National Aeronautics and Space Administration

Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

Brian Taylor Dr. Bill Emrich Dr. Dennis Tucker Marvin Barnes NASA MSFC

2/26/2018

Nicolas Donders Kettering University

Kelsa Benensky University of Tennessee

- Background
- Introduction

• Modeling

- Neutronics
- Fluid/Thermal

• Fabrication Experiments

- material selection
- Process
- Material Characterization
- Path Forward

Background

• Nuclear Thermal Propulsion

- NTP uses a reactor to heat propellant prior to expansion through a nozzle
- Can achieve more than twice the I_{sp} than chemical engines

Traditional Reactor Elements

- Hexagonal rods with straight axial flow passages
- Particle Beds attempted
 - Much larger surface area
 - thermal instabilities/hot spots

Grooved Ring Fuel Element

- New fuel element geometry
 - Stacked grooved disks designed to increase surface area and heat transfer to propellant
 - Leading to higher thrust/weight engines
 - Propellant flows from outer to inner diameter of disks which heat the propellant
 - Stack of disks makes an element
 - Cluster of elements in a reactor

Carbide materials (e.g. UC, NbC, ZrC)

- Mixture can reach higher melting points than other fuel forms
- Low reactivity with H₂ propellant
- Goal: high propellant temperatures and higher thrust/weight
 - More efficient engine

NEUTRONICS MODELING

Purpose

- Develop a concept reactor layout for a set thrust goal
 - Power and distribution
- Analyze impact of material selection upon nuclear reactions
- Study relative material quantities
- Determine uranium enrichment and quantities required
 - Relate to theoretical density

2/26/2018

NTR Reactor Configuration Using (U-Zr-Nb)C Fuel 25K Thrust -- 8 kW/cm³ -- Optimal Fuel to Moderator Ratio = 0.261

NTR Reactor Configuration Using (U-Zr-Ta)C Fuel 25K Thrust -- 8 kW/cm3 -- Optimal Fuel to Moderator Ratio = 2.95

Uranium Carbide Material Neutron Absorption Cross-Sections

 Grooves and porosity decrease overall density requiring additional UC for reactivity NAS/

Grooved Ring Fuel Element Power Distributions

• Power peaking profile of a grooved ring fuel element

 Modest power peaking seen so far

THERMAL FLUID MODEL

Thermal Fluid Model

- Truncated element modeled (2 rings)
 - Comsol
 - Beryllium structure with zirconium carbide rings
 - Properties of mixtures not yet developed for model
 - Boundary conditions varied to determine appropriate pressure delta to heat the flow for a given power/volume of 8 kW/cm³

A 3.08×10

Showed fluid/thermal process works as expected

Temperature

Velocity

FABRICATION EXPERIMENTS

Selection of Materials

Material Selection

- Need high melting temperature and low neutron cross section (except uranium)
- NbC and ZrC chosen
 - Lower neutron cross section than HC or TC
- Uranium Carbide Surrogate
 - Substitute for uranium
 - Avoid regulatory hurdles
 - Vanadium Carbide chosen
 - Similar crystal structure

Experimental Fabrication Process

- Sift or grind materials to smaller size
- Spark Plasma Sintering
 - Powder compressed at high pressure in die
 - High current passed through die
 - Control dwell, rise and cooling times as well as temperatures
 - Trying to reach high theoretical density
 - Porosity reduces reactivity and could lead to hydrogen reactions with the uranium

• Goal

- Achieve a uniform distribution in a solid solution, ultimately with low porosity
- Reached up to 98% theoretical density
- Grooves
 - Looking for best way to cut geometry
 - Attempting to try to use a water jet

	0.120 0.007 0.200						
Date	Sintering Temperature [*C]	Dwell Time [min]	Cooling Rate [*C/min]	Pressure [Mpa]	Density [g/cc]	% Theoretical Density	
1/27/2017	1500	10	100	50	5.65	80.77%	
1/31/2017	1500	10	100	50	5.75	82.20%	
2/1/2017	1600	10	100	50	5.86	83.77%	
2/2/2017	1600	20	100	50	6.05	86.48%	
2/2/2017	1600	20	200	50	6.52	93.20%	
2/3/2017	1500	20	50	50	6.46	92.34%	
2/13/2017	1600	20	20	50	6.20	88.62%	
2/24/2017	1600	20	200	50	6.65	95.06%	
3/17/2017	1600	20	200	50	6.60	94.35%	
3/20/2017	1700	20	200	50	6.80	97.21%	
3/21/2017	1550	30	200	50	6.83	97.64%	
3/22/2017	1600	20	200	50	6.87	98.21%	
3/27/2017	1600	20	200	60	6.85	97.92%	

Screening Runs of "As Received" [V_{0.120}Zr_{0.587}Nb_{0.293}]·C

• Direct Current Sintering Variables and the resulting density of sample

Fabrication Experiments – Results to Date

Table 1: X-Ray Spectroscopy Analysis of Figure 16							
Material %	С	0	V	Zr	Nb		
Spectrum 1	23.47		66.41	6.71	3.41		
Spectrum 2	26.59	1.32	0.24	67.92	3.94		
Spectrum 3	25.62	0.92	0.31	68.95	4.20		
Spectrum 4	25.48	1.21	0.38	68.81	4.12		
Spectrum 5	34.74	1.85		22.79	40.63		
Spectrum 6	35.56	1.93	0.25	22.75	39.51		
Spectrum 7	31.71	2.62	0.39	26.76	38.52		

- Early samples used powders as supplied from the manufacturer
- Saw clumping and poor distribution

Table 2: X-Ray Spectroscopy Analysis of Figure 17								
%	C	≓	<	Zr	Np	千	Та	
8	18.1	80.8	0	0.31				
9	18.24	1.15	78.26	0.36	0.99			
10	18.56	0.49	78.29	0.65	1.32			
11	18.94		2.1	31.08	29.87		15.91	
12	16.06		3.04	25.52	33.76	21.61		
13	18.77		0.19	77.83	3.21			
14	17.67		0.44	73.07	8.81			
15	19.32		1.69	47.06	30.15			

EDS Layered Image 2

• Sifting materials improved distribution

VAG

CARBIDE MATERIAL CHARACTERIZATION

Thermal Diffusivity Measurements

- The team is attempting to measure thermal diffusivity to fill in gaps in the literature
 - Disintegration of the first samples occurred for unknown reasons
 - Reasons are unknown, but it should be noted that samples survived much higher temperatures in CFEET
 - Future measurement attempts are planned

THERMAL DIFFUSIVITY

Hot Hydrogen Environment Testing

Samples tested in Compact Fuel Element Environmental Test (CFEET) system at MSFC

- 50 kW induction power supply and two-color pyrometers for temperature measurements up to 3000 ° C
- Designed to flow hydrogen across subscale fuel materials for testing at high temperatures for up to ten hours.

Hot Hydrogen Environment Testing

• CFEET Results

- 1st sample maintained structural integrity for 30 minutes at 2000 K
- 2nd set of three samples were run at 2250 K for 30 minutes
 - X-ray diffraction (XRD) analysis appears to show the tricarbides moving toward a solid solution
 - Unidentified peaks need further analysis to verify if they are due to the formation of free carbon, ZrC2, or other lower melting temperature compounds

Oxide Formation in Milled Carbides

- Milled Sintered Carbides
 showed cracks post sintering
- Milled carbides developed blister formation and experienced crack propagation post CFEET test to 2500 to 2750 K

Mainly intergranular crack propagation (along grain boundaries)

Oxide Formation in Milled Carbides

Tricarbide Powders, no milling: XRD

Tricarbide Powders, milled: XRD

- No oxide formation
- Oxide formation seen after milling powders

Zirconium Oxide Formation - ZrO2 peaks - Reduced ZrC intensity

NASA MSFC/Brian Taylor

Conclusions and Path Forward

- Fabrication has come a long way in showing a viable means for producing these tricarbide rings
 - High densities reached
 - Appears to be moving toward a solid solution after an extended period in a hot hydrogen environment
- Tricarbide samples have held up in a hot hydrogen environment
 - Future hotter tests are planned

• Path Forward

- Sift powders / no milling
- Heat treat in CFEET or Graphite Furnace at ~2500 K for extended period
 - Evaluate for solid solution
- Water jet test fabrication of geometry