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CALIPSO observations of smoke over low clouds

CALIPSO clearly demonstrated the necessity of vertically-resolved measurements of
clouds and aerosols for climate, weather, and air quality applications.
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Elastic Backscatter Lida

r Measurements
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High Spectral Resolution Lidar (HSRL) Technique
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Why use HSRL for aerosol research?
2 unknowns Time 144 142 140 138 136 134 132  fm's
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* Direct measure of backscatter, rather than 0 5e-4
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Highly accurate particulate depolarization
» Separating particulate and molecular parts
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Vertically resolved aerosol type information
« Lidar ratio gives the most information about
aerosol composition for non-dust aerosol

coefficient

0.02

Altitude (km)

002




Why use HSRL for aerosol research?

- 2 Unknowns Time . . . . . .
' N Retrieval: aerosol extinction
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of AOT
Highly accurate particulate depolarization
» Separating particulate and molecular parts
requires accurate backscatter
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aerosol composition for non-dust aerosol
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CALIPSO misses much of the Arctic Aerosol

April 19, 2008 (ARCTAS) Aerosol Backscatter
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CALIPSO does not detect all radiatively
significant aerosol

= CALIPSO aerosol detection sensitivity Aerosol 3 threshold [532nm. 1Akm 7]
was compared to ground-based DOE 10 10 102
ARM Raman lidars and LaRC airborne =100 i
HSRL data | £ -1
= CALIPSO underestimates global- _sol. _"" )
mean AOD, and therefore shortwave : J, -
aerosol direct radiative effect, by B - /[ .
about 22-47% (38-54%) in cloud-free % ~60 —— RL-FEX TWP f" |
(transparent profiles) (Thorsen and 3 | = = RLFEXSGP /
FU, 2015) g 40 1 EaR MASA HSRL / ]
= | !
— Similar sensitivities as other . /o
studies (Rogers et al., 2014) ol S ]
— Undetected AOT of 0.031+0.052 j )
(Kim et al; 2016) N e
= CALIPSO’s performance is as 10 o 1n3 - mz
expected (consistent with ATBD) Aerosol 4 threshold [355nm, 1/(km sr)]

Thorsen et al., 2017




HSRL-DIAL group developed and fields three (soon to be
four) airborne lidars that employ HSRL technique

HSRL-1
Aerosols, clouds, ocean
2004 — Present

Coming soon: HALO
Methane, water
vapor, aerosols,

clouds, ocean
2018 -

HSRL-2

Aerosols, clouds, ozone,

ocean
2012 - Present

N

UV DIAL/HSRL
O3 and aerosols
1983 - Present

Prototype for the

spaceborne lidar on the

N

ACE Decadal Survey
mission

Technology
development and
demonstration for future
space methane and
water vapor lidar



Comparisons with AERONET provide high
confidence in HSRL-2 extinction product

HSRL 0-7 km layer AOD values compare well with column AOD (355 and
532 nm) values from AERONET "DRAGON" stations when HSRL was
within 2.5 km of site and 10 minutes from measurement
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Airborne NASA LaRC HSRL-2 measuring smoke distribution
and properties for model evaluation during ORACLES

« ORACLES Earth Venture Suborbital mission

- Target: Extensive biomass smoke plume s s de  amum e &
over persistent stratus cloud deck off the HSRL-2 Aerosol Backscatter (532 nm) g
west coast of Africa B 5

- Smoke has significant radiative effect: £ 4 | ol TR s
localized absorption and impacts cloud £ ul |”|IIM| 5
microphysics I g

« During first ORACLES mission, GEOS-5 T f g
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HSRL-2 characterization of smoke layer

Altitude(km)

HSRL-2 Aerosol Backscatter (532 nm|

221
|

HSRL-2 aerosol backscatter measurements
characterize:

— smoke and cloud layer heights and
thicknesses

— thickness of the aerosol-free layer between
the smoke and cloud layers (i.e. the “gap”)

Much (>40%) of the time, there is no gap
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Assessing Aerosol Data Assimilation Products Using
HSRL Measurements

Mean Aerosol Extinction Profiles

7 DAQ (California) Aerosol Extinction 532 nm DAO (Maryland) Aerosol Extinction 532 nm
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Buchard et al., 2015, Atmos. Environ.




HSRL technique enables identification of aerosol type and
apportioning optical depth by type
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Spectral dependence of particle depolarization
differs for smoke and dust

Smoke depolarization decreases Dust depolarization increases
with wavelength with wavelength
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16 Spectral depolarization reveals information about particle

size distribution

Particle Depolarization Ratio
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-
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-
-
--'--

Transported dust

600 800 1000

Wavelength (nm)

400

3 case studies from HSRL-2 (3 wavelength)
+ 3 from HSRL-1 (2 wavelength)

Burton et al., ACP, 2015

1200

Wavelength dependence of
particle depolarization reveals
information about particle size
North American dust at the
source includes very large
particles, monotonically
increasing depolarization
Transported Saharan dust
cases peak at mid-
wavelength, largest particles
were lost during transport
Non-spherical smoke particles
(coated soot aggregates) have
decreasing wavelength
dependence, smaller particles
355 nm particulate
depolarization alone (ATLID)
not sufficient for separating
dust and smoke



Multiwavelength HSRL-2 retrievals characterize aerosol concentration

and size during ORACLES

Aerosol Backscatter (532)

’?l

"iltlhihv

Aerosol Extinction (532)

Aerosol Aerosol

Multiwavelength lidar retrieval
algorithms (Muller et al, 1999;
Veselovskii et al. 2002; etc)

lidar particle size
measurements | distri bution
INVERSION

B(A) — pr(r m, A)v(r)dr

a(d) = fKa(r,;n,/l)v(r)dr

size, refractive index, wavelength

Backscatter: Extinction:

355 nm A 355 nm

1064 nm

Input
(Preliminary

3B+2a (i.e. 3 backscatter + 2
extinction) considered the minimum
information content necessary for

microphysical retrievals (Bockmann
) et al, 2005)



Multiwavelength HSRL-2 retrievals characterize aerosol concentration

and size during ORACLES

= Microphysical parameters
retrieved and archived:

— Concentration (fine
and total) (number,
surface, volume)

— Effective radius (fine
and total)

— Small mode fraction

Aeiosol Fine Mode Effective Rad\us

,Aerosol Small Mode Fraction
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Multiwavelength HSRL aerosol retrieval profiles compare well to
coincident airborne in situ measurements

NASA DISCOVER-AQ Time(UT) Sept. 14,2013 NASA DISCOVER-AQ Time(UT) Sept. 14,2013

132 133 134 135 136 137 138 139 14 132 133 134 135 136 137 138 139

™ Fine mode

Relevance of particle

" | Fine mode effecti - | _
. Eﬁ L size:

» o Improve
3 parameterizations
in aerosol transport
. models
o Modeling direct
| radiative effects
o Indirect effect on
_ 2013/09/14 Smith PoINt 13:26 - 13:40 properties and

precipitation (CCN)
Lidar microphysical retrievals

of effective radius and  Relevance of particle
Eongegltrathns Scompare well concentration:

O alrborne In sit o Indirect effects
measurements

(CCN)
o Air quality (PM, <)

0 250 500 O 10 20 0.15 0.25
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[pm* cm] [pm® cmr) (m] Miller et al., 2014, AMT; Sawamura et al., 2017, ACP




Pursuing combined lidar+polarimeter retrievals

= Limits in information content for lidar-only microphysical retrieval means
absorption is retrieved less well than size distribution parameters

= Synergistic combination of active (lidar) and passive (polarimeter) measurements
will optimize information content on vertical profile of absorption properties

Lidar

« vertically resolved measurements

» multi-wavelength backscatter and
extinction coefficients

» good accuracy for size distribution

» less accuracy for absorption

Polarimeter
« multiwavelength, multiangle
 polarized radiances
» good accuracy for absorption
(e.g. £0.02 on SSA)
« limited information on vertical profile

Lidar + Polarimeter

» vertically resolved profiles of
effective radius, concentrations
and complex refractive index

= Ongoing project by Xu Liu et al (NASA Langley) to combine HSRL-2 (lidar) and RSP
(polarimeter) measurements in advanced Optimal Estimation retrieval



The unexpected application: CALIPSO ocean
measurements

= Particulate Organic Carbon (POC) retrieved
from CALIOP spaceborne lidar compared
favorably to the MODIS product

= CALIOP retrievals pioneered by Yongxiang Hu

= CALIOP retrievals are vertically-integrated
(i.e., not vertically-resolved) due to coarse
vertical resolution

From supplementary material for: Behrenfeld
et al., Space-based lidar measurements of
global ocean carbon stocks, GRL, 2013.

2 0. 100 0 %0 190 pata in each panel are climatological annual averages for the 2006 to 2012
Particulate Organic Carbon (mg m3) period. Data are binned to 2° latitude by 2° longitude pixels.



HSRL-1 Measurements of Atmospheric and Oceanic
Particulates

Aerosol Backscatter (Mm"sr")(532nm)
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Why do we care about depth-resolved profiles?

Met Primary Production

== Depth-resolved lidar (HSHL)
= Depth-resolved 7 sify
— Surface-weighted

5

Ocean-color-like
10 estimate,
i.e., surface-weighted

" \x

20

Depth (m)

[N
Depth-
resolved lidar
estimate
(HSRL)

Depth-resolved

in situ

estimate

25

30

0 20 40 60 80 100
NPP (mgCm™?d™)

Modified from Schulien et al., Vertically- resolved
phytoplankton carbon and net primary production
from a High Spectral Resolution Lidar, submitted
March 2017.

Net Primary Productivity (NPP)
— NPP = rate at which CO, is converted to biomass via
photosynthesis

— Phytoplankton fix as much carbon as all the world’s
terrestrial vegetation — an critical component of the
carbon cycle

— Phytoplankton are the base of the food web

Problem: ocean color measurements are sensitive to only
the first few meters of the column

— Assumption of vertical homogeneity required to
estimate ecosystem properties from ocean color data

— But, this assumption is often violated

— Results in large errors in fundamental quantities such
as NPP

At left are data from the SABOR mission off East Coast US
(2014) demonstrating differences between surface-
weighted and depth resolved profiles using in situ and
HSRL lidar data.

— Ocean-color-style estimates off by as much as 54%

— Errors can be much larger in other parts of the ocean



High vertical resolution also greatly facilitates water cloud
extinction from LaRC airborne HSRL-1

Fast, linear detector provides high vertical resolution (1.25 m) cloud extinction profile
Cloud top height measured with high accuracy
Depolarization provides multiple scattering fraction

HSRL provides accurate measure of optical depth (i.e. attenuation) to cloud top

Altitude (m)

Example from HSRL-1 data from NAAMES mission
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Cloud Drop Number Concentration (N,) from Combined
HSRL and Polarimeter Cloud Measurements

150

= CDNC derived from CALIPSO-MODIS-CERES [
(Hu et al., 2007) e
— CALIPSO cloud extinction retrievals
— CERES-MODIS effective radius

100

= Advantage of HSRL, Polarimeter retrievals

— High resolution HSRL (active) - provides more 40 0 100
accurate cloud extinction profile
— RSP (passive) - provides more accurate cloud 445

drop effective radius, variance CDNC (N,) from NAAMES mission

[Airborne
HSRL+RSP
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MESCAL:

Monitoring the Evolving State of Clouds and Aerosol Layers

= Began as a French cloud-aerosol focused
lidar mission concept championed by Dr.
Helene Chepfer (LMD/IPSL, Université
Pierre et Marie Curie)

= Evolved into a joint mission study between
CNES and NASA Langley

= Science requirements include

— Continuation of CALIPSO cloud and
aerosol record for radiation budget and
cloud-climate feedback studies

— Aerosol requirements from the ACE
Decadal Survey mission (ACE =
Aerosols-Cloud-Ecosystems mission)

— Ocean requirements from ACE .

= Langley concept based on CALIPSO and
airborne HSRL heritage
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Cloud-Aerosol Lidar and Infrared Pathfinder @9
. Il rvations (CALIPSO’

Objective: global profiling of clouds
and aerosols for radiation budget
applications

— 11 years of operations in the A-
train constellation

— 1800 journal publications

Demonstrated

1. Necessity of vertically-resolved
measurements for cloud and
aerosol studies

2. That lidar can be reliable in space

3.Spaceborne lidar has the
sensitivity to provide valuable
ocean measurements

CALIPSO website: www-calipso.larc.nasa.qov




Cloud Drop Size from LaRC airborne HSRL-1

= Cloud lidar ratio (i.e. extinction/backscatter) is function of cloud drop size
= HSRL provides direct measure of cloud lidar ratio

= Initial comparisons of HSRL-1 derived cloud lidar ratio are well correlated
with cloud drop effective radius derived from coincident RSP polarized
radiance measurements

HSRL-1 and RSP measurements Theoretical relationship
May 27, 2016
A 22 T T T T T 0 21 \.\.
21t +<— Lidar ratio . .
200 ™.
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MESCAL:

Monitoring the Evolving State of Clouds and Aerosol Layers

. Began as a French cloud-aerosol focused lidar
mission concept championed by Dr. Helene Chepfer
(LMD/IPSL, Université Pierre et Marie Curie)

= Evolved into a joint mission study between CNES
and NASA Langley

= Science requirements include

— Continuation of CALIPSO cloud and aerosol record for
radiation budget and cloud-climate feedback studies

— Aerosol requirements from the ACE Decadal Survey
mission (ACE = Aerosols-Cloud-Ecosystems mission)

— Ocean requirements from ACE

= Langley concept based on CALIPSO and airborne
HSRL heritage
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MESCAL raises possibilities:

Reduce AOD bias, even during daytime
Direct measurements of backscatter and
extinction facilitates additional averaging or
integration

Multiwavelength HSRL techniques provide
potential for retrieving additional
parameters for radiative flux calculations
and estimating aerosol forcing



31

HSRL measurements used to evaluate

WRF Chem aerosol simulations

WRF-Chem aerosol
simulations from over
California evaluated using
HSRL

HSRL was most valuable
instrument to quantify
overprediction of aerosols in
free troposphere

Long-range transport of
aerosols by global model was
too high in free troposphere.
This bias led to
overpredictions in AOD by
factor of two and offsets
effects of underprediction of
BL aerosols

Reducing long-range
transport greatly improves
simulated AOD

AOT

neight (km MSL)

"

height (km MSL)

J0

1200
(b) DEF_ANT Simulation

1230

by

WRF-Chem

1230

O ML

e '...;.‘t‘ -.‘_:.:4_4

km

- 0110
1300 1330
0.090
- s 0.070
>
: 0.050
-
-
. 0.030
0.020
0.015
0013
o.on
1300 1330 1400
0.009
ANT 50% LBC 0.007

0.16

012~

0.08

004

000

"

1230
time {LST)

J0

1300 1330 1400

height (km MSL)

(d) Extinction Percentiles
4 T

o e [

0.00 0.03 0.06 0.09
km"!

Fast et al., 2012, 2014, ACP




