https://ntrs.nasa.gov/search.jsp?R=20180002050 2019-08-30T12:50:28+00:00Z

National Aeronautics and Space Administration

SPACE LAUNCH SYSTEM

AAS 18-132: 6DOF Testing of the SLS Inertial Navigation Unit Kevin Geohagan, MS

Kevin Geohagan, MSFC/ESSCA William Bernard, MSFC/ESSCA T. Emerson Oliver, MSFC/ESSCA Jared Leggett, MSFC/NASA Dennis J. Strickland, MSFC/ESSCA

Test Background/Objectives

Test proposed & conducted to:

- Gain insight into gyrocompassing performance of a flight-like RINU under representative SLS on-pad dynamics
- Provide gyrocompassing test data for validation of the RINU performance model
- Test planned pre-launch RINU operational procedures
- Assess the robustness of the RINU GCA algorithm to larger-thanpredicted SLS on-pad dynamic environments
- Performed in MSFC 6DOF Table Facility formerly Contact Dynamics Simulation Lab (CDSL), site of:
 - Hubble Space Telescope deployment, service, and Flight Support System (for deorbit), docking/berthing
 - Shuttle/ISS docking/berthing
 - HWIL Space Shuttle Arm training

Facility Test Equipment/Test Article

Equipment:

- 6DOF table with \sim 4m² top
 - Stewart platform (hexapod) design
 - hydraulically actuated
- *ARTEMIS HWIL simulation framework
 - commands table dynamics
 - emulates SLS flight software

- *MAESTRO user interface

- live data display
- provides test operator interface
- records1553 bus traffic
- GPS antenna for accurate timetagging of data
- Cameras, displays
- Power supply, power quality monitoring/recording system

* Used for SLS-Program-requirement-verification HWIL testing

- Theodolite, North-referenced mirrors
 - measures RINU true azimuth
- Leica Laser Tracker System (LLTS)
 - tracks position and attitude of table
- Leica inclinometer
 - co-located with RINU to measure tilt

- Test Article is RINU Flight-Equivalent Unit (FEU)
 - identical hardware to RINU flight units
 - "equivalent" because acceptance testing is abbreviated
 - no shock/vibration/thermal testing

Test Operational Flow

- Power on ARTEMIS/MAESTRO (HWIL software), table hydraulics & control, data recording/monitoring devices

 confirm nominal operation
- Power on RINU, allow to thermally stabilize
- Initialize RINU
- Initiate 6DOF table dynamics
- Command RINU to GCA mode, gyrocompass for 60 minutes
- Command RINU to navigation mode
- Table dynamics end; lower table and power off
- Measure RINU azimuth via theodolite
- Power off RINU

Table Motion

Purpose	Description
Preliminary Testing	Static GCA only; no nav
Baseline GCA	Static GCA with nav
Twist & Sway	3 dynamic twist & sway models:
	 Latest SLS
	Early SLS
	Vendor heritage
Robustness Testing	SLS twist & sway with scaled up dynamics
24-Hour Static	24-hour static GCA
7-Hour GCA	7-hour dynamic GCA

1

• Purpose:

 To provide validation evidence for RINU model by comparing hardware/model performance

Procedure:

- delta-V & delta-Ø
 inputs to RINU GCA
 algorithm reported on
 1553
- input to the RINU performance model's GCA code (bypassing sensor model)
- compare GCA solution to hardware

8

0.328

Z Delta-Velocity (ft/s)

0.326 Missing data was replaced 0.324 with interpolated values 0.322 0.320 0.318 interpolated 0 0.316 -0.10.0 0.1 0.2 0.3 0.4 RINU timetag (s) +1.48e3 Hardware vs Model GCA Solution Comparison, TC3R4B 0.0020 r delta-Theta Frame Drop 0.0015 Using interpolated data, Angular Error (rad) 0.0010 delta-Velocity comparison results were Frame Drop 0.0005 improved 0.0000 -0.0005East North Up -0.00101000 2000 3000 4000 0 Time (s)

5000

Twist & Sway Dynamics	Difference in GCA Azimuth, radians
Early SLS	-0.000123
	0.000162
Vendor Heritage	0.000128
	0.000048
Latest SLS	-0.000054
SLS X4	0.000026
SLS X8	-0.00078
SLS X16	-0.000199
SLS X32	-0.000316
SLS X64	-0.000339

ý

Post-Test Analysis: Monte Carlo Comparison

• Purpose:

- Assess hardware test performance relative to expectation

Procedure:

- 500-case Monte Carlos
 - Same twist & sway dynamics used to produce table dynamics
 - 2 error budgets:
 - -vendor capability estimate (labeled "NEB")
 - -derived from ATP test limits (labeled "ATP")
- Azimuth error for Monte Carlo solutions co-plotted against that measured in test

Post-Test Analysis: Monte Carlo Comparison

Twist & Sway Model

Vendor heritage case very near bounds of model prediction

- Possible explanations:
 - dynamics not structurally derived
 - large-amplitude dynamics—possibly stressing table control

Post-Test Analysis: Monte Carlo Comparison

Twist & Sway Dynamics Scaling Factor

All scaled-dynamics cases comfortably within modeled bounds
Negligible sensitivity to error budget across all tested twist & sway environments

Post-Test Analysis: Sensor Noise Characterization

Purpose:

- Examine RINU sensor noise and error characteristics
- Provide validation evidence for RINU performance model

Procedure:

- Data from 24-hour runs used to perform Allan Deviation, spectral analysis
- Recreated test condition using RINU model for comparison
- Findings to feed back to change recommendations for RINU model developers

Conclusions

Testing achieved all test objectives

- Gained insight into GCA performance
- Produced test data for RINU model validation
- Tested pre-launch RINU operational procedures
- Assessed RINU GCA robustness

Post-test analysis providing RINU model validation insight

- Sensor bypass analysis provided direct GCA solution comparison
- Modeled sensor noise/error characteristics were directly assessed via Allan Deviation and spectral analysis
 - Will likely drive future model updates

RINU hardware GCA performance was within expectation for all SLS and SLS-derived (scaled) environments

- Some potential lack of conservatism in modeled performance under vendor heritage environment
 - May merit further testing to confirm

Thank you!

