

NASA's Changing Electronics Landscape: NEPP Focus, Agency Alignment, and Technology Development

Kenneth A. LaBel NEPP Program Co-Manager ken.label@nasa.gov

Jonathan A. Pellish NASA EEE Parts Manager jonathan.pellish@nasa.gov

- Three Dimensional (3D)
- Air Force (AF)
- Air Force Space & Missile Systems Center (AF SMC)
- Advanced Micro Devices, Inc. (AMD)
- Ames Research Center (ARC)
- Marconi Electronic Systems (MES) and British Aerospace (BAe) merged to form BAE Systems (BAE)
- Bayesian Networks (BN)
- Body of Knowledge (BOK)
- Brigham Young University (BYU)
- Capability Leadership Teams (CLTs)
- Complementary Metal Oxide Semiconductor (CMOS)
- Commercial Off-the-Shelf (COTS)
- Cosmic Ray Effects on Micro-Electronics (CRÈME)
- Double Data Rate (DDR)
- Dis-integrated Random Access Memory (DiRAM)
- Defense Logistics Agency (DLA)
- Defense MicroElectronics Activity (DMEA)
- Department of Defense (DoD)
- Department of Energy (DOE)
- Electrical, Electronic, and Electromechanical (EEE)
- NEPP Electronics Technology Workshop (ETW)
- fully depleted silicon-on-insulator (FD-SOI)
- Fin Field Effect Transistor (the conducting channel is wrapped by a thin silicon "fin") (FinFET)
- Field Programmable Gate Array (FPGAs)
- Gallium Nitride (GaN)
- Government-Industry Data Exchange Program (GIDEP)

Acronyms

- Goddard Space Flight Center(GSFC)
- Goal Structuring Notation (GSN)
- High Bandwidth Memory (HBM)
- High Performance Spacecraft Computing (HPSC)
- Integrated Circuit (IC)
- Infrared (IR)
- Indiana University Cyclotron Facility (IUCF)
- Joint Electron Device Engineering Council (JEDEC)
- Jet Propulsion Laboratories (JPL)
- Los Alamos National Laboratories (LANL)
- Loma Linda University Medical Center (LLUMC)
- Mission Assurance Improvement Workshop (MAIW)
- Model-Based Mission Assurance (MBMA)
- Massachusetts General Hospital (MGH)
- Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
- National Aeronautics and Space Administration
 (NASA)
- Naval Surface Warfare Center, Crane, Indiana (Navy Crane)
- NASA Electronic Parts Assurance Group (NEPAG)
- NASA Electronic Parts and Packaging (NEPP) Program
- NASA Engineering and Safety Center (NESC)
- Non-Military (Non-Mil)
- United States Navy National Reconnaissance Office (NRO)
- NASA Office of the Chief Engineer (OCE)
- NASA Office of Safety and Mission Assurance (OSMA)
- Package on Package (PoP)

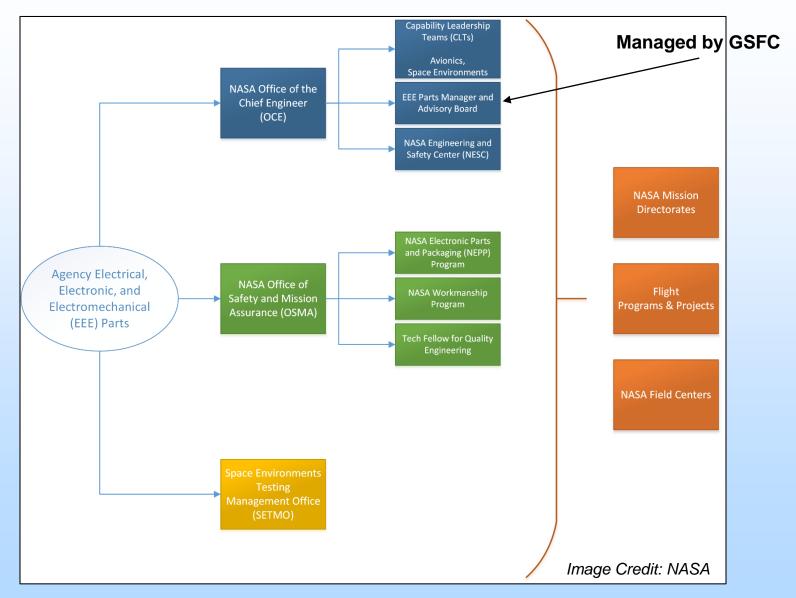
- Radiation Hardened (RH)
- Radiation Hardness Assurance (RHA)
- Society of Automotive Engineers (SAE)
- Space Asset Protection Program (SAPP)
- SCRIPPS Proton Therapy Center (SCRIPPS)
- Systems Engineering and Assurance Modeling (SEAM)
- Single Event Burnout (SEB)
- Single Event Effect (SEE)
- NASA Space Environments Testing Management Office (SETMO)
- Silicon Carbide (SiC)
- Air Force Space and Missile Systems Center (SMC)
- Subject Matter Expert (SME)
- Sandia National Laboratories (SNL)
- NASA Space Technology Mission Directorate (STMD)
- System Modeling Language (SysML)
- Technical Operating Reports (TORs)
- Tri-University Meson Facility (TRIUMF)

2

• Through Silicon Via (TSV)

Outline

- NASA Electrical, Electronic, and Electromechanical (EEE) Parts Landscape
 - Why the Change?
 - General Agency EEE Parts Interfaces
 - EEE Parts Manager: A New Role in the Agency
- 2018 Activities
 - NASA Electronic Parts and Packaging (NEPP) Program
 - NASA Space Technology Mission Directorate (STMD)
 - NASA Space Environments Testing Management Office (SETMO)
- Summary



EEE Parts – Why the Change?

- Capabilities are defined as a combination of technical content, workforce, specialized facilities and infrastructure, as well as unique tools and techniques
- NASA currently has 19 discipline, 7 system, 5 research, and 3 service capabilities
- EEE parts falls under the Avionics discipline within the Capability Leadership
 Model EEE parts management function stood up for implementation

General NASA EEE Parts Interfaces

NASA EEE Parts Manager

- Manage consolidation and centralization of EEE parts workforce
 - Radiation effects on EEE parts are in scope, as is management of the Agency radiation facility block buy
 GSFC is lead Center, with support from JPL
- Provide resources for Centers to acquire EEE parts workforce expertise and a forum to coordinate activities with stakeholders (e.g., OCE, OSMA, SETMO, etc.) and customers
- Track the state of the Agency EEE parts workforce, including Center expertise, demand, and capacity
- Support Agency policy and technical decisionmaking processes
- Evolve management functions as needed

NEPP Mission Statement

Provide NASA's leadership for developing and maintaining guidance for the screening, qualification, test, and reliable usage of electrical, electronic, and electromechanical (EEE) parts by NASA, in collaboration with other government Agencies and industry.

NEPP - Charter

Agency Priorities – Independent Support

- •Commercial Crew
- •Small Mission Reliability
- •Coordination with NASA Consolidation, CLTs, NESC, STMD, SAPP, and radiation block buy
- •Collaborate with DoD/DOE on space radiation test infrastructure

Technology Evaluation • Advanced /new EEE parts/technologies • Ex. Advanced CMOS, GaN, SiC • Working Groups (NASA , government, aerospace) • Screening/qualification/ test/usage guidelines • Partnering: NASA, Government Agencies, Industry, University,

International

Trusted and RH Electronics

- •Collaboration with NASA and other Agency Supply Chain and Trust/Counterfeit Electronics Organizations
- Support DoD efforts on Trusted Foundries and FPGAs (w/NASA STMD and OCE/Space Asset Protection)
 Support DoD RH efforts

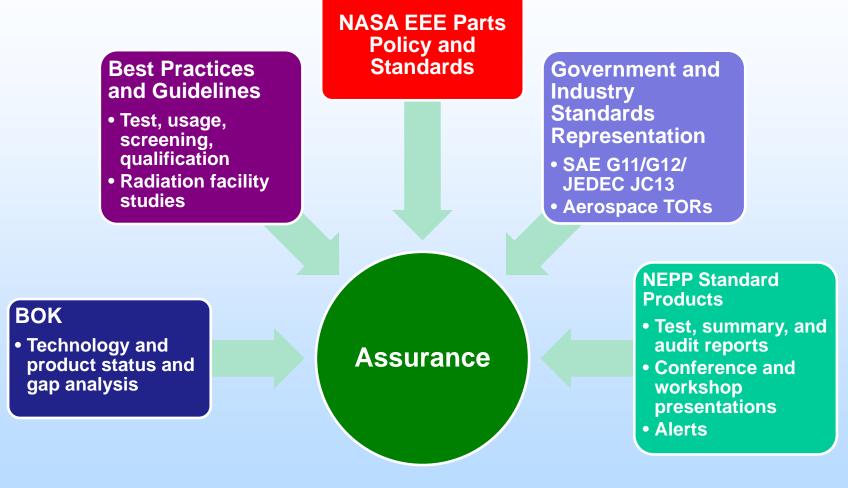
EEE Parts Problem Investigations

Agency/Industry-wide problems
GIDEP and NASA Alert development

8

EEE Parts Infrastructure

- •NEPAG Telecons and Working Groups •SME Capabilities
- •Communication and Outreach within NASA and to the greater aerospace community


Agency Leadership

 NASA Policies and Procedures Agency Guidelines. **Body of Knowledge** (BOK) documents. and Best Practices Coordination of Government and Industry Standards Audit Coordination with AF, NRO, DLA •Partnering within NASA and other Agencies, Industry, University, and International

Mission Assurance

NEPP – Product Delivery

Related task areas:

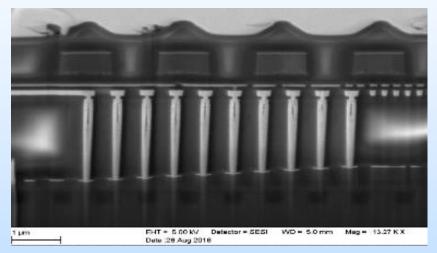
Technology/parts evaluations lead to new best practices, etc...

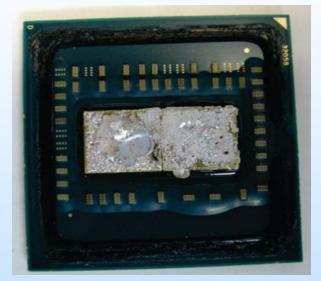
Body of Knowledge (BOK) Documents

What goes into a BOK

- An overview of the technology
- An overview of technology applicability to space/aeronautics
- An overview of technology maturity, produceability and/or commercial availability
- Reliability, qualification, and/or radiation knowledge-base
- Technology direction or extent of the reliability issue for the future Identification of experts, technology sources, test houses, etc.
- Facilities/capabilities
- Recommendation for follow-on NEPP task (if applicable)

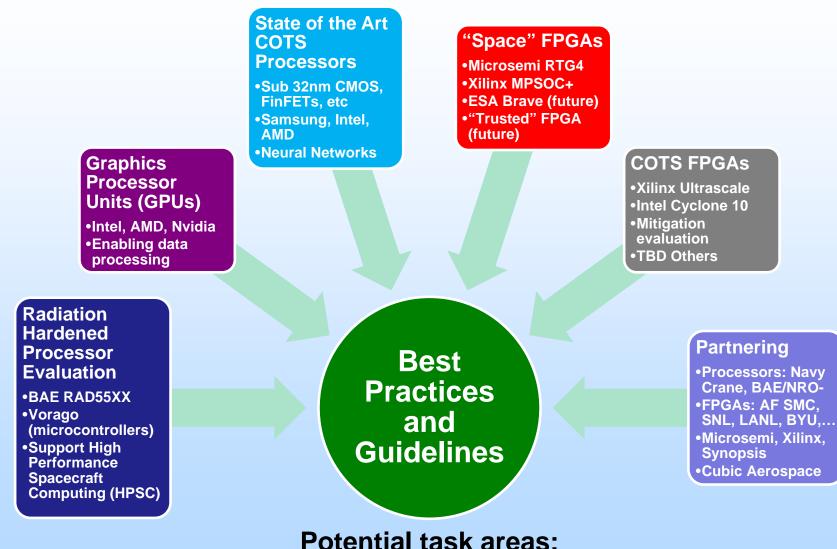
BODY OF KNOWLEDGE FOR SILICON CARBIDE POWER ELECTRONICS


What's New for NEPP in FY18


- Increased emphasis on needs of small missions such as CubeSats and model-based mission assurance (MBMA)
 - Partnering with other NASA organizations, Agencies, and universities
 - Expansion of outreach in this area
- More assurance products
 - BOKs, Guidelines, Tools, Information Sharing, Training
- Significant update of the NEPP website planned
 - Easier to find guidance and search for data
 - New tie-ins to the SmallSat community
- Support for Agency efforts for EEE Parts Consolidation, Radiation Beam Block Buys, and Capability Leadership Teams

Advanced Technologies

Technology/device evaluations with a nod to developing test methods and user guidance



AMD Ryzen Processor

Hynix 3D Flash Memory

- New: collaboration with DMEA and GlobalFoundries on 22nm FD-SOI and 28nm bulk radiation evaluation
 - Discussion with other government Agencies as additional partners

artificial intelligence (AI) hardware, Intel Stratix 10

NEPP – Memories

New materials/ architectures

- Resistive
 - Fujitsu/Panasonic
- Spin torque transfer magnetoresistive
 - Avalanche, Everspin
- 3D Xpoint
 - Intel Optane
- Enabling "universal" memories

DRAMs

- DDR4 test capability (in progress)
- Commercial DDR (various)
- Tezzaron DiRAM (w/HPSC)
- Enabling high performance computing

Commercial Flash

- 3D
- Samsung, Hynix, Micron, Wester Digital
- Planar TBD
- Enabling data storage density

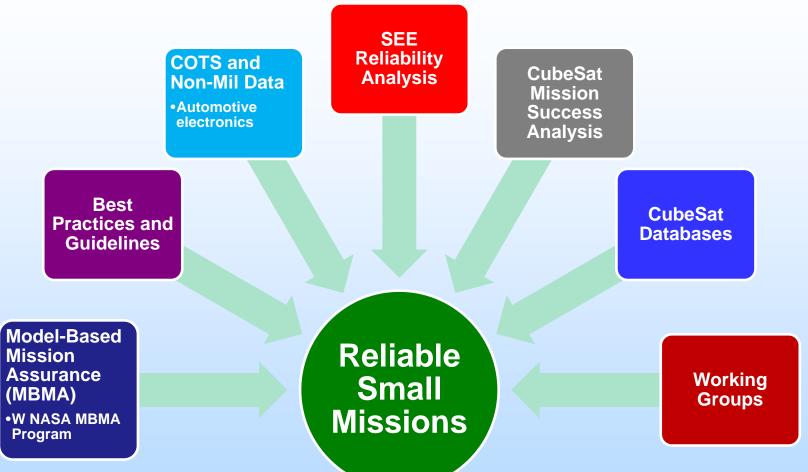
Best Practices and Guidelines

Partnering

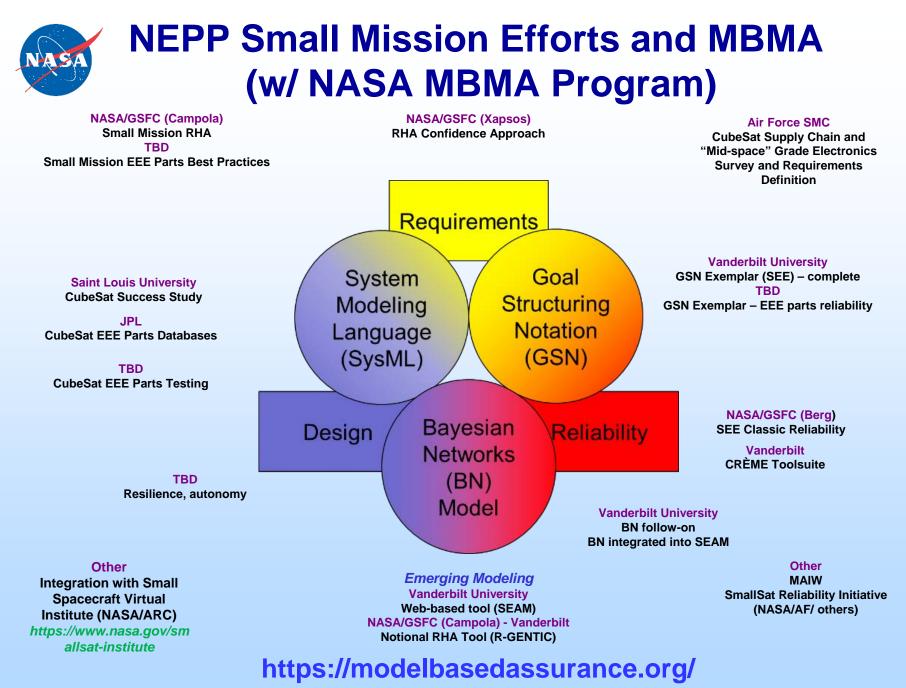
- Navy Crane
- NASA STMD
- Avalanche
- University of Padova

14

Related task areas:


Deprocessing for single event testing (also w/processors, FPGAs,...)

NEPP – Packaging



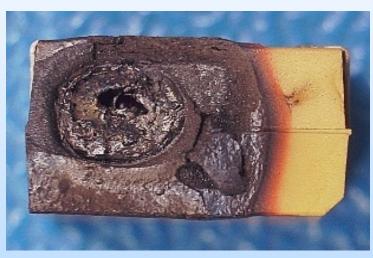
NEPP - Small Mission and Emerging Architectures Efforts

Big goal is working with Vanderbilt University on developing a MBMA toolsuite that encompasses traditional and new radiation hardness assurance (RHA) concepts and tools

To be presented by Kenneth A. LaBel and Jonathan A. Pellish at the Microelectronics Reliability and Qualification Working (MRQW) Meeting, El Segundo, CA, February 6-8, 2018.

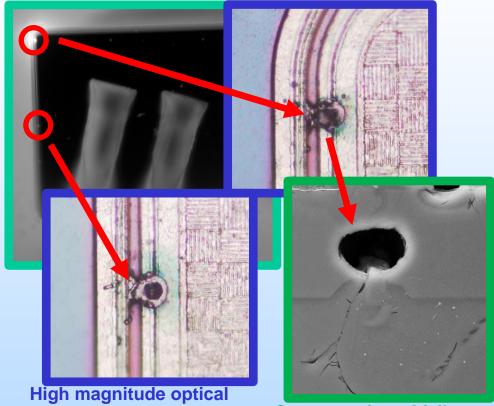
Infrastructure Challenges

Using Proton Cancer Therapy Centers for electronics testing


"Status" on Where We Test

- The long-time facilities (used prior to IUCF shutdown
 - Massachusetts General Hospital (MGH) Francis H. Burr Proton Therapy Center
 - Tri-University Meson Facility (TRIUMF) Vancouver, CAN
 - James M. Slater, M.D. Proton Treatment and Research Center at Loma Linda University Medical Center (LLUMC)
- Newer locations that are selling time
 - California Protons Cancer Therapy Center (formerly SCRIPPS Proton Therapy Center)
 unclear if any change of policy or not
 - Northwestern Medicine Chicago Proton Center
- Coming "soon" either currently willing or planning on access
 - Mayo Clinic Proton Beam Therapy Program, Rochester, Minnesota and Scottsdale, AZ
 - NASA currently discussing contract options
 - Cincinnati Children's Proton Therapy Center
 - Load by patients/internal research has been higher than anticipated slowing down external user access
 - Hampton University Proton Therapy Institute, Hampton, Virginia
 - Building a dedicated research room with planned June/July readiness
- Possibilities
 - Oklahoma City's ProCure Proton Therapy Center
 - The Roberts Proton Therapy Center at University of Pennsylvania Health System
 - Maryland Proton Treatment Center, Baltimore, Maryland
 - Renegotiating new contract with Varian services outcome will determine access
 - M.D. Anderson Cancer Center's Proton Center, Houston

Always open to discussions with ANY location

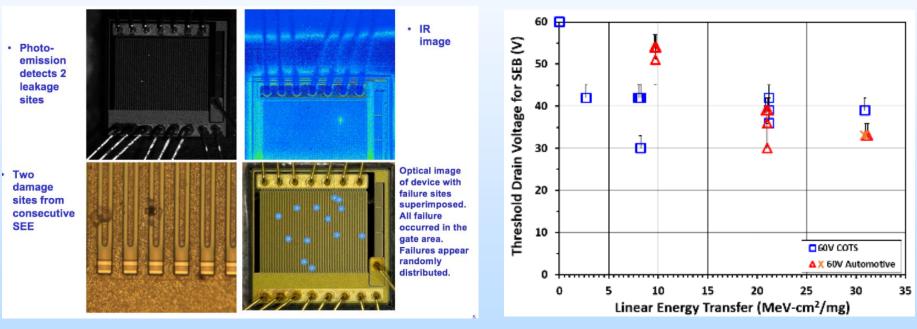


Working Industry/Agency-Wide Concerns

Tantalum capacitor failure

Thermal Image of failure locations

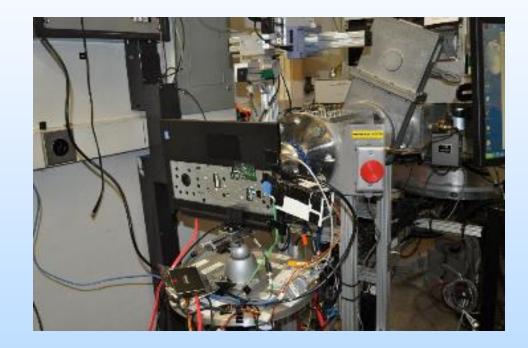
High magnitude option images of failure locations

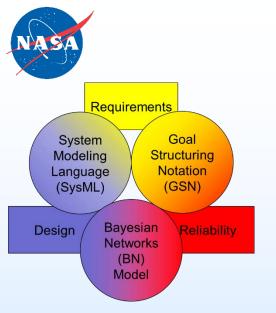

Cross-section of failure location

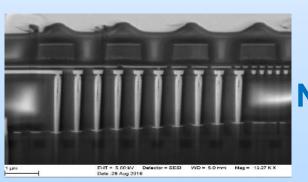
20

Failure analysis of Schottky diode radiation damage

Vendor Validation Tests

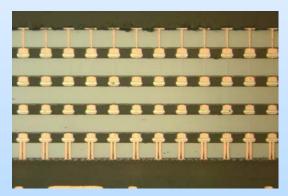

GaN IC – radiation test analysis


Comparison of n-type 60V trench MOSFET SEB thresholds


Partnering is key

- Within
 - NASA
- With
 - Other
 government
 agencies
 - Industry
 - University
 - International

Emerging Assurance Methods (Witulski, Vanderbilt University, NEPP ETW 2017)


Advanced Technology Reliability

9th Annual NEPP Electronics Technology Workshop (ETW)

Scheduled dates: June 18-21, 2018 NASA/GSFC and on-line

Radiation Testing

Commercial IC Packaging

NASA STMD

Relevant efforts

- High Performance Spacecraft Computing (HPSC)

- "The goal of the HPSC activities is to develop a significantly improved spaceflight computing capability for NASA missions. This will be achieved by addressing the computational performance, energy management, and fault tolerance needs of NASA missions through 2030."
- ARM chiplet approach selected with Boeing as prime
- https://gameon.nasa.gov/projects-2/high-performancespaceflight-computing/
- Advanced Memory Technology
 - Initial manufacturing status and usage studies for advanced memory technologies relevant to HPSC needs
 - Focus on DDRX style interface devices for performance needed
 - Collaborative testing with NEPP Program

NASA SETMO

NASA SETMO

- Along with EEE Parts Manager, NEPP, and others have been given approval to develop "radiation common block buys" (i.e., single contracts between NASA and external radiation facilities)
- This may allow NASA to
 - Internally prioritize access
 - Schedule regular access
 - Provide support to critical facilities
 - Aid working with new facilities (e.g., proton therapy sites, etc...)

https://nepp.nasa.gov