https://ntrs.nasa.gov/search.jsp?R=20180001323 2019-08-30T12:30:36+00:00Z

Prognostics As A Service (PaaS) Advisory Working Group

Initial Meeting January, 2018

PaaS Team

Chris Teubert (NASA ARC): Project PI, Group Lead Diagnostics and Prognostics

Nelson Brown & Otto Schnarr (NASA AFRC): Autonomy, Large UAS/UAM

Patrick Quach (NASA LaRC): Small UAS

Mark Muha (NASA GRC): Security Expert

Robert Kerczewski (NASA GRC): Communications Expert

Jason Watkins (NASA ARC, SGT Inc.): Software Engineer

Meeting objectives:

- 1. Establish a common understanding of the PaaS project and concept
- 2. Establish a common understanding of the purpose of the working group
- 3. Introduce PaaS team members & WG members
- 4. Provide initial feedback and guidance to the PaaS Team

Prognostics uses sensor data to provide real-time assessment of

Current Health State
Future Health States
Future Performance
Failure Prediction

For systems, vehicles, airspaces

Prognostics- Utility **Pilots Remote Operators** Air Traffic Control **UAS Traffic** Management (UTM) Airline Dispatch Autonomy Maintainers

Prognostics- Utility

Pilots

Remote Operators

Air Traffic Control

UAS Traffic Management (UTM)

Airline Dispatch

Autonomy

Maintainers

Provide health information for components, vehicles, airspace

Reduced Risk of failure of critical systems

Impact: Enabling Robust Autonomous Systems

Autonomous Systems that:

- 1. Monitor health in-flight
- 2. **Predict** failures in-flight
- 3. **Understand** how performance degrades
- 4. **Autonomously** make decisions based on this

Reduced Maintenance Costs

Request PaaS Services

All could potentially be human or autonomous

Prognostics As-A-Service (PaaS)

Identify, explore, and develop solutions to mitigate the technical barriers and design decision space for performing prognostics remotely, as-a-service at a large scale

Challenges		
Generalizatio n	Can a single PaaS system support the wide variety of aircraft classes and configurations?	
Env Complexity	Can a PaaS system provide accurate predictions in complex environments?	
Usefulness	Can the PaaS results be provided in such a way that they can inform significant action to maintain safety and efficiency?	
Security	Can existing security solutions help PaaS operate in a way so as to protect Confidentiality, Integrity, and Availability?	
Comms	Can PaaS handle the communication complexity involved with the architecture: including bandwidth constraints, dropout, etc.?	
Trust	Can PaaS be designed so that the results will be trusted?	

PaaS Working Group

Working Group Purpose

To advise in the identification and investigation of feasibility challenges for the PaaS Architecture, and on how feasibility can be established in a manner meaningful to industry and academia

Working Group Membership

24 individuals from across government, industry, and academia

Discussion

Please say name and company/organization before speaking

Questions

- Why are you interested in prognostics as-a-service?
- What challenges do you see for this architecture?
- What would you need to feel that this technology is mature enough to use?

Challenges		
Generalizatio n	Can a single PaaS system support the wide variety of aircraft classes and configurations?	
Env Complexity	Can a PaaS system provide accurate predictions in complex environments?	
Usefulness	Can the PaaS results be provided in such a way that they can inform significant action to maintain safety and efficiency?	
Security	Can existing security solutions help PaaS operate in a way so as to protect Confidentiality, Integrity, and Availability?	
Comms	Can PaaS handle the communication complexity involved with the architecture: including bandwidth constraints, dropout, etc.?	
Trust	Can PaaS be designed so that the results will be trusted?	

Backup Slides

Potential Strengths/Weaknesses of PaaS Architecture

Strengths

- Computational constraints
- Access to external data
- Ease of integration, maintenance
- Ease of extension
- Size, Weight, and Power (SWaP)
- Efficiency of resource sharing
- Data collection/learning

Weaknesses

- Communication security concerns
- Communication stability/availability
- Latency/bandwidth constraints

Model-Based Prognoser

Prototype Shortcomings

• REST is not the best format for an API for streaming sensor data/results- Consider other architectures

Chosen Architecture

Reasoning for Architecture Choice

- Computational constraints
- Utilizing external data
- Ease of integration, Maintenance
- Ability to integrate new features
- Improve with use
- Size, Weight, and Power (SWaP)
- Resource Sharing (Efficiency)

Take-away

A cloud-enhanced architecture can provide prognostics technologies to all aircraft and includes additional efficiency, capability, and performance advantages

Demonstrating Feasibility

Test the ability to address the six challenges with a proof of feasibility system, for small and large UAS (UAM representative vehicles), with different end users

Generalization	Env Complexity	Usefulness
Security	Comms	Trust

Testing Communications and Environmental Complexity

Communication:

 Communications Constraints (e.g. Bandwidth, Latency)

Environmental Complexity:

• Different environmental

Experts from both of these will be involved with developing requirements, designing experiments, and final feasibility assessment

Testing Security

Security expert on team

Hardware-In-The-Loop FlightDeck

Leveraged for PaaS HITL

- Consists of cockpit with flight controls, autopilot, radio
- Connected to prognostics virtual lab
- Can display prognostics results on GUI on left screen

Operation Station

- Connected to prognostics virtual lab
- Controls experiment, can operate as ATC or Dispatch

Prognostics Virtual Lab

- Set of tools for distributed prognostics experiments
- LVC Gateway used to share network messages for aircraft, and systems
- Connect HITL Elements, Virtual and Real aircraft, prognostics algorithms, GUIs, etc.

Deliverables

- Feasibility Assessment Document
- Protocol Recommendations
- Publicly Released Proof of Concept PaaS system
- Publicly Released Data

Approach

- 1. Requirements
- 2. Design and build proof-of-concept

- 3. Test Early, Test Often
- 4. Disseminate data, software, results
- 5. Transition

Deliverables

- Publicly Released Proof of Concept PaaS system
- Protocol Recommendations
- Journal/Conference Publications
- Publicly Released Data

SHARP Laboratory

- Laboratory for the development of testbeds and test systems
- Verification and validation of mathematical models
- Electric propulsion system testbed
- Flight simulation system and flight deck
- Power supplies, oscilloscopes, and data acquisition systems.

Systems Health, Analytics, Resilience and Physics modeling (SHARP) Laboratory

Factors in Choosing PaaS Targets

These factors should be considered when choosing systems to target for PaaS:

- 1. Criticality of system
- 2. Difficulty
- 3. Likelihood of failure
- 4. Ability to detect health state and predict failure
- 5. Utility- ability to take action based on the results of prognostics
- 6. Commonality- How often is this system used on aircraft

Context Diagram

