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11 Abstract. A defining feature of many physiological systems is their synchrony and reciprocal influence. An important challenge, however, is
12 how to measure such features. This paper presents two new approaches for identifying synchrony between the physiological signals of
13 individuals in dyads. The approaches are adaptations of two recently-developed techniques, depending on the nature of the physiological time
14 series. For respiration and thoracic impedance, signals that are measured continuously, we use Empirical Mode Decomposition to extract the low-
15 frequency components of a nonstationary signal, which carry the signal’s trend. We then compute the maximum cross-correlation between the
16 trends of two signals within consecutive overlapping time windows of fixed width throughout each of a number of experimental tasks, and
17 identify the proportion of large values of this measure occurring during each task. For heart rate, which is output discretely, we use a structural
18 linear model that takes into account heteroscedastic measurement error on both series. The results of this study indicate that these methods are

19
effective in detecting synchrony between physiological measures and can be used to examine emotional coherence in dyadic interactions.
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22
23 The synchronization of oscillatory systems – or coupled
24 oscillations – is widely studied in the biological and physical
25 sciences (e.g., Mirollo & Strogatz, 1990; Pikovsky,
26 Rosenblum, & Kurths, 2001; Weishenbush, Nishioka, Ishik-
27 awa, & Arakawa, 1992), with also multiple applications in
28 the social sciences, economics, and medicine (e.g., Quian
29 Quiroga, Kraskov, Kreuz, & Grassberger, 2002). The syn-
30 chrony of these oscillations can provide information about
31 the system not available from separate univariate analyses.
32 Consider, for example, the investigation of several electroen-
33 cephalographic signals measured simultaneously from an
34 individual’s scalp during a particular task. Each signal could
35 be analyzed separately, and those with the most activity
36 would indicate an area of relative activation. However, var-
37 ious signals can show simultaneous activation, revealing
38 communication between different areas of the brain during
39 the task (Engel & Singer, 2001; Fries, 2005). Furthermore,
40 different types of such coherence – or synchrony – may
41 be evident for different mental processes, as is the case with
42 epileptic seizures (Quian Quiroga et al., 2002). Thus, the
43 study of synchrony and oscillatory systems can provide a
44 valuable means of studying psychophysiological processes,
45 as well as possible changes in those processes as a function
46 of different stimuli and conditions.
47 In the current study we propose the application of two
48 recently-developed methodologies for examining the rela-
49 tions between two time series. The first technique is the

50Empirical Mode Decomposition (EMD), an algorithm for
51filtering continuous time series data. The second method is
52the structural heteroscedastic measurement-error (SHME)
53model, which is adapted here for detecting linear associa-
54tions between two discrete time series. We apply these tech-
55niques to physiological data from individuals in couples that
56participated in a laboratory-based social interaction task.
57The paper is organized as follows. First, we provide a
58brief review of some of the common synchronization mea-
59sures and their rationale in the context of emotional pro-
60cesses in dyadic interactions. Second, we describe the
61EMD and SHME methods, with details about each of the
62required steps for their implementation. Third, we illustrate
63the application of the proposed methods with an application.
64The paper ends with a discussion of the potential of these
65models in psychophysiological research.

66Synchronization Measures

67Synchronization measures have become an important tool for
68exploring the associations between time series. Multiple
69methods now exist to identify and characterize synchroniza-
70tion, including indices of linear interdependence, such as
71cross-correlation, coherence, and event-related coherence, as
72well as more recent measures of nonlinear interdependence,
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73 such as mutual information (Kramer et al., 2004). In
74 econometric research, for example, one of the most common
75 methods to assess whether two series share a pattern in their
76 long-term fluctuations is co-integration (Engle & Granger,
77 1987; Granger, 1981). In psychological research, perhaps the
78 most standard method to assess synchronization consists of
79 cross-correlations (e.g., Gottman, 1990; Mauss, Levenson,
80 McCarter, Wilhelm, & Gross, 2005). This method can be
81 useful to examine concurrent and lagged relations between
82 two time series, either through the entire series or through
83 windows of interest (e.g., Boker, Rotondo, &King, 2002).

84 Synchronization of Emotion
85 in Dyadic Interactions

86 Human and animal research suggests that psychophysiolog-
87 ical linkages between two conspecifics are an inherent ele-
88 ment of social bonding and attachment (Coan, 2008;
89 Coan, Schaefer, & Davidson, 2006; Feldman, 2007;
90 Gottman, Swanson, & Swanson, 2002; Guastello, Pincus,
91 & Gunderson, 2006; Hofer, 1984, 1994; Sbarra & Hazan,
92 2008). The study of dyadic interactions indicates that emo-
93 tional exchanges between the two members of a couple can
94 be highly interdependent (Cowan & Cowan, 2000; Ferrer &
95 Nesselroade, 2003; Ferrer & Widaman, 2008; Song &
96 Ferrer, 2009; Thompson & Bolger, 1999). This research
97 shows, for example, that the adoption of one individual’s
98 emotion state by another promotes relationship longevity
99 (Hatfield, Cacioppo, & Rapson, 1994), that the length of
100 the relationship between romantic and non-romantic partners
101 corresponds to the level of emotional coherence that the pair
102 maintains (Anderson, Keltner, & John, 2003), and that the
103 facial expression and emotional tone exhibited by romantic
104 partners are a strong predictor of relationship dissolution
105 (Levenson & Gottman, 1985).
106 Research in dyadic interactions using psychophysiologi-
107 cal signals is scarcer. In a classic study of couples, Levenson
108 and Gottman (1983) found that, during a conversation of
109 disagreement, distressed couples showed significantly
110 higher levels of synchrony between the partners’ autonomic
111 response signals than non-distressed couples. Moreover, this
112 synchrony was predictive of marital satisfaction in the same
113 couples. This study notwithstanding, the relative absence of
114 research on psychophysiological synchrony in couples is
115 conspicuous, largely because most theories of human attach-
116 ment and emotion regulation suggest that the emotional
117 experiences of one member of a couple are highly related
118 – if not dependent upon – the experiences of his or her part-
119 ner (cf. Sbarra & Hazan, 2008). In our view, a large part of
120 the discrepancy is methodological; theoretical developments
121 in this area greatly outpace methodological innovations. In
122 order to fully understand dyadic emotion regulation and
123 psychophysiological synchrony in couples, the field needs
124 accessible methods that can capture and adequately

125represent the complexity in interdependent emotional regu-
126latory systems (Cole, Martin, & Dennis, 2004).

127Synchrony Between Continuous Variables:
128Trend Extraction Using EMD

129The EMD (Huang et al., 1998) is an algorithm developed to
130filter continuous data into any number of intrinsic mode
131functions (IMFs), each representing a particular frequency
132component of the original data. EMD works so that the
133highest-frequency components are separated out of the origi-
134nal time series until either no further frequency components
135can be detected within the residual series or a preset maxi-
136mum number of IMFs has been extracted. These IMFs must
137satisfy two conditions. First, in each IMF, the total number
138of extrema and the total number of zero crossings must be
139the same or differ by 1. Second, at every point in the
140IMF, the mean value of the envelopes defined by the local
141maxima and the local minima must equal zero. These con-
142ditions are necessary for the purpose of defining the concept
143of instantaneous frequency in a meaningful way. The IMFs
144are extracted from a time series one by one beginning with
145the highest intrinsic frequency using an iterative process
146called sifting. The goal of this process is the empirical iden-
147tification of intrinsic oscillatory modes in the data based on
148their instantaneous frequencies. The time lapse between suc-
149cessive extrema defines this time scale.
150In the sifting process, the local maxima of the original
151time series are identified and connected by a cubic spline
152to form a curved upper envelope for the series. A lower
153envelope for the time series is formed in a similar way. In
154forming the cubic spline, adjustments at the signal bound-
155aries must be implemented to eliminate boundary effects.
156The mean of the upper and lower envelopes is then com-
157puted and subtracted from the original time series to form
158a new series. If this new series satisfies the two IMF condi-
159tions, it is taken as the first IMF. Otherwise, the process is
160repeated on the new series, and so on, until the IMF condi-
161tions are satisfied. Once the first IMF is identified, it is sub-
162tracted from the original data and the residual becomes the
163starting point for finding the next IMF. The procedure stops
164when the residual signal fails to yield any suitable IMF can-
165didates, or a preset maximum number of IMFs is extracted.1

166The input to the EMD is any continuous time series.
167A strong advantage of this nonparametric method is that it
168does not require a stationary time series in order to accom-
169plish its task. The output from the EMD consists of a resid-
170ual signal and a set of n IMFs in decreasing-frequency order.
171The first few IMFs cumulatively carry high-frequency com-
172ponents of the original time series, which are here consid-
173ered to carry extraneous information riding on the actual
174signal of interest, which oscillates at a lower frequency.
175These components could be caused by associated processes,
176or by concurrent phenomena in the environment, or by
177imperfections in the recording instruments. Summing the

1 Kim and Oh (2009) have developed an R package called EMD that implements this procedure very efficiently. The R code used in these
analyses is provided in the appendix.
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178 residual and the last k IMFs together thus produces a time
179 series that captures the information in which we are inter-
180 ested, while discarding extraneous information. Hence we
181 refer to the resulting time series as the signal of interest.
182 An important goal here is determining which value of k
183 to use. The idea is to find a sufficient number of
184 low-frequency IMFs to capture the signal that we wish to
185 study, with some tolerance for capturing extraneous informa-
186 tion embedded in medium-frequency IMFs. A Fast-Fourier
187 Transform (FFT) could be used to detect the most powerful
188 frequencies within each IMF. Then only those IMFs whose
189 dominant frequencies are below a desired threshold are
190 selected. However, use of the FFT is contrary to the EMD
191 approach, since it assumes global frequencies in the signal,
192 while EMD is devised to identify local frequencies that are
193 not necessarily global. A better approach uses the Hilbert-
194 Huang Transform (HHT) applied to the IMFs (Huang,
195 2005; Huang et al., 1998). This transform provides the ampli-
196 tude and instantaneous frequency at each time point for each
197 IMF. The energy contained in a single IMF is the sum of the
198 squared amplitudes. Dividing this sum by the total energy of
199 all IMFs enables us to compute the percentage of the total
200 energy contributed by each IMF. We then select the last k
201 IMFs such that the percentage of the total energy contributed
202 by their combination exceeds some chosen threshold, say
203 90%. Adding these to the residual produces the signal of
204 interest. See Kim, Paek, and Oh (2008) and Wu and Huang
205 (2004) for related applications of the HHT. Regardless of the
206 method employed, it is informative to compare the plot of the
207 extracted signal with that of the original signal in every case
208 to determine whether the extracted signal appears to capture
209 the desired trend of the original while removing sufficient
210 extraneous information. Such a comparison may convince
211 one to include more or fewer IMFs. For a simple example,
212 Figure 1 shows (top panel) an obvious low-frequency sinu-
213 soidal signal with high-frequency noise. The signal of inter-
214 est (bottom panel) is completely captured by adding the
215 residual and the last three IMFs, whose combined energy
216 is 99% of the total, while the extraneous information (the
217 noise) is completely removed.
218 Once the signals of interest are extracted, the synchrony
219 between them can then be assessed using cross-correlations.
220 These steps are illustrated with empirical data in subsequent
221 sections.

222Synchrony Between Discrete Variables:
223Slope Estimation Using a SHME Model

224The SHME model is a technique to detect linear associations
225between discrete time series. This approach is particularly
226suited for capturing the relationship between two time series
227when the variability within each time series is not constant.
228The first step in the application of the SHME model consists
229of transforming the raw signal. For example, if the observed
230time series consists of electrocardiogram (EKG) data (as in
231the current empirical application), the raw signal is trans-
232formed into a heart rate in the form of, say, beats per minute.
233This can be accomplished in various ways, as is illustrated
234in subsequent sections.
235Once the data are transformed, each of two time series is
236partitioned into n segments of some specified width, where n
237depends on the duration of the task. The choice of the seg-
238ment width is a function of both detailed information and
239precision. Denote these segments I1, . . ., In. Consider, for
240example, a selected time of 5 s (5,000 ms) for the segments.
241Each segment Ii will consist of mi distinct heart rate values
242xj,i, j = 1, . . ., mi, for one of the series (e.g., one person’s sig-
243nal), each of which lasts for kj milliseconds, and pi distinct
244heart rate values yj,i, j = 1, . . ., pi for the other series
245(e.g., the other person’s signal), each of which lasts for lj
246milliseconds. Hence 5000 = k1+ . . . + kmi = l1+ . . . lmi for
247i = 1, . . ., n. For each segment Ii, the weighted mean heart
248rates are then computed as

ui ¼
1

5000

Xmi

j¼1

k jxj;i and vi ¼
1

5000

Xpi

j¼1

ljyj;i
250250

251for each series, respectively. Because the model requires
252the independence of u1, . . ., un, v1, . . ., vn, we assume that
253the average heart rates in segments I1, . . ., In are mutually
254independent for each subject.
255Similarly, the weighted variance of the mean heart rate
256for each segment is approximated as

r2
i � s2i

Xmi

j¼1

k j

5000

� �2

and s2i � t2i

Xpi

j¼1

lj

5000

� �2

;
258258

259where s2i and t2i are the sample variances for each time ser-
260ies over Ii, respectively. Since these 2n variances are
261potentially different across the two series (e.g., as in two
262individuals in a couple), any method for estimating the lin-
263ear association between u = (u1, . . ., un) and v = (v1, . . .,
264vn) must account for heteroscedastic measurement error
265on each variable.
266The SHME model with equation error assumes that

ui ¼ xi þ ei; vi ¼ li þ vi; and li ¼ aþ bvi þ ci; 268268

269where the independent measurement errors are
270ei � Nð0; r2

i Þ and vi � Nð0; s2i Þ, and the equation error
271is ci � Nð0; r2Þ. The normality of the model errors is
272well justified, since the observations ui and vi are defined
273as the weighted average of independent random variables.
274Moreover, this model assumes that all error terms are
275mutually independent.

O
ri

g
in

a
l

E
x
tr

a
c
te

d

Figure 1. Original signal (top) consisting of high-fre-
quency oscillations riding on a low-frequency signal of
interest, and the low-frequency signal of interest (bottom)
created by summing the last three IMFs and the residual.
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tude and instantaneous frequency at each time point for eachtude and instantaneous frequency at each time point for each
IMF. The energy contained in a single IMF is the sum of theIMF. The energy contained in a single IMF is the sum of the
squared amplitudes. Dividing this sum by the total energy ofsquared amplitudes. Dividing this sum by the total energy of
all IMFs enables us to compute the percentage of the totalall IMFs enables us to compute the percentage of the total
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example, a selected time of 5 s (5,000 ms) for the segments.example, a selected time of 5 s (5,000 ms) for the segments.

will consist ofwill consist of m
, for one of the series (e.g., one person’s sig-, for one of the series (e.g., one person’s sig-

nal), each of which lasts fornal), each of which lasts for
heart rate values yyj,ij,iyy ,, jj = 1,= 1,
(e.g., the other person’s signal), each of which lasts for(e.g., the other person’s signal), each of which lasts for
milliseconds. Hence 5000 =milliseconds. Hence 5000 =

. . .,, n.n. For each segmentFor each segment
rates are then computed asrates are then computed as

uui ¼¼
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276 Under a structural model, both vi and li are assumed to be
277 random with unspecified but finite first and secondmoments.
278 Note that the symmetry of this model would allow one to
279 switch li and vi in the latter model equation above, so that
280 there is no implication of directionality. Techniques for
281 estimating the slope b in this setting are available in the liter-
282 ature (e.g., Cheng & Riu, 2006; Kulathinal, Kuulasmaa, &
283 Gasbarra, 2002;McAssey&Hsieh, 2010; Patriota, Bolfarine,
284 & de Castro, 2009). When the measurement-error variance is
285 small, as in the application here, the method of moments
286 (Patriota et al., 2009) provides an efficient estimate of the
287 slope that is simple to compute. This approach will be used
288 to estimate b and test whether it is significantly nonzero in
289 the empirical application.
290 To this end, let

Suu ¼
Xn

i¼1

ui ÿ �uð Þ2
nÿ 1

; Suv ¼
Xn

i¼1

ui ÿ �uð Þ vi ÿ �vð Þ
nÿ 1

;

Svv ¼
Xn

i¼1

vi ÿ �vð Þ2
nÿ 1

; r�
n ¼

Xn

i¼1

r2
i

n
; s�n ¼

Xn

i¼1

s2i
n
;

r��
n ¼

Xn

i¼1

r4
i

n
; and ðrsÞ�n ¼

Xn

i¼1

r2
i s

2
i

n
:

292292

293 Moreover, let r2
v ¼ Var vð Þ; r� ¼ limn!1r

�
n;r

�� ¼
294 limn!1r

��
n ; s

� ¼ limn!1s
�
n, and ðrsÞ� ¼ limn!1ðrsÞ�n.

295 Then, having established that the distribution of

296
ffiffiffi
n

p ðb̂ÿ bÞ converges to Nð0; xÞ, the slope estimate b̂
297 and its asymptotic variance x under this model are

b̂ ¼ Suv

ðSuu ÿ r�
nÞ

andx ¼
2b2 r�� ÿ r4

v

� �
þ p

r4
v

;
299299

300 where,

p ¼ b2r2
vr

� þ r2r2
v þ ðrsÞ� þ r2r� þ r2

vs
� þ 2b2r4

v:302302

303 Thus Varðb̂Þ � x=n for n large. Substituting the
304 parameter estimates given in Patriota et al. (2009) and sim-
305 plifying, the estimated variance of b̂ is

dVarðb̂Þ ¼
2S2

uv r��
n ÿ Suu ÿ r�

n

ÿ �2h i

n Suu ÿ r�
n

ÿ �4

þ S2
uv þ SuuSvv þ ðrsÞ�n ÿ r�

ns
�
n

n Suu ÿ r�
n

ÿ �2
307307

308 The hypothesis H0: b = 0 will be rejected when the ratio

309 b̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðb̂Þ

q
deviates significantly from zero with respect to

310 the standard normal. This procedure is illustrated with
311 empirical data in subsequent sections.

312 Empirical Illustration

313 Measures and Procedures

314 The data in this study are from four couples who completed
315 psychophysiological measurements as part of a study of dya-

316dic interactions (seeFerrer&Widaman, 2008 for details of the
317study).All four coupleswere heterosexualwith ages across all
318participants ranging from 26 to 32 years. The first three cou-
319ples defined their relationship as ‘‘exclusively dating’’ and the
320fourth coupled as ‘‘married.’’ Table 1 presents information
321about characteristics of the individuals in the couples.
322Physiological measures were collected through the
323MP150 physiological data collection system (BIOPAC sys-
324tems) and AcqKnowledge. Stimuli were administered in a
325computer monitor using E-prime (Psychology Software
326Tools, Inc.). Three autonomic response variables were
327recorded from each individual within the dyad simulta-
328neously throughout the experiment. Respiration was
329recorded using an elastic belt that was attached to each of
330the participants. The belt was placed on each subject’s chest
331at the point of highest extension during inhalation and exha-
332lation. The center of the belt contained a device that
333recorded the level of stretch within the belt at any moment,
334with greater stretch indicating inhalation and lower stretch
335indicating exhalation. Level of stretch within the belt was
336measured continuously at a rate of 1,000 Hz.
337Thoracic impedance was measured using four spot elec-
338trodes placed at the well of the neck, back of the neck, center
339of the chest, and center of the back. This configuration is
340known formally as the Qu et al. configuration (Qu, Zhang,
341Webster, & Thompkins, 1986). Each spot electrode came
342prepared with Ag/AgCl paste, and had an adhesive collar
343to ensure both good conductivity as well as stationarity of
344the electrode during the experiment. Level of impedance
345was measured continuously at a rate of 1,000 Hz.

Table 1. Individual- and dyad-level characteristics of the
four couples

Variable Couple Male Female

Attachment-related avoidance 1 2.33 3.67

(1–7 Likert scale) 2 2.61 1.39

3 3.56 2.06

4 1.56 1.06

Attachment-related anxiety 1 2.78 3.72

(1–7 Likert scale) 2 3.22 1.94

3 2.78 4.39

4 2.61 2.06

Relationship satisfaction 1 6.17 6.67

(1–7 Likert scale) 2 6.00 6.83

3 6.83 6.17

4 6.50 6.83

Relationship status 1 Exclusively

dating

2 Exclusively

dating

3 Exclusively

dating

4 Married

Relationship length 1 41

(months) 2 53

3 08

4 71
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346 An EKG was recorded using a lead II configuration, with
347 spot electrodes on the left and right torso (bipolar leads),
348 as well as the right collarbone (unipolar lead). All spot elec-
349 trodes came prepared with Ag/AgCl paste and also had an
350 adhesive collar. The EKG was measured continuously at a
351 rate of 1,000 Hz. All signals were recorded via the BIOPAC
352 150 and sent online to an external computer for processing
353 and analyses. The raw signals were exported to text files and
354 processed using the software package R (R Development
355 Core Team, 2009) for analysis.
356 Participants visited a laboratory for the physiological
357 assessment in couples. They were instructed about the
358 experiment and completed three tasks. During the first task
359 (Baseline task) participants were seated in comfortable arm-
360 chairs and instructed to relax and refrain from making bodily
361 movements or gestures for a period of 5 min. Sleep masks
362 were placed over the participants’ eyes and the overhead
363 lights were turned off in order to induce an environment
364 of relaxation. The purpose of this first task was to gain a
365 baseline signal for each individual. During the second task
366 (Gazing task), participants were asked to gaze into one
367 another’s eyes without talking or touching each other for
368 3 min. The purpose of this task was to engage the partici-
369 pants into an interaction that would elicit physiological arou-
370 sal. During the third task (In-sync task), they were instructed
371 to try to become in-sync with each other for 3 min. The term
372 in-sync was described to the participants as being analogous
373 to becoming one individual, and therefore their goal would
374 be to match their partner’s physiology. They were instructed
375 not to speak or attempt physical contact during this task, but
376 no further clarification was provided as to what constitutes
377 being in-sync or how to accomplish this. After the comple-
378 tion of the three tasks, the participants were debriefed and
379 paid for their participation. To our knowledge, none of the
380 couples knew any of the other couples. We never had more
381 than one couple in the laboratory at any time. All aspects of
382 this project were approved by the correspondent Institutional
383 Review Board for the Protection of Human Subjects.

384 Application of EMD to Respiration
385 and Impedance

386 The EMD was applied to two continuous signals, respiration
387 and thoracic impedance. The respiration signal is a measure-
388 ment of the expansion and contraction of the rib cage as the
389 subject breathes, and thus oscillates about a fairly constant
390 value at a varying frequency. The impedance measures the
391 cyclical changes in cardiopulmonary output and thus is cor-
392 related with heartbeat and respiration. Figure 2 displays the
393 raw impedance signal for one individual (i.e., male) in
394 Couple 3 during the first minute of the gazing task. As
395 depicted in the figure, this time series includes considerable
396 high-frequency oscillations riding on the underlying trend of
397 interest.
398 The EMD of this impedance series produced 10 IMFs
399 (displayed in Figure 3). Of these, only the last two IMFs
400 were selected and added to the residual, to obtain a smoother
401 signal. Figure 4 depicts this resulting smooth signal. Preced-

402ing IMFs could be added to obtain more detail, but at the
403cost of including unnecessary information. Figure 5 displays
404the resulting impedance signals of interest for both members
405of each couple during the first minute of the baseline task.
406After removing the lower-frequency IMFs from each
407individual’s time series across the three tasks, time segments
408of synchrony were detected between the signals of interest
409for the two individuals in each of the couples. For this, each
410pair of signals was examined using a sliding window of a
411fixed 6-s width, which moved in 2-s increments from the
412beginning to the end of each 3- to 5-min task. This choice
413of the window width and the increment size is arbitrary;
414other choices result in equivalent outputs but with different
415details. However, the 6-s width was deemed reasonable to
416capture two or three cycles of the signals, and thereby estab-
417lish a basis for detecting an occasion of synchrony between
418them. The 2-s increments allow the detection of changes in
419the synchrony on a moment-to-moment level.
420At each point, the cross-correlation was then computed
421between the signals over a range of lags, and the maximum
422computed value was selected as a measure of synchrony dur-
423ing that moment. The default lag range in R was used, which
424is ± 10log10 3000ð Þb c ¼ �34. This measure is referred to as
425the instantaneous coupling (IC) strength. Figure 6 displays
426the IC series for the third couple during the baseline task with
427respect to their respiration (solid line) and their impedance
428(dashed line). Note that the two series are highly correlated,
429as one would expect. Moreover, there appear to be many
430occasions during this task when the couple’s physiological
431responses appear to be highly synchronized in both variables.
432The same phenomenon is found for the other couples.
433For each of the three tasks in the experiment, the propor-
434tion p̂ of IC values that exceeded a given threshold was then
435computed. Thresholds of .6 for the respiration and .5
436for the impedance were chosen, as these values provided

Figure 2. Male’s impedance signal during gazing task for
Couple 3.
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437 a reasonable baseline proportion (i.e., not too small). Finally,
438 the proportions above the threshold for the second and third
439 tasks were compared with that from the baseline, and

440a routine hypothesis test was conducted to determine
441whether any subsequent proportion was significantly higher
442than the baseline proportion. If so, it was considered as evi-
443dence of synchronization between the individuals’ physio-
444logical signals. Note that changing the threshold would
445not only alter the baseline proportion correspondingly, but
446it would also change the proportion for the second and third
447tasks by the same amount, so that the comparison of these
448proportions with the baseline proportion would not change.
449Table 2 displays the results of these analyses for respiration
450and impedance, for each of the four couples.
451For respiration, the results indicate a significant increase
452in synchrony from baseline between the partners’ signals dur-
453ing the in-sync task for all four couples. During the gazing
454task, such increase in synchrony was only evident for the first
455couple. With regard to impedance, the significant increase in
456synchrony between the partners was perceptible during the
457gazing task for three of the couples, and such amplification
458was also true for two couples during the in-sync task.

459Application of SHME to Heart Rate

460In the first step, the raw EKG signal during each task was
461transformed into a heart rate. For this, the duration
462of each peak-to-peak interval of the EKG waveform

Figure 3. IMFs produced by
EMD of male’s impedance signal
during gazing task.

Figure 4. Male’s impedance signal during gazing task,
after higher-frequency IMFs are removed.
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463 (in milliseconds) was determined, and its reciprocal was
464 used to compute the heart rate (in beats per millisecond).

465Then the obtained values were multiplied by 60,000 to con-
466vert them to beats per minute. Because the first recorded
467ventricular contraction usually does not occur in the EKG
468signal until after a few milliseconds, the beginning of the
469time series was padded with the first computed heart rate
470value. Similarly, because the last recorded ventricular con-
471traction usually occurs a few milliseconds prior to the end
472of the EKG signal, the end of the heart rate time series
473was padded with the last computed value.
474Figure 7 displays the resulting heart rate signals during
475the first 100 s of the baseline task for both individuals in
476the four couples. Note that each heart rate oscillates over a
477large range of values, except for that of the male in the sec-
478ond couple who has an almost constant heartbeat. In every
479case, the female’s heart tends to beat faster. The objective
480in these analyses was to identify linear associations between
481the two individuals’ heart rates across the experimental
482tasks.
483For each of the tasks, the 5-min heart rate time series
484for both the male and female were partitioned into n =
48560 five-second segments, following the procedure
486described in previous sections. The SHME model was then
487applied to the EKG generated data, separately for each of
488the four couples. The results from these analyses are pre-
489sented in Table 3. These results indicate that, during the
490gazing task, the first couple showed a significant linear
491association between their heart rates. During the in-sync

Figure 5. Impedance for the
male (dark) and the female
(light) during the baseline task
for each couple, after higher-
frequency IMFs are removed.
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Figure 6. IC strength for Couple 3 during baseline task,
with respect to respiration (solid line) and impedance
(dashed line).
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492 task, such synchrony between the partners’ heart rates was
493 evident for three couples. As expected, no synchrony was
494 perceptible during the baseline task for any couple. We
495 also present in Figure 8 a scatterplot of the heart rates
496 for the first couple during each of the three tasks, along
497 with the fitted line bearing the estimated slope. As can
498 be seen, the lines accurately convey the linear trajectory
499 of each association when such an association exists.

500Cross-Validation Analysis

501To confirm the discovery of synchrony in heart rate, respira-
502tion, and thoracic impedance within each of the four couples
503in our analyses, we applied the same methods to two mis-
504matched couples. For this, the male from one randomly
505selected couple was paired with the female from another ran-
506domly selected couple as one dyad, and this process was

Table 2. Significant increase in relative frequency of strong instantaneous coupling across tasks

Couple Task Respiration p̂ p value Impedance p̂ p value

1 Baseline .149 – .020 –

Gazing .239 .048* .102 .008**

In-sync .886 .000*** .011 .709

2 Baseline .068 – .007 –

Gazing .125 .080 .045 .048*

In-sync .659 .000*** .364 .000***

3 Baseline .236 – .122 –

Gazing .125 .988 .045 .986

In-sync .818 .000*** .375 .000***

4 Baseline .216 – .027 –

Gazing .114 .984 .148 .001***

In-sync .841 .000*** .000 .979

Note. .05 < * < .01 < ** < .001 < ***.

Figure 7. Heart rates for the
male (dark) and the female
(light) during the baseline task
for each couple.
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Figure 8. Scatterplots of the heart rates for the first couple during each task, with the corresponding best-fit lines.

Table 4. Measures of synchrony between heart rates, respiration, and thoracic impedance for mismatched couples across
tasks

Mismatched couple Task b̂
ffiffiffiffiffiffiffiffi
dVar

p
ðb̂Þ p value

1 Baseline ÿ11.525 12.356 .823

Gazing 0.250 0.206 .117

In-sync ÿ54.825 482.732 .545

2 Baseline 0.000 0.001 .500

Gazing 0.023 0.022 .151

In-sync 0.000 0.021 .500

Mismatched couple Task Respiration p̂ p value Impedance p̂ p value

1 Baseline .095 – .041 –

Gazing .091 .538 .011 .930

In-sync .148 .118 .080 .119

2 Baseline .230 – .108 –

Gazing .091 .999 .045 .968

In-sync .216 .598 .114 .448

Table 3. Slope estimates for association between heart rates using the SHME model across tasks

Couple Task b̂
ffiffiffiffiffiffiffiffi
dVar

p
ðb̂Þ p value

1 Baseline 0.003 .274 .993

Gazing 1.071 .212 .000***

In-sync 1.344 .626 .032*

2 Baseline 0.358 .703 .610

Gazing 0.504 .436 .248

In-sync 0.579 .473 .221

3 Baseline ÿ0.089 .079 .254

Gazing 0.171 .099 .083

In-sync 0.369 .149 .013**

4 Baseline ÿ0.142 .185 .445

Gazing ÿ0.227 .961 .813

In-sync 0.497 .239 .037*

Note. .05 < * < .01 < ** < .001 < ***.
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507 repeated to form a second dyad. Then the analytic procedures
508 used in the empirical analyseswere implemented to detect syn-
509 chrony in heart rate, respiration, and thoracic impedance of the
510 two mismatched dyads, across the three tasks. Table 4 reports
511 the results from these cross-validation analyses. None of the
512 coefficients in these analyses reached significance for anymea-
513 sure or task (i.e., all p values exceeding .1), indicating no syn-
514 chrony for any of the mismatched dyads.

515 Discussion

516 Summary of Results

517 We presented in this paper two techniques for assessing syn-
518 chrony between psychophysiological time series. For respira-
519 tion and thoracic impedance, which are continuously
520 oscillating signals, we used the EMD algorithm to filter the
521 data and extract smooth versions of the time series. We
522 applied a moving window to measure the maximum cross-
523 correlation between the signals of the two individuals in
524 the couple within the window over a lag range, and to deter-
525 mine when this coupling exceeded a chosen threshold. The
526 relative frequency of high coupling values during the base-
527 line was then compared with those during the gazing and
528 in-sync tasks. Synchronization in respiration or impedance
529 was inferred when the proportion of coupling occurrences
530 increased significantly from the baseline to the experimental
531 tasks. Our findings indicate an increase in synchrony in res-
532 piration between the partners of all four couples during the
533 in-sync task, relative to the baseline. Such an increase was
534 only perceptible for one couple during the gazing task. The
535 findings for thoracic impedance show an increase in syn-
536 chrony, also relative to the baseline, during the gazing (for
537 three couples) and the in-sync (for two couples) tasks.
538 For heart rate, which is measured at discrete intervals, we
539 applied the SHME model with equation error to identify
540 synchrony between the partners’ signals. Using this
541 approach, we estimated the slope representing the linear
542 association between the heart rates of the two individuals
543 in the couple during each of the three tasks. This slope
544 was taken as an indicator of synchronization between the
545 two partners’ heart rates. Our findings indicate the presence
546 of synchrony between the signals of three couples during the
547 in-sync task, of one couple during the gazing task, and no
548 synchrony at all during the baseline task. Importantly,
549 cross-validation analyses provided no evidence for syn-
550 chrony when different members of a couple were randomly
551 paired, thus providing evidence for the discriminative valid-
552 ity of these synchrony detection approaches.
553 Synchronization of the physiological signals was
554 regarded as a reflection of emotional coherence between
555 the two individuals in the couples. For example, during
556 the in-sync task, participants might have concentrated on
557 matching each other’s breathing – as a way to mirror their
558 partners’ physiological state – thus resulting in an increase
559 in synchrony for respiration. This effect might have carried
560 over to the impedance (e.g., Ernst, Litvack, Lozano,
561 Cacioppo, & Berntson, 1999). Similarly, matching each

562other’s breathing could have resulted in an increase of the
563coupling between the partners’ heart rates. The synchrony
564during the gazing task can also be regarded as emotional
565coherence between the partners. In particular, this task was
566designed to elicit physiological arousal in the participants.
567Synchrony between the signals can then be indicative of
568physiological coregulation between both partners, perhaps
569as a way to cope with such arousal and provide ease or,
570more generally, showing an activation of emotional interac-
571tion between two intimate partners (e.g., Hatfield et al.,
5721994). Accordingly, the methods used in these analyses
573appear to be useful to study emotional coregulation in dya-
574dic interactions (cf. Sbarra & Hazan, 2008). Finally,
575although we expect the use of individual- and dyad-level
576characteristics (e.g., as reported in Table 1) to predict syn-
577chrony of physiological responses (e.g., higher relationship
578satisfaction is related to lower physiological concordance
579(Levenson & Gottman, 1983)), our sample size is not large
580enough to detect such associations reliably.

581Methodological Considerations
582and Future Directions

583The two approaches for assessing synchrony described in
584this report present a number of benefits. For example, the
585EMD algorithm, as a tool to parse out unwanted high-fre-
586quency oscillations from continuous data, has two important
587advantages over other standard methods. First, it does not
588rely on assumptions of stationarity, assumptions required
589by methods such as the Fourier transform. Second, in the
590decomposition of the original series via EMD, there is no
591leakage of energy, which is common in techniques such as
592the wavelet transform. Moreover, in many situations, heart
593rate data are analyzed using methods for continuous signals.
594The heart rate signal, however, constitutes a step function,
595since it is constant on intervals between contractions. Hence,
596analyzing this signal as a continuous measure is not appro-
597priate. A smoothing method could be used to transform the
598step function into a continuous signal, but making inferences
599using an imputed signal is hard to justify statistically.
600A fundamental hope for the proposed statistical methods
601is that they can be used profitably to better understand dya-
602dic emotion regulation and coregulation. Sbarra and Hazan
603(2008, p. 157) recently outlined a series of analyses that
604would be needed in order to develop a more complete
605understanding of normative attachment in human beings.
606In outlining these analyses, they wrote, ‘‘One feasible and
607straightforward way of testing this hypothesis would be to
608model the physiological functioning (e.g., indices of cardio-
609vascular responses) of each person in a relationship as a
610bivariate system in which changes in one person’s physiol-
611ogy (in response to any task demands) are dependent on, not
612only their own prior physiological state, but their partner’s
613prior physiological state as well.’’ The methods proposed
614here are ideally suited to answer these kinds of questions.
615Furthermore, many psychophysiological studies rely on col-
616lapsing data across measurement and assessment periods.
617This is a reasonable approach in order to create highly reli-
618able, epoch-specific variables, but, at the same time, it is a
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619 fundamentally limited way of studying process. When two
620 individuals interact, it is assumed that emotional synchroni-
621 zation is a continuous process that is best studied in a man-
622 ner that is as close to the raw data as possible. The EMD and
623 SHME approaches allow for this type of data analysis.
624 One obvious extension of these analyses is the use of
625 covariates to assess the extent to which psychophysiological
626 synchronization is related to couple-level or individual differ-
627 ence variables of interest. For example, when studying intact
628 couples, the approaches described here can be examined as a
629 function of marital satisfaction or attachment styles, with the
630 degree of synchronization evidenced across a study paradigm
631 serving as an outcome variable (e.g., do more highly satisfied
632 coupled evidence greater heart rate synchronization?) as well
633 as a predictor of future relationship outcomes. In dyadic
634 interaction tasks the approaches described here can be used
635 to determine if different experimental manipulations alter
636 the physiological synchronization or linkage between people.
637 For instance, Butler, Wilhem, and Gross (2006) examined
638 respiratory sinus arrhythmia as an indicator of emotion regu-
639 lation during a social interaction task. In studies of this kind,
640 the EMD and SHME approaches can be used to determine
641 the extent to which physiological synchronization might dif-
642 fer across the different instructed emotion regulation tasks.
643 These applications, of course, would require the inclusion
644 of more couples in the sample.
645 Finally, this paper focused on dyadic interactions and
646 examined the synchronization between two individuals with
647 regard to a given physiological signal (i.e., respiration,
648 impedance, or heart rate). Thus, this study investigated asso-
649 ciations between two time series. An important extension of
650 this work would involve the use of multivariate time series.
651 For example, a pertinent question here is how to identify syn-
652 chronization among multiple physiological signals and then
653 across the two members of a dyad. In particular, emotion
654 researchers would be interested in examining under which
655 conditions, and to what extent, such multivariate coherence
656 is most likely to emerge (e.g., Hsieh et al., 2011; McAssey,
657 Hsieh, & Ferrer, 2010). These possible extensions notwith-
658 standing, we hope that the methods proposed in this paper
659 illustrate some new possibilities for studying physiological
660 synchrony during dyadic interactions.
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838

839Appendix

840

841R Code for Obtaining the Empirical Mode
842Decomposition of a Time Series
843and Extracting its Trend

844library(EMD) ## load EMD package previ-

845ously installed

846EMDResult <- emd(Series, boundary=

847‘‘wave’’, plot.imf=FALSE)

848## choose ‘‘wave boundary condition; to

849plot IMFs, change to TRUE

850Freq <- rep(0, EMDResult$nimf) ## Identify

851the frequency having the

852## most

853power for each IMF

854for(i in 1:EMDResult$nimf) {

855Pgram <- spec.pgram(EMDResult$imf[,i],

856taper=0, plot=FALSE)

857Freq[i] <- min(Pgram$freq[which(P-

858gram$spec == max(Pgram$spec))])

859} ## Identify the last IMF whose strongest

860frequency is above a

861## threshold of 0.002

862M <- min(max(which(Freq > 0.002)), EMDRe-

863sult$nimf-1)

864Trend <- EMDResult$residue ## Add the lat-

865ter IMFs to the residual

866for(i in (M+1):EMDResult$nimf) Trend <-

867Trend + EMDResult$imf[,i]

868## Trend contains the signal of interest

869

M. P. McAssey et al.: Physiological Synchrony in Dyadic Interactions 13

Ó 2011 Hogrefe Publishing Methodology 2011; Vol. xx(xx):xxx–xxx

un
co

rr
ec

te
d 

R. W., & Gottman, J. M. (1985). Physiological and
of change in relationship satisfaction.

, 85–94., 85–94.
I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., &I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., &

J. J. (2005). The tie that binds? Coherence amongJ. J. (2005). The tie that binds? Coherence among
, and autonomic physiology., and autonomic physiology.

, M., & Hsieh, F. (2010). Slope estimation in structural, M., & Hsieh, F. (2010). Slope estimation in structural
measurement error models.measurement error models.

, M., Hsieh, F., & Ferrer, E. (2010). Optimal and robust, M., Hsieh, F., & Ferrer, E. (2010). Optimal and robust
synchronizationsynchronization

of randomly-wired neuron-nodes. Statistics andStatistics and

R. E., & Strogatz, S. H. (1990). Synchronization ofR. E., & Strogatz, S. H. (1990). Synchronization of
biological oscillators.oscillators.

50, 1645–1662., 1645–1662.
A. G., Bolfarine, H., & de Castro, M. (2009).A. G., Bolfarine, H., & de Castro, M. (2009).

A heteroscedastic structural errors-in-variables model withA heteroscedastic structural errors-in-variables model with

AppenAppen

pr
oo

f  

pr
oo

f  

pr
oo

f  

of Psychologyof Psychology
of Californiaof California

Shields Ave.Ave.
CA 95616CA 95616

Tel. 1 530 752-0184Tel. 1 530 752-0184
Fax 1 530 752-20871 530 752-2087
E-mail eferrer@ucdavis.eduE-mail eferrer@ucdavis.edu

- , A., Rosenblum, M., & Kurths, J. (2001)., A., Rosenblum, M., & Kurths, J. (2001).
A universal concept in nonlinear sciencesA universal concept in nonlinear sciences

no
t R. E., & Strogatz, S. H. (1990). Synchronization ofR. E., & Strogatz, S. H. (1990). Synchronization of

SIAM JournalSIAM Journal

A. G., Bolfarine, H., & de Castro, M. (2009).A. G., Bolfarine, H., & de Castro, M. (2009).
A heteroscedastic structural errors-in-variables model withA heteroscedastic structural errors-in-variables model with

, 408–423., 408–423.

fo
r 

models.

, M., Hsieh, F., & Ferrer, E. (2010). Optimal and robust, M., Hsieh, F., & Ferrer, E. (2010). Optimal and robust
in networksin networks
its Interface,Interface,

R. E., & Strogatz, S. H. (1990). Synchronization ofR. E., & Strogatz, S. H. (1990). Synchronization of

di
st

rib
ut

io
n

di
st

rib
ut

io
n

1 530 752-2087
eferrer@ucdavis.edueferrer@ucdavis.edu

AppendixAppendix

R Code for Obtaining the Empirical ModeR Code for Obtaining the Empirical Mode
Decomposition of a Time SeriesDecomposition of a Time Series
and Extracting its Trendand Extracting its Trend

Huang, N. E. (2005). Introduction to the Hilbert-Huang Trans-
752 form and its related mathematical problems. In N. E. Huang
753 & S. S. P. Shen (Eds.), Hilbert-Huang Transform and its
754 applications (pp. 1–25).

Huang,Q2


