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CFD Vision 2030 Study

UQ and error topic findings from the CFD Vision 2030 study by
Slotnick et al., 2014

I “Errors in current CFD simulations are not well understood or
well quantified, including errors due to spatial and temporal
discretization, incomplete convergence, and the physical
models and parameters they embody.”

I “Variability and uncertainty of inputs (boundary and initial
conditions, parameters, etc.) to fluid dynamic problems are
largely unquantified.”

I “Even if estimates are available and/or assumed, the
propagation of these uncertainties poses a significant
challenge due to the inherent cost, the lack of automation and
robustness of the solution process, and the poor utilization of
high performance computing.”

I “. . . the aerospace community, in particular, have had minimal
investments to address these issues.”



Introduction

I CFD codes often utilize finite-dimensional approximation
(grids, basis functions, etc) thus incurring CFD numerical
errors.

I Uncertainty propagation methods calculate uncertainty
statistics for output quantities of interest using a numerical
method (e.g. quadrature, kernel convolution, etc.) thus
incurring UQ numerical errors.

I Given input sources of uncertainty, non-intrusive uncertainty
propagation methods quantify the uncertainty in output
quantities of interest by performing a finite number CFD
realizations needed in the calculation of output statistics.

Unfortunately, the numerical errors associated with CFD re-
alizations and statistics evaluation are generally not additive
and the impact of this error on calculated output statistics is
often non-intuitive.



Combined Uncertainty and Error Bounds

NASA T 3 project funded articles

I Barth, T.J., “Non-Intrusive Uncertainty Propagation with
Error Bounds for Conservation Laws Containing
Discontinuities”, LCSE, Vol. 92, 2013.

I Barth, T.J., An Overview of Combined Uncertainty and A
Posteriori Error Bound Estimates for CFD Calculations,
AIAA-2016-1062, 2016, (SciTech best paper in fluid
dynamics).

I Barth, T.J., On the Calculation of Moment Statistics with
Error Bounds for CFD Calculations Containing Random
Parameters and Fields, A Guide to Uncertainty
Quantification and V&V, Mehta et al. (Eds), Joint
NASA/JANNAF TP-2016-219422, 2017.



A Combined Uncertainty and Error Bound
Analysis Framework

For this analysis framework, we demand that

1. if the problem has no uncertainty, standard a posteriori error
bound estimates for CFD realization error are obtained,

2. if the problem has no CFD realization error, standard
uncertainty estimates are obtained,

3. if the problem has both CFD realization error and uncertainty,
uncertainty estimates with error bound estimates are obtained.



A Combined Error and Uncertainty
Framework

We also posit that a framework for combined uncertainty and error
should answer the following questions:

1. How accurate is a computed output statistic?

2. How does the numerical error present in CFD realizations
affect the accuracy of a computed output statistic?

3. How does numerical error incurred in evaluating statistics
affect the accuracy of a computed output statistic?

4. To improve the accuracy of a computed statistic, should
additional resources be devoted towards solving CFD
realizations more accurately (e.g. finer mesh) or towards
evaluating the statistics more accurately (e.g. more CFD
realization evaluations)? Provide the computational tools for
optimizing the selection of target realization errors and
statistics errors (separate work).



Example Statistics

Expectation (mean), E [·]

E [f ] =

∫
f (x) p(x) dx

Variance (σ2), V [·]:

V [f ] = σ2[f ] =

∫
(f (x)− E [f ])2 p(x) dx

Probability density function, pf

Pr [a ≤ f ≤ b] =

∫ b

a
pf (x) dx

I Moment statistics such as expectation and variance are
estimated using numerical quadrature.

I Probability density functions are estimated using a discrete
kernel convolution. Histograms often not good enough.



What Statistics Do Engineers Want or Need?
I Lowspeed NACA 4412 airfoil

I Uncertain angle-of-attack

I Angle of Attack
= Gaussian3σ(0◦, .5◦)

I Airfoil rotated from −3◦ to 20◦

I HYGAP uncertainty
propagation.

Lift Curve Moment Statistics
(bands denote 1,2,3 std dev)

Lift Curve Normalized PDF
Statistics



Preview Example: Uncertainty Calculation
with Error Bounds

ONERA M6 wing calculation

I Compressible Navier-Stokes CFD calculation,

I Spalart-Allmaras turbulence model, Reynolds number 11.7× 106,

I Inflow Mach number, M∞ = Gaussian3σ(m = .84, σ = .012),

I Angle of Attack, AOA = Gaussian3σ(m = 3.06, σ = .075),

I Approximately 5 million mesh points.

expectation(density) log10 variance(density)



Preview Example: Uncertainty Calculation
with Error Bounds

ONERA M6 wing surface pressure coefficient moment statistics at 65%
wing span location.

Surface Pressure Statistics Closeup error bound intervals Error bound estimates

ONERA M6 wing surface pressure coefficient PDF statistics at 65% wing
span location.

Surface Pressure Statistics PDF distribution, x = .532 PDF distribution, x = .718



Preview Example: Uncertainty Calculation
with Error Bounds

ONERA M6 Wing Lift and Drag PDF Statistics:



Output Quantities of Interests (QOI)

Let α ∈ RN denote a vector of N uncertain parameters, uh(x , t;α)
a numerical realization, and u(x , t;α) the exact
infinite-dimensional counterpart.

Let J(uh;α) ≡ J(uh(x , t;α);α); denote an output quantity of
interest (QOI)

I Functional such as space-time integrated forces and moments.

I Graph of derived quantities such as pressure or temperature
along a space-time curve.

I Derived quantity from general space-time volume subsets.

The non-intrusive uncertainty propagation methods obtain
estimates of QOI statistics and/or probability densities from M
realization QOI outputs

{J(uh;α(1)), J(uh;α(2)), . . . , J(uh;α(M))}



Numerical Quadrature

Let I [f ] denote the weighted definite integral

I [f ] =

∫
Ξ

f (ξ) p(ξ) dξ , p(ξ) ≥ 0

and QM I [f ] denote an M-point weighted numerical quadrature

QM I [f ] =
M∑
i=1

wi f (ξi )

with weights wi with evaluation points ξi . Finally, define numerical
quadrature error denoted by RM I [f ], i.e.

RM I [f ] = I [f ]− QM I [f ] .



Error Formulas for Moment Statistics-I
Given the QOI realization error magnitude

|εh| ≡ |J(u;α)− J(uh;α)|
and |RM I [·]|, we have the following bound estimates from Barth (2013):

Expectation Error Bound:

|E [J(u)]−QME [J(uh)]| ≤ |QME [|εh|]|+ |RME [|εh|]|+ |RME [J(uh)]|

Variance Error Bound:

|V [J(u)]− QMV [J(uh)]| ≤ 2
(
(|QME [|εh|2]|+ |RME [|εh|2]|)

×(|QMV [J(uh)]|+ |RMV [J(uh)]|)
) 1

2

+ |QME [|εh|2]|+ |RME [|εh|2]|+ |RMV [J(uh)]|

I Red and magenta terms can be made smaller by decreasing
realization error ↓ εh.

I Blue and magenta terms can be made smaller by decreasing
quadrature error ↑ M.



Error Formulas for Moment Statistics-II
When the signed QOI realization error

εh ≡ J(u;α)− J(uh;α)

and signed quadrature error RM [·] are available, we have a much sharper
estimate. Let J̃ ≡ Jh + ε̃h

Expectation error estimate:

E [J]− QME [Jh] ≈ QME [J̃] + RME [J̃]− QME [Jh]

Variance error estimate:

V [J]− QMV [Jh] ≈ QME [J̃2] + RME [J̃2]− (QME [J̃] + RME [J̃])2

−(QME [J2h ]− Q2
ME [Jh])

I Red terms collectively can be made smaller via mutual cancellation
by decreasing realization error ↓ εh.

I Blue terms can be made smaller by decreasing quadrature error ↑ M.



Error Formulas for Moment Statistics - III

Observation: Obtaining error bound estimates for expectation and
variance then reduces to the tasks of

I estimating the realization error εh or realization error
magnitude |εh|,

I estimating the quadrature error RM I [·] or quadrature error
magnitude |RM I [·]|.



Calculation of Moment Statistics via
Multi-level Quadrature

Let N denote the number of uncertainty (random variable) dimensions

I Multi-level dense tensorization methods (# dimensions ≤ 4)

I Multi-level Clenshaw-Curtis and Gauss-Patterson quadratures,

I Hybrid Multi-level Clenshaw-Curtis and Adaptive Cubic
Polynomial (HYGAP) quadrature, Barth (2011)

I Multi-level sparse tensorization methods (# dimensions ≤ 15)

I Multi-level Clenshaw-Curtis and Gauss-Patterson sparse grids,
Novak and Ritter (1996)

I Multi-level sampling methods (# dimensions large)

I Optimal2 multi-level MC sampling, Mishra and Schwab (2009)

Dense Tensor Sparse Tensor MC Sampling

2
Subject to CFD order of accuracy constraints, s < q(d + 1)



Multi-level Quadrature Error Estimates

d-dimensional multi-level quadrature error estimates are of the form

I Dense tensor quadrature

R
(d)
L [f ]︸ ︷︷ ︸

quadrature error

≡ I (d)[f ] − Q
(d)
L [f ] ≈ 1

2r − 1︸ ︷︷ ︸
regularity factor

(Q
(d)
L [f ] − Q

(d)
L−1[f ])︸ ︷︷ ︸

multi−level quadrature

I Sparse tensor quadrature

R
(d)
L [f ]︸ ︷︷ ︸

quadrature error

≡ I (d)[f ]−Q
(d)
L [f ] ≈ 1(

L−1
L

)(d−1)(r+1)
2r − 1︸ ︷︷ ︸

regularity factor

(Q
(d)
L [f ] − Q

(d)
L−1[f ])︸ ︷︷ ︸

multi−level quadrature

I Monte Carlo quadrature given an M population of multi-level sampling
evaluations

R
(d)
M [f ] =

√
V [f ]/M



Estimating QOI Realization Error

Estimate ε
(i)
h ≡ J(u;α(i))− J(uh;α(i)) for each realization i .

I Richardson (2-level) and parameter-free Aitken (3-level)
extrapolation using space-time grid hierarchies, e.g.

J(u;α)− J(uh;α) ≈ 1

2q − 1
(J(uh;α)− J(u2h;α))

with 2q =
J(u2h;α)− J(u4h;α)

J(uh;α)− J(u2h;α)

I A posteriori error estimation of functionals using dual /
adjoint problems, Becker and Rannacher (1996)

J(u)− J(uh) = F (Φ− πhΦ)− B(uh,Φ− πhΦ)

with B(·, ·) the primal semi-linear form, F (·) the
right-hand-side forcing, and Φ a linearized dual problem.

I Patch postprocessing techniques, Zienkiewicz-Zhu (1992),
Bramble-Schatz (1998), Cockburn et. al. (2003), exploiting
superconvergence.



QUEST Software
QUEST - Quantified Uncertainty with Error bound Software Toolkit

I status – beta testing with web launch in late spring

QUESTPrep preprocessor QUESTPost postprocessor

Moment Hires QOI Regularity
Algorithm # Dims Statistics PDFs high high (piecewise) low

CC dense tensor small X X X X X
GP dense tensor small X X X X X

HYGAP dense tensor small X X X X X
CC sparse tensor medium X X X X X
GP sparse tensor medium X X X X X
M-L Sampling large X X X X X∗

CC - Clenshaw-Curtis, GP - Gauss-Patterson, HYGAP - Hybrid Global/Adaptive Polynomial



Turbulence Model Parameter Uncertainty
Uncertainty is imposed in 3 turbulence model parameters that are often
observed to be most sensitive

I NACA 0012 airfoil, M = 0.8, AOA=2.26◦, Re=9 million,

I 513× 65 mesh,

I Baldwin-Barth turbulence model with uncertainty,

I cµ = Uniform[.081, .099],

I cε1 = Uniform[1.08, 1.32],

I cε2 = Uniform[1.8, 2.2].

Surface pressure coefficient Zoom closeup in shock region



Turbulence Model Parameter Uncertainty

Expectation error on upper surface Std deviation error on upper surface

Lift probability density function Drag probability density function



Mashup of further numerical examples

• High-lift geometry with flap and slat uncertainty

• Functional uncertainty using primal-dual problems

• Correlated random fields using Karhunen-Loeve representation



Concluding Remarks and Future Directions
Combined uncertainty and error bound estimates provide a quantitative guide
when performing practical CFD calculations with uncertainty

1. quantifying the overall accuracy of computed statistics,

2. quantifying the impact of UQ numerical errors on computed statistics,

3. quantifying the impact of CFD numerical errors on computed statistics,

4. providing a systematic procedure for determining whether (and how
much) additional resources, if needed, should be devoted to solving
realizations more accurately (finer grids) or improving the accuracy of
computed moment statistics quadratures (more parameter evaluations).

Current and future directions

1. methods for calculating high resolution PDFs with error bounds for
high-dimensional problems, reduced regularity problems, inverse UQ
problems, dynamical system problems,

2. dynamic adaptivity for both CFD and uncertainty statistics,

3. software beta testing

3.1 Shashir Pandya (ongoing) - Normal surface flap blowing
3.2 Jim Ross (initiated) - “Evaluation of CFD as a Surrogate for a

Wind Tunnel at Mach 2.5-4.5”


	A Preview Problem
	Preliminaries
	An Error Bound for Moment Statistics
	Multi-level Quadrature
	Quadrature Error Estimates
	Realization Error Estimates
	Software
	Numerical Results
	Turbulence Model Uncertainty
	Concluding Remarks

