

# PEG Modifications & Enhancements for SLS Block-1 and Block-1B Vehicles

Paul Von der Porten, MSFC
Naeem Ahmad, MSFC
Matt Hawkins, MSFC/ESSCA/Jacobs Engineering
Thomas Fill, Charles Stark Draper Laboratory
2018 AAS GNC Conference



## Outline

- Introduction
- Block-1 Modifications to Powered Explicit Guidance (PEG) Since Shuttle
- Block-1B 1-target VS 2-target Ascent Guidance Problems
- Block-1-to-Block-1B Enhancements
- Conclusion



#### Introduction

- Marshall Space Flight Center (MSFC) Guidance, Navigation, & Control (GN&C) Team has an expanded responsibility going from Space Launch System (SLS) Block-1 to Block-1B vehicles
  - Characteristics of Block-1 ascent burn allow for use of a modified version of Space Shuttle's Powered Explicit Guidance (PEG) algorithm
  - Long-arc burns and the need to carry out Lunar Vicinity and Earth Escape missions require enhancements to PEG for Block-1B

| MSFC                | Block-1                                                    | Block-1B                                                                                                                                   |
|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| GN&C Responsibility | Ascent Only                                                | Ascent and In-space                                                                                                                        |
| Guided Burns        | Core Stage (CS) Ascent<br>Burn to Low Earth Orbit<br>(LEO) | CS/EUS Ascent Burns to LEO, Apogee Raise Burn (ARB), Trans-Lunar Injection (TLI), Earth Departure Burn (EDB), Settling Motor Disposal Burn |
| Guidance Algorithm  | Modified Shuttle PEG                                       | Enhanced Shuttle PEG                                                                                                                       |



www.nasa.gov/sls

### **Block-1 Modifications to PEG Since Shuttle**

- Block-1's ascent burn arc (~13°) similar size as Space Shuttle
  - Allows for straight adaption of Shuttle's PEG with the ascent desired velocity mode

#### Modifications:

- Multi-phase PEG and PEG Phase Manager
  - Replaces Shuttle's algorithmic approach to switch between 3 phases for a data-driven approach
  - Moves calculation of most burn times and all mass-flowrate-to-initial-mass time constants out of time-to-go computation algorithm into an outer loop wrapper
- Lofting parameter for Launch Abort System Jettison
  - Induces additional lofting by applying an altitude bias to the desired radius magnitude
- Engine-Out Logic
  - Uses inertial velocity to decide if an alternate mission target is needed in response to a CS engine-out
- Thrust Factor
  - Similar to Shuttle's FT\_FACTOR
  - Provides updated propulsion knowledge to PEG

, Modifications allow an outer loop to drive PEG for Block-1
SLS www.nasa.gov/sls

.4

## Block-1B 1-target VS 2-target Ascent Guidance

#### Block-1B Ascent Profile

- Boost stage: Two Solid Rocket Boosters and CS engines burn to booster separation
- CS burn: CS engines burn to intermediate point in ascent trajectory
- EUS Ascent: EUS engines burn to LEO insertion
- Two flight techniques studied early in Block-1B design:

|                     | 1-target                  | 2-target                    |
|---------------------|---------------------------|-----------------------------|
| CS Burn Approach    | Burn to completion        | Targeted burn with flight   |
|                     |                           | performance reserve         |
| EUS Ascent approach | Targeted burn with flight | Targeted burn with flight   |
|                     | performance reserve       | performance reserve         |
| PEG Modeling        | Entire burn arc (~50°)    | Separate targeted burns for |
|                     | from booster separation   | CS and EUS Ascent (i.e. PEG |
|                     | to LEO                    | reset for EUS Ascent burn)  |

- 2-target baselined for Block-1B
- 1-target presented several convergence issues that led to several bullet-proof enhancements to PEG kept for Block-1B

Challenging 1-target guidance problem led to several bulletsls www.nasa.gov proofing enhancements for PEG

## Block-1-to-Block-1B Enhancements

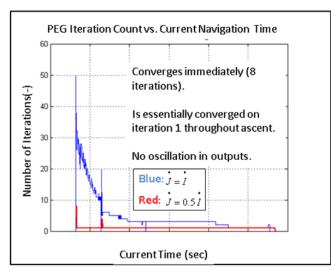
#### Safeguards for Constructing Turn Rate Vector

- Limiting Tangent of Thrust Angle
  - Useful initial strategy to limit turn rate magnitude
  - Bullet-proof enhancement from 1-target problem
- Elevation-limit
  - Shuttle heritage
  - Ensures thrust direction from PEG's steering law does not have a component retrograde compared to cutoff radial direction
  - Required to close engine-out 2-target scenarios
- Sign Reversal of Thrust Turning Rate Vector
  - Constructs augmented coordinate frame to protect orthogonality constraint from yielding a thrust turning rate sign reversal
  - Bullet-proof enhancement from 1-target problem

Safeguards developed for Turn Rate Vector to address stress (SLS www.nasa.gov/Situations due to long-arc burns

## Block-1-to-Block-1B Enhancements

#### Scaling Identity Jacobian in PEG Corrector


- Applies a contraction factor to PEG's traditional Identity matrix
   Jacobian as a simplified scheme to improve PEG's convergence for long-arc burns
- Bullet-proof enhancement from 1-target problem

#### Plane Constraint Strategy

- Strategy to unify plane constraint for both ascent and in-space burns
- PLANE\_OFF, RV\_NULL, V\_NULL, INTERCEPT

#### New Desired Velocity Routines

- Linear Terminal Velocity Constraint
  - Shuttle heritage
  - Used for ARB and TLI burns
- Hyperbolic Target



Additional enhancements bullet proof PEG and make PEG capable (SLS www.nasa.of carrying out Block-1B missions

#### Conclusion

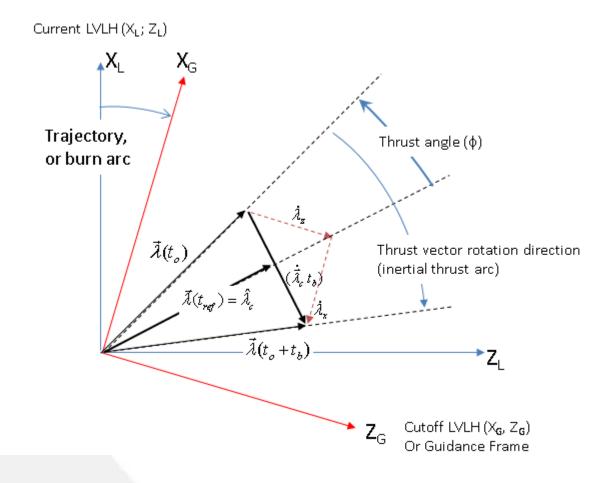
- Space Shuttle PEG modified to accommodate initial evolution of SLS, Block-1
- Several enhancements to PEG required going from Block-1 to Block-1B to carry out demanding Block-1B missions
- Improvements make PEG capable for use on the SLS Block-1B vehicle as part of the GN&C System



# Thank you!



Any questions?






## **BACKUP**



## PEG Linear Tangent Guidance Geometry





www.nasa.gov/sls