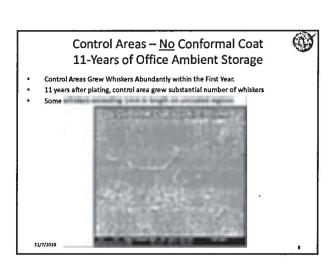
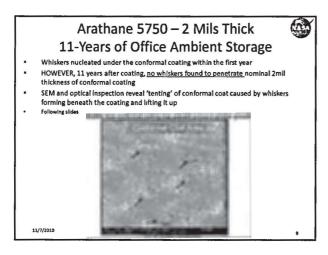
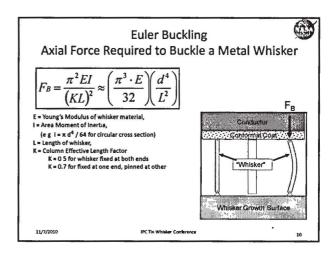
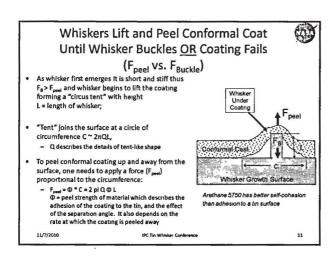


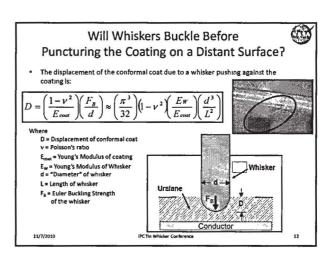
NASA GSFC Conformal Coating Experiment

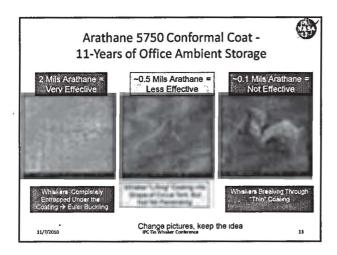

- · Objective:
 - Evaluate the effectiveness of Arathane 5750 (now Arathane 5750) conformal coating as a whisker mitigation strategy
 - Arathane 5750 is a common conformal coating used for aerospace applications due to its low outgassing properties
- Approach:
 - 1. To obtain samples that are prone to grow whiskers
 - 2. Apply conformal coat
 - 3. Store in ambient conditions
 - Monitor for whisker nucleation and penetration through coating

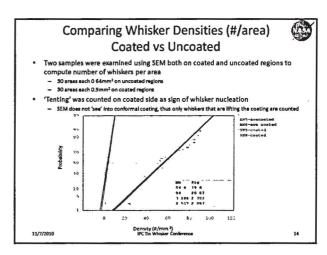

11/7/2010

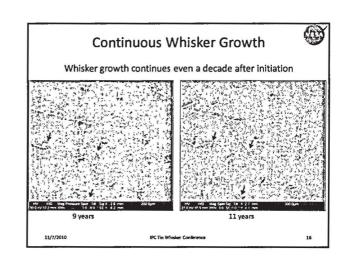

IPC Tin Whister Conference


Conformal Coat (Arathane 5750* Polyurethane) ~11 Years of Office Ambient Storage Specimens: 14 total 1" x 4"x 1/16" Brass 260 Tin-Plated 200 microinches A few intentional scratches created after plating to induce localized whisker growth **Conformal Coating:** Arathane 5750 on 1/2 of sample Nominal Thickness = 2 mils Locally THIN Regions also Storage Conditions: ne™ 5750 was previously known as Uralane™ 5750 Office Ambient ~ 11 years


11/7/2010



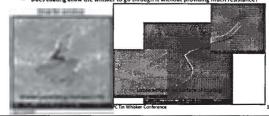




Conclusion 1: No whiskers have penetrated 2 mils of Arathane 5750 after 11 years Despite samples being capable of forming approximately 50 whiskers/mm² on coated areas greater than 600mm² Conclusion 2: Whiskers are able to penetrate when coating is thinner (~0.1mil) Conformal coating processes can leave "weak zones" Shadowing effects may prevent complete coverage when applying coating Coating may flow/thin prior to completion of cure Thinner coatings are more prone to whisker puncture Conclusion 3: Even "Poar" Coatings Can Offer Some Protection Long whiskers bend easily (Euler Buckling) and are less likely to re-penetrate even thin conformal coat applied on a distant conductor. Conformal coat protects against a conductive bridge from detached whiskers lying across a pair of coated conductors

SEM Observation Methods

- Use of Secondary electron (SE) and Backscattering electron (BSE) detectors
 - SE provides higher image resolution and gives topographical view


11/7/2010

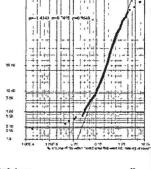
- BSE relates image contrast to atomic number of elements viewed. This allowed easy distinction between metallic whiskers and carbon dust fibers
- Use of low voltages (1-2kV) for imaging of highly non-conductive areas with conformal coating
- Use of stage tilting to improve signal accumulation at SE detector for

better Imaging at low voltages

Distinguishing Penetrating and Loose Whiskers on Conformal Coating

- Whiskers identified on the surface of conformal coating may be
- Penetrating the coating by growing from the substrate below the coating
 Settled on the surface of the coating after being dislodged from their original place of
- Know how the coating should be behaving if a whisker is growing
 - Does the coating stretch out and form a 'tent' with whisker as center pole? (true for
 - Does coating allow the whisker to go through it without providing much resistance?

Tin Whisker Growth Statistics


- Whisker density was measured on randomly located 30 uncoated areas ~0 64mm²
- Whisker lengths and thicknesses were measured for 187 whiskers randomly picked from whiskers growing on areas used for density measurements

Length (µm)	Normal (Gaussian) Lognormal Lognormal	54	20	50				
Thickness (µm)	Lognormal		1 15	150				
		1 17	0 67	3 38	10			
between whish - Meaning that can grow to a	ker lengtl twhiskers o	and	thic	kness		,,,,	100	1000
	-						Longth (jum)	

Volume of Sn in Whiskers

- Although whiskers are made of tin that came from surrounding surface, no depletion of tin is observed around the whisker
- To evaluate how much tin has to evaluate now much tin has been used up in making of whiskers in comparison to total volume of 5n within a given area, 1000 areas of 1mm2 each were simulated with whiskers modeled through parameters described in previous slide
- Results indicate that median % of Sn available within 1mm2 area used up in whiskers is 0.24%
- This agrees with lack of visual depletion of Sn

11/7/2010

IPC Tin Whisker Conference

Conclusions

- Arathane 5750 applied at a nominal 2mil thickness prevented outward growth of tin whiskers after 11 years of ambient storage

 - Non-coated areas grew ample whiskers
 Areas with coating significantly thinner (~0.1mil) showed whisker penetrations through the coating
 Tenting' was observed in areas of 2mil thick coating, where whiskers are pushing the coating up
- · Whiskers are still growing a decade after tin electroplating
- Growth statistics indicate no correlation between whisker thickness and whisker length
 - Median whiskers thickness was 3.4µm
 - Median whisker length was 150μm
- Volume of tin consumed in whiskers is only a fraction of a percent of tin available in the surrounding area of whisker growth

11/7/2010

8 38 ¹⁸⁵

IPC Tin Whisker Conference

21

References

- P.L. Res, "Surface Morphology of Whikker Crystals of Tin, Zoc and Cadmium," IEEE Electronic Components Conference, pp. 155-157, May, 1970 or 1977

 T Woodrow and E. Ledbury, "Evaluation of Conformal Coatings as a Tin Whiker Miligation Strategy," IPC/IEEE Shi International Conference on Private Electronic Components and Assembles, San Jow. CA, April 18-70, 2005

 T Woodrow and E. Ledbury, "Evaluation of Conformal Coatings as a Tin Whiker Miligation Strategy, Part 2", 5MTAI, Sept. 2005

 STRAIN, Sept. 2005

 STRAIN, "Evaluation of Conformal Coatings as a Tin Whiker Miligation Strategy, Part 2", 5MTAI, Sept. 2005

 Symposium on Electrony, "Evaluation of Conformal Coatings as a Tin Whiker Miligation Strategy, Part 2", 5MTAI, Sept. 2006

 None of Provincial Tin Whikers Formation on an Electronic Product, A Case Study", Journal of Failure Analysis and Prevention, Volume 7, Number 3, pp. 179-182, 2007

 Y Ermar and L. Woode, "Tible of Conformal Coating on Tin Whiker Growth", Proceedings of the IPC Apric Conference, Pager 531-01, 2007

 W Fag., L. Woode, "Conformal Coatings for Tin Whiker Risk Management" 5 yr update, 2009, Available Miligations Activities III and Assembly Sept. 1998

 No. Conformal Coating for Tin Whiker Risk Management 5 yr update, 2009, Available Miligation Strategy of Tin Whiker Miligation Strategy of T

- 7.

11/7/2010

IPC Tin Whisher Conference

22