National Aeronautics and Space Administration

Additive Manufacturing Overview: Propulsion Applications, Design for and Lessons Learned

December 2017

Paul Gradl NASA MSFC

<u>Contributors:</u> Will Brandsmeier, Marty Calvert, Sandy Greene, Derek O'Neal, Chris Protz, Jim Richard, Kristin Morgan

- NASA is advancing additive manufacturing for propulsion applications on variety of flight and development programs
- Focus of additive manufacturing is powder-bed fusion techniques
 - Powder-bed = Selective Laser Melting (SLM) = Direct Metal Laser Sintering (DMLS)
 - SLM being used on RS25 Core Stage Boost Engines for Space Launch System (SLS)
- Larger scale deposition technologies also being evaluated
 - Blown powder deposition = Directed Energy Deposition (DED)
 - Hybrid additive/subtractive technology
 - Wire-Fed Deposition
 - Laser heat source
 - Pulsed-arc heat source
 - Electron beam heat source (Electron beam freeform fabrication)
 - Hot-wire hybrid technologies

Comparison of Metal AM Processes

References:

- Honore, M. "Structural strengthening of Rocket Nozzle Extensions by Means of Laser Metal Depositioning". In Support of Volvo Channel Wall Nozzle. Force Technology. MTI Mtg Laserfusing Presentation. 1 February, 2013.
- O'Neill., W., Cockburn., A., et al. "Supersonic Laser Deposition of Ti and Ti64 Alloys". 5th International Symposium on High Power Fibre Laser and their Applications/14th International Conference on Laser Optics. July 1, 2010. St. Petersburg, Russia.
- Gradl, P.R. "Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles", 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum, (AIAA 2016-4771)

Additively Manufactured SLM Material is Unique

SLM GRCop-84 Copper-alloy Material in the As-built Condition (ASTS, Huntsville)

Application Examples for Liquid Rocket Engines

Additive Combustion Chambers Assembly

Additively Manufactured GRCop-84 and C-18150 Combustion Chambers accumulated over **5700** sec hot fire time Gradl, P.R., Protz, C., Greene, S.E., Ellis, D., Lerch, B., and Locci., I. "Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications", 53rd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA 2017-4670)

Gradl, P., Protz, C., Greene, S.E., Garcia, C., Brandsmeier, W., Medina. C., Goodman, D., Baker, K., Barnett, G. Design, Development and Hotfire Testing of Monolithic Copper and Bimetallic Additively Manufactured (AM) Combustion Chambers for LOX/Methane and LOX/Hydrogen Applications Paper presented at 63nd JANNAF Propulsion Meeting/9th Liquid Propulsion Subcommittee, December 5-9, 2016. Phoenix, AZ.

Video of AM GRCop-84 Chambers

Additively Manufactured GRCop-84 Chamber Testing -LOX/H2 and LOX/CH4

Additive Injector Development

Methane 4K Injector Printed manifolds and parametric feature **Tested Sept 2015**

LPS 35K Injector Welded Manifolds Tested Nov 2015

Injector Development Supporting 20-35k-lb_f Test bed

Video of Additive Injector Testing

Additively Manufactured Injectors Hot-fire Tested at NASA range from 1,200 lb_f to 35,000 lb_f thrust

SLS Program / RS25 Pogo Z-Baffle

Inconel 718

Used existing design with additive manufacturing to reduce complexity from $\underline{127}$ welds to 4 welds

• 1 of 35 part opportunities being considered for RS25 engine

AM Turbomachinery – Liquid Oxygen Pump, 35k-lb_f Test bed

Turbomachinery – Fuel Turbopump

Video of AM Fuel Turbomachinery Hot-fire

Additively Manufactured Valves

Video of Flow Testing MPV

Multi Port Valve (MPV) Testing at 750 psig

What about the scale of SLM?

Although new machines are being introduced, current state of the art is limited in size...

			<u>Engine</u>	
	SSME/RS-25	RL-10A-4	J-2X, Regen Only	RD-180
SLM Build Boxes			<image/>	
(inches)	90″	46″	70″	56″
		Να	zzle Exit Dia.	

Technologies Support Large Scale Additive Manufacturing

- NASA has researched a variety of large scale techniques for liquid rocket nozzles and considering for other applications. Techniques include:
 - Blown Powder Deposition (LENS, LFMT, DED)
 - Wire-based Freeform Deposition (LMD, LDT)
 - Arc-based wire deposition (MDDM, Arc-DED)
 - Electron Beam Freeform Deposition (EBF^3)
 - Laser hot-wire and hybrid technologies

Large Scale Additive Deposition Nozzle Technology

Subcommittee, December 5-9, 2016. Phoenix, AZ.

Micros of Build Orientation

Inco 625 As-Built - Hoop

Inco 625 As-Built - Axial

Basic Overview of Additive Manufacturing Process Design for Additive and Lessons Learned

Actual Process Flow

Each process step also includes a series of additional tasks in order to properly design, build, or complete post-processing

Generic Flow for Additive Combustion Chamber Fabrication Process

Considerations in Design and Printing

- The printer is going to (attempt to) print geometry based on the CAD model
- Most 3D printers use .stl files (stereolithography)
 - stl files are flat triangles used to approximate CAD geometry
 - The .stl file is sliced into layers to generate the laser toolpath / code
- Have observed significant differences in surfaces, although based on geometric features
- Finer resolution files are significantly larger and machines can be limited on toolpath code

Same CAD file with different export parameters

NASA

Considerations in Design and Printing

- Angled feature designs are limited (measured from horizontal)
 - Features <45° normally require support
 - Features >45° normally do not require support
 - Consider features in all dimensions
- Holes cannot be printed as true holes if larger diameter
 - Largest unsupported hole ~ .250"
 - Smallest hole/feature ~.030"
- Overhangs can be created, but require supports (and subsequent

Angled wall design example

Considerations in Design and Printing

- Design and analysis needs to consider surface finishes for internal and external features
- Internal passages may need to be oversized to account for burn-thru or undersized hole
- Support material should be understood in design phase
 - Placement of support material is important
 - How support material is removed is equally important
 - Ask your operator or vendor
 - Support material highly dependent on print orientation

Burn-thru on "roof" feature

Support for flange

Considerations in Design and Printing

- Print orientation is critical evolve the CAD design with AM machine operator or vendor
 - Print orientation is not always obvious; supports may be minimized in a complex angled orientation
- Print volume should be considered
 - Bolt holes required for the build plate
 - Build plate (~1" thick) takes up part of the build height
- Test print in plastic during design phase
 - Inexpensive method to identify issues with design and model
 - Determine design issues, bad design features and actual feature issues can be resolved with test prints

Considerations during Pre-processing and Printing

- Heat control is critical and can cause significant deformations or failures
 - May be driven by original design (too thick or thermal gradients too high across varying cross sections)
 - May be impacted by adjacent parts or witness specimens
- Material curl caused by coater arm damage
 - Based on knife edges during design
- Stops and starts are also common in 3D prints, causes knit lines
 - Refill of powder in dose chamber
 - Issue observed that requires visual

30

Considerations during Design and Post-Processing

- Geometric Dimensioning and Tolerancing (GD&T) needs to be considered during design for ease of post-processing
 - Cylinders for better positional tolerance at feature level
 - Grooved for axial location
 - Flat surfaces for datums
 - Extra holes for powder removal
 - Additional stock material for critical features that will be post-machined
- Holes only when required or in softer materials
 - Existing printed holes can cause machine tools to "walk"
 - Do not print threads; post-machine
 - Undersize holes for reaming and tapping

Considerations in Post-processing and Inspections

Ref: Waller, J., Parker, B., Hodges, K.L., Burke, E., Walker, J.L. Nondestructive Evaluation of Additive Manufacturing: State of the Discipline Report, NASA/TM-2014-218560. "https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140016447.pdf

- Should this part be printed or traditionally manufactured?
- Is the print accuracy adequate for the design?
- What is the build orientation?
- How am I going to remove all the powder?
- Will support structure be used in the build?
- What kind of post machining needs to occur after the print?
- How do I verify powder removal?
- How is this part being removed from the build plate?
- Is my deliverable file accurate?
- Will there be any material processing after the print?

Example of Design for Additive

1.2K-lbf Workhorse combustion chamber

Gradl, P., Greene, S.E., Protz, C., Ellis, D.L., Lerch, B., Locci, I.E. "Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications" 53nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum. Atlanta, GA. July (2017).

- Optimized AM design may not be single-piece
 - Welding multiple AM pieces
 - reduces risk, eases powder removal, allows inspection of unique features
 - Inlet/outlet ports can easily be welded on; protruding features often experienced print failures
- ► Coolant channels
 - Leave access for powder removal
 - Increase effective area to account for rough surfaces...
 - Maintain access for interior powder removal

- Design copper EB weld joints for excess penetration and material heating
- Minimize thick areas to eliminate residual stresses (thick flanges can lift off the build plates)
- ▶ Part orientation is critical for coater blade, so optimize design to minimize potential damage
- ► Include enough stock for secondary bonding ops, run-outs, &/or final machining
- ► Builds can deform as vertical height increases further from the build plate
- Compare exported CAD files back to original model

Combustion Chamber Lessons Learned

- ► Powder dose factor is critical as parts get taller.
- Design for Powder Removal
 - Physical efforts for powder removal can cause stress on the part.
 Mallet blows created microcracks in some components prior to HIP
 - High pressure (>500 psi) air/GN2 aided in powder removal
 - Alcohol evaporates and helped remove powder from select channels (although residual powder might clump when exposed to this fluid).
 - Include threaded ports that can be blocked off during powder removal to seal air flow properly (dry state/no oils).
 - CT scan continuously to verify powder removal.
 - Removing prior to HIP is ideal, but it can be removed after, since it does not all consolidate.
 - ▶ Build direction is critical and overhangs may fail; 45 deg max build angles possible.
- Creating plastic models or building small wedges/slices to demonstrate parameters prior to metal designs can be helpful; identify potential issues prior to actual component builds.
- TIG braze repairs for debonds worked well; identical filler material is ideal. Include 0.030"/0.045" dia during AM builds to create matching welding rods.
- ► Design for shrinkage/deformation in all process steps, such as welding and metal deposition.

Chamber Lessons Learned, 1-piece to 2-piece

Allowed for easier removal of powder, simplified design, simplified inspections, and reduced overall processing time

Designs will evolve with additive through print trials, testing, and design and analysis tools

Acknowledgments

- Dave Reynolds
- Chance Garcia
- Dave Ellis
- Dave Eddleman
- Travis Davis
- Kevin Baker
- Dwight Goodman
- Darron Rice
- Cory Medina
- Ian Johnston
- John Forbes
- Robin Osborne
- Gregg Jones
- Greg Barnett
- Brad Bullard
- John Fikes
- Ken Cooper
- Zach Jones
- Jim Lydon
- Omar Mireles

- Phillip Steele
- Brian West
- John Ivester
- James Walker
- David Myers
- Ron Beshears
- Majid Babai
- MSFC ER34, ER36
- MSFC EM42
- Nick Case
- Graham Nelson
- Andrew Hanks
- Cynthia Sprader
- David Olive
- MSFC Test Stand 115
 and 116 Crews
- MSFC ET10
- NASA Liquid Engines
 Office
- Steve Wofford

- Carol Jacobs
- Andy Hardin
- Mike Shadoan
- Mike Kynard
- Corky Clinton
- John Vickers
- Doug Wells

•

Several Industry Partners: Keystone, Laser Tech Assoc, DM3D, ASRC Federal Astronautics, Stratasys, ProCAM, Tanksley, Formalloy, Joining Tech, Alabama Laser, Franuhofer, Metal Research, Linear AMS