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A recent proposal submitted for an ESA mission required that models be delivered in 
ESARAD/ESAT AN formats. ThermalDesktop was the preferable analysis code to be used 
for model development with a conversion done as the final step before delivery. However, 
due to some differences between the capabilities of the two codes, a unique approach was 
developed to take advantage of the edge node capability of ThermalDesktop while 
maintaining the centroid node approach used by ESARAD. In essence, two separate meshes 
were used: one for conduction and one for radiation. The conduction calculations were 
eliminated from the radiation surfaces and the capacitance and radiative calculations were 
eliminated from the conduction surfaces. The resulting conduction surface nodes were 
coincident with all nodes of the radiation surface and were subsequently merged, while the 
nodes along the edges remained free. Merging of nodes on the edges of adj acent surfaces 
provided the conductive links between surfaces. Lastly, all nodes along edges were placed 
into the subnetwork and the resulting supernetwork included only the nodes associated with 
radiation surfaces. 

This approach had both benefits and disadvantages. The use of centroid, surface based 
radiation reduces the overall size of the radiation network, which is often the most 
computationally intensive part of the modeling process. Furthermore, using the conduction 
surfaces and allowing ThermalDesktop to calculate the conduction network can save 
significant time by not having to manually generate the couplings. Lastly, the resulting 
GMM/fMM models can be exported to formats which do not support edge nodes. One 
drawback, however, is the necessity to maintain two sets of surfaces. This requires 
additional care on the part of the analyst to ensure communication between the conductive 
and radiative surfaces in the resulting overall network. However, with more frequent use of 
this technique, the benefits of thi.s approach can far outweigh the additional effort. 

Nomenclature 
Delta Temperature (Temperature Difference) 
European Space Agency Radiation Analyzer 
European Space Agency Thennal Network Analyzer 

DT 
ESARAD = 
ESATAN = 
GMM 
TMM 

Geometric Math Model 
= Thcnnal Math Model 

MLI = Multi Layer Insulation 

I. Introduction 

Aproposal for ESA's ExoMARS mission required that all models be delivered in ESARAD and ESATAN 
fonnats. The PLUME instrument proposal team opted to use ThcrmalDesktop for the rapid development of 

models of the design, accepting that a model conversion would be necessary for future deliveries upon instrument 
award. This allowed PLUME to take advantage of the benefits ofThermalDesktop's environment and capabilities 
for faster model generation and trade studies. However, an understanding of the limitations of converting to 
ESARAD/ESAT AN was necessary to avoid using features that had no counterparts in the ESARAD software. One 
such feature is the use of edge nodes, which is not supported in ESARAD; ESARAD supports centroid based 
surfaces. The approach described herein was developed to: allow use of edge nodes for faster generation of the 
conduction network, solve only for the centroid nodes, take advantage of a smaller radiation model, and reduce the 
overall time necessary to generate and execute the analysis. 
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II. Analytical Approach 
A sample pair of adjacent rectangular surfaces is shown in Figure lA with a lxl centroid nodal subdivision. 

Figure 1B shows the corresponding surfaces with a 3x3 edge node subdivision. As seen in the two figures, the 
centroid nodes are coincident with the middle node of the edge node surfaces. Making these surfaces coincident and 
merging these nodes makes them identical solution points for the thermal solver. Furthermore, use of edge nodes 
allows heat to flow from one centroid node to the other through the edge nodes. Moreover, the numqer of radiation 
nodes is greatly reduced by using the •centroid based surface for radiation, while using the edge node surface for 
conduction. The centroid based surfaces are hereafter referred to as Radiation Only Surfaces, while the edge node 
based surfaces are referred to as Conduction Only Surfaces. 

Figure lA- Centroid Subdivision Figure lB - Edge Node Subdivision 

Regardless of nodal breakdown for a uniform subdivision, any surface can be similarly represented; an n x m 
centroid subdivision would be coincident with nodes from a (2n+l) x (2m+l) edge node subdivision as shown in 
Figure 2. 

Figure 2 - Centroid Subdivision vs. Edge Node subdivision 

Disabling conduction for the Radiation Only Surfaces (by either using a zero conductivity material or a 
multiplier of zero for the thermal conductivity) eliminates any generation of couplings based on those surfaces. To 
disable radiation for the Conduction Only Surfaces, they should be excluded from all Radiation Analysis groups. 
Furthermore, the capacitance generation should be disabled for the Conduction Only Surfaces by selecting a material 
with a zero density or specific heat or using a zero multiplier for the capacitance. This method lumps all of the 
capacitance onto the Radiation Only Surface nodes and uses these same nodes for radiation calculations. 

Lastly, the analyst has the option of allowing the non-centroid nodes to remain in the solution (as thermal only 
nodes) or to remove them using the supernetwork/subnetwork feature of ThermalDesktop. While this feature will 
eliminate the non-centroid nodes through the internal matrix reduction algorithm, it may generate a large number of 
mathematically insignificant linear couplings. For final model deliveries, it is recommended to eliminate these 
terms. 

Use of this approach does however require careful setup on the part of the analyst to ensure that unintended 
consequences of mis-numbering or mis-assignment are avoided; the solver will likely not catch these errors since 
connectivity to a boundary could be established by either set of surfaces. Therefore, the procedures for defining the 
surfaces to use this technique are carefully presented in the next section. 
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III. Modeling Technique Procedure 
To generate a model using this technique, an analyst should follow the outlined sequence carefully for each set of 

surfaces defined by a common submodel: 

1. Generate all centroid surfaces and fully define all surfaces (MLI, thickness, active sides, 
optical properties, size, location, nodal subdivision, etc.) 
a. Use thermal conductivity multiplier of 0 
b. Use capacitance multiplier of 1 
c. Use Centroid nodes 
d. Use ''Rad" prefix in comment 

2. Define all these surfaces as AutoCad Group 
3. Copy all centroid surfaces to coincident location 
4. For all original surfaces {select by using the Group definition) 

a. Globally Disable all activity in Radiation Analysis Groups 
b. Globally Change thermal conductivity multipliers to 1 
c. Globally Change capacitance multiplier to 0 
d. Remove MLI from all Conduction Only Surfaces 
e. Add "Cond" to Comment 
f. Adjust node subdivision to 2n+l x 2m+ l and change to Edge Nodes 

5. Merge all coincident nodes 
6. Select all nodes {not surfaces!) associated with Conduction Only Su,faces. Renumber to 10000 

range 
7. Select all nodes (not surfaces!) associated with Radiation Only Surfaces and renumber to 1000 

range 
8. Select all nodes in 10000 range {not surfaces!) and renumber to 1 OQOO range ( compresses 

nodes renumbered by step 7) 
9. Optional Override calculations of nodes by surfaces and place all 10000 range nodes into 

subnetwork. Enable subnetwork calculations · 
10. Repeat for next set of surfaces in different sub model. .. 

Details of these steps are expanded hereafter. First, all surfaces should be fully defined using centroid nodes 
with correct optical property definitions, active sides, thicknesses, materials, etc. It is advised to include a "Rad" 
prefix to any comments or to use "Rad Only" as the comment for easier identification of these surfaces in the Model 
Browser. Lastly, set all conductance multipliers to zero and all capacitance multipliers to one to disable conduction 
calculations and enable capacitance calculations. These surfaces define the surfaces known as Radiation Only 
Surfaces. · 

Nex"t, copy all Radiation Only Surfaces to coincident locations. Defining an AutoCad group before copying 
makes selection of these surfaces easier. All of these new surfaces should now be modified to become Conduction 
Only Surfaces by removing them from all Radiation Analysis Groups as well as removing all MLI from the 
Conduction Only Surfaces. All conductivity multipliers should be reset to one and capacitance multipliers reset to 
zero. If possible, a "Cond" prefix added to the comments also helps to identify the surfaces in the Model Browser. 
The last part of this step is to adjust all surface subdivisions to Edge Node breakdown and increase the subdivisions 
using (# Edge) = 2*(# Centroid) + l. At this point, selection/display of the Radiation Only Surfaces could be 
accomplished by selecting the appropriate Radiation Analysis group surfaces from the Model Browser. Similarly, 
displaying all surfaces and then removing the Radiation Analysis Group surfaces from display allows selection of 
the Conduction Only Surfaces. To display the nodes for the Conduction Only Surfaces using this approach, turning 
on node numbers and then turning them off again will result in the nodes now being visible, so long as the global 
visibility flag is on. 

The next step is to merge all nodes. This establishes the link between the centroid nodes of the Radiation Only 
Surfaces and the coincident edge nodes of the Conduction Only Surfaces. Furthermore, it establishes the links 
between edge node surfaces as the edges are now defined by common nodes for adjacent surfaces. The next step is 
to renumber the centroid and edge nodes into different ranges for easier identification. To do this, it is best to 
renumber all nodes associated with the Conduction Only Surfaces to a specific range (e.g. lxxxx). Next, the nodes 
associated with the Radiation Only Surfaces should be renumbered to a different range {e.g. lxxx). Finally, 
renumbering the nodes in the lxxxx range to lxxxx again eliminates gaps and optimizes the numbering. It is 
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important to only renumber the nodes during these steps, as renumbering a surface will renumber all nodes 
associated with it and could undo some of the changes made during the process flow. For doing this, it is often 
easiest to tum global visibility off for surfaces so that only nodes can be selected, although there may be other ways 
to accomplish this. 

The final step is optional, but may be necessary if nodal allocations are limited by contractual obligations. The 
creation of numerous arithmetic nodes for conduction between the centroid nodes can be eliminated by using the 
Super-Network feature of Therma!Desktop. If all of the arithmetic nodes are placed into the subnetwork, then only 
the centroid nodes (Super Nodes) are passed to the thermal model. The equivalent conductances are computed by 
Therma!Desktop and output as conductors taking into account the entire network of Super Nodes. Unfortunately, 
this. does have one drawback in that a connection is established between every Super Node. This results in far more 
couplings, many of which are negligibly small and could possibly be eliminated with a minimal impact on results. 

IV. Technique Implementation 
The PLUME thermal model is shown in Figure 3, with the radiation only network on the left and the conduction 

only network on the right. Some surfaces are removed for display urposes. 

Figure 3 - PLUME Radiation Model (Left) and Conduction Model (right) - Back Panel removed for Clarity 

The Hybrid approach was only used for surfaces which shared an edge with an adjacent surface. Other surfaces 
which did not share an edge, such as an electronics board or optical bench, were modeled with traditional centroid 
based surfaces for both radiation and internal conduction. Couplings from these surfaces to the chassis were made 
using conductors or contactors. 

Comparing results between the edge node only approach and the Hybrid approach showed a marked 
improvement in computation time as shown in Table l for the Hybrid approach (approximately 4x faster). It should 
be noted that the largest performance improvement was seen in the Radiation Coupling computation, which is often 
the most computationally demanding portion. Additionally, cases were run using the Super Network feature and 
results proved identical to the Hybrid approach. Lastly, a case was run which removed the negligible Super Node 
couplings (defined as <lE-5 WIK. for this run). Table 1 shows the differences in results for the various cases. The 
numbers of couplings and nodes are also included for comparison. For this model, three submodels employed the 
hybrid approach: ISOLATOR, PLUME, and OPT_SUP. The largest average DT was found for the BOARD 
submode!, which was modeled using traditional centroid based methods in all cases. 
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Edge Node Hybrid Hybrid+ Hybrid+ 
(Baseline) SupcrNetwork SuperNetwork 

Filtered 
Number of Radiative Nodes 1012 410 410 410 
Number ofTMM Nodes 1067 1067 531 531 
Number of Radiative Couplings 65380 10646 10646 10646 
Number ofTMM Couolings 1993 1993 10013 5094 
Time to Solve HeatRate fsl 118 72 72 72 
Time to Solve Radiation Counlings fsl 624 90 90 90 
Time to Solve TMM rsl 491 142 136 116 
Max DT Orb Avg - Orb Avg) f°Cl 6.7 6.4 
AvgDTi ISOLATOR) f°Cl -0.423 -0.08 
AvgDT :PLUME) f°Cl 0.403 0.11 
AvgDT OPT SUP) f°Cl -0.078 O.ot5 
Avg DT 'BOARD) [°C1 1.35 1.35 

Table 1 - Comparison of Hybrid Method to Edge Node Approach for PLUME Model 

Overall, for a proposal level model, the error associated with the method is relatively small. Furthermore, it has 
identified regions of the model where one node may not be sufficient to accurately capture the heat flow. Two areas 
identified are the BOARD and ISOLATOR submodels. For the BOARD submode), direct couplings from the 
BOARD to the PLUME chassis, which acts as the radiator, resulted in the discrepancy. For the Edge Node baseline 
case, this coupling went to an edge node that directly radiates to space; while in the Hybrid approach, the heat must 
further travel through the additional resistance to reach the centroid node to be rejected to space. 

For the Max DT discrepancy, the specific node with the largest deviation is in the ISOLATOR submode!. The 
assumption that radiation is a minimal effect was incorrect for this particular node. The isolator is responsible for 
supporting a very cold detector and consequently results in a very large temperature delta with the surroundings. 
Therefore, radiation plays a more dominant role than in other areas of the model. The additional discretization of 
the isolator in the baseline edge node case provides for a more accurate representation of the heat exchange. This 
could be mitigated by including additional radiation nodalization for the affected regions in the ISOLATOR 
submodel. 

V. Future Improvements 
Additional developments could further refine or ease the use of this technique. Since only the surface edges need 

to be connected, the conduction only mesh could be reduced to only introduce new nodes at the edges. This would 
result in an (n+2) x (m+2) Conduction Only Surface for an n x m Radiation Only Surface. This may be 
accomplished by adding a very small delta (e.g. 0.0001) to the first edge node breakdown and (I-delta) to the last. 
So, a (0.25,0.5,0.75) centroid breakdown would become a (0.0001, 0.25,0.5,0.75,0.9999) edge node breakdown. For 
I x 1 surfaces, this approach results in the same number of additional nodes, but for subdivisions greater than 1 x 1, 
it eliminates the internal conduction nodes. 

Additional automated filtering could also be added to reduce the number of generated couplings as many of these 
are likely negligible in the overall energy balance. Reduction of these terms might need to further compensate for 
the loss of overall system conductance to reduce the inaccuracy of neglecting conduction terms from the energy 
balance. While the actual heat flow from Node A to Node F may go through nodes B, C, D, and E and be very 
small, the elimination of the direct coupling between A and F may need to increase the coupling from A to B, B to 
C, and elsewhere. As a first order approximation, the total conductance removed by eliminating small couplings 
could be compensated as follows for each coupling that remains: 

Gi-j,remaining = Gi-j,remaining * { [Sum(Gi,remaining) + Sum(Gi,removed)] I Sum(Gi,remaining) } 
* { [Sum(Gj,remaini~g) + Sum(Gj,removcd)] / Sum(Gj,remaining) } 

Non-subdividable surfaces, such as triangles and polygons, must currently be manually generated using Finite 
Elements, but so long as the proper connections are made at comers and along the edges, the approach works for 
these shapes as well. One further advantage with using Finite Elements, as opposed to edge nodes, is the ability to 
change the element shape simply by moving the nodes. This approach could also be extended to edge node surfaces 
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by converting them to Finite Elements, but then the ability to change the mesh density is lost, since the elements no 
longer have a connection to a surface. 

It is also possible that a script could be developed and used to automate the entire process. Since no further user 
input to control the process flow is needed after defining the original surfaces, features could be added to 
TbermalDesktop to explicitly generate the surfaces, or implicitly generate the surfaces internally to create the 
thennal network. 

VI. Conclusions 
A new technique for thennal modeling that uses a hybrid Edge Node surface for conduction and a Centroid 

surface for radiation has been developed, implemented, and tested. The resulting model is readily able to be 
exported to other analysis codes that may not support the Edge Node feature of ThennalDesktop. It also offers 
advantages in reducing the time necessary to generate the conduction network by leveraging the capabilities of Edge 
Nodes in ThennalDesktop. Furthennore, it may reduce the run time for solving the radiation network by excluding 
the Edge Nodes from radiative calculations resulting in a smaller subset of surfaces for which radiation must be 
calculated. While the additional effort of maintaining two sets of surface may seem significant, the derivation of 
one set from the other is, in actuality, a minimal effort. The only identifiable drawback is the inclusion of either 
numerous additional nodes or numerous additional conduction couplings (if using the Super Network feature). 
However, elimination of these additional coupling may be perfonned and have a negligible impact on the resulting 
model predictions. 
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