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SEQUENTIAL PROBABILITY RATIO TEST FOR COLLISION 
AVOIDANCE MANEUVER DECISIONS BASED ON A BANK OF 
NORM-INEQUALITY-CONSTRAINED EPOCH-STATE FILTERS 

J. R. Carpenter; F. L. Markley! K. T. Alf riendf C. Wright§, and J. Arcido§ 

Sequential probability ratio tests explicitly allow decision makers to incorporate 
false alarm and missed detection risks, and are potentially less sensitive to model­
ing errors than a procedure that relies solely on a probability of collision thresh­
old. Recent work on constrained Kalman filtering has suggested an approach to 

-rorrnulating such a test for collision avoidance maneuver decisions: a filter bank 
with two norm-inequality-constrained epoch-state e.xtended Kalman filters. One 
fi lter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard 
body radius at the predicted time of closest approach, and one filter models the 
alternative hypothesis. The epoch-state fi lter developed for this method e.xplic­
itly accounts for any process noise present in the system. The method appears to 
work well using a realistic example based on an upcoming highly-elliptical orbit 
formation flying mission. 

INTRODUCTION 

Reference I proposed the use of a Sequential Probability Ratio Test (SPRT) to guide the colli­
sion avoidance maneuver (CAM) decision process. Such tests explicitly allow decision makers to 
incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling 
errors than a procedure that relies solely on a probability of collision threshold. Some limitations 
of the method proposed in Reference I include assumptions that the observations are statistically 
independent, and its reliance on a set of assumptions that reduce the complexity of the encounter. 

Recent work on constrained Kalman fi.ltering has suggested an alternative approach to formulat­
ing an SPRT for CAM decisions. In our new approach, we introduce a slack variable into Zanetti e t 
al.'s2 norm-constrained Extended Kalman Filter (EKF) so that it can handle inequality constraints. 
Then, we set up a filter bank with two norm-inequality-constrained epoch-state E~'s: one for the 
null hypothesis that the miss distance is inside the combined hard body radius (HBR) at the pre­
dicted time of closest approach, and one for the alternative hypothesis. The densities governing the 
innovations of these two filters form a likelihood ratio for an SPRT. 

PROBLEM DESCRIPTION 

Given a set of measurements Y l:k = {y1, Y2, . .. , Yk} that relate the trajectories of t~o space , 
objects, we seek to define a procedure that will guide a decision on whether or not to maneuver 
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them to avoid an undesirably close encounter at the time of closest approach t*. We assume these 
ineasurements are given at times tk < t. by known mk-dimensional functions hk of some n­
dimensional state vector x(tk), corrupted by zero-mean white Gaussian measurement noise vk: 

(I) 

where orbital parameters of the space objects and any dynamics and/or measurement biases that we 

wish to estimate are contained within the state vector, and where E [vkvJ] = Rkoki· We consider 

the separation between the two objects to be undesirably close whenever the norm of the relative 
position vector at the time of closest approach, r •• is less than the combined hard body radius of 
the two objects, whose value we denote by n. A key assumption is that the true value of llr * II 
cannot vary sufficiently during the period of observation that it could possibly migrate from inside 
n to outside n. Finally, we wish the decision procedure to meet specified rates of false alarms and 
missed detections. 

PROBLEM SOLUTION 

There are three threads in our problem solution: a sequential probability ratio test based on the 
filter innovations, norm-inequality-constrained filtering, and epoch-state filtering. A synthesis of 
these results yields our solution to the decision problem. 

Sequential Probability Ratio Test Based on Filter Innovations 

As in Reference I, our proposed solution is based on Wald's SPRT.3 In the work we present 
here, the SPRT uses a ratio of the joint probability densities of the set of measurements 'tr' 1 :k under 
the alternative hypothesis, 1i1 that the conjunction is safe, and the null hypothesis, 1io, that the 

\ 

conjunction is unsafe: 

Ak = p('tr'1:kl1i1) = p('tl1:klr;r .. > 1l) 
p('tr'1:kl1io) p('tl1:k lr;r. ~ n) 

(2) 

In a Wald test, one compares Ak to decision limits A and B such that whenever B < Ak < A one 
should, if possible, seek another observation. If Ak ~ B, then one should accept the null hypothesis, 
and in the present case, we would recommend a collision avoidance maneuver. If Ak 2: A, then 
one should accept the alternative hypothesis, and hence we would dismiss the conjunction alarm. 
Wald's explanations for the thresholds A and B are that we will accept the alternative hypothesis if 
it is A times more likely than the null, and accept the null hypothesis if it is 1/ B times more likely 
than the alternative. Wald shows that such a procedure will terminate with probability one, and that 

A < 1 - Pia and B > Pia 
- Pmd - 1 - Pmd 

(3) 

where Pin is the allowable false alarm probability, and Pmd is the allowable missed detect.ion prob­
ability. · 

We assume that the joint density of the measurements can be written in terms of estimates from 
some sequential estimation procedure, such as the usual Kalman filter: 

(4) 
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where p (Ykl.i:klk-i) is the density of the k-th measurement conditioned on the estimate incorpo­
rating measurements Y l:k-I, and p (:ro) is given. As standard texts, such as Brown and Hwang;' 
show, if the inputs to the estimator are zero-mean and Gaussian, then 

(5) 

where Yk - h(:i-1.:11.:-d = 'klk-l is the kth filter innovation, lhP1.:11.:-i,1-1.,H[ + R1,; = Wklk-l 
is the innovations covariance, Pklk- l is the filter's error covariance corresponding to Xklk- i, and 

H1.: = Dhk/Dxklx . 
k l k - 1 

If we now suppose the existence of a pair of norm-inequality constrained epoch-state filters, one 
of which estimates the state at t. under the constraint that 1£1 : r;r. > n, and the other under the 
complement.ary constraint 1£0 : r; r. ~ n, then we can write the likelihood ratio in terms of these 
estimates as follows: 

\ P (Ykli:kfk-1,1-1.1) P (v1.:-1 lxk-1 lk-2.1-1.1) · · · P (vi l:i:110,1-1.J P (xo,1-1.1) 
l k = p (Yklxklk-l,1£11) p (Yk-i!Xk-llk-2,1£0) .. . p (u1l:r.110,1£0) p (:i:0,1£0) 

N (Yk - h(xkfk-1,1-1.1 ), H1.:P1.:1k-1,1-1. 1 H[ + Rk) 
= ( . T ) Ak-1 

N Yk - h(x1.:11.:-1,1-1.0 ) , H1.:Pklk- 1,1-1.0H1,; + Rk 

N (cklk-l,1£1, Wklk-l.1£1) \ 
= ( )lk-l, 

N 'kfk-t,1£0• W1.:11.:-1,1£0 

(6) 

where (·)1.:11.:-t,?£ denotes the quantity (·)1.: conditioned on the a priori, on the prior observations, 
and on the hypothesis 1£. In the next two subsections. we derive filters suitable for such a te~t. 

Norm-Inequality-Constrained Filtering 

Reference 2 derives the norm-equality-constrained Kalman tilter by appending a norm constraint 
on the state vector to the usual Kalman filte r cost function. We can convert the norm equality 
constraint to an inequality constraint through the use of a slack variable f\", as described for example 
by Hull.5 To this end, let the cost fu nction to minimize be 

J1,; = tr [P1.:11.:-1 - K1.:11.:H1.:Pk fk -1 - Pklk-1H[ K{i1,; + K1.:11.: W1.:1k-1 I<[i1.:] 

+ >.k [cf1k-lf(kikf(klk<:kjk-l + 2c[1k-ll([i1.:xf,k-l + x1.:11.:-1:i:[11.:-1 - f. + 0'
2

] 

(7) 

where tr (·J is the trace, J(kJk is the usual Kalman gain matrix, and f. = :7;T:i; is the norm constraint.* 

The constraint equation along with the partial derivatives of the augmented cost function with 
respect to the Kalman gain and slack variable lead to a set of three equations and three unknowns. 
As Reference 5 shows, optimality conditions on the constraint boundary correspond to the solution 
f\" = 0, and optimality conditions off the boundary correspond to >.1,; = 0. Optimality conditions 
off the boundary (>.1,; = 0) are given by the usual unconstrained Kalman filter solution, which we 
denote by XJ.:lk and Pklk· T he solution on the constraint boundary (11' = 0) is given by Reference 2: 

(8) 

• The unusual notation for the Kalman gain matrix is for consistency with Appendix A. 
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Reference 2 also shows that if the constraint applies to only a subset of the state elements. then 
the optimal solution for the remaining elements is just the unconstrained Kalman filter solution for 
those elements. 

Epoch-State Filtering 

For the problem at hand. the constraint applies only at the time of closest approach. t .. , where 
t. > tk, so one may use an epoch-state filter that sequentially processes the set of currently available 
measurements: 

:c.,k = :t:.,lk-1 + I<i-,keklk-1 

In Appendix A. we show that the optimal gain for this filter is 

' I<klk = (P•lk- t - Q •. k) k{ [sk(P•lk-1 - Q •. k) fr{+ Rkr• 
= (P•lk- 1 - Q •. k) H[w.,t-1 

and the error covariance at epoch is given by 

(10) 

( 11) 

( 12) 

where H.1,: = H1,:iP(tk , t.) and Q.,1,: is the pro~ess noise density integratedfonvard from tk to the 
epoch time t .. , i.e .• 

·, l
t. 

Q • . k = iP(t •. r )Q(r )iPr (t. , r )dr 
t,. 

( I 3) 

Synthesis 

We are now in a position to synthesize the results above. Application of the constraint to the 
a priori state and covariance yields: 

if j]r.1011 > n 
otherwise 

{

r 10 if 11 1\1011 $ n 
i\10.1-l,, = ~r .. 10 otherwise 

II r ,:o ll 

p - { Prr.r, ( ) 2 
rr. jO,Ht - D 'R • • T · • rr. 0 + 1 - M r,.,0r.10 otherwise 

p = { Prr.
0 

( ) 2 
rr.•o, Ho D l 'R • • T h 

• rr. o + - ll r.:oll r .. ,or .. 10 ot erwise 
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The remaining elements of the state and covariance are unaffected by the constraint application. 

The kth measurement update, under each hypothesis, 1-li, is as follows: 

J(kl1l, = (P•Jk - 1,1-t, - Q.,i.:) ii[ [iik (P•lk- 1.1i, - Q.,k) ii[+ Rk]-' 

= (P•lk-1,1-l; - Q.,k) ii[W,_~L1,1l; 

Application of the constraint to the a posteriori state and covariance yields: 

A { f•lk,1lo r. k 1lo ~ n A 

I ' II . j(•lk,7-lo 
r •lk,lio 

where 

if llr •lk,1-t, !I > n 
otherwise 

if llr•1k,1lo 11 s n 
otherwise 

otherwise 

otherwise 

( 18) 

( 19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The remaining elements of the state and covariance are unaffected by the constraint application. 

Finally, the likelihood ratio updates as follows: 

(26) 

EXAMPLES 

We use two examples to illustrate our method. The first example is a gross simplification of the 
close approach scenario, but it gives good insight into how the method works. The second example 
is more realistic, using a close approach found during one of the high-fidelity end-to-end mission 
simulations recently conducted by the flight dynamics team for the Magnetospheric Multi-Scale 
formation flying mission (MMS). 
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Simple Example 

Our simple example is a static two-dimensional problem. The true miss distance is chosen from 
one of four cases: ( 1) a '.'clear hit," when the true miss distance is well inside R; (2) a "near hit," 
when the true miss distance is close to, but inside, 'R; (3) a "near miss," when the true miss distance 
is close to, but outside, R; and (4) a "clear miss," when the true miss distance is well outside the 
n (but still close enough for concern). The epoch-state filter bank processes measurements of the 
relative position components, which are corrupted by zero-mean Gaussian white noise with standard 
deviation R/4. The filters assume initial standard deviations of 3'R. No process noise is modeled. 

Figures I - 4 depict results for each case. The upper left subplot of each figure shows the con­
junction geometry and the filter bank's estimates. The combined hard body radius is a dashed blue 
circle, and the true radius of closest approach is marked with a black '+' symbol. The sequence 
of estimated relative positions and corresponding error covariances for each filter in the bank are 
shown in this subplot, respectively, by the symbol 'o' and a surrounding la error ellipse, and colored 
red for the null hypothesis filter, and green for the alternative hypothesis filter. The upper right and 
lower left subplots of each figure show the filters innovations and their la formal errors as solid and 
dashed lines, respectively, colored red for the null and green for the altemativ~ hypothesis filters. 
Finally, each figure shows the likelihood ratio and corresponding decision boundaries in the lower 
right subplot, the latter of which are the equalities from Eq. 3. In this subplot, the likelihood ratio is 
a blue line, and the upper green boundary corresponds to guidance to dismiss the conjunction, while 
the red lower boundary corresponds to guidance to maneuver. These decision boundaries are based 
on an allowable false alarm probability of one in twenty, and missed detection probability of one in 
one thousand. 

The effect of applying the constraint to the filters is clearly evident in the upper left subplots: the 
filter which has the correct hypothesis quickly converges to the true value and its covariance ellipse 
rapidly shrinks to a small circle. while the filter with the incorrect hypothesis hovers around the 
boundary, and its covariance ellipse gets elongated along the radial direction in which the constraint 
was applied. 

Figure 1-4 illustrate just one case of each type, but we have run 10,000-case Monte Carlo trials 
for each of the four categories of conjunction, finding no false alarms and no missed detections. 

MMSExample 

Figure 5 depicts the scenario of the MMS example. During this mission phase, known as "Phase 2b," 
MMS will be in a I .2 by 25 earth radii (RE) elliptical orbit, with a nominal separation at apogee 
between the four spacecraft that varies between 25 and 40 km. The large loops evident in the upper 
subplot of Figure 5. during which the formation is roughly co-planar, occur around perigee, and the 

. plane crossings occur roughly at altitudes of two to three RE, near where the spacecraft cross the 
semi-latus recta of their orbits. Collisions are most likely to occur near perigee, shown as the sharp 
minima in the lower subplot of Figure 5 . 

To create our test case, we extracted Brower-Lyddane mean orbital elements from the MMS 
end-to-end simulation at the time of closest approach. To create our simulation truth, we then 
back-propagated the formation for two orbital revolutions using the Gim-Alfriend state transition 
matrix,6 which ac_counts for both high eccentricity and Earth oblateness. The latter is the primary 
perturbation of the MMS relative motion. 
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We next simulatec.l a simplifiec.l version of the MMS navigation process. Here, we simulated 
measurements of the relative position vector between the two satellites involved in the conjunction. 
These measurements were corrupted by white noise with standard deviation of IO m, and by a first­
order Gauss-Markov bias process with steady-state standard deviation of 3 m. We simulated these 
measurements at 60 sec rate. · 

We processed these observations using an unconstrained filter for just over one orbital period to 
achieve a converged navigation state. This fi lter estimated both the relative position/velocity state, 
and the three components of the Gauss-Markov measurement bias. Then, just after the perigee 
preceding the close approach, we initiated the Wald test procedure described previously herein, 
using the converged unconstrained filter solutions. Figures 6 through 9 show our results for four 
cases that we refer to as the clear hit, near hit, near miss, and clear miss cases. 

Figure 6 depicts the clear hit case. The upper left subplot shows a close up of the relative motion 
over· approximately an hour preceding the closest approach. For this case, we set n = 1.5 km, 
which significantly exceeds the actual separation of 0.5 km at t*. We mark the epoch-state position 
solutions from the null hypothesis (red) and alternative hypothesis (green) filters on this plot. One 
can see the green solutions reside on the constraint boundary (shown as a grey sphere), while the red 
solutions cluster near the true relative position, inside the boundary. The upper-right and lower-left 
subplots show the estimation errors and their one-sigma formal errors for each of the two constrained 
filters, with the former showing the filter that assumes the null hypothesis, and the latter showing the 
fi lter that assumes the alternative hypothesis. It is clear from these plots that the null hypothesis fi lter 
performance is superior. The lower right subplot depicts the log-likelihood ratio, and the decision 
bounds. Evidently. the superior performance of the null hypothesis filter leads to a rapid and definite 
decision to maneuver. 

Figure 7 depicts the near hit case. For this case, we set 'R, = 0. 75 km, which is much closer to, but 
still exceeds, the actual separation of 0.5 km at the actual separation at t •. The alternative and null 
hypothesis solutions are now much closer together, but a rapid and definitive decision to maneuver 
is still evident. 

Figure 8 depicts the near miss case. For this case, we set 'R, = 0.33 km, which is close to, but 
less than, the actual separation of 0.5 km at the actual separation at t •. The alternative and null 
hypothesis solutions are similar, but a bias is evident in the null hypothesis filter, as a consequence 
of its being forcec.l onto the constraint boundary. This leads to a rapid and definitive decision that a 
maneuver is not required. 

Figure 9 depicts the clear miss case. For this case, we set n = 0.12 km, which is much less than 
the actual separation of 0.5 km at the actual separation at t •. The alternative and null hypothesis 
solutions are similar. but again a bias is evident in the null hypothesis filter, as a consequence of its 
being forced onto the constraint boundary. This again leads to a rapid and definitive decision that a 
maneuver is not required. 

DISCUSSION 

The examples just described suggest that the proposed method provides a useful new tool for 
conjunction assessment analysis, which is free of some limiting assumption in a similar method 
we previously proposed in Reference I. Any final decision to maneuver or dismiss a potential 
conjunction should obv iously take into account all available data on the degree to which the close 
approach appears to be dangerous. In this section, we describe some additional considerations. 
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Figure 9. MMS clear miss test case using combined hard body radius of t.S km when 
actual miss distance is 0.12 km. 
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Our use of a Wald test depends on the assumption that the hypotheses being compared are fixed, 
which in the present case means that the true value of Ur -II is either inside nor outside non a given 
scenario. If instead we wished to consider that random or unmodeled perturbations could change 
the true value of !Ir* II sufficiently to convert a hit into a miss and vice versa during the course of a 
given scenario, then we would need to use a different test, such as a Shirayeyev test.7 

In the examples given here, we ~s·sumed that the time of closest approach, t. is known and fixed. 
It may be more realistic to assume that t. will change as the estimation process develops greater 
certainty about the epoch state. This kind of variabil ity in the epoch time has been addressed by 
Battin et at..8 who described an epoch-state filter that implicitly allowed t. to vary via an additional 
update of the true anomaly. 

Using a pair of estimators for each possible conjunction in a large catalog of space objects could 
be computationally daunting. Instead, we envision that the fi lter bank our Wald test requires would 
be brought online only after some prior screening procedure had already identified a conjunction of 
concern. One possibility for such a screening process might involve the Mahalanobis metric, such 
as 

(27) 

where x- 1 (1 - Pmd, 3) is the inverse of the x distribution with three degrees of freedom corre­
sponding to a complementary probability of Pmd, the allowable m\ssed detection probability. This 
procedure would be comparable to a screen based on collision probability, .but it does not depend 
on assumptions about geometry, quadratures, nor other approximations to an integral (except the 
tabulation of the \ distribution). Unlike a fixed screening volume, a Mahalanobis screen will prop­
erly adapt to how the uncertainty changes throughout an orbital prediction. An even simpler screen, 
which could be used as first step, would be the mean latitude difference screen proposed by Gottlieb 
et al.9 

Finally, our present method, like all but the simplest screens, depends on correctly predicting 
the probability densities at the time of closest approach. If the prediction error distributions are 
sufficiently close to Gaussians, which can often be achieved through judicious choice of state repre­
sentation (e.g., using mean elements rather than Cartesian states), then we need merely have suffi­
ciently accurate covariance information and sufficiently unbiased estimates of the mean. A possible 
advantage of the present method is that it can accommodate any error distribution. Another possible 
advantage of the present method is that it depends only on the ratio of two densities, and hence 
might be expected to be more robust than a method that depends on integrating the density over a 
region that is far out in the density's tail, which is often the case with a collision probability metric. 

CONCLUSIONS 

In this work, we have developed a new SPRT for collision avoidance. We modified the norm­
constrained Extended Kalman Filter (EKF) so that it can handle inequality constraints. Then, we set 
up a fi lter bank with two norm-inequality-constrained epoch-state EKF's: one for the null hypothesis 
that the miss distance is inside the combined hard body radius (HBR) at the predicted time of closest 
approach, and one for the alternative hypothesis. Our post-measurement epoch-state filter explicitly 
accommodates process noise, and we use it to estimate the relative states at the time of closest 
approach. T he densities governing the innovations of the two epoch-state filters form a likelihood 
ratio for our new SPRT. T he proposed method appears to provide a useful new tool for conjunction 
assessment analysis. 
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APPENDIX A: EPOCH-STATE FILTER WITH PROCESS NOISE 

Since their invention hy Gauss, 1° batch least-squares estimators have been used to provide epoch 
state solutions fro m a set of measurements of orbital bodies. Battin et al.8 described an epoch-state 
navigation fi lter that estimated Cartesian position and velocity at an epoch time t0 that is implicitly 
allowed to vary via an ad~itional update of the true anomaly. These approaches do not admit the 
presence of process noise, and hence the epoch time can freely be chosen to be before, during, 
or after the batch of measurements. Montenbruck11 developed an epoch-state fi lter that estimated 
SGP4 elements, 12 and incorporated a form of process noise, but in a somewhat artificial fashion that 
was intended primarily to address numerical stability. ln Reference 13, two of the present authors 
described how the effect of process noise on a batch estimator which itself ignored the process 
noise could be ascertained, for arbitrary placement of the epoch time. However, Reference 13 did 
not consider the case when the estimator models the effect of process noise in its gain computation• . 
In this Appendix, we describe a post-measurement batch epoch-state fi lter that accounts for process 
noise, which is suitable for any prediction problem where process noise needs to be accommodated. 
We develop this estimator first in a batch form, then reduce the batch update to recursion suitable 
for sequential implementation. 

Batch Form 

A batch fi lter produces its estimate based on processing a collection of m;-dimensional measure­
ments y;, i = 1, 2, ... , N made at various times. Combining these measurements into a single 
vector, we have 

y= [
Ytl [Ytl [c:1 ] 
Y'.v Y = Y~ e = y - fl = c :v 

(28) 

where fl is the fi lter's predicted measurement vector, and c: is the filter innovation. The batch filter 
performs a single update at the epoch time: 

N 

:c•IN = x.io +Kc:= x .. :o + L I<ic:i , (29) 
i= l 

where ±.1o is an a priori estimate of x. and K is a gain matrix consisting of a "row" of gain matrices 
for each measurement, I(;: For the present work, we restrict our attention to the case where t. > lN. 

By assumption, then-dimensional state vector evolves according to 

d 
dtx(t) = J(x(t),t) +w(t) (30) 

where the process noise w(t) is a Gaussian white noise process with mean and covariance given by 

E[w(t)J = On and E[w(t)w(r)r] = Q(t)6(t - r), (31) 

with E [·J denoting the expectation operator and On denoting an n-dimensional vector of zeros. ln 
the covariance equation, Q is_ the n x n process noise spectral density matrix. 

·while preparing this paper. we have discovered errata in Reference 13 that affect the case when the epoch time is not 
prior to the measurement batch. which we list in Appendi,c B. 
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We define the stale error vector as e(t) = .c(t) - :c(t). and to first order it evolves according to 

d 
dt e(t) = A(t)e( t) + w(t), 

where 
A(t) = DJ(x(t), t) I ·. 

D.c(t) x(tl 

Formal integration of Eq. 32 gives 

e(t) = '-l>(t , t;)e; + wd(t , t;) 

where the state transition matrix, <I>(t, ti) , is the solution of 

<i>(t, t;) = A(t)<I>(t, t1) 

with the initial condition 

<I>(t;, t;) = In = then x n identity matrix, 

and the random excitation vector, wd(t, t,), is given by the formal integral 

wd(t, t;) = 1t <I>(t, r)w(r)dr. 
t , 

The innovation may be written in terms of the estimation error as 

Substituting Eqs. 34 and 38 into Eq. 28 at the epoch time gives 

c = lie.;o +ltd+ v 

where 

Using Eqs. 29 and 39, the estimation error after a batch update is 

(32) 

(33) 

(34) 

,. 

(35) 

(36) 

(37) 

(38) 

(39) 

- r·~1 i tJ - • 

VN 

(40) 

(41) 

. . 
Since the a priori filter state x.10 can only have been developed from information available prior 

to the measurement batch, the a priori estimation error propagates from the time of this prior infor­
mation according to 

e. 10 = <1>(t. , toko10 + Wt1(t . , to), (42) 

where t0 is some time prior to the epoch time and to all the measurement times. This means that 
e,.10 is correlated with w,t(t., to), which somewhat complicates the expression for the covariance at 
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epoch. Omitting the expectations involving zero correlations. we fin<l the epoch-state covariance to 
~g~n~ . 

p•IN = E [l:•INe!°1,v] (43) 

( 

.V ) ( N ) T .V = In - !; KrH; E [ e.1oe!"10] I11 - ; IC.Hi + !; l(iE [ Uj uTJ l(r (44) 

+ .t K,E [1<,,11;\i] I;J - t l(!E [1<,,1U~(t ., to)I (In - t KjHj) r 
l.J=l 1=1 J= l 

- ( In - t. K,H,) t, E [w,( t., to)u,lj] KJ (45) 

Now, with our assumption that t. > t.v , we fi nd that 

E [ttrutt«i) = H;E [w,1(t,,t. )w;(ti,t. )J HJ 

= Hi it' it, cJ>(~, r)Q(r)6(r - r') cJ>T(tj, r ' )dr dr' HJ 
t . t . 

- -T = H; Q .. ,max(i,j) HJ (46) 

Similarly 

lt. ;,·t. = - ii; tl>(t. , r)Q(r)6(r - r')•J,r(t. , r')drdr 1 

• f Q • f I 

= - iii Q . ,i (47) 

where the minus sign arises from the change in direction of the inner integral over r. Putting this 
together gives 

P•IN = ( In - t f(;.Hi) P•IO ( In - t Ki.Hi) T + t KiRJ({ 
1= 1 t=l t= l 

N N 
""' - -T T ""' - -T - L.J K illiQ.,min(i,j) H j l(j + L.J(KiH,Q ... , + Q .. ,;H ; K ;) (48) 
i,j= l i= I 

• N N 

= P.;o + I: K iw uKJ - I: [KiiI;(P.1o - Q •. i) +· (P.1o - Q •. ;)1i r l(r ]. 
iJ==I i=l 

(49) 

where 

W ij = H; [ P.10 - Q • .min(i.j)J iIJ + f!-i6ij = W.k (50) 

We now define the symmetric matrix ~V as an N x N matrix of m; x Tnj blocks IVu : 

H'1N] IV2N 
. . , 

.. ~ IV,~N 

(5 1) 
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The inverse iv-1 can also be written an N x N matrix of.m; x rnJ blocks. 

[

1iv-1Jt1 1iv-11i2 
iv -1 - 1~v~11,1 11v-11,, 

1w-1J,v1 1w-1JN2 

and the relations ijr1v- 1 = i,j, - 1iv = I imply that 

Now Eq. 49 can be written by completing the square as 
' 

N 

' [iV 
1)tN] 

[iii-I J2,y 

.. : ·. [vi'-~ Lv.v , 

P.1N = P.1o - I: (P.1o - Q.J irr [iv-11ij iij(P.1o - Q •. j) 
i.j= l 

(52) 

(53) 

N { N } { N }T + i~l J(i - ;(P.10 - Q •. 1.:)H[[vv-111.:i W ij l(j - ;(P.10 - Q •. 1.:)fi[[1v-1
]kj 

(54) 

If A and B are real symmetric matrices, we say that A > B if the matrix A - B is positive 
semidefinite. It is clear that 

N 

P\v 2: P.10 - L (P.10 - Q •. i)iIT [iv-1Ji; Hj(P.10 - Q.,j) 
i.j=l 

in this sense, with equality if the measurement gains are chosen to be 

(55) 

(56) 

We will use these gains to achieve in this sense the minimum P•IN• which can be expressed more . 
compactly as 

N 

P•IN = P.10 - L Ki Hj(P.10 - Q •. j) (57) 
j=I 

Sequential Form 

Inversion of iv can be avoided by implementing a sequential estimation procedure. In developing 
a sequential estimator, it will be convenient to denote the gain matrices by l(,lk• where the index k 
is the number of measurements included in the update. The updates with k - I and k measurements 
are thus 

(58) 
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(59) 

For a sequential method. we need to be able to write 

(60) 

Substituting Eq. 58 into Eq. 60 and comparing with Eq. 59 gives the consistency requirement* 

(61) 

To make further progress, we write 

(62) 

where 

[ ~~~: ] 
Wck=- 1)k 

(63) 

T hen the standard equation for the inverse of a partitioned matrix gives 

(64) 

where 

Uk= -i-vk-:..\ Vk(Wkk - V{i-vk--\ Vi)- 1 = -~Vk-:..11 Vk[i-v,; 1]kk• (65) 

Comparison with Eqs. 50 and 55 with N replaced by k - 1 shows that 

(66) 

These relations give the gain matrix l(kJk• which is the only one needed for the sequential esti­
mator, as 

k 

Kk,k = L(P. 10 - Q •• i) .iini-vk-•1ik 
i= l 

k-1 
cd L (P.10 - Q. ,i) HT(~vk- 1];k + (P.10 - Q.,k) ii[[i-vk- 1Jkk 

i=I 
-T - -1 = (P• lk-1 - Q •. k ) Hk [Wk ]kk 

= (P•Jk- 1 - Q.,k) .ii[ [1ik(P. jk-1 - Q •. k) Ii[+ Rkf 1 

' This condition can only be satisfied in the presence of process noise fort, $ t •. 
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0 

The third equality uses, for i < k, 

k- 1 k-1 

[ivk-1J;k = !Ukli = - I: 11vk-!1liilVi.·Jj11vk- 11kk = - I: 11vk--\1ij wjk fvk- 1!kk 
j= l j= I 

k-l 
= - L 11v;_\Jii.Hj(P •. o - Q. ,j) ii[[1vk- 11kk (68) 

j = l 

and then 
k -1 

L (P.,o - Q.,;) HT[lvk-_\J ,Ji;(P.10 - Q •. J) = P.10 - p•lk- 1, (69) 
i,j= I 

and the fourth equality uses Eq. 66. Equation 67 expresses l(klk in terms of only P•lk- t and quan­
tities available at the measurement time tk. To complete the development of the recursive estimator, 
we need a recursion relation for P•lk· Using the consistency condition on the gains, Eq. 6 1, in Eq. 57 
gives 

k 

P•lk = P.,o - L !(ilk HJ(P.10 - Q •. j ) 
j=l 

k-1 
= P. 10 - l(klk iik(P. ,o - Q.,k) - L !(i lk H;(P.10 - Q •. ; ) 

j=l ' 

= Un - Kklk ih) [P•!O -~ KJlk- 1 Hj(P.10 - Q •. ;)l + Kklk HkQ•,k 
J =l 

= (/n - J(klk Hk )P•lk- 1 + J(klk HkQ•,k 

= P.lk- 1 - l(klk Hk(P.lk- 1 - Q •. k). 

Relation to the Kalman Filter 
I 

If we defi ne 

fl = p•lk-1 - Q~.k, 

then Eq. 67 becomes 

(70) 

(71 ) 

(72) 

and Eq. 70 becomes 

A +l = Un - Kkjk fh )A + Q •. k - Q•,k+l = Un - J(klk Hk)h + Qk+ l,k, (73) 

which are the customary Kalman Filter equations, a result shown by Montenbruck.11 It should be 
pointed out, though, that i\ is not the covariance of any obvious error ~ector. However. if we fu rther 
define 

(74) 

then equations (67) and (70) become,' using the semigroup property of the state transition matrix. 

T T -I ~ Kklk = <'P(t. , tk)Pklk-1 /h (HkPklk- t Hk + Rk) = <P(t. , tk)Kk (75) 
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, and 

Notice that the tilde~ have been removed from the measurement sensitivity matrices. The latter 
equation can be written as the usual two-step Kalman filter process 

(77) 

(78) 

where the expression for the process noise follows from Eq. 13. It is now easy to recognize Pklk-l 
and Pklk as the pre- and post-update covariances of the estimation error at the measurement time tk. 

We finally note that the update of the epoch state can be written as 

,i;•!k = x•lk-1 + l(klk(Yk - ih x*lk-d 

= x+lk-l + <I>(t. , tk)J<k [Yk - Hk<P(tk, t . )x•lk- iJ, (79) 

exactly as we would expect. 

APPENDIX B: ERRATA FOR "GENERALIZED LINEAR COVARIANCE ANALYSIS" 

This article was published in The Journal of the Astronautical Sciences, Vol. 57, Nos. I and 2, 
January-June 2009, pp. 233-260. It contains several errata: 

Equation (69) should read 

The comment between equations (77) and (78) should read 

"with P.- = P(t;)," 

Equation (82) should read 

= 

Qd( ti , t. )<PT ( lj I ti) 
<I>(t;, lj)Qd(lj, t. ) 
<°P(ti, t . )Qd(t,., lj )<I>T(lj, t. ) 
<}(t;, t.)Q<1(t., l;)cJ.,T(tj, l+) 

0 

t.<ti'S tJ, 
t. < lj ~ l;, 
ti $ ti < t. , 
lj $ l; < t. , 
otherwise. 

Equations (86)-(88) should read 

J Nd(t) = E (e!. wJ(t,t. )] 

= - E [s .. LJ(;ud;wf(t,t. )] 

= -S.LJ<iHiQd(t., ; t, t;) 
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The line immediately above equation (94) should read 

"at epoch. In equation (75) the matrix (/n - S."L,J(;H;) is replaced by" 

The assumption made below equation (74) that the errors in e;t •. et •. and et. are uncorrelated is 
certainly valid if t . is prior to all the measurements, so the results of the paper are equally valid in 
that case. If t. is later than some or all of the measurements, however, it might be more reasonable 
to assume that et. includes the process noise accumulated between the beginning of the observation 
span and t. , in which case it has nontrivial correlations with e;t •. This modi ties the manner in which 
process noise appears in the covariance analysis of the batch estimator, as shown in Appendix A. A 
fuller account will appear in a future paper. 
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