
Rotorcraft Optimization Tools:
Incorporating Rotorcraft Design Codes into

Multi-Disciplinary Design, Analysis, and Optimization
Larry A. Meyn

Aerospace Engineer
NASA Ames Research Center

Moffett Field, CA

Abstract
One of the goals of NASA’s Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multi-
disciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package,
RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design
codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS,
also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC)
vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II)
analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so
RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then
extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use.
RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface
(GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as
optimization input and response variables. This paper provides an overview of RCOTOOLS and its use.

Introduction*
The ability to hover, as well as takeoff and land vertically is
highly desirable for numerous air vehicle use cases. These
include human and cargo transportation systems that are
independent of airports and runways, as well as surveillance
and inspection missions that require loitering capabilities.
To support the development of new vehicles with vertical
lift capabilities, the National Aeronautics and Space
Administration (NASA) created the Revolutionary Vertical
Lift Technology (RVLT) project. Part of the RVLT project’s
goals is to support the development of a multidisciplinary
design and optimization (MDAO) process for the design of
vertical lift aircraft. This involves the coupling of codes
from multiple disciplines, required for the design of a new
vertical lift vehicle, into a coordinated optimization process.

Presented at the AHS Technical Conference on
Aeromechanics Design for Transformative Vertical Flight,
San Francisco, CA, January 16-19, 2018. This is a work of
the U. S. Government and is not subject to copyright
protection. All rights reserved.

Two rotorcraft design codes that NASA researchers use in
this process are NDARC and CAMRAD II. The NASA
Design and Analysis of RotorCraft (NDARC) is a
conceptual aircraft design software tool with a primary
focus on rotorcraft.1 The Comprehensive Analytical Model
of Rotorcraft Aerodynamics and Dynamics II (CAMRAD
II) is a comprehensive rotorcraft analysis tool.2,3 An
example of integrating CAMRADII and NDARC for the
design and performance analysis of compound helicopters is
presented in Ref. 4, in which the design process was
basically a manual integration where code inputs were
manually altered based on the results of previous iterations
of the codes. Manual processes such as this are time
consuming, which highlights the need to automate the
process using a tool such as OpenMDAO.5

OpenMDAO is an open-source computing platform for
multi-disciplinary optimization, written in Python, that is
currently under development at NASA Glenn Research
Center and is supported by the RVLT project. OpenMDAO
provides a framework for connecting “components” which
provide design and analysis calculations, and then solving
them in a tightly-coupled manner using a variety of both
gradient-free and gradient-based optimization methods.

https://ntrs.nasa.gov/search.jsp?R=20180000894 2019-08-30T13:38:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/154738223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examples of using NDARC and CAMRAD II in an
OpenMDAO-based design study are provided in Refs. 6 and
7. These examples show both the feasibility and desirability
of having NDARC and CAMRAD II available as
components for use in OpenMDAO optimizations and
analyses. Both NDARC and CAMRAD II use file-based
inputs and outputs, so integrating them into an OpenMDAO
optimization required the development of file-based
application wrappers, so that they could be used as
“components” in an OpenMDAO optimization. These
wrappers would take design variable input values from the
OpenMDAO framework, incorporate them into input files,
execute the file-based application, parse the output files and
then provide design variable output values to the
OpenMDAO framework. The NDARC and CAMRAD II
wrappers developed for OpenMDAO in these previous
studies were not primarily developed for distribution to
other designers and they used an earlier, deprecated, version
of OpenMDAO. The goal of the RVLT sponsored effort
described in this paper is to develop flexible, easy-to-use
and well-documented OpenMDAO design application
wrappers that are intended for distribution and use by
rotorcraft designers.

Figure 1 shows a flowchart depicting the role of
RCOTOOLS in an OpenMDAO optimization process for
the design of a new vertical lift vehicle. The process starts
with an initial, preliminary, aircraft design definition that
includes new technologies and vehicle topologies. These are
used to construct models for several design codes that have
OpenMDAO wrappers. These may include aerodynamics
and structures models for rotors and/or other vehicle
components, as well as codes modeling geometry, handling
qualities or engine performance. An OpenMDAO problem
is set up to connect these models to CAMRAD II and
NDARC for a defined computation sequence where design
variable values are passed between the model components.
RCOTOOLS handles the interface to and from CAMRAD II
and NDARC within the optimization problem. OpenMDAO
controls model execution in the optimization loop and
adjusts design variable values as needed to meet the
optimization criteria. For gradient-based optimizations,
OpenMDAO may also execute some models individually to
determine partial derivatives for some of the design
variables via finite difference methods.

The NDARC and CAMRAD II application wrappers
provided in RCOTOOLS are intended to be “light-weight,”
with minimal computational overhead. The wrappers are not
intended to serve as full-blown application front-ends, such
as the AIDEN application is for NDARC.8 The RCOTOOLS

wrappers do not validate inputs beyond simple namelist
format validation and any auxiliary input files, specified in
the input deck, are not read and parsed. NDARC and
CAMRAD II input files should be validated and tested
before use with the RCOTOOLS wrappers. The wrappers in
RCOTOOLS consist of core, generic Python wrappers that
read, modify and execute program input files and read and
extract data from solution files. These core wrappers do not
rely on or use OpenMDAO software. Separate wrappers are
provided that interface with OpenMDAO. These interface
wrappers inherit from OpenMDAO component objects and
are built on top of the core wrapper functions and objects.
These OpenMDAO wrappers were designed to be flexible
and work out-of-the-box for most needs. However, one of
the reasons the core wrappers were developed, was to allow
for easier development of custom OpenMDAO wrappers if
the ones provided do not provide needed functionality. The
core wrappers also facilitate adaption to any future changes

Modeling Codes
(with OpenMDAO Wrappers)

Aerodynamics, Structures, Engine,
Geometry, Handling Qualities, etc.

Initial Aircraft
Definition

New Technologies
and Topologies

New Vehicle
Design

RCOTOOLSRCOTOOLS

RCOTOOLS
CAMRAD II

RCOTOOLSRCOTOOLS

RCOTOOLS
NDARC

Meets
Criteria?

Yes

No
Adjust Design Variables

Figure 1: A flowchart showing how RCOTOOLS could be
used in an OpenMDAO optimization for the design of a
new vertical lift vehicle.

to the OpenMDAO application programming interface
(API.)

An effort was made to use common code and similar APIs
in the development of both the NDARC and CAMRAD II
wrappers in RCOTOOLS. When new design code wrappers
are added to RCOTOOLS, the goal is to maintain similar
commonalities where possible. Much of the common code
and functionality provided by RCOTOOLS resides in the
rcotools.utils module which contains utility
functions used by both the NDARC and CAMRAD II
wrappers. An overview of these utilities will be presented
next, followed by overviews for the NDARC and
CAMRAD II wrappers.

Utilities
RCOTOOLS provides several utility functions that are used
by multiple application wrappers. Convenience functions
are also included that may prove useful to RCOTOOLS
users. These utilities are located in the rcotools.utils
module. Among the utilities provided are a Fortran namelist
wrapper for reading, writing and manipulating namelists and
applications for graphically browsing input and output files
used by NDARC and CAMRAD II. An overview of these
utilities follows.

Fortran Namelist Wrapper

Many science and engineering codes are written in Fortran
and often use Fortran namelist files for input. This is true of
both CAMRAD II and NDARC. NDARC also has an
optional namelist representation of the output solution. An
example of namelist input for NDARC is presented in
Listing 1. The namelist format separates inputs into named
groups and each group has a list of variable names and their
assigned values. Variable names within a group are unique,
so when multiple assignments are made within a group, the
last assignment is the one that is used. The beginning of a
group starts with a “&group_name” tag and the group
ends with a “/”, “&END” or “$END” tag. Complex variable
assignments are being used, such as
“loc_rotor(2)%XoL = 0.00,” which includes both
Fortran array and structure assignments. Of note, the group
names ‘DEFN’ and ‘VALUE’ are being used repeatedly in
this example. Although OpenMDAO includes a module for
reading and writing Fortran namelists, the more complicated
namelist assignments used by both NDARC and CAMRAD
II are not supported. No third-party namelist parsers for
Python that were capable of handling NDARC and
CAMRAD II inputs were found, so a new namelist module
was developed for RCOTOOLS.

Listing 1: Example namelist based on NDARC input.
 &JOB open_status=1,&END
 &DEFN action='ident',created='today',title='standard input',&END
 !##
 &DEFN action='read file',file='gen1000.list',&END
 &DEFN action='read file',file='airplane.list',&END
 !==
 &DEFN quant='Geometry',&END
 &VALUE
 ! fuselage reference
 loc_fuselage%FIX_geom='xyz',
 ! scaled geometry (INPUT_geom=2); x +aft, y +right, z +up
 loc_cg%XoL =0.01,loc_cg%YoL =0.00,loc_cg%ZoL = 0.00,
 loc_fuselage%XoL =0.00,loc_fuselage%YoL =0.00,loc_fuselage%ZoL = 0.00,
 loc_gear%XoL =0.00,loc_gear%YoL =0.00,loc_gear%ZoL =-0.30,
 loc_rotor(1)%XoL =0.00,loc_rotor(1)%YoL =0.00,loc_rotor(1)%ZoL = 0.20,
 &END
 &DEFN quant='Cases',&END
 &VALUE
 title='Airplane',
 TASK_size=1,TASK_mission=1,TASK_perf=1,
 OUT_aircraft=0,OUT_solution=1,
 &END
 &DEFN quant='Size',&END
 &VALUE title='design',nFltCond=1,nMission=1,&END
 &DEFN action='endofcase',&END
 &DEFN action='endofjob',&END

The rcotools.utils.namelist module has two
major classes, Namelist and NamelistGroup. The
Namelist class represents namelists as a list of (name,
value) tuples†, where name represents the group name and
value is either a Python dictionary or a NamelistGroup.
To support the inclusion of comments and non-namelist
data, the tuples can also contain a pair stings. If name string
begins with a “%”, then value must be a string. Currently the
following name strings beginning with “%,” are supported:
“%comment_line,” “%blank_line” and
“%data_line.” When one of these names are
encountered, then the value string contains the full text for
one line of the file. Note that namelist group names may
appear multiple times within a Namelist. In addition to
special methods for reading, writing and manipulating
namelists, Namelist objects implement all standard list
methods for list manipulation. A simple Namelist list
could look like the following:

[('%comment_line', 'Comment string'),
 ('GROUP1', NamelistGroup),
 ('GROUP2', NamelistGroup),
 ('%blank_line', ''),
 ('GROUP3', NamelistGroup)]

The NamelistGroup class represents namelist groups as
a case-insensitive, ordered dictionaries. In addition to
namelist variables, they can also store namelist comments,
comment lines and blank lines using special dictionary keys
that begin with “%.” All other keys represent namelist
variable names. In addition to special methods for reading,

† Tuples are a Python structure representing an immutable
sequence of items. These are defined in code as comma
separated values and variables between parentheses.

writing and manipulating namelist groups,
NamelistGroup objects implement all standard
dictionary methods for dictionary manipulation.

For typical use, only the Namelist class needs to be
imported, using either:

From rcotools.utils.namelist import Namelist

or:

from rcotools.utils import Namelist

Listing 2 is an example of using the RCOTOOLS’
Namelist class to read, modify, and print the namelist
presented in Listing 1. Importing the Namelist class is done
in line 1. Line 4 creates a new Namelist object, mynml, and
then in line 5, the “read()” method is used to read the
namelist from a file. The resulting Namelist has 14 (name,
value) tuples, which includes tuples for two comment lines.
Line 8 assigns the NamelistGroup from the eighth (name,
value) tuple in mynml to the variable, geometry. Since
Namelist objects, like Python lists, have an initial index of
0, the index of the eighth tuple is 7 and since the
NamelistGroup is the second item in the tuple, its index is 1.
In line 11, the value for “loc_rotor(1)%ZoL” in the
“VALUE” group is being set to 0.25 using the statement
“geometry['loc_rotor'][1]['ZoL'] = 0.25”.
The “loc_rotor” index identifies the variable within the
group. This variable is an array represented by a special list-
like object in RCOTOOLS that, following Fortran
convention, has the first item accessed using the index 1.
The “%” symbol in the original namelist file indicates that
this array contains a structure which is represented as a
dictionary in the NamelistGroup and “ZoL” is the key
identifying which item in the structure is to be accessed.

Listing 2: Example code to read and modify a namelist.
 1 from rcotools.utils import Namelist
 2
 3 # Create empty Namelist and then read in namelist file
 4 mynml = Namelist()
 5 mynml.read('namelist_xmpl.txt') # use nowarnings=True to supressing warnings
 6
 7 # Get variable representing group at namelist index 7
 8 geometry = mynml[7][1]
 9
10 # Modify value in the existing group
11 geometry['loc_rotor'][1]['ZoL'] = 0.25
12
13 # Insert new groups before the group containing 'endofcase' (index = -2)
14 mynml.insert_group(-2, 'DEFN', {'quant': 'Solution'})
15 mynml.insert_group(-2, 'VALUE', {'trace_size': 1, 'trace_case': 0})
16
17 # Print out the modified namelist
18 print(mynml.writestr())

The lines 14 and 15 insert a DEFN and a VALUE group,
typical of NDARC input, into mynml Namelist using the
“inset_group” mehthod. Finally, line 18 prints out the
mynml Namelist as a string, which is shown in Listing 3.
Changes to the original namelist, other than formatting, are
highlighted in yellow.

Input and Output File Viewers

The application wrappers in RCOTOOLS allow
specification of input and output variables using Fortran
namelist-style strings. These strings specify the sequence of
dictionary keys and list indices that identify the variables in
input and output data structures. Although these strings are
constructed using a definitive logical sequence, generating
them manually is error prone and time consuming. To
address this problem, a set of Graphical User Interface
(GUI) applications are provided that allow users to visually
view and browse through existing input and output data files
to find variables and display namelist-style access strings
that are used by the RCOTOOLS wrappers. The currently
available viewer applications and the commands used to call
them are listed in Table 1.

Table 1: List of file viewers in RCOTOOLS.

Command Viewer Name

niview NDARC Input Viewer

nsview NDARC Solution Viewer

ciview CAMRAD II Input Viewer

csview CAMRAD II Solution Viewer

These viewers have nearly identical form and function, the
primary difference between them is the type of data file that
they read and display. Because of their similarities, the use
of only one of these applications, the NDARC Input Viewer,
is described below.

If RCOTOOLS has been installed using either the terminal
command “python setup.py install” or “python
setup.py develop,” then the NDARC Input Viewer
can be launched from a terminal window using the niview
command. niview has an optional argument, filepath,
that is the path of the NDARC input file to be viewed, as
shown below:

niview [-h] [-i filepath]

Listing 3: NDARC namelist input modified using RCOTOOLS namelist utilities. Changes from
listing 1 are highlighted.
&JOB open_status=1, &END
&DEFN action='ident', created='today', title='standard input', &END
 !##
&DEFN action='read file', file='gen1000.list', &END
&DEFN action='read file', file='airplane.list', &END
 !==
&DEFN quant='Geometry', &END
&VALUE
 ! fuselage reference
 loc_fuselage%FIX_geom='xyz', loc_fuselage%XoL=0.0, loc_fuselage%YoL=0.0,
 loc_fuselage%ZoL=0.0,
 ! scaled geometry (INPUT_geom=2); x +aft, y +right, z +up
 loc_cg%XoL=0.01, loc_cg%YoL=0.0, loc_cg%ZoL=0.0, loc_gear%XoL=0.0, loc_gear%YoL=0.0,
 loc_gear%ZoL=-0.3, loc_rotor(1)%XoL=0.0, loc_rotor(1)%YoL=0.0,
loc_rotor(1)%ZoL=0.25,
&END
&DEFN quant='Cases', &END
&VALUE
 title='Airplane', TASK_size=1, TASK_mission=1, TASK_perf=1, OUT_design=0,
OUT_perf=0,
 OUT_geometry=0, OUT_aircraft=0, OUT_solution=1,
&END
&DEFN quant='Size', &END
&VALUE title='design', nFltCond=1, nMission=1, &END
&DEFN quant='Solution', &END
&VALUE trace_size=1, trace_case=0, &END
&DEFN action='endofcase', &END
&DEFN action='endofjob', &END

Figure 2 shows a typical NDARC Input Viewer window
after a solution has been loaded. Annotation (1) shows the
button used to load a new NDARC input file name. Clicking
this button brings up a file browser which is used to identify
an NDARC input text file to be loaded. If the GUI is
launched without a designated filepath, then this button
is used to load one. Once a solution file is loaded, its
contents can be browsed using a tree-view of the NDARC
data structures. Clicking on a data structure item will reveal
all of its sub-structures. If the data structure contains a scalar
value or an array of scalar values, that data is displayed.
Individual array items can also be viewed as a sub-structure
of an array. A structure variable is highlighted when selected
in the GUI, as shown in annotation (2). The namelist string
used to access this structure variable by RCOTOOLS is then
displayed in the “Namelist String” field of the GUI window,
as shown in annotation (3). This string is pre-selected and
can be copied to the clipboard using the “Copy” menu item

in the “File” menu or using the standard copy commands for
the operating system being used. If this structure contains
scalar data or an array of scalar data, then that data (or
array) is displayed in the “Value” field as shown in
annotation (4). To save time browsing through a data
structure looking for specific items, a find dialog can be
used, which is activated by clicking the “Find” button
shown in annotation (5).

Figure 3 shows a typical “Find” dialog window for the
viewer applications. This example is for an NDARC input
data structure viewed with niview. This dialog will search
for text in the key names for items in the data structure. The
text is entered in the “Find Key Text” field as shown in
annotation (1). The search is case-insensitive, so
capitalization does not matter. The search parameters can be
modified using the “Matching” checkboxes as shown in

annotation (2). Checking “Whole word” will only find keys
where the search text matches entire words within the key
string. Checking “Values too” will extend the search to
include searches of the string equivalent of data structure
values, numerical values included. A search is initiated by
pressing either the “Find Next” or “Find All” buttons shown
in annotation (3). If any matches are found, they are
displayed in the panel below. Both the namelist access string
and the data structure value is displayed. Selecting a match,
as shown in annotation (4) will display the namelist access
string and the data structure value in text fields as shown in
annotation (5) and (6). The selected item will also be
displayed and selected in the main viewer window, as
shown in Fig. 2.

NDARC Wrappers
The NDARC core wrapper is defined in the
rcotools.nadarc.ndarc_core module. Two
versions of the OpenMDAO wrappers for NDARC are
currently provided, one for OpenMDAO version 1.7+ and
preliminary one for OpenMDAO version 2+. The
OpenMDAO 1.7+ wrapper is defined in the
rcotools.nadarc.ndarc_mdao1 module, while the
OpenMDAO 2+ wrapper is defined in the
rcotools.nadarc.ndarc_mdao2 module.

NDARC Core Wrappers

NDARC uses internal data structures that are organized into
a single hierarchical structure that is represented in outline
form in Fig. 4. The structure variable names presented in
this figure are the names used by NDARC and are intended
to be descriptive of the structure content. Indentation level is
used to show which structures are contained in a higher-
level structure within the hierarchy. NDARC uses namelist
formatted input files to initialize the values in these
structures and the NDARC solution output file is a

Figure 2: A typical niview window with annotations for
several elements.

Figure 3: A typical niview “Find” dialog window with
annotations for several elements.

representation of the final value of these data structures in a
namelist format. However, the group names and the
sequencing of the groups in the solution file namelist is very
different from that of the input file namelists. One of the
goals of the RCOTOOLS NDARC core wrappers is to hide
the namelist formatting details as much as possible and
allow the user to reference the data in both input and output
files as members of a hierarchical data structure similar to
what is presented in Fig. 4. This mapping to the NDARC
internal data structures is not exact, especially for NDARC
input, which has some variations to handle specialized input
features. However, the file viewers niview and nsview,
previously described, can be used to visualize and
interrogate the RCOTOOLS data structures for NDARC
input and output files.

The rcotools.nadarc.ndarc_core module defines
two classes, NdarcJob and NdarcSolution. The
NdarcJob class is used to read in an NDARC job
namelist, modify the namelist and then execute the namelist.
The NdarcSolution class is used to read in and parse an
NDARC solution file (which is in namelist format). After
parsing, the solution file variables can then be accessed as

an ordered dictionary of NDARC data structures.

NdarcJob
The simplest use of NdarcJob would be as follows:

import rcotools.ndarc.ndarc_core as nc

initialize NDARC job
njob = nc.NdarcJob(namelist, execution_directory,
 NDARC_executable_path, **args)

*** make namelist modifications ***

execute NDARC job
exitonerror = njob.execute(output_file_path)

The initialization argument, namelist, can be a
Namelist object, a file object, a string containing namelist
input, a string representing a file path or the Python value,
None. NDARC execution scripts can be used as input, since
the parser will ignore lines of text that do not contain
namelist information. If the default value of None is
provided, then the namelist can be read in later using the
NdarcJob.read() method. The Namelist object is
accessible using the namelist attribute of an NdarcJob
object.

Figure 4: Hierarchical grouping of data structures used by NDARC. (From NDARC 1.12 documentation.)

The execution_directory parameter is the directory
in which the namelist NDARC will be executed. Before job
execution, the current working directory will be saved, the
working directory will then be changed to
execution_directory for job execution. Following
job execution, the working directory will be changed back
to previous working directory. If no
execution_directory is provided, then the
parameter is set to the current working directory.

The NDARC_executable_path is the path to the
NDARC executable. If the path is not provided, then the
executable path is set to variable
rcotools.NDARC_CMD, which is set in the
rcotools/rcotools.ini configuration file.

Once a namelist is input, the NdarcJob object has several
methods for interrogating and modifying the internal
Namelist object before execution. Two methods are
provided to modify NDARC job namelist,
updatecaseparams() and amendcase().

The updatecaseparams() method will update the last
“Cases” namelist group in an NDARC input case using the
dictionary updatedict. The targeted case is the last one
in the input namelist, unless a caseindex is provided. Its
usage is “njob.updatecaseparams(updatedict,
caseindex=-1)”.

The amendcase() method inserts namelist groups,
addgroups, at the end of a NDARC job input case. The
targeted case is the last one in the input namelist, unless a
caseindex is provided. Its usage is
“njob.amendcase(addgroups, caseindex=-
1)”.

To facilitate defining the namelist groups for use as the
addgroups variable, ndarc_core provides the
getNdarcUpdate() function. This function takes a
dictionary of key, value pairs, where key is a namelist
variable string and value is the desired corresponding value.
This function converts these (the pairs??) to a Namelist
for updating an NdarcJob using amendcase(). The
following code shows how an example input dictionary is
converted to namelist groups. (Note that an OrderedDict
is not necessary, it (what?) just preserves the variable order
in the resulting namelist.)

updatedict = {'Geometry%loc_tail(1)%XoL': 1.10,
 'Geometry%loc_tail(1)%YoL': 0.00,
 'Geometry%loc_tail(1)%ZoL': -0.25,
 'Rotor(1)%MODEL_int': 0,
 'Rotor(1)%SET_limit_rs': 2,
 'Rotor(1)%fPlimit_rs': 1.,
 'Rotor(1)%incid_hub': 0.}

updates = getNdarcUpdate(updatedict,
 asString=True)
print(updates)

This would print the following namelist string.

&DEFN quant='Geometry', &END
&VALUE loc_tail(1)%XoL=1.1, loc_tail(1)%YoL=0.0,
 loc_tail(1)%ZoL=-0.25, &END
&DEFN quant='Rotor 1', &END
&VALUE MODEL_int=0, SET_limit_rs=2,
 fPlimit_rs=1.0, incid_hub=0.0, &END

The namelist variable strings provided to the
getNdarcUpdate() function use the “quant” value
for the DEFN/VALUE input pair as the first argument of the
namelist variable string, preceding the first “%” symbol. If
the quant value includes a number, such as “Rotor 1”,
then the number is converted to a namelist array index, for
example: “Rotor(1)”. The niview viewer utility can be
used to identify these namelist strings from an NDARC
input file. If the input file contains valid paths to imported
files, the viewer will try to parse them and include their
variables in the data structure.

According to NDARC input rules, Namelist definitions
in the addgroups value passed to amendcase() will
override previous definitions. Given this rule, the following
two cautions are noted. First, for NDARC data structures
like “Rotor”, amendments to the first instance should be
referred as “Rotor(1)” not just “Rotor”, as this will
actually add a new rotor. Second, if the copy command is
used to create several objects, like “Rotor”, then the
amendment must specify updates to each copy for which the
update is desired.

As a final note, if the NdarcJob methods do not fully
provide the wanted functionality, one can work directly with
the namelist attribute of an NdarcJob object using
Namelist class method.

NdarcSolution
The NdarcSolution class reads and converts an
NDARC solution file to an ordered dictionary representing
data for NDARC data structures as shown in Fig. 4.
NdarcSolution parses the namelist data in an NDARC
solution file in two passes: the first pass identifies major
sections in the solution file and the second pass performs
detailed namelist parsing of these sections. To save
execution time, detailed namelist parsing is only performed
on requested sections. This process is referred to as “lazy”
evaluation. Loading an NDARC solution file for lazy
evaluation would be done using the code
“NdarcSolution(nmlpath, dolazy=True).”

To properly parse an NDARC solution file, the parser needs
information on the top-level data structures in the solution.
The data structures Size, OffDesign, Performance and
FltState have specific parsing procedures, but the other top-
level data structures are parsed in a generic fashion. The
currently defined additional top-level data structures are
provided in the dictionary, _toplevel, which is defined
in the ndarc_core module and is presented in Listing 4.
This (what?) is a dictionary of key, value pairs, where the
key is the data structure name and value is a bool(boolean?)
indicating if the structure can have multiple instances and

should be represented as an array. As new NDARC data
structures are developed, they can be simply added to this
dictionary in the source code.

Once a solution file is loaded, data structure values can be
accessed using the retrieve() method, as follows:
import rcotools.ndarc.ndarc_core as nc
soln = nc.NdarcSolution(solution_path)
value = soln.retrieve(access_query)

The access query identifies a variable in the solution, where
the variable is identified by either a namelist variable string
or a list of (key, index) tuples. The (key, index) tuples are
used to traverse the solution data structure to yield the
requested variable value. An example access string would
be:

Size%SizeMission(1)%MissParam%WFUEL_MISS(1)

The corresponding list of (key, index) tuples would be:
[('Size', None), ('SizeMission', 0),
 (MissParam, None), ('WFUEL_MISS', 0)]

For the NdarcSolution object, soln, this would be the
same as:
soln['Size']['SizeMission'][0]['MissParam']
 ['WFUEL_MISS'][0]

Listing 4: Dictionary defining NDARC data structures, in rcotools.ndarc.ndarc_core.
NDARC top level data structures
Specifiy available NDARC data structures, (Name, isArray)
Note: Size, OffDesign, Performance and FltState are handled seprately
_toplevel = Odict([('Cases', False),
 ('MapEngine', False),
 ('MapAero', False),
 ('Solution', False),
 ('Cost', False),
 ('Emissions', False),
 ('Aircraft', False),
 ('Systems', False),
 ('Fuselage', False),
 ('LandingGear', False),
 ('Rotor', True),
 ('Wing', True),
 ('Tail', True),
 ('FuelTank', True),
 ('Propulsion', True),
 ('EngineGroup', True),
 ('JetGroup', True),
 ('ChargeGroup', True),
 ('EngineModel', True),
 ('EngineParam', True),
 ('EngineTable', True),
 ('RecipModel', True),
 ('CompressorModel', True),
 ('MotorModel', True),
 ('JetModel', True),
 ('FuelCellModel', True),
 ('SolarCellModel', True),
 ('BatteryModel', True),
])

NDARC OpenMDAO Wrappers

Two versions of the OpenMDAO wrappers for NDARC are
currently provided, one for OpenMDAO version 1.7+ and a
preliminary one for OpenMDAO version 2+. The
OpenMDAO 1.7+ wrapper is defined in the
rcotools.nadarc.ndarc_mdao1 module, while the
OpenMDAO 2+ wrapper is defined in the
rcotools.nadarc.ndarc_mdao2 module. The
OpenMDAO 2+ wrapper is still in the early stages of
development, so only the OpenMDAO 1.7+ wrapper will be
presented.

The ndarc_mdao1 module defines the class
NdarcWrapper, which is subclass of the OpenMDAO
Component object and serves as a wrapper for NDARC.
The NdarcWrapper initialization method reads in an
NDARC namelist, makes user specified modifications and
then sets up OpenMDAO inputs and outputs. The
NdarcWrapper.solve_nonlinear() method
modifies the NDARC job namelist based on OpenMDAO
inputs, executes the NDARC job and then passes on
selected outputs from the NDARC solution file to
OpenMDAO. Most of the initialization parameters are
stored as attributes in NdarcWrapper.nw_ to avoid
potential namespace conflicts with attributes or methods in
future versions of the Component object.

The simplest initialization of an NdarcWrapper object
would be as follows:

NdarcWrapper(jobfile, inputs, outputs)

The parameter jobfile is an NDARC job file path,
inputs is a list of a OpenMDAO variable inputs and their
mappings to NDARC input variables and outputs is a list
of the OpenMDAO variable outputs and their mappings to
NDARC solution variables. The parameters inputs and
the outputs are lists of (openmdao_variable_name,
ndarc_access_string) tuples or (openmdao_variable_name,
ndarc_access_string, meta_data_dict) tuples.

The ndarc_access_string items in these tuples are specified
as Fortran namelist variable names for values in the
NDARC data structure. For data structures that have
multiple instances, such as Rotor, they are referenced using
an index in prerentheses. For example, for two rotors you
would have a Rotor(1) and Rotor(2) data structures.

Attributes of the NdarcWrapper object can also be
specified by ndarc_access_string. For these, the variable
name is the attribute name (from NdarcWrapper.nw_)

prepended by “%”. So to get the
NdarcWrapper.nw_.success flag, the
ndarc_access_string would be “%success”. Another
example would be to use the ndarc_access_string would be
“%converged” to get the state of the
NdarcWrapper.nw_.converged flag.

The optional meta_data_dict items are the optional
parameters passed to a call to
NdarcWrapper.add_param(openmdao_variable_nam
e, val=<object object>, **kwargs) for inputs or to
NdarcWrapper.add_output(openmdao_variable_na
me, val=<object object>, **kwargs) for outputs, where key
is the ndarc_access_string. If the meta_data_dict is not
provided or if the meta_data_dict does not include the key
“val” then meta_data_dict[‘val’] = 0.0 is
assumed. Note that while OpenMDAO variables can be
mapped to more than one NDARC input value, there has to
be a one-to-one mapping of OpenMDAO variables to
NDARC output (or solution) variables.

An example showing how the NdarcWrapper can be
used for constrained optimization using OpenMDAO 1.7 is
presented in Listing 5. This example is based on an example
provided in the RCOTOOLS distribution that models a 90-
passenger, tandem, compound helicopter. The inputs to
NDARC are wing loading and disk loading, and the outputs
from NDARC are empty weight, mission fuel, engine
power, rotor aspect ratio and rotor radius. The outputs for
empty weight, mission fuel and engine power are passed to
a utility function, CostFunction, that produces a single
weighted value as a cost function. The values for rotor
aspect ratio and radius are used as constraints on the
solution. A line-by-line description of this example is
provided in the RCOTOOLS documentation.

Monitoring NDARC Run Convergence
NDARC can potentially run successfully, but not return a
converged solution. (RCOTOOLS considers an NDARC run
to be successful if it doesn’t generate an error and there are
no “NaN” values in the solution.) The NdarcWrapper
class has a flag, NdarcWrapper.nw_.converged, that
determines convergence from NDARC output files for each

run. The results from a job that did not converge may still be
reasonable, but one should be aware about how they might
affect results from an optimization. Figure 5 shows the
optimization steps for the example optimization presented in
Listing 5. In this figure, cost is a function of the design
variables wingload and diskload. The background contour is
based on a 20x20 grid of solutions, with circles plotted at

Listing 5: Example using NdarcWrapper under OpenMDAO 1.7 for constrained optimization.
from openmdao.api import IndepVarComp, Problem, Group
from openmdao.api import ScipyOptimizer
from rcotools.ndarc.ndarc_mdao1 import NdarcWrapper
from rcotools.utils.mdao1 import CostFunction

Setup NdarcJob component
jobfile = '/path/to/tc90_size_init.job'
inputs = [
 ('wingload', 'Wing(1)%wingload'),
 ('diskload', 'Rotor(1)%diskload'),
 ('diskload', 'Rotor(2)%diskload'), # 'diskload' sets two NDARC inputs
]
outputs = [
 ('weightempty', 'Aircraft%Weight%WE'),
 ('miss_fuel', 'Size%SizeMission(1)%MissParam%WFUEL_MISS(1)'),
 ('engine_power', 'EngineGroup(1)%PENG'),
 ('aspect_ratio', 'Rotor(1)%AspectRatio'),
 ('radius', 'Rotor(1)%Radius'),
]
NdarcJob = NdarcWrapper(jobfile, inputs, outputs)

Setup cost function component (name, weight) for each factor
factors = [('weightempty', 1.0),
 ('miss_fuel', 5.0),
 ('engine_power', 12.5),
]
cost = CostFunction(factors)

Setup the MDAO Problem
top = Problem()
root = top.root = Group()

Add components to the OpenMDAO problem
root.add('p1', IndepVarComp('wingload', 100.0))
root.add('p2', IndepVarComp('diskload', 11.0))
root.add('ndarc', NdarcJob)
root.add('ndarc_cost', cost)

Make connections between components
root.connect('p1.wingload', 'ndarc.wingload')
root.connect('p2.diskload', 'ndarc.diskload')
root.connect('ndarc.weightempty', 'ndarc_cost.weightempty')
root.connect('ndarc.miss_fuel', 'ndarc_cost.miss_fuel')
root.connect('ndarc.engine_power', 'ndarc_cost.engine_power')

Set up optimizer SLSQP or COBYLA
top.driver = ScipyOptimizer()
top.driver.options['optimizer'] = 'SLSQP'

Set the design variables
top.driver.add_desvar('p1.wingload', lower=70.0, upper=120.0)
top.driver.add_desvar('p2.diskload', lower=6.0, upper=15.0)

Set the objective to be optimized
top.driver.add_objective('ndarc_cost.cost')

Set the design constraint variables
top.driver.add_constraint('ndarc.radius', upper=37.0)
top.driver.add_constraint('ndarc.aspect_ratio', upper=20.0)

Setup and run the problem
top.setup()
top.run()

the wingload and diskload values used for each solution.
The NDARC solutions that did not converge are represented
by circles filled in red. The contour lines near solutions that
did not converge are relatively smooth, indicating that their
results are consistent with nearby solutions that did
converge. Figure 5 implies that gradient-based optimization
runs with evaluations that are only occasional near non-
converged evaluations may still provide good results.

The orange dashed line shows the steps in an optimization
that is constrained by having a solution with a radius of less
than 37 feet. The solution space traversed during
optimization is relatively free of non-converged solutions so
the result should be good; the solution was confirmed by
repeating the optimization with different starting conditions.
On the other hand, an unconstrained optimization (see
ndarc_tc90_unconstr.py in the RCOTOOLS distribution)
probably would be suspect as the minimum cost function
region contains numerous non-converged solutions.
Repeated optimization runs using different starting
conditions resulted in the number of evaluations required
varying dramatically with the final results having significant
variation. Often, convergence will be successful if some
iteration input parameters changes, so such changes should
be considered if convergence may be affecting optimization
results.

CAMRAD Wrappers
CAMRAD II is a comprehensive helicopter analysis tool
developed by Johnson Analytics.2,3 CAMRAD II performs
aeromechanical analyses for complex rotorcraft systems
using a combination of advanced technology models,
multibody dynamics, nonlinear finite elements, structural
dynamics, and rotorcraft aerodynamics. CAMRAD II

calculates performance, loads, vibration, response, and
stability for a wide variety of rotorcraft over for prescribed
operating conditions.

The CAMRAD II application wrappers provided in
RCOTOOLS are intended to be “light-weight,” with
minimal computational overhead. CAMRAD II is written in
the Fortran programming language and compiles to three
executables, CAMRADII, INPUT and OUTPUT, which are
listed in Table 2. The paths to these executables are saved in
the rcotools.CAMRAD dictionary using the keys
camradii, input_camrad and output_camrad,
respectively. The CAMRADII executable performs the
rotorcraft analyses, while the INPUT executable is used to
produce binary files representing inputs and tables for use
by CAMRADII. The OUTPUT executable is used to
examine CAMRAD II plot file outputs. The OUTPUT
executable is not currently used or supported by
RCOTOOLS.

Table 2: CAMRAD II Executables

Name Description Path Key
CAMRADII Rotorcraft Analysis camradii
INPUT Input and Table File Preparation input_camrad
OUTPUT Plot File Examination output_camrad

Use of the RCOTOOLS CAMRAD wrappers assumes a
working knowledge of CAMRAD II, as viable CAMRAD II
inputs are required as a starting point. CAMRAD II input
typically consists of separate files for tables, basic shell
input and job input.‡ The INPUT executable is used to
generate binary files for tables and basic shell input that are
to be read in by the CAMRADII executable based on
commands given in the job input file.

Similar to the RCOTOOLS NDARC wrappers, the
RCOTOOLS CAMRAD II wrappers consist of “core”
wrappers which are generic Python wrappers to read,
modify and execute program input files and to read and
extract data from solution files. These do not rely on or use
OpenMDAO software. A specific, OpenMDAO wrapper is
also provided, which inherits from OpenMDAO objects.
This wrapper is built on top of the “core” wrappers, but is
designed to interface with the OpenMDAO optimization

‡ CAMRAD II utilizes “shell” and “core” inputs, where
“shell” inputs simplify the definition of typical system
models and “core” inputs allow for more detailed and
flexible system model definitions.

Figure 5: Optimization results provided for an NDARC job
running under OpenMDAO superimposed on a contour plot
of solution results over the design space. Filled red circles
represent the wingload and diskload inputs resulting in non-
converged solutions.

architecture. The OpenMDAO wrapper was designed to be
flexible and to work “out-of-the-box” for most needs.

RCOTOOLS provides two command-line functions that
read and display CAMRAD II input and output files in a
Graphical User Interface (GUI) to help users identify
references to CAMRAD II input and output variables which
are used in the CAMRAD wrappers. These are the
CAMRAD Input Viewer (ciview), which is instantiated
using the ciview command from a terminal or console,
and the CAMRAD Solution Viewer (csview), which is
instantiated using the csview command. Their use is
similar to the NDARC Input Viewer, that was described in
the Utilities section.

CAMRAD Core Wrappers

The CAMRAD core application wrapper is defined in the
camrad_core module, which defines several functions
and classes. The two principal classes providing the core
wrapper interface are CamradJob and
CamradSolution.

The CamradJob class is usually not instantiated directly,
instead a CAMRAD II job file is read and processed by the
parseCamradInput() function. This function takes a
CAMRAD II job file as an argument and parses the contents
to return either a CamradDict or CamradJob object. A
CamradJob is only returned if the input file contains a
NLJOB namelist group. Once a CamradJob is created,
modifications can be made and then the object can be
executed to produce CAMRAD II output files. Both
CamradDict and CamradJob are nested dictionary type
objects that represent the namelist input in the source files
used to initiate them. The dictionary keys for CamradDict
and CamradJob objects are based on the NLDEF namelist
groups used to define them. There are four optional
variables used in NLDEF groups, CLASS, TYPE, NAME and
ACTION. The key will be of the form
“CLASS:TYPE:NAME:ACTION” which is populated by the
values assigned to each variable. If any of these variables
are undefined, then they are represented by an empty string.

Finally, any “:” characters at the end of the key are stripped.
For example:

• The namelist input “&NLDEF
class=’ROTOR’,type=’FLEXBEAM’,
name=’ROTOR 1’,&END” would be represented by
the key “ROTOR:FLEXBEAM:ROTOR 1”.

• The namelist input “&NLDEF
class=’FLUTTER ROTOR’,name=’ROTOR
1’,&END” would be represented by the key
“FLUTTER ROTOR::ROTOR 1”. (Note the two
consecutive colons in the middle of the key.)

• The namelist input “&NLDEF
class=’FLUTTER’, &END” would be represented
by the key “FLUTTER”.

CamradJob objects have a jobtype attribute and an
exedict attribute. The jobtype attribute should be
either camradii or camradii_input to specify which
CAMRAD II executable to use. This attribute is set
automatically by the parseCamradInput() function if
the input is a csh file for a CAMRAD job. The attribute can
also be set directly or overridden when using the execute()
method. The exedict attribute can also be set directly or
overridden when using the execute() method.
exedict defaults to the CAMRAD dictionary specified in
the rcotools.ini file. The simplest use of
parseCamradInput() and CamradJob would be as
follows:

import rcotools.camrad.camrad_core as cc

parse CAMRAD II job file and
produce the CamradJob object, 'job'
job = cc.parseCamradInput(infpath)

*** make namelist and job mods ***

execute the CAMRAD II job
exitonerror = job.execute()

CamradSolution objects are nested, dictionary-type
objects that represent parsed values from CAMRAD II
analysis output files. The dictionary keys are based on
section titles and variable names in the analysis output files.
These outputs are formatted to be easily read and
understood by human readers, not computer algorithms, so
section titles and variable names are very descriptive. This
results in dictionary keys that can be quite verbose. A simple
example of how to use CamradSolution is shown in
Listing 6.

Not all sections of CAMRAD solution output files have
parsers defined and the existing parsers are not all
thoroughly vetted. (Fully vetted means that each variable
output in a section has been verified to be included in parsed
data structure.) Users are encouraged to submit new parser
requests and submit bug reports if parser errors are found.
Table 3 provides a list of CAMRAD II solution output
sections and the current status of parsers for those sections.

Table 3: List of CAMRAD II output sections with current parser status.
CAMRAD II Solution Section Parser Status

JOB DESCRIPTION Generic Parser - Not Vetted

CASE n

 LABELS Custom Parser - Vetted

 ANALYSIS TASKS Custom Parser – Vetted

 CONFIGURATION Custom Parser – Vetted

 OPERATING CONDITION Custom Parser – Vetted

 CONTROL SETTINGS Custom Parser – Vetted

 TRIM SOLUTION PROCEDURE No Parser

 FLUTTER EQUATIONS No Parser

 FLUTTER SOLUTION PROCEDURE No Parser

 SHELL INPUT DATA

 NLDEF/NLVAL values Generic Parser - Not Vetted

 CORE INPUT DATA No Parser

 TABLE INPUT DATA No Parser

 SYSTEM AND FUNCTIONALITY No Parser

 TRIM CONVERGENCE No Parser

 TRIM SOLUTION

 ROTORCRAFT Custom Parser - Partially Vetted

 ROTOR n Custom Parser - Partially Vetted

 ROTOR BLADE LOAD SENSOR Custom Parser - Partially Vetted

 AIRFRAME SENSOR ROTOR Custom Parser - Partially Vetted

 ROTOR HUB LOAD SENSOR Custom Parser - Partially Vetted

 ROTOR BLADE POSITION SENSO Custom Parser - Partially Vetted

 ROTOR WING SENSOR Custom Parser - Partially Vetted

 ROTOR CONTROL LOAD SENSOR Custom Parser - Partially Vetted

 ROTOR INTVEL TRANSFORM Custom Parser - Partially Vetted

 ANALYSIS FRAMES No Parser

 FLUTTER SOLUTION No Parser

 ANALYSIS OF SYSTEM OF CONSTANT... No Parser

Listing 6: Use of CamradSolution to access output data.
import rcotools.camrad.camrad_core as cc

Parse the CAMRAD II solution solution file, 'sample.out'
soln = cc.CamradSolution('sample.out')

Access and print the radius of Rotor 1
radius = soln.getByAccesstext('CASE 1%SUMMARY%CONFIGURATION%ROTOR 1%RADIUS (FT)')
print('\nThe radius of Rotor 1 in the output summary is: %f (FT)' % radius)

CAMRAD OpenMDAO Wrapper

The CAMRAD II OpenMDAO 1.7 application wrapper is
defined in the camrad_mdao1 module. This module
currently implements the class CamradWrapper, which is
subclass of the OpenMDAO Component object, that
serves as a wrapper for CAMRAD. The CamradWrapper
initialization reads in a CAMRAD job file, makes user
specified modifications and then sets up OpenMDAO inputs
and outputs.

The CamradWrapper.solve_nonlinear() method
modifies the CAMRAD job file based on OpenMDAO
inputs, executes the CAMRAD job and then passes on
selected outputs from the CAMRAD solution file to
OpenMDAO. Most of the initialization parameters are
stored as attributes in self.cw_ to avoid potential
namespace conflicts with attributes or methods in future
versions of the OpenMDAO Component object.

The essential parameters needed to initialize a
CamradWrapper object are a CAMRAD II job file path, a
definition of the OpenMDAO variable inputs and their
mappings to CAMRAD II input variables and a definition of
the OpenMDAO variable outputs and their mappings to
CAMRAD II solution variables. Both the inputs and the
outputs are specified as a list of (openmdao_variable_name,
camrad_access_string) tuples or
(openmdao_variable_name, camrad_access_string,
meta_data_dict) tuples.

The camrad_access_string items are specified as Fortran
namelist variable names for values in the CAMRAD input
or output data structures. These can be determined by using
the ciview and csview GUI utilities. Attributes of the
CamradWrapper object can also be specified by
camrad_access_string. For these, the variable name is the
attribute name (from CamradWrapper.cw_) prepended
by “%”. So to get the CamradWrapper.cw_.success
flag, the camrad_access_string would be “%success”.

The optional meta_data_dict items are
parameters passed to a call to
CamradWrapper.add.param(openmdao_variable_na
me, val=<object object>, **kwargs) for inputs or to
CamradWrapper.add_output(openmdao_variable_na
me, val=<object object>, **kwargs) for outputs, where the
key is the camrad_access_string. If the meta_data_dict is
not provided or if the meta_data_dict does not include the
key ‘val’, then meta_data_dict[‘val’] = 0.0.
OpenMDAO variables can be mapped to more than one
CAMRAD input value, but there has to be a one-to-one
mapping of OpenMDAO variables to CAMRAD output (or
solution) variables. An example showing the specification of
inputs and outputs for creating a wrapper around an
CAMRAD II analysis job is given Listing 7.

A simple example for using the CAMRAD OpenMDAO 1.7
wrapper is provided by the script in Listing 8. The
CamradWrapper class has numerous customization
options that are set during initialization, which are detailed
in the source code documentation.

Listing 7: Use of CamradWrapper.
from rcotools.camrad.camrad_mdao1 import CamradWrapper

inputs = [
 ('radius', 'CASE 1%SHELL%ROTOR:STRUCTURE:ROTOR 1%RADIUS', {'val': 20.0}),
 ('twistl', 'CASE 1%SHELL%ROTOR:STRUCTURE:ROTOR 1%TWISTL', {'val': -10.0}),
]
outputs = [
 ('lift2drag', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%PERFORMANCE%L/D'),
 ('Mx', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%ROTOR FORCES AND MOMENTS%SHAFT AXES%ROLL MOMENT%MX'),
 ('My', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%ROTOR FORCES AND MOMENTS%SHAFT AXES%PITCH MOMENT%MY'),
 ('lift', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%ROTOR FORCES AND MOMENTS%WIND AXES%LIFT%L'),
 ('eqdrag', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%PERFORMANCE%ROTOR EQUIV DRAG%D=P/V+X'),
]

cjob = CamradWrapper("path/to/jobfile", inputs, outputs)

Concluding Remarks
RCOTOOLS has already proven to be a useful tool for
including NDARC and CAMRAD II in multi-disciplinary
design and analysis of rotorcraft. Further improvements and
additions are expected as development continues. Currently,
one or two RCOTOOLS updates are distributed to users
each month. Both the NDARC and the CAMRAD II
wrappers are actively being used, with users often
submitting bug reports and/or feature requests. A wrapper
for the Numerical Propulsion System Simulation (NPSS)9 is
under development and wrappers for other design tools may
also be considered for future additions to RCOTOOLS. The
source code is extensively documented and a user’s guide is
provided with the distribution package. This documentation
is available in both HTML and PDF formats. (The PDF
version is currently over 100 pages in length.) RCOTOOLS
runs under both Python 2.7 and 3 and is tested on the
Windows 10, MacOS and Linux operating systems.
RCOTOOLS distribution is currently limited to users in the
US Government or working on US Government contracts.
In the future, RCOTOOLS is expected to be made available

to more users, possibly as part of the NDARC software
distribution.

References
1 Johnson, W., NDARC - NASA Design and Analysis of

Rotorcraft, NASA TP-2015-218751, April 2015.
2 Johnson, W., “Technology Drivers in the Development of

CAMRAD II,” American Helicopter Society
Aeromechanics Specialists Conference, San Francisco,
CA: 1994.

3 Johnson, W., “Rotorcraft Aeromechanics Applications of a
Comprehensive Analysis,” AHS International Meeting on
Advanced Rotorcraft Technology and Disaster Relief,
Gifu, Japan: 1998.

4 Johnson, W., Moodie, A. M., and Yeo, H., “Design and
Performance of Lift-Offset Rotorcraft for Short-Haul
Missions,” American Helicopter Society Future Vertical
Lift Aircraft Design Conference, San Francisco, CA: 2012.

5 Heath, C. M., and Gray, J. S., “OpenMDAO: Framework
for Flexible Multidisciplinary Design, Analysis and
Optimization Methods,” AIAA Journal, vol. 51, 2013, pp.
2380–2394.

6 Avera, M., and Singh, R., “OpenMDAO/NDARC
Framework for Assessing Performance Impact of Rotor

Listing 8: Example use of CamradWrapper with OpenMDAO 1.7.
from openmdao.api import IndepVarComp, Problem, Group
from rcotools.camrad.camrad_mdao1 import CamradWrapper

Setup the CamradJob inputs and outputs
inputs = [
 ('radius', 'CASE 1%SHELL%ROTOR:STRUCTURE:ROTOR 1%RADIUS', {'val': 20.0}),
 ('twistl', 'CASE 1%SHELL%ROTOR:STRUCTURE:ROTOR 1%TWISTL', {'val': -10.0}),
]
outputs = [
 ('lift2drag', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%PERFORMANCE%L/D'),
 ('Mx', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%ROTOR FORCES AND MOMENTS%SHAFT AXES%ROLL MOMENT%MX'),
 ('My', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%ROTOR FORCES AND MOMENTS%SHAFT AXES%PITCH MOMENT%MY'),
 ('lift', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%ROTOR FORCES AND MOMENTS%WIND AXES%LIFT%L'),
 ('eqdrag', 'CASE 1%TRIM SOLUTION:ROTOR 1 PERFORMANCE%PERFORMANCE%ROTOR EQUIV DRAG%D=P/V+X'),
]

Create NdarcWrapper component
cjob = CamradWrapper("/path/to/job/file", inputs, outputs)

Set up MDAO Problem
top = Problem()
root = top.root = Group()

add components
root.add('camrad', cjob)
root.add('p1', IndepVarComp('radius', 20.0))
root.add('p2', IndepVarComp('twistl', -10.0))

add connections
root.connect('p1.radius', 'camrad.radius')
root.connect('p2.twistl', 'camrad.twistl')
top.setup()

Run the problem and print inputs & outputs
top['p1.radius'] = 21.0 # Set a new radius
top.run()
print('Inputs:')
print(' Rotor Radius = %0.3f (ft)' % top['p1.radius'])
print(' Rotor Linear Twist = %0.3f (deg)' % top['p2.twistl'])
print('Outputs:')
print(' L/D = %.4f' % top['camrad.lift2drag'])
print(' Roll Moment = %.4f (ft-lb)' % top['camrad.Mx'])
print(' Pitch Moment = %.4f (ft-lb)' % top['camrad.My'])
print(' Lift = %.0f (lb)' % top['camrad.lift'])
print(' Equivalent Drag = %.0f (lb)' % top['camrad.eqdrag'])

Technology Integration,” American Helicopter Society
70th Annual Forum, Montréal, Québec, Canada: 2014.

7 Sinsay, J. D., and Alonso, J. J., “Optimization of a Lift-
Offset Compound Helicopter in a Multidisciplinary
Analysis Environment,” American Helicopter Society 71st
Annual Forum, Virginia Beach, VA: 2015.

8 Sinsay, J. D., Hadka, D. M., and Lego, S. E., “An
Integrated Design Environment for NDARC,” AHS
Technical Meeting on Aeromechanics Design for Vertical
Lift, San Francisco, CA: 2016.

9 Lytle, J. K., The Numerical Propulsion System Simulation:
An Overview, NASA TM-2000-209915, June 2000.

