on the Ci max 0bserved in the wind tunnel data plot. The maximum lift
coefficient recorded before a decrease in lift is 1.43, which occurs at an alpha of 14 degrees. This
establishes a C max Of 1.43 and a stall alpha of 14°. The wing alpha stall is determined by adding the wing
angle of incidence (+4°) which is 18°. This is only used since during the transition we are looking at the
wing alpha in plots, rather than the fuselage. The wing stall speed was calculated by [Equation 1] utilizing
this C|_ max.

2Wg
1
PSCLmax ( )

Vstau =
Mass W=25.9 kg

Gravity Acceleration g=9.8 m/s?

Air Density p=1.255 kg/m?

Wing Area S=.737m?

Max Coefficient of Lift  Cpmax =1.43

Stall Speed Vstanl = 19.6 m/s (38.1 kts)

A challenge to tilt wing concepts like the GL-10 is the physical connection between propulsion thrust and
wing lift. The angle between the thrust vector and the wing lift vector is constant because they are both
rotated by the same actuator. This implies that thrust needs to be managed to both produce zero moments
on the vehicle while also providing a total lift force (i.e. aerodynamic lift and propulsive lift) equal to the
vehicle’s weight. During initial stages of the transition, the amount of thrust provide for acceleration is
very low due to the angles involved. During outbound transitions, it was observed that vehicle
acceleration was very low as a result. This led to the situation where inadequate speed was developed
leading to risks of stalls. An example of this dependence would be during the outbound transition, you
cannot increase motor thrust to accelerate forward without also increasing lift from the motors. [Table 6]
shows the initial conditions of the outbound transitions, as well as some transition characteristics
observed based on [Figure 28-31]. Recommendations for improving the outbound transition are
considered based on comparing the transition initial conditions and stability from several flights.

Table 6. Outbound Transition Initial Conditions

Initial | Initial End Initial Wing Max Airspeed Maximum | Max
Pitch Throttle Throttle Climb AoA Deceleration Throttle Sink
(deg) PWM PWM Rate @23 kts | Wing Delta Rate
(msec) (msec) (ft/s) (deg) A0A/AS(deg/kts) | (msec) (ft/s)
Flight -59 1.7 1.675 16 40 10/27 15 -55
14
Flight -45 1.675 1.625 23 40 12/28 1 -65
15
Flight -43 1.6 1.55 10 45 22/34 .05 -22
16
Flight -39 1.6 1.525 12 47 37132 .05 -24
17
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Flight -52 1.675 1.575 25 40 20/27 125 -93
18
Flight -35 1.6 1.525 15 36 31/27 .075 -30
20

Several characteristics were also recorded in the table to help identify trends that were associated with
initial conditions that led to better transitions. The wing AoA at 23 kts indicates the wing AoA when the
airspeed is in range of the airspeed sensor, this provides an indication of increased forward acceleration
during the first half of the transition. The max airspeed deceleration indicates the wing AoA that had the
most drag compared to the forward thrust from the motors, this provides an indication in the transition
that requires more forward thrust. The maximum throttle delta indicates the maximum difference in PWM
commands being sent to the wing motors and tail motors, which provides indication that wing and tail
rotation schedule needs to be changed. The maximum sink rate indicates the severity of stalls during
transition, which provides an overall grade of the transition with the ideal transition having no altitude
loss. A method of single action transition (i.e. going from hover directly to FFF) was employed for this
effort. An unbalance of thrust effects lead to significant challenges controlling the vehicle and very low
vehicular accelerations in the early phases of transition. Given the test priorities for configuration control,
no attempt was made to correct these thrust effects through adjustments of the tail angle or tail thrust
schedule. The best outbound transition method developed herein was to start the transition at a low-thrust
level just able to maintain level flight in hover, further decrease thrust through the transition, and use
gravitational acceleration through shallow descents to gain airspeed. One recommendation form this
effort would be to define a maximum speed and minimum wing angle for non-FFF flight and transition to
this speed/wing angle combination and stabilize before progressing all the way to FFF. Another
recommendation is to develop thrust schedules and tail angles to produce zero pitching moment on the
vehicle for all wing/tail angles.
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Figure 28. Outbound Transition Climb Characteristics
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Figure 29. Inbound Transition Climb Characteristics

It is also worth noting there is also a differential thrust applied for pitch control which reduces forward
thrust on 8 out of 10 motors to provide the pitching moments for control authority. The outbound
transition motor commands indicate there is a nose up pitching moment which is being compensated for
by a very large delta between wing and tail motor commands. A 1.8 msec command represents 100%
power, while a 1.3 msec command represents 0% power. Flight 14 which had one of the least desirable
outbound transitions used a 32% power delta between the tail and wing motor commands between 4 and 6
seconds after starting the transition. This large thrust delta between wing and tail motor commands
indicated a significant nose up aerodynamic pitching moment was being applied during this portion of the
transition. It is worth noting that even with this pitching moment applied from the motors differential
thrust to counteract the aerodynamic pitch moment, the pitch attitude continued to nose up during this
segment. Large pitching moments can be seen on Flight 14, 15, and 20 around T=5 with higher initial
throttle values.

The wing and tail motor commands for each flights transition are indicated with a solid line for wing
motors, and a dashed line for tail motors. This helps determine the pitching moment direction which the
motors are generating.
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Figure 31. Inbound Transition Motor Commands

Flight 16 transition data in [Figure 32-36] provide a reference for the one of the best transition
characteristics. All the transition data from the flights referenced for comparison can be viewed in
[Appendix A] which can be useful for comparing the initial conditions, moments acting on the aircraft
during transition, and understanding of the dynamics associated with the transition.
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Figure 36. Flight 16 Motor Pitch and Thrust Characteristics

Powered Aerodynamic Performance

Aerodynamic performance can be measured looking at the Effective Lift to Drag Ratio (L/Def) [Equation
2] during level flight while maintaining a constant altitude. An example of this being used to calculate
Flight 14 Data Run 1 is provided below. This assumes the lift generated is equal to the weight of the
aircraft. This was measured during various flights by taking an average during straight and level flight
data runs which can be seen in [Table 7-10]. The data plots for these mean values can be seen in
[Appendix B]. The weight of the research aircraft was 57.5 Ibs (255.8 N) for all flights and was constant
throughout the entire flight since the power source was lithium polymer batteries.

_ WAircraftVCruise
L/Deff N PRequired (2)
Aircraft Weight W aircrat =255.8 kg*m*s
Cruise Velocity Venise =22.7 m*s?
Power Required Prequired = 1140 kg*m?*s3

Effective Lift to Drag Ratio L/De = 5.1
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Table 7. GL-10 Experimentally Measured Effective L/D

L/Dest Angle of Attack Airspeed
Flight 14 Data Run 1 5 5 44
Flight 14 Data Run 2 6 4 47
Flight 14 Data Run 3 5 4 46
Flight 15 Data Run 1 4 2 49
Flight 18 Data Run 1 4 3 48

Although the best L/De is 6, this data point has a 13 ft loss of altitude during the data run over 8
seconds. For the best data run we would want a height change of zero during the portion of data being
averaged, and we would want the time period of the data collected to be as long as possible. Based on this
consideration, the best measurement recorded for the GL-10 L/Des is 5 for an AoA of 5 and an airspeed of
44 kts. This indicates utilizing all motors during forward flight the aerodynamic performance of the GL-
10 would be 25% better than the performance of a conventional helicopter. It is important to note this is
the “dirtiest” form of the aircraft and it was not designed to be operated this way during long endurance
missions when inboard motors would be turned off and only the wingtip motors would be used for
forward flight. L/Dess would be expected to increase with the limit of this increase being constrained by
the “clean” aerodynamic performance without propellers deployed. This mode of operation with all
motors on would only be used during short periods of time during take-off, climb out and landing.

Table 8. Flight 14 Powered Aerodynamic Data

Flight 14 Powered Straight Data Run 1 Data Run 2 Data Run 3
and Level

Mean AS (kts/mps) 4411227 46.7/24.0 45.9/23.6
Mean AOA(deg) 5.0 4.2 4.3

Mean Total Current (A) 40.8 35.4 43.2
Height Change(ft) 9.4 -13.6 -2.1

Time Change(sec) 17.3 8.6 3.3

Mean Port RPM 5400 5540 5680
Mean Starboard RPM 5530 5760 5820
Mean Tail RPM 5150 5390 5410
Mean Bus Voltage (V) 27.9 21.7 27.3

Mean Power(W) 1140 980 1180
Effective L/D 5.1 6.3 5.1
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Table 9. Flight 15 Powered Aerodynamic Performance Data

Flight 15 Powered Straight and | Data Run 1
Level

Mean AS (kts/mps) 48.6 /24.98
Mean AOA(deg) 2.2

Mean Total Current(A) 56.3
Height Change(ft) 5.6

Time Change(sec) 9.1

Mean Port RPM 6140
Mean Starboard RPM 6220

Mean Tail RPM 5750

Mean Bus Voltage(V) 21.7

Mean Power(W) 1560
Effective L/D 4.1

Table 10. Flight 18 Powered Aerodynamic Performance Data

Flight 18 Powered Straight and | Data Run 1
Level

Mean AS (kts/mps) 48.1/24.7
Mean AOA(deg) 31

Mean Total Current(A) 64.8
Height Change(ft) 2.1

Time Change(sec) 5.2

Mean Port RPM 6230
Mean Starboard RPM 6310
Mean Tail RPM 5820
Mean Bus Voltage(V) 21.7

Mean Power(W) 1800
Effective L/D 35

Flight Power Requirements

During flight testing power required for several modes of flight were recorded between zero and six
kilowatts. The power required for all modes of operation of the GL-10 can be viewed in [Appendix C] for
several flights.

For hover operations the maximum recorded power required was ~ 6 KW. This maximum power output
was recorded during the beginning of take-off. During constant altitude hover operation prior to landing ~
4.5 kW of power was recorded. This can be seen in the data run shown in [Table 11] which provides a
mean value of variables. The data plots for these mean values can be seen in [Figure 36]. Throughout
flight tests ~ 3.5 kW of power was required at times during descents.
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Table 11. Hover Altitude Hold Data Run Values

Flight 16 Hover 1
Mean Lateral 1.7
Velocity(ft/sec)
Mean Pitch(deg) -6
Mean Roll(deg) 1
Mean System Current(A) 174.6
Height Change(ft) -.6
Time Change(sec) 20.4
Mean Port RPM 5610
Mean Starboard RPM 5550
Mean Tail RPM 4820
Mean Bus Voltage (V) 25.3
Mean Power(W) 4412
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Figure 37. Flight 16 Hover Data Run 1

For forward flight operations with all motors providing thrust the maximum recorded power required was
~ 3 kW. This maximum power output was during climbs. Throughout flights approximately 1.5 kW was
required to sustain straight and level flight. At various airspeeds this would change as indicated in the data
runs provided. The lowest power observed during descent was .75 kW, not including unpowered glides.
These recorded power levels provide the range of power required for all modes of operation with the
aircraft at a take-off weight of 57.5 Ibs (255.8 N).
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Unpowered Aerodynamic Performance

The flight model during this flight test did not have the capability to shutdown individual motors. This is
due to the original flight controller setup used for demonstrating the transition, which meant the “clean”

aerodynamic performance would be measured with all motors off utilizing [Equation 3-5] which can be

used during unpowered glides with a constant glide slope.
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L ﬂ 1
E - Cq " tana (3)
w1l
a = sin y (4)
y= VAirspeed COS af Lgatarun (5)
Flight Path Airspeed V airspeed = 68.6 ft*sec™
Fuselage Alpha o =.137881 rad
Data Run Time Period tdatarun = 14.06 sec
Height h=108.8 ft
Glide Angle a=6.54°=.11414 rad
Lift to Drag Ratio L/D=8.7

Conducting unpowered glides introduced a new flight envelope for the aircraft since previous flight
testing was focused on transitioning the aircraft from hover to forward flight. Due to this envelope
expansion these flight were conducted after the required hover and forward flight research flights
were completed. A build-up approach was used, which can be seen in Flight 21 and Flight 22 where
several data runs had wind milling observed from the propellers. These two flights led to two
configuration changes to enable folding propellers: 1) Increasing the brake power applied by the ESC
when throttle was set to zero; 2) Loosening the folding propellers collar attachment screws. These
two changes enabled the propellers to fold on Flight 22 when the motors were stopped using the
electronic brake during the glide data runs. Flight 21 had wind-milling observed in the data shown in
[Table 12], these measurements do not provide confidence in repeatability since there was variance in
which propellers wind-milled on each glide. Propellers were observed to be folded during Flight 22
unpowered glides providing a more consistent measurement of the “clean” aerodynamic performance
which can be seen in [Table 13].

Table 12. Propeller(s) Wind-milling Performance Measurements

Flight 21 Mean AS (kts) Mean AOA (deg) Mean L/D
Glide 1 40 8 4.8
Glide 2 45 4 7.5
Glide 3 41 8 8.7
Glide 4 43 6 6.5




Table 13. Propeller(s) Folded Performance Measurements

Flight 22 Mean AS (kts) Mean AOA (deg) Mean L/D
Glide 1 52 1 6.5
Glide 2 45 4 7.1
Glide 3 40 7 7.4

The mean values used for determining these flight performance measurements are indicated in [Table 14-
15]. There are also plots for these averaged parameters which can be found in [Appendix D]. The plots
found in the appendix gives insights on the data runs which provide measurements outside of
expectations. For example in Data Run 3 there is a measured value of 8.7 L/D for an AOA of 8, this value
does not fall within expected bounds because there is a large variation in the airspeed, angle of attack, and
climb rate which can be observed in the appendix plots. This allows these measured values to have
qualitative confidence assigned to them.

Table 14. Flight 21 Unpowered Glide Mean Measurements
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Flight 21 Unpowered Glides | Data Run 1 | Data Run 2 | Data Run 3 | Data Run 4
Propeller Wind-milling Yes Yes Yes Yes
Vertical Height(ft) 92.9 102.9 108.8 151.5
Mean AS (ft/s) 67.9 76.4 68.6 72.5
Mean GS (ft/s) 78.0 88 64.0 66.1
Time Change(sec) 6.82 10.3 14.06 13.9
AS Flight Path Distance(ft) | 458.5 784.2 956.0 1000.2
Glide Slope(deg) 11.7 7.5 6.5 8.7
L/D 4.8 7.5 8.7 6.5
Mean AS (kts) 40.2 45 40.7 43.0
Mean AoA (deg) 7.8 3.7 7.9 6.1
Table 15. Flight 22 Unpowered Glide Mean Measurements

Flight 22 Unpowered Glides | Data Run 1 | Data Run 2 | Data Run 3

Propeller Wind-milling No No No

Vertical Height(ft) 105 52.8 105

Mean AS (ft/s) 85.3 76.0 66.7

Mean GS (ft/s) 76.3 68.9 62.0

Time Change (sec) 7.84 5.02 -11.86

AS Flight Path Distance (ft) | 694.7 380.5 785.2

Glide Slope (deg) 8.7 8.0 7.7

L/D 6.5 7.1 7.4

Mean AS (kts) 52.5 45 39.5

Mean AoA (deg) 71 3.7 7




Conclusion

The flight data collected during DELIVER research flights provides a database to verify aircraft
performance predictions tools currently used at NASA for small unconventional aircraft designs. In
addition, the current effort provides a wealth of data regarding hybrid VTOL transition characteristics and
flight dynamics. These data can also be used for mission planning of the GL-10 flight model, the
estimated power required for a variety of flight modes can be seen in [Table 16]. These values can be
used to determine power system benchmarks requirements for the operation of the GL-10 concept at a
~551b vehicle scale.

Table 16. Power Required for Different Modes of Flight

Mode Motors Phase Power
Hover All Used Take-Off 6 kW
Hover All Used Altitude Hold 4.5 kW
Hover All Used Descent 3.5 kW
Forward Flight* All Used Climb 3 kW
Forward Flight* All Used Level Flight 1.5 kW
Forward Flight* All Used Descent 75 kW

*All 10 Motor Used, more efficient configurations possible

Power required for forward flight at 45kts has been measured at 1.2kW, this verifies that a 1.5kW
generator could sustain the GL-10 in forward flight for long endurance missions provided the take-off
weight could be maintained. Although the integration of the Genset would not be trivial, it is worth noting
that the 1.2kW power required is for a “Dirty” aerodynamic configuration (All motors on) which would
be used for take-off and landing phases of flight. The power required would go down if only the outboard
wing motors were used for a long endurance cruise phase. Based on the experimentally measured L/Dmax
the power required for a long endurance cruise phase could go as low as 800W.

The best outbound transition method developed herein was to start the transition at a low-thrust level just
able to maintain level flight in hover, further decrease thrust through the transition, and use gravitational
acceleration through shallow descents to gain airspeed. One recommendation from this effort would be to
define an airspeed and wing angle to transition to prior to FFF accounting for the expected deceleration
before progressing all the way to FFF. Another recommendation is to develop thrust schedules and tail
angles to produce zero pitching moment on the vehicle for all wing/tail angles.

Aerodynamic data collected during DELIVER indicates the GL-10 flight model has an L/Dmax of 7.2
which is achieved at an angle of attack of 5° at a speed of 45 kts. Wind tunnel data which was collected
for controls research provides a reference to compare the flight test measurements against [Figure 37].
Between both of these measurement methods the GL-10 concept has demonstrated a 75% increase in
aerodynamic performance from a conventional helicopter design (L/Dmax = 4).
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Figure 38. Experimental Unpowered Aerodynamic Performance Comparison

Two engine operation which would be required for enabling a long endurance cruise mode is feasible.
This is based on the thrust required to sustain straight and level flight with wingtip motors would be
approximately 8 Ibs (L/Dmax 0f 7.2); And the current motor and propeller combination can produce
approximately 4 Ibs of thrust each.
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APPENDIX A: TRANSITION COMPARISON PLOTS
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APPENDIX B: TRANSITION DATA PLOTS
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Appendix C: Powered Straight and Level Data Run Plots
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APPENDIX D: POWERED PERFORMANCE DATA PLOTS
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APPENDIX E: UNPOWERED GLIDE AERODYNAMIC DATA RUN
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